Poly(methyl methacrylate)montmorillonite (5,5-dimethyl-1,3,2- flame retardan
聚四亚甲基醚二醇双(对氨基苯甲酸酯)分子式
聚四亚甲基醚二醇双(对氨基苯甲酸酯)是一种广泛应用于工业领域的化学物质。
它具有独特的分子结构和化学性质,使其在材料科学、医药、涂料和日用化学品等领域都有重要的应用。
以下是有关聚四亚甲基醚二醇双(对氨基苯甲酸酯)分子式的一些重要内容:1. 分子结构聚四亚甲基醚二醇双(对氨基苯甲酸酯)的分子结构包括四亚甲基醚单元和对氨基苯甲酸酯单元。
其分子式为C16H14O4N2,分子量为298.29 g/mol。
该化合物的分子结构具有对称性,并具有良好的热稳定性和化学稳定性。
2. 物理性质聚四亚甲基醚二醇双(对氨基苯甲酸酯)具有优异的耐热和耐溶剂性能,其玻璃化温度可达70-90摄氏度。
它还具有良好的柔韧性和耐磨性,可以在不同温度和湿度条件下保持稳定的性能。
3. 化学性质聚四亚甲基醚二醇双(对氨基苯甲酸酯)具有良好的化学稳定性,可以耐受酸、碱和有机溶剂的侵蚀。
它还具有良好的光学透明性,能够吸收紫外线并具有一定的紫外线防护性能。
4. 应用领域由于其良好的物理性质和化学性质,聚四亚甲基醚二醇双(对氨基苯甲酸酯)被广泛应用于工业制品、医疗器械、包装材料、涂料和涂膜等领域。
它可以用于制备高性能的聚合材料、光学材料、导电材料和高温材料。
5. 相关研究近年来,聚四亚甲基醚二醇双(对氨基苯甲酸酯)的研究工作日益增多,主要集中在其合成工艺、性能改性和应用领域拓展等方面。
有关学者对其分子结构进行了深入研究,探索了其在纳米材料、功能性材料和生物材料方面的潜在应用。
聚四亚甲基醚二醇双(对氨基苯甲酸酯)具有独特的分子结构和优异的物化性质,具有广泛的应用前景和发展空间。
随着化学科学和材料科学的不断发展,相信聚四亚甲基醚二醇双(对氨基苯甲酸酯)必将在更多领域展现其重要价值,为人类社会的进步做出更大的贡献。
在聚四亚甲基醚二醇双(对氨基苯甲酸酯)的研究领域中,近年来不断涌现出新的发展趋势和应用前景。
其中,有关其合成工艺的改进以及性能的优化是当前研究的热点之一。
聚山梨酯80-国际药用辅料网
聚山梨酯80-国际药用辅料网聚山梨酯80Polysorbate 80【别名】聚氧乙烯失水山梨醇单油酸酯;聚氧乙烯(20)山梨醇酐单油酸酯;吐温80 【质量标准】《中国药典》本品为聚氧乙烯20山梨醇酐单油酸酯。
【性状】本品为淡黄色至橙黄色的黏稠液体;微有特臭,味微苦略涩,有温热感。
本品在水、乙醇、甲醇或醋酸乙酯中易溶,在矿物油中极微溶解。
相对密度本品的相对密度(《中国药典》附录Ⅵ A韦氏比重秤法)为1.06~1.09。
黏度本品的运动黏度(《中国药典》附录Ⅵ G第一法),在25℃时(毛细管内径为3.4 ~4.2 mm)为350~550mm2/s。
酸值取本品10g ,精密称定,置250ml 锥形瓶中,加中性乙醇(对酚酞指示液显中性)50ml,溶解后,附回流冷凝器煮沸10分钟,放冷,加酚酞指示液5 滴,用氢氧化钠滴定液(0.1mol/L)滴定,酸值(《中国药典》附录Ⅶ H)不大于2.2。
皂化值本品的皂化值(《中国药典》附录Ⅶ H)为45~60。
羟值本品的羟值(《中国药典》附录Ⅶ H)为65~80。
碘值本品的碘值(《中国药典》附录Ⅶ H)为18~24。
【鉴别】 (1) 取本品的溶液(1→20)5ml,加氢氧化钠试液5ml ,煮沸数分钟,放冷,用稀盐酸酸化,显乳白色浑浊。
(2) 取本品的溶液(1→20) ,滴加溴试液,溴试液即褪色。
(3) 取本品6ml ,加水4ml 混匀,呈胶状物。
(4) 取本品的溶液(1→20)10ml ,加硫氰酸钴铵溶液(取硫氰酸铵17.4g 与硝酸钴2.8g,加水溶解成100ml )5ml ,混匀,再加三氯甲烷5ml ,振摇混合,静置后,三氯甲烷层显蓝色。
【检查】酸碱度取本品0.50g ,加水10ml溶解后,依法测定(《中国药典》附录Ⅵ H),pH值应为5.0 ~8.0。
颜色取本品10ml,与同体积的对照液(取比色用重铬酸钾液8.0ml 与比色用氯化钴液0.8ml ,加水至10ml)比较,不得更深。
愈创木酚MSDS
燃爆危险:
本品可燃,具强刺激性。
第四部分:急救措施
回目录
皮肤接触:
立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。
眼睛接触:
立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。
吸入:
脱离现场至空气新鲜处。就医。
食入:
用水漱口,给饮牛奶或蛋清。就医。
第五部分:消防措施
主要用途:
在化工生产中用作中间体,也作胶化剂,印刷油中作抗氧剂等。
其它理化性质:
第十部分:稳定性和反应活性
回目录
稳定性:
禁配物:
强氧化剂、强酸。
避免接触的条件:
聚合危害:
分解产物:
第十一部分:毒理学资料
回目录
急性毒性:
LD50:725 mg/kg(大鼠经口)
LC50:无资料
亚急性和慢性毒性:
刺激性:
邻甲氧基苯酚
90-05-1
第三部分:危险性概述
回目录
危险性类别:
侵入途径:
健康危害:
本品有强烈刺激性。沾染眼睛可发生严重损害。皮肤接触引起烧灼感,若与不纯溶剂接触,可致皮炎和水疱。经皮吸收2克以上,可致中毒死亡。口服可引起急性胃肠炎,呕吐、腹泻,有时可呈血性;可致死。本品蒸气压低,吸入其蒸气而致害的可能性小。工业上尚未见到本品中毒病例。
相对蒸气密度(空气=1):
4.27
饱和蒸气压(kPa):
0.014(25℃)
燃烧热(kJ/mol):
无资料
临界温度(℃):
无资料
临界压力(MPa):
无资料
辛醇/水分配系数的对数值:
无资料
闪点(℃):
82.2
葎草茎叶石油醚部位化学成分
学报Journal of China Pharmaceutical University2022,53(2):178-184178葎草茎叶石油醚部位化学成分孙彪1,2,敖运林1,2,王德智1,2,王俊雅1,2,叶文才1,2,3,张晓琦1,2,3*(1暨南大学药学院中药及天然药物研究所,广州510632;2暨南大学广东省现代中药工程技术研究中心,广州510632;3国家药品监督管理局中成药质量评价重点实验室,广州510632)摘要研究桑科葎草(Humulus scandens)茎叶石油醚部位化学成分。
采用硅胶、Sephadex LH-20、ODS、制备型高效液相等色谱方法进行分离纯化,从桑科中药葎草(Humulus scandens)茎叶中分离得到15个化合物,应用理化数据和波谱学方法分别鉴定为杨芽黄素(1)、白杨素(2)、5-羟基-3,4',6,7-四甲氧基黄酮(3)、(2S)-5-羟基-7,8-二甲氧基二氢黄酮(4)、欧前胡素(5)、珊瑚菜内酯(6)、4-羟基-3-(3'-甲基-2'-丁烯基)苯甲酸乙酯(7)、对羟基苯丙酸(8)、反式对羟基肉桂酸乙酯(9)、对羟基苯甲醛(10)、anofinic acid(11)、5,6-去氢卡文内酯(12)、大黄素甲醚(13)、齐墩果-12-烯-3,11-二酮(14)、ergosta-4,6,8(14),22-tetraen-3-one(15),以上化合物均为首次从该植物中分离得到。
关键词桑科;葎草;化学成分;黄酮中图分类号R284.1文献标志码A文章编号1000-5048(2022)02-0178-07doi:10.11665/j.issn.1000-5048.20220207引用本文孙彪,敖运林,王德智,等.葎草茎叶石油醚部位化学成分[J].中国药科大学学报,2022,53(2):178–184.Cite this article as:SUN Biao,AO Yunlin,WANG Dezhi,et al.Chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandens[J].J China Pharm Univ,2022,53(2):178–184.Chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandensSUN Biao1,2,AO Yunlin1,2,WANG Dezhi1,2,WANG Junya1,2,YE Wencai1,2,3,ZHANG Xiaoqi1,2,3*1Institute of Traditional Chinese Medicine&Natural Products,College of Pharmacy,Ji'nan University,Guangzhou510632; 2Guangdong Engineering Research Center for Modernization of TCM,Ji'nan University,Guangzhou510632;3NMPA Key Laboratory for Quality Evaluation of TCM,Guangzhou510632,ChinaAbstract To study the chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandens(family of Moraceae),fifteen compounds were isolated from the stems and leaves of H.scandens by silica gel,Sephadex LH-20,ODS,and preparative HPLC chromatography.The structures were identified by physico‑chemical data and spectroscopic method as tectochrysin(1),chrysin(2),5-hydroxy-3,4',6,7-tetramethoxyfla‑vone(3),(2S)-5-hydroxy-7,8-dimethoxyflavanone(4),imperatorin(5),phellopterin(6),ethyl4-hydroxy-3-(3'-methyl-2'-butenyl)benzoate(7),p-hydroxy-phenylpropionic acid(8),ethyl p-hydroxycinnamate(9),p-hydroxy‑benzaldehyde(10),anofinic acid(11),5,6-dehydrokavain(12),physcion(13),olean-12-ene-3,11-dione(14)and ergosta-4,6,8(14),22-tetraen-3-one(15),respectively.All compounds were isolated from this plant for the first time.Key words Moraceae;Humulus scandens;chemical constitutents;flavonesThis study was supported by the National Natural Science Foundation of China(No.U1801287,No.82073712),the Science and Technology Planning Project of Guangdong Province(No.2020B1111110004)and the Science and Technology Planning Project of Guangzhou(No.20212210005)收稿日期2021-08-27*通信作者Tel:************E-mail:tzhxq01@基金项目国家自然科学基金资助项目(No.U1801287,No.82073712);广东省科技计划资助项目(No.2020B1111110004);广州市科技计划资助项目(No.20212210005)第53卷第2期孙彪,等:葎草茎叶石油醚部位化学成分葎草[Humulus scandens.(Lour.)Merr.]为桑科(Moraceae)葎草属植物,为一年生或多年生草本,广泛分布于我国除青海、新疆以外的大部分地区,另外东北亚、北美洲也有分布[1-2]。
聚乙二醇甲醚甲基丙烯酸酯结构式
聚乙二醇甲醚甲基丙烯酸酯的结构与性质1. 聚乙二醇甲醚甲基丙烯酸酯的结构聚乙二醇甲醚甲基丙烯酸酯是一种具有特殊结构的聚合物。
它由以下部分组成:•聚乙二醇(Polyethylene Glycol,简称PEG):是由重复的乙二醇单元(–CH2CH2O–)构成的线性聚合物。
PEG具有良好的溶解性、稳定性和生物相容性,被广泛应用于医药、化妆品、涂料等领域。
•甲醚(Methoxy):指分子中含有一个或多个甲氧基(–OCH3)官能团的化合物。
•甲基丙烯酸酯(Methyl Methacrylate,简称MMA):是一种常见的单体,可通过自由基聚合反应制备聚合物。
将这三个部分结合起来,就得到了聚乙二醇甲醚甲基丙烯酸酯。
其结构式如下所示:2. 聚乙二醇甲醚甲基丙烯酸酯的性质2.1 物理性质•外观:聚乙二醇甲醚甲基丙烯酸酯为无色至淡黄色液体。
•溶解性:聚乙二醇甲醚甲基丙烯酸酯在水中具有良好的溶解性,也可溶于多种有机溶剂,如乙醇、二甲基亚硫脲等。
•密度:约为1.05 g/cm³。
•折射率:约为1.44。
2.2 化学性质聚乙二醇甲醚甲基丙烯酸酯具有一定的化学反应活性,可以进行以下反应:•自由基聚合反应:由于其含有双键结构,可以通过自由基引发剂的作用,进行自由基聚合反应,形成高分子量的聚合物。
•酯交换反应:聚乙二醇甲醚甲基丙烯酸酯中的酯键具有一定的活性,可与其他含有羟基或羧基的化合物发生酯交换反应,得到具有不同功能官能团的共聚物。
3. 应用领域由于聚乙二醇甲醚甲基丙烯酸酯具有优异的性质和特殊结构,因此在许多领域都得到了广泛应用。
3.1 医药领域•药物控释系统:聚乙二醇甲醚甲基丙烯酸酯可以作为药物控释系统的载体材料,通过调节其分子量、交联度和结构等参数,实现对药物释放速率和时间的控制。
•生物医学材料:PEG具有良好的生物相容性,在生物医学领域中被广泛用于制备人工血管、人工器官、修复组织等材料。
•抗菌剂载体:将抗菌剂与聚乙二醇甲醚甲基丙烯酸酯共混,可以制备出具有抗菌性能的材料,用于医疗器械和防护用品等领域。
17种常见工程塑料
聚甲基丙烯酸甲酯(PMMA)聚甲基丙烯酸甲酯polymethylmethacrylate,PMMA定义:重复单元为的无定形聚合物。
透光率可达90%~92%,具有优良的耐气候性和电绝缘性。
材料科学技术(一级学科);高分子材料(二级学科);塑料(二级学科)以上内容由全国科学技术名词审定委员会审定公布聚甲基丙烯酸甲酯,以丙烯酸及其酯类聚合所得到的聚合物统称丙烯酸类树酯,相应的塑料统称聚丙烯酸类塑料,其中以聚甲基丙烯酯甲酯应用最广泛。
聚甲基丙烯酸甲酯缩写代号为PMMA,俗称有机玻璃,是迄今为止合成透明材料中质地最优异,价格又比较适宜的品种。
应用方面:PMMA溶于有机溶剂,如苯酚,苯甲醚等,通过旋涂可以形成良好的薄膜,具有良好的介电性能,可以作为有机场效应管(OFET)亦称有机薄膜晶体管(OTFT)的介质层。
pmma概述中文别名:2-甲基-2-丙烯酸甲酯的均聚物;聚丙烯酸酯塑料;溶胶;有机玻璃;有机玻璃(杜邦公司聚甲基丙烯酸甲酯的商品名);有机玻璃板材;平均分子量(GPC法):~350000 .TG(DSC)122;牙托粉PMMA (聚甲基丙烯酸甲酯)英文名称:PolymethylMethacrylate。
英文别名:METHYL METHACRYLATE POLYMER; METHYL METHACRYLATE, POLYMERIZED; METHYL METHACRYLATE RESIN; METHACRYLIC ACID METHYL ESTER POLYMER; LUCITE; POLY(METHYL METHACRYLATE-CO-ETHYL ACRYLATE); POLY(METHYL METHACRYLATE), ISOTACTICCAS号:9011-14-7分子式:-[CH2C(CH3)(COOCH3)]n-分子结构图:PMMA树脂是无毒环保的材料,可用于生产餐具,卫生洁具等,具有良好的化学稳定性、和耐候性。
高密度聚乙烯_蒙脱土复合材料的制备及性能的研究
由于马来酸酐上的羧基和蒙脱土上的胺基相互作用使A G<0,同时极性的
高密度聚乙烯/蒙脱土复合材料的制备及性能的研究
作者:曲静波
学位授予单位:青岛科技大学
1.柯扬船.皮特·斯壮聚合物--无机纳米复合材料 2002
2.刘吉平.郝向阳纳米科学与技术 2001
3.都有为超微颗粒的物理特性[期刊论文]-材料导报 1992(5)
36.舒文艺功能性聚烯烃的开发现状[期刊论文]-塑料 1995(4)
37.漆宗能.马永梅.张世民.张泽源.岳群纳米塑料[期刊论文]-石化技术与应用 2001(5)
38.张国耀.易国祯.吴立衡.徐翔.宋青.杨宇.金剑.钟淑芳.漆宗能聚对苯二甲酸乙二酯/蒙脱土纳米复合材料的制备和性能[期刊论文]-高分子学报 1999(3)
10.Moet A.Akelah A Polymer-clay nanocomposites: polystyrene grafted onto montmorillonite interlayers 1993
11.Kato C查看详情 1989
12.Aranda P.Ruiz_Hitzky E Poly(ethylene oxide)-silicate intercalation materials 1992
4.Birriiner R.Gleiter H Structure of Nanocomposites 1984
5.张立德.牟季美纳米材料和纳米结构 2001
6.Okada A.Kawasumi M.Kurauchi T查看详情 1987
7.Giannelis E P Polymer Layered Silicate Nanocomposites 1996
甲基丙烯酸月桂酯
广州三旺化工材料有限公司 Guangzhou Swan Chemical Co.,Ltd. 地 址(address):广州天河区中山大道中288号东圃商业大厦C 座609 邮编(P.C.):510660 电 话(TEL):86-20-82562026 传真(FAX):86-20-82522377 网址(website): 邮箱(E-mail):swan@ 甲基丙烯酸月桂酯
化学名: lauryl methacrylate (LMA )
别名:甲基丙烯酸十二烷醇酯
分子式:CH2=C(CH3)COOC12H25
CAS :142-90-5
产品说明 (description) 外状:透明液体
熔点-220℃ 沸点272~343℃ 闪点132℃(开杯)
相对密度0.868 折射率1.444
溶于一般有机溶剂,不溶于水。
易聚合,通常加入10-4氢醌作阻聚剂。
色数:100
比重(25℃):0.86~0.89
含水率(%):0.10
抑制剂(ppm ):900~1100
酸价(mg.KOH/g ):0.5
应用(usage) 应用于化学中间体、涂料、粘合剂、光阻剂等
产地、包装与储存(origin,package,storage) 生产商:日本三菱
包 装:180KG/桶。
染料木素结构
染料木素结构
【原创实用版】
目录
1.染料木素概况
2.染料木素的基本信息
3.染料木素的存在形式和特性
4.染料木素的应用领域
5.染料木素的研究进展
正文
一、染料木素概况
染料木素,即金雀异黄素,是一种天然产物,属于异黄酮类化合物。
它为长方形或六边形棒状结晶(60% 乙醇)、树枝状结晶(乙醚),熔点297-298(略微分解)。
染料木素溶于 dmso 和乙醇,几乎不溶于水,在水中的溶解度为 8.7 微克/毫升,改变溶液 ph 对染料木素没有明显影响。
二、染料木素的基本信息
染料木素的英文名称为 genisteincas,no:,446-72-0,别名为 5,7,4’- 三羟基异黄酮,染色木素等。
它的化学式为 C15H10O5,分子量为 286.23,是一种浅黄色结晶性粉末。
三、染料木素的存在形式和特性
染料木素主要存在于豆科植物中,如槐角、山豆根等含量较大。
它具有多种生物学活性和药理作用,如抗氧化、抗肿瘤、抗病毒、抗炎等。
四、染料木素的应用领域
由于染料木素具有多种生物学活性和药理作用,因此,它被广泛应用于医药、保健品、食品添加剂、染料等领域。
五、染料木素的研究进展
近年来,随着科学技术的进步和研究的深入,人们对染料木素的认识和了解越来越深入。
鲍利葛公司木质素
1.0 1.0
50
2.0
加到 1L
4.0 1.0
50
2.0
---
4.0 2.0
50
2.0
---
2.0 2.0
50
2.0
---
2.0
50
2.0
---
2.0
50
2.0
---
10 2.0
50
2.0
---
1.0
50
2.0
---
6.0 2.0
50
2.0
---
2.0 2.0
50
2.0
---
2.0
50
2.0
---
公司网址:
农药剂型博客http://pesticide.blog.sohu.com/
Ultrazine NA
Ultrazine NA 是鲍利葛公司生产的一种高纯精制改性木质素磺酸钠盐,采用超微 过虑工艺筛选大分子木质素,易溶于水,是一种水溶性的棕色粉末。 用途:专门用于农药化学领域,做分散剂使用,其分散性能好,悬浮率高,储存
3
2.0
--
利谷隆 50%
4
2.0
5
--
代森锰锌 80%
5
0.5
--
代森锰 80%
3
0.5
1
--
毒草胺 65%
5
3.0 5
--
腐霉利 50%
3
1.0
--
西玛津 50%
3
3.0
--
硫磺 80%
4
1.0
4
--
福美双 80%
3
2.0
--
敌百虫 50%
3-o-去甲基木兰花碱结构
3-o-去甲基木兰花碱结构简介3-o-去甲基木兰花碱(3-o-demethylomuraline)属于木兰花素生物碱的一种,也被称为de-O-demethylomuraline、dehdromuraline或7α-O-demethylomuralaline。
它是一种具有芳香的有机化合物,具有多个环结构。
本文将介绍3-o-去甲基木兰花碱的化学结构、物理性质、化学性质、用途等内容。
1. 化学结构3-o-去甲基木兰花碱的分子式为C14H19NO2,分子量为233.31g/mol。
其化学结构如下所示:![3-o-demethylomuraline](C14H19NO2)2. 物理性质2.1 外观3-o-去甲基木兰花碱为白色至淡黄色结晶固体。
2.2 熔点3-o-去甲基木兰花碱的熔点为XX°C。
2.3 溶解性3-o-去甲基木兰花碱可溶于非极性溶剂,如氯仿、乙醇等,不溶于水。
3. 化学性质3-o-去甲基木兰花碱在一定条件下可发生一系列化学反应,具有以下化学性质:3.1 酸碱性3-o-去甲基木兰花碱在中性条件下稳定,但在酸性或碱性条件下可能会发生化学反应。
3.2 氧化性3-o-去甲基木兰花碱具有一定的氧化性,可以被氧化剂氧化为其它化合物。
3.3 还原性3-o-去甲基木兰花碱在一定条件下可以被还原剂还原为其它化合物。
4. 用途4.1 药物研究由于3-o-去甲基木兰花碱具有特殊的化学结构和生物活性,它被广泛应用于药物研究领域。
研究人员利用其生物活性来研发新的药物,特别是用于治疗肿瘤等疾病的药物。
4.2 化学合成3-o-去甲基木兰花碱的化学结构也为有机化学家提供了合成新化合物的思路。
研究人员可以通过对其结构进行改变和修饰,合成出具有更好生物活性和药理特性的新化合物。
结论本文介绍了3-o-去甲基木兰花碱的化学结构、物理性质、化学性质和用途等方面的内容。
3-o-去甲基木兰花碱作为一种重要的生物活性化合物,在药物研究和有机合成领域具有广泛的应用前景,对其的深入研究将为新药物研发和有机合成的进展提供重要基础。
聚乙二醇甲醚甲基丙烯酸酯结构式
聚乙二醇甲醚甲基丙烯酸酯结构式聚乙二醇甲醚甲基丙烯酸酯是一种重要的聚合物材料,具有广泛的应用领域。
本文将对其结构式、性质、合成方法以及应用进行详细介绍。
结构式聚乙二醇甲醚甲基丙烯酸酯的结构式为:其中,R表示不同的基团。
性质聚乙二醇甲醚甲基丙烯酸酯具有以下主要性质:1.高分子量:聚乙二醇甲醚甲基丙烯酸酯通常具有较高的分子量,可以根据需要调节分子量以获得不同的性能。
2.可溶性:聚乙二醇甲醚甲基丙烯酸酯在水中可溶解,并能与许多有机溶剂相容。
3.热稳定性:该聚合物具有良好的热稳定性,能够在高温条件下保持其结构和性能。
4.生物相容性:聚乙二醇甲醚甲基丙烯酸酯对生物体具有较好的相容性,被广泛应用于医学领域。
合成方法聚乙二醇甲醚甲基丙烯酸酯的合成通常采用自由基聚合反应进行。
以下是一种常见的合成方法:1.预处理:首先,将乙二醇甲醚甲基丙烯酸酯单体与引发剂、溶剂等混合,并在惰性气氛下进行预处理,以去除其中的杂质。
2.聚合反应:将预处理后的单体溶液加入反应釜中,加入引发剂,并在适当的温度下进行聚合反应。
反应时间可以根据需要进行调节。
3.收集产物:聚合反应结束后,通过蒸馏、沉淀等方法将产物从溶液中分离出来,并进行后续的处理和纯化。
应用聚乙二醇甲醚甲基丙烯酸酯在众多领域中得到了广泛的应用。
以下列举几个主要的应用领域:1.医学领域:聚乙二醇甲醚甲基丙烯酸酯具有良好的生物相容性和可降解性,被广泛应用于医学领域,例如制备医用材料、药物传递系统等。
2.化妆品领域:聚乙二醇甲醚甲基丙烯酸酯可以增加化妆品的稳定性和质感,在化妆品中被用作增稠剂、乳化剂等。
3.涂料和胶粘剂:聚乙二醇甲醚甲基丙烯酸酯可以提高涂料和胶粘剂的黏附力和耐候性,被广泛应用于这些领域。
4.纺织品:聚乙二醇甲醚甲基丙烯酸酯可以通过改善纺织品的柔软性、抗皱性等性能,提高纺织品的舒适度和耐用性。
总结:聚乙二醇甲醚甲基丙烯酸酯是一种重要的聚合物材料,具有多种优良的性质和广泛的应用领域。
聚氨基甲酸酯
编辑词条聚氨基甲酸酯中文名:聚氨基甲酸酯;聚氨酯英文名:polyurethane用途:根据所用原料的不同,可有不同性质的产品,一般为聚酯型和聚醚型两类。
可用于制造塑料、橡胶、纤维、硬质和软质泡沫塑料、胶粘剂和涂料等。
制备来源:由二元或多元异氰酸酯与二元或多元羟基化合物作用而成的高分子化合物。
聚氨基甲酸酯,是分子结构中含有—NHCOO—单元的高分子化合物,该单元由异氰酸基和羟基反应而成,反应式如下:—N=C=O + HOˉ → —NH-COOˉ聚氨酯的发现:20世纪30年代,德国Otto Bayer 首先合成了PU。
在1950年前后,PU作为纺织整理剂在欧洲出现,但大多为溶剂型产品用于干式涂层整理。
20世纪60年代,由于人们环保意识的增强和政府环保法规的出台,水系PU涂层应运而生。
70年代以后,水系PU涂层迅速发展,PU涂层织物已广泛应用。
80年代以来,PU的研究和应用技术出现了突破性进展。
与国外相比,国内关于PU纺织品整理剂的研究较晚。
研发历史聚氨酯(简称PU)是由多异氰酸酯和聚醚多元醇或聚酯多元醇或/及小分子多元醇、多元胺或水等扩链剂或交联剂等原料制成的聚合物。
通过改变原料种类及组成,可以大幅度地改变产品形态及其性能,得到从柔软到坚硬的最终产品。
聚氨酯制品形态有软质、半硬质及硬质泡沫塑料、弹性体、油漆涂料、胶粘剂、密封胶、合成革涂层树脂、弹性纤维等,广泛应用于汽车制造、冰箱制造、交通运输、土木建筑、鞋类、合成革、织物、机电、石油化工、矿山机械、航空、医疗、农业等许多领域。
1937年德国Otto Bayer教授首先发现多异氰酸酯与多元醇化台物进行加聚反应可制得聚氨酯,并以此为基础进入工业化应用,英美等国1945~1947年从德国获得聚氨酯树脂的制造技术于1950年相继开始工业化。
日本1955年从德国Bayer公司及美国DuPont公司引进聚氨酯工业化生产技术。
20世纪50年代末我国聚氨酯工业开始起步,近lO多年发展较快。
聚天冬氨酸
1、马来酸酐水相合成法 主要原料:马来酸酐、氨水、
该法所得产品分子量较低,产率也偏低,并且在高温条件下易导致产品颜色加深。
聚天冬氨酸——制备
2、马来酸酐无水合成法 本法以马来酸酐为原料,与无机铵类在其熔点温度或熔点温度以上进行熔融化化学反应,然后直接聚合为聚琥珀酰亚胺后,在进行碱水解来制备。 无机铵有碳酸铵、硫酸铵、磷酸氢二铵、氯化铵等。 该法合成的聚天冬氨酸,产品分子量较低。
指标名称
指标
指标名称
指标
外观
黄色至红棕色液体
极限黏数(30℃)/(dL/g)
0.055---0.090
固体含量/%
≥30.0
PH值(10g/L水溶液)
8.5---10.5
密度(20℃)/(g/cm3)
≥1.15
生物降解率/%
≥60
聚天冬氨酸钠的技术指标
返回
聚天冬氨酸------生物可降解性能
聚天冬氨酸------阻垢性能及其稳定性
阻垢剂:天聚冬氨酸(PASP)、聚丙烯酸(PAA)、聚马来酸(PMA)、丙烯酸/2-丙烯酰胺-2-甲基丙烷磺酸(AA/AMPS)、2-磷酸基-1,2,4-三羧基丁烷(PBTCA) 羟基亚乙基(HEDP)
阻垢对象:
聚天冬氨酸------阻垢性能及其稳定性
钙离子浓度(以碳酸钙计)/ ×10-6
评价方法: 生成法(GB/T20778-2006) 评价原理:在微生物存在的条件下,有机物发生好养分解产生二氧化碳 、水和小分子化合物。
聚天冬氨酸------生物可降解性能
依据标准,以苯胺为参比物,降解率大于理论值的60%,且十天降解率大于理论值的10%,为易降解水处理剂。 返回
阻垢率/%
羟甲基三聚氰胺和高度甲醚化的三聚氰胺甲醛树脂物理性能及用途
羟甲基三聚氰胺和高度甲醚化的三聚氰胺甲醛树脂物理性能及用途(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--六羟甲基三聚氰胺和高度甲醚化的三聚氰胺甲醛树脂物理性能及用途一、产品性能:中文名为:六羟甲基三聚氰胺,英文名为:hexamethylol melamine,简称:HMM.分子式为:C3N6(CH2OH)6或C9H18N6O6。
熔点164℃~174℃,沸点669℃,分子量,相对密度为 g/cm3(20℃),羟甲基含量﹥50%且低羟物少;水份:8%-10%(105℃,2小时);游离甲醛含量﹤1%。
根据用户要求,游离甲醛含量可控制在%以下。
其特点是羟甲基含量高、水份稳定、游离甲醛含量极低;投料时,粉尘少。
CAS no.:531-18-0结构式:二、产品用途1、橡胶粘合剂行业此产品与醇类醚化可生产橡胶粘合剂A从而制成RA。
即美国氰特CYREZ? 964产品。
[CYREZ? 964 浓缩粉末树脂 (六甲氧基甲基三聚氰胺)或者HMMM在“HRH”橡胶粘合体系中作为亚甲基给予体来增强橡胶与帘线的粘合方面有着广泛的应用。
]2、涂料行业此产品与甲醇醚化可生产涂料用高甲醚化型氨基树脂[如氰特Cymel 303 树脂,首诺(孟山都)SOLUTIA 747,德国巴斯夫(BASF)的Luwipal 系列的高甲醚化氨基树脂以及韩国P&ID公司美螺丝(Melcross 03)树脂等],是制水性涂料、高固体份涂料、粉末涂料所必需的涂料助剂,广泛用于卷材涂料、汽车涂料助剂。
3、由于我公司产品游离甲醛含量可控制在%以下,是服装整理剂助剂的最好选择。
三、选择我公司产品的好处1、由于产品游离甲醛含量极低,用户选择我公司产品以代替甲醛和三聚氰胺可解决现场生产职工职业卫生及环保问题。
2、用户选择我公司产品来代替甲醛和三聚氰胺同样的生产设备可提高产能50%以上。
3、由于我公司产品水份非常稳定,加之用我公司比用甲醛和三聚氰胺工艺流程缩短,用户选择我公司产品直接与甲醇醚化,醚化的产品质量很容易控制,且产品收率也较高,从而降低了用户的生产成本。
肉桂酸结构式
肉桂酸结构式
肉桂酸的结构式:Ph-CH=CH-COOH,肉桂酸又名β-苯丙烯酸、3-苯基-2-丙烯酸,是从肉桂皮或安息香分离出的有机酸,植物中由苯丙氨酸脱氨降解产生的苯丙烯酸,主要用于香精香料、食品添加剂、医药工业、美容、农药、有机合成等方面。
医药工业中,可用于合成治疗冠心病的重要药物乳酸可心定和心痛平,及合成氯苯氨丁酸和肉桂苯哌嗪,用来制造“心可安”,局部麻醉剂、杀菌剂、止血药等。
还可合成氯苯氨丁酸和肉桂苯哌嗪,用作脊锥骨骼松弛剂和镇痉剂。
主要用于脑血栓,脑动脉硬化,冠状动脉硬化等病症。
对肺腺癌细胞增殖有明显抑制作用。
肉桂酸是A-5491人肺腺癌细胞有效的抑制剂,在抗癌方面具有极大的应用价值。
偏硅酸三甲酯化学式
偏硅酸三甲酯化学式英文回答:Methyl trimethoxysilane, also known as MTMS or trimethoxysilane, has the chemical formula (CH3O)3SiCH3. It is an organosilicon compound that consists of a siliconatom bonded to three methyl groups and three methoxy groups. The molecular weight of MTMS is 136.24 g/mol.MTMS is a colorless liquid with a boiling point of 101-103°C. It is soluble in organic solvents such as ethanol and acetone, but insoluble in water. This compound is commonly used as a precursor in the synthesis of various silicon-based materials, including silicone polymers and silane coupling agents.In the production of silicone polymers, MTMS is often used as a crosslinking agent. It reacts with other silane compounds, such as tetraethoxysilane (TEOS), to form athree-dimensional network structure. This crosslinkingprocess enhances the mechanical properties and thermal stability of the resulting silicone polymers. For example, MTMS can be used to produce silicone rubber, which is widely used in various industries due to its excellent heat resistance, electrical insulation, and flexibility.MTMS is also utilized as a silane coupling agent in the formulation of adhesives, coatings, and sealants. It acts as a bridge between organic and inorganic materials, improving the adhesion between different substrates. For instance, in the production of a silicone-based adhesive, MTMS can be added to enhance the bonding strength between the silicone polymer and the substrate, such as glass or metal.In addition to its industrial applications, MTMS is also used in research and development for the synthesis of novel materials. Its reactivity and versatility make it a valuable building block for the creation of new functional materials. For example, MTMS can be functionalized with various organic groups to introduce specific properties, such as hydrophobicity or conductivity, into the resultingmaterials.中文回答:偏硅酸三甲酯,也称为MTMS或三甲氧基硅烷,化学式为(CH3O)3SiCH3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Poly(methyl methacrylate)/Montmorillonite Nanocomposites Prepared with a Novel Reactive Phosphorus–Nitrogen-Containing Monomer of N-(2-(5,5-dimethyl-1,3,2-dioxaphosphinyl-2-ylamino)ethyl)-Acrylamide and Its Thermal and Flame Retardant PropertiesGuobo Huang,1Xu Wang,2Zhengdong Fei,2Huading Liang,1Yuyuan Ye11School of Pharmaceutical and Chemical Engineering,Taizhou University,Linhai317000,People’s Republic of China 2College of Chemical Engineering and Materials,Zhejiang University of Technology,Hangzhou310014,People’s Republic of ChinaReceived27June2011;accepted10September2011DOI10.1002/app.35618Published online11December2011in Wiley Online Library().ABSTRACT:A novel reactive phosphorus–nitrogen-con-taining monomer,N-(2-(5,5-dimethyl-1,3,2-dioxaphos-phinyl-2-ylamino)ethyl)-acrylamide(DPEAA),was synthesize and characterized.Flame retardant poly(methyl methacrylate)/organic-modified montmorillonite(PMMA-DPEAA/OMMT)nanocomposites were prepared by in situ polymerization by incorporating methyl methacrylate, DPEAA,and OMMT.The results from X-ray diffraction and transmission electron microscopy(TEM)showed that exfoliated PMMA-DPEAA/OMMT nanocomposites were formed.Thermal stability and flammability properties were investigated by thermogravimetric analysis,cone cal-orimeter,and limiting oxygen index(LOI)tests.The syner-gistic effect of DPEAA and montmorillonite improved thermal stability and reduced significantly the flammabil-ity[including peak heat release rates(PHRR),total heat release,average mass loss rate,etc.].The PHRR of PMMA-DPEAA/OMMT was reduced by about40%compared with pure PMMA.The LOI value of PMMA-DPEAA/ OMMT reached27.3%.The morphology and composition of residues generated after cone calorimeter tests were investi-gated by scanning electronic microscopy(SEM),TEM,and energy dispersive X-ray(EDX).The SEM and TEM images showed that a compact,dense,and uniform intumescent char was formed for PMMA-DPEAA/OMMT nanocompo-sites after combustion.The results of EDX confirmed that the carbon content of the char for PMMA-DPEAA/OMMT nanocomposites increased obviously by the synergistic effect of DPEAA and montmorillonite.V C2011Wiley Periodicals,Inc.J Appl Polym Sci124:5037–5045,2012Key words:clay;flame retardant;nanocompositesINTRODUCTIONPoly(methyl methacrylate)(PMMA)is a typical transparent amorphous polymer and has been widely used in a wide range of fields with several desirable properties such as good flexibility,high strength,and excellent dimension stability.How-ever,PMMA is very flammable and cannot satisfy some applications which require high flame retard-ancy.Incorporating a chemically reactive flame re-tardant monomer into the polymer chain is one of the most efficient methods of improving the flame retardancy of polymer.Some phosphorus-containing components have already been used in the synthesis of several flame retardant step-reaction polymers, e.g.,polyesters,1,2polyurethanes,3and epoxy res-ins.4–6However,phosphorus–nitrogen-containing components used in the synthesis of chain-reaction polymers are much less well developed.7In this arti-cle,a novel reactive phosphorus–nitrogen-containing monomer,N-(2-(5,5-dimethyl-1,3,2-dioxaphosphinyl-2-ylamino)ethyl)-acrylamide(DPEAA),was synthe-sized and applied to prepare flame retardancy PMMA.Polymer-layered silicate nanocomposites(PLSN) consisting of continuous polymer matrix reinforced by a few weight percent of intercalated or exfoli-ated layered silicates have drawn more and more attention in recent years due to their unique materials properties.8–17As an important member of such nanocomposites,PLSN exhibit enhanced thermal stability and flame retardancy,reduced gas permeability,and improved physical perform-ance and barrier properties.PLSN exhibit enhanced thermal stability and flame retardancy, reduced gas permeability,and improved physicalCorrespondence to:G.Huang(huangguobo@). Contract grant sponsor:Zhejiang Provincial Natural Science Foundation of China;contract grant number: Y4110026.Contract grant sponsor:Opening Foundation of Zhejiang Provincial Top Key Discipline;contract grant number:20110913.Journal of Applied Polymer Science,Vol.124,5037–5045(2012) V C2011Wiley Periodicals,Inc.performance and barrier properties.Previous researches of the flame retardant properties of PLSN mainly demonstrate a significant decrease in the heat release rate,a change in the char struc-ture,and a decrease in the mass loss rate during combustion in a cone calorimeter.18–26In fact,most of PLSN usually do not extinguish and burn slowly until most of the fuel has been burnt.To further improve flame retarding performance of PLSN,intumescent flame retardant(IFR),as envi-ronmentally friendly halogen-free products,is widely applied in the preparation of flame retard-ant PLSN.27–30The IFR can generate a swollen multicellular thermally stable char during burningwhich insulates the underlying material from the flame action.Previous study showed that the addi-tion of montmorillonite into PMMA improved flame retardancy and reduced the heat release rate.31–33However,little work has been done con-cerning the synergistic effect between IFR and the clay mineral in PMMA nanocomposites.In this article,flame retardant PMMA/montmoril-lonite nanocomposites were prepared by in situ po-lymerization by incorporating methyl methacrylate (MMA),DPEAA,and OMMT.The thermal property and flammability of PMMA/montmorillonite nano-composites were investigated by thermogravimetric analysis(TGA)and cone calorimeter test.The char residue after combustion was also examined by scanning electronic microscopy(SEM),transmission electron microscopy(TEM),and energy dispersive X-ray(EDX).It is anticipated that the combination of montmorillonite and IFR DPEAA could improve the thermal stability and flame retardant of the nanocomposites.EXPERIMENTALMaterialsNeopentyl glycol,acryloyl chloride,MMA,and benzoyl peroxide(BPO)chemically pure(CP)were purchased from Sinopharm Chemical Reagent Co. (Shanghai,China).Phosphoryl trichloride and ethylenediamine(CP)were supplied by Shanghai Chemical Reagent Co.(Shanghai,China).Pristine sodium montmorillonite(Na-MMT),with a cation exchange capacity of$120mequiv./100g,was mined at An’ji,Zhejiang,China and was supplied by Anji Yu Hong Clay Chemical Co.(Zhejiang, China).The OMMT was prepared by ion exchange of Na-MMT and hexadecyl trimethyl ammonium bromide in aqueous solution.2,2-Dimethyl-1,3-propanediol phosphoryl chloride(DPPC)and1N-(5,5-dimethyl-1,3,2-dioxaphosphinyl-2-yl)ethane-1,2-diamine(DPEA)were prepared according to the published procedure(Scheme1).34,35Synthesis of DPEAADPEA(0.10mol,20.8g),acryloyl chloride(0.10mol, 9.0g),triethylamine(0.20mol,20.2g),and50mL dried trichloromethane were mixed in a glass flask. The reaction was completed after6h at45 C.The raw product was filtered and purified with methyl alcohol.The purified product(DPEAA)was a white solid(yield:74%).Fourier-transform infrared(FT-IR; KBr,cmÀ1):3190,1728,1478,1269,1224,1068,and 1007.1H NMR(CCl3D,d):7.27(m,1H),6.30–6.27 (m,1H),6.18–6.15(m,1H),5.62–5.60(m,1H),4.22–4.18(m,2H),3.87–3.82(m,2H),3.46–3.45(m,2H), 3.16–3.12(m,2H),1.16(s,3H),and0.93(s,3H).13C NMR(CCl3D,d):166.19,131.24,125.71,77.29,76.78, 41.01,31.81,21.69,and20.82.High-resolution mass spectrometry(HRMS)(ESI):C10H19N2O4P calcd mass(MþH)263.1161,found263.1158.Preparation of PMMA-DPEAAA copolymer of MMA and DPEAA(PMMA-DPEAA)was prepared as follows:in a4-neck round-bottom flask equipped with inlets for refriger-ation,mechanical stirring,and nitrogen,kept in an oil bath at90 C,90g of MMA,10g of DPEAA,and 0.5g of BPO previously dissolved,was added.This solution was stirred mechanically at90 C for30min and then inserted into a mold and kept at80 C for 48h to complete the polymerization process.Finally, the PMMA-DPEAA was kept for6h at120 C to be sure that the entire prepolymer fraction has been converted.The copolymer modified by5wt%and 10wt%DPEAA is denoted by PMMA-DPEAA5 and PMMA-DPEAA10,respectively.Preparation of PMMA-DPEAA/OMMT nanocompositesPMMA-DPEAA/OMMT nanocomposites were pre-pared as follows:first,an appropriate amount of OMMT(5g)was introduced into the matrix of85.5 g of MMA and9.5g of DPEAA monomersunder Scheme1Synthesis of nitrogen-and phosphorus-con-taining monomer of DPEAA.5038HUANG ET AL. Journal of Applied Polymer Science DOI10.1002/appmagnetic stirring for 12h at room temperature.On addition of BPO (0.5g),this solution then was stirred mechanically at 90 C for 30min and inserted into a mold and kept at 80 C for 48h to complete the polymerization process.Finally,the PMMA-DPEAA/OMMT nanocomposites were then obtained by keeping for 6h at 120 C.PMMA filled with 5wt %OMMT is denoted by PMMA/OMMT.Characterization and measurementThe samples of PMMA and PMMA-DPEAA for FT-IR were extracted with acetone for 24h in a Soxhlet extraction apparatus.The FT-IR spectra of com-pound DPEAA and PMMA-DPEAA (30wt %DPEAA)dispersed in potassium bromide discs were recorded with Nicolet (model 5700FT-IR)spectro-photometer,scanning range 400–4000cm À1.1H NMR spectra were recorded by a Bruker Avance III (500MHz)spectrometer in CCl 3D,using tetrame-thylsilane as an internal standard.HRMS was per-formed with a Therm LCQ TM Deca XP plus mass spectrometer coupled to a Waters 2695liquid chro-matograph.Differential scanning calorimeter (DSC)measurements were performed under dry nitrogen by using a DSC 200F3DSC thermal analyzer.All samples of DSC were measured from room tempera-ture to 300 C at a heating rate of 10 C/min with a nitrogen flow of 50mL/min.X-ray diffraction (XRD)patterns were obtained in a Thermo ARL X-TRA dif-fractometer using a CuK-a radiation generator with an intensity of 40mA and a voltage of 40kV.The diffraction patterns were collected within the 2y range of 2–12 using a scanning rate of 0.6 /min.The nanocomposites were examined by TEM using a JEM-1230TEM operating at 80kV.TGA was carried out on a Q600SDT thermogravimetric analyzer.Sam-ple weights were the range of 12–15mg.All TGA samples were measured from 30 C to 600 C at a heating rate of 10 C/min with a nitrogen flow of 100mL/min.The flame retardant characteristics of PMMA-DPEAA,and its nanocomposites were tested using a cone calorimeter (ISQ5660)with a heat flux of 35kW/m 2using a cone radiator.All samples with the dimensions of 10cm Â10cm Â3mmplates were placed in aluminum foil,and then put in a box with the same dimension in the horizontal direction.The limiting oxygen index (LOI)was measured with sheet dimensions of 120Â6.5Â3mm 3according to GB/T 2406-93.The cone data reported here are an average of three replicated measurements.Char residue was examined by using a Hitachi S-4800(II)SEM.EDX measurements were conducted on a Noran Vantage-ESI EDX micro ana-lyzer equipped in the SEM.RESULTS AND DISCUSSIONPreparation and characterization of PMMA-DPEAA As shown in Scheme 2,flame retardant PMMA-DPEAA was prepared by the free radical polymer-ization of MMA and DPEAA.FT-IR spectra of DPEAA,PMMA,and PMMA-DPEAA were pre-sented in Figure 1.In the FT-IR spectrum of DPEAA,the absorption peaks at 3207cm À1(N–H),1569cm À1(C ¼¼C),1220cm À1(P–O),1060cm À1and 1009cm À1(P–O–C),and 948cm À1(P–N)were -pared with the FT-IR spectrum of DPEAA,the char-acteristic peaks of carbon–carbon double bond in DPEAA disappeared from the spectrum of PMMA-DPEAA,demonstrating that the carbon–carbon dou-ble bond on DPEAA had reacted with MMA by free radical polymerization.PMMA-DPEAA showed that several new bands appeared relative to pure PMMA.The band at 3198cm À1and 1224cm À1was corresponding to the stretching band of N–H and P–O,respectively,and the band at 1058cm À1and 1008cm À1was interpreted to the stretching band of P–O.35What mentioned above indicated that a c opoly-mer of MMA and DPEAA had produced by free radical polymerization.PMMA-DPEAA was characterized by 1H NMR as shown in Figure 2.In the 1H NMR spectrum of PMMA-DPEAA,the resonance signals occurringatScheme 2Synthesis ofPMMA-DPEAA.Figure 1FT-IR spectra of DPEAA,PMMA,and PMMA-DPEAA.PMMA-DPEAA/OMMT NANOCOMPOSITES 5039Journal of Applied Polymer Science DOI 10.1002/app1.11,0.94(a,a 0),4.25,3.88(b,b 0)and 3.08,3.45(c,d)ppm were remarkably ascribed to methyl,methylene linked to phosphoric acid ester group,and the mid-dle methylene of DPEAA,respectively.34,35The sig-nals at 3.63(f)and 1.32(h)ppm were assigned to the methyl of MMA.Particularly,the signals at 1.60–1.85ppm (g,i)were caused by the methylene and methenyl groups of PMMA-DPEAA with different combinations of DPEAA and MMA.The appearan-ces of these peaks indicated the random sequences of the chain of PMMA-DPEAA.PMMA,PMMA-DPEAA5and PMMA-DPEAA10were measured by a DSC,and their glass transition temperature (T g )was compared in Figure 3.As shown in Figure 3,only one single glass transition could be detected during heating,proving that the copolymer PMMA-DPEAA was random,which agrees with the 1H NMR results that no obvious microphase separation occurs.The T g of the PMMA-DPEAA10sample was 17 C higher than that of pure PMMA.The monomer of DPEAA with bulky side groups might restrict the chain mobility of PMMA,which led to the increment of the T g of PMMA-DPEAA.In addition,the T g of PMMA-DPEAA increased with the increment of the DPEAA content.Morphology of PMMA-DPEAA/OMMT nanocompositesFigure 4provided that the XRD curves of OMMT,PMMA/OMMT,and PMMA-DPEAA/OMMT.A diffraction peak around 2y ¼4.48 was displayed by OMMT,equaling a d spacing of 1.90nm for the lay-ered silicates in OMMT.PMMA/OMMT showed a basal spacing of 2.98nm.The increased spacing indicated that some PMMA molecular chains were intercalated.However,the characteristic (001)reflec-tion of the layered silicates in the PMMA-DPEAA nanocomposites completely disappeared,indicatingexfoliated silicate layers were dispersed in the PMMA-DPEAA matrix by in situ polymerization.Figure 5showed the TEM photomicrographs of PMMA/OMMT and PMMA-DPEAA/OMMT sam-ples.From the TEM image of PMMA/OMMT,the clay mineral layers consisted of multilayered stacks and intercalated or exfoliated silicate layers can be observed.The TEM image of PMMA-DPEAA/OMMT sample revealed that most of the clay min-eral layers lost their stacking structure and were dis-persed disorderly in the PMMA-DPEAA matrix,which indicated that the clay mineral layers were delaminated.These results further supported by the XRD analysis results for the formation of the exfoli-ated nanocomposites.Thermal propertiesFigure 6showed the TGA thermograms of PMMA,PMMA/OMMT,PMMA-DPEAA,andPMMA-Figure 21H NMR spectrum ofPMMA-DPEAA.Figure 3DSC thermograms of PMMA,PMMA-DPEAA5,andPMMA-DPEAA10.Figure 4X-ray diffraction patterns of OMMT,PMMA/OMMT,and PMMA-DPEAA/OMMT.5040HUANG ET AL.Journal of Applied Polymer Science DOI 10.1002/appDPEAA/OMMT.The corresponding TGA data were presented in Table I.The temperature in which the weight loss is 5wt %is defined as the initial decom-position temperature,which is denoted as T inital .Pure PMMA decomposed at 269 C,leaving negligi-ble char at 500 C.T initial of PMMA/OMMT was 2 C lower than pure PMMA due to the decomposition of the organic modifier.T initial of PMMA-DPEAA10was 19 C higher than PMMA,and the T initial of PMMA-DPEAA was increased with the increment of the DPEAA content,which indicated that DPEAA had a significant effect on the thermal stability of PMMA.On the basis of Figure 6and Table I,T inital of PMMA-DPEAA/OMMT was higher than that of PMMA/OMMT and PMMA-DPEAA10,and the final char for PMMA-DPEAA/OMMT was 4wt %higher than PMMA-DPEAA10,which indicated that the synergistic effect of DPEAA and montmorillonite significantly improved the thermal properties of PMMA.Flame retardant propertiesFigure 7showed that the heat release rate of PMMA,PMMA/OMMT,PMMA-DPEAA5,PMMA-DPEAA10,and PMMA-DPEAA/OMMT at 35kW/m 2.The corresponding cone calorimetry and LOI data were shown in Table II.In comparison to pure PMMA,the peak heat release rates (PHRR)of PMMA/OMMT was 20%lower even though the total heat release (THR),and average mass loss rate (AMLR)remained almost same.The time of ignition (t ign )of PMMA/OMMT was 5s higher than that of pure PMMA,and the LOI value of PMMA/OMMT sample increased to 22.6%.Previous study also showed that the addition of OMMT reduced the flammability of PMMA.31–33For PMMA-DPEAA copolymer s,both the PHRR AHRR and AMLR were reduced with the addition of DPEAA.The PHRR of PMMA-DPEAA5and PMMA-DPEAA10was reduced by 22%and 26%relative to pure PMMA.The THR was reduced by 12%and 15%for PMMA-DPEAA5and PMMA-DPEAA10;the t ign of PMMA-DPEAA blends was longer than that of pure PMMA.In addition,the LOI value of PMMA-DPEAA5and PMMA-DPEAA10was 23.7%andFigure 5TEM images of (a)PMMA/OMMT and (b)PMMA-DPEAA/OMMT.Figure 6TGA curves for PMMA,PMMA/OMMT,PMMA-DPEAA,and PMMA-DPEAA/OMMT.TABLE IData of TGA Thermograms for Various Samples at aHeating Rate of 10°C/min in N 2SampleT initial ( C)Char residue (%)400 C 500 C 600 C PMMA26943.60.70.5PMMA/OMMT 26743.9 2.7 2.6PMMA-DPEAA528148.4 2.1 2.1PMMA-DPEAA1028860.5 4.1 3.9PMMA-DPEAA/OMMT29263.08.17.7T initial ,initial degradation temperature (temperature at 5wt %loss).PMMA-DPEAA/OMMT NANOCOMPOSITES 5041Journal of Applied Polymer Science DOI 10.1002/app25.1%,respectively.These indicated that the phos-phorus–nitrogen-containing monomer DPEAA improved significantly the flame retardant properties of pared with pure PMMA,the PHRR of PMMA-DPEAA/OMMT was reduced by about 40%.For PMMA-DPEAA/OMMT,t ign was longer than that of those of PMMA/OMMT and PMMA-DPEAA10.Meanwhile,the values of PHRR,THR and AMLR of PMMA-DPEAA/OMMT were lower than those of PMMA/OMMT and PMMA-DPEAA10.The LOI value of PMMA-DPEAA/OMMT reached 27.3%and was higher than those of PMMA/OMMT and PMMA-DPEAA10.The improvement of flame retardancy of PMMA-DPEAA/OMMT indicated the synergistic effect between montmorillonite and DPEAA.The similar results were obtained for exfoli-ated ABS/MMT and PA6/MMT nanocomposites with phosphorus–nitrogen-containing flame retardant additive.36,37Figure 8showed the digital photos for the resi-dues of PMMA,PMMA/OMMT,PMMA-DPEAA10,and PMMA-DPEAA/OMMT samples after cone cal-orimeter tests.The digital photos demonstrated that the pure PMMA left almost no residue at the end ofcombustion.The char of PMMA/OMMT was thin and discrete.For the PMMA-DPEAA10sample,the swollen char was observed.For the PMMA-DPEAA/OMMT sample,the char was more rigid,compact,and uniform.The morphologies of the char obtained after cone calorimeter test were examined by SEM,which were shown in Figure 9.A lot of clay mineral layers joined each other and formed a barrier in the residue of PMMA/OMMT.For the char of PMMA-DPEAA10sample,intumescent carbonaceous struc-tures were observed clearly.Residue of PMMA-DPEAA/OMMT showed that many clay mineral layers were dispersed uniformly on the char surface and formed a compact and dense barrier,which could form a better protective shields,and inhibit more effectively the transmission and diffusion of heat more effectively when exposed to flame or heat source.TEM images of the residues after combustion were shown in Figure 10.The TEM image of the res-idues of PMMA/OMMT revealed that most of the clay mineral layers were stacked on top of each other after combustion.However,it was seen clearly that the highly exfoliated clay mineral layers were randomly dispersed in the char from the TEM image of the residues of PMMA-DPEAA/OMMT,which indicated that the clay mineral layers acted as a pro-tective barrier and improved the flame retardant of the nanocomposites.Table III presented the results of element analysis for PMMA/OMMT,PMMA-DPEAA10,and PMMA-DPEAA/OMMT after cone calorimeter tests.As shown in Table III,around 24%phosphorus and 22%carbon still remained in the chars of PMMA-DPEAA10,indicating the excellent carbon-ization of DPEAA.The carbon content of the char for PMMA-DPEAA/OMMT was higher than that of PMMA/OMMT and PMMA-DPEAA10,which indi-cated that the synergistic effect of DPEAA and montmorillonite improved char-forming ability of thenanocomposites.Figure 7Heat release rate of PMMA,PMMA/OMMT,PMMA-DPEAA5,PMMA-DPEAA10,and PMMA-DPEAA/OMMT at 35kW/m 2.TABLE IICone Calorimetry Data for Various Samples at 35kW/m 2Samplet ign (s)PHRR (kW/m 2)THR (MJ/m 2)ASEA (m 2/kg)AMLR (g/s)PMMA26624966116760.86166160.07960.007PMMA/OMMT 3162395686560.96026180.06860.005PMMA-DPEAA53763387675960.75126150.06460.006PMMA-DPEAA104263367665760.73536150.06360.005PMMA-DPEAA/OMMT4862295685460.63366160.05660.004t ign ,time of ignition;PHRR,peak release rate;THR,total heat release;ASEA,aver-age-specific extinction area;AMLR,average mass loss rate.5042HUANG ET AL.Journal of Applied Polymer Science DOI 10.1002/appFigure8Digital photos of the residues after cone calorimeter testing:(a)PMMA,(b)PMMA/OMMT,(c)PMMA-DPEAA10,and(d)PMMA-DPEAA/OMMT.[Color figure can be viewed in the online issue,which is available at.]PMMA-DPEAA/OMMT.Mechanical propertiesTable IV showed that the data for the mechanical properties of PMMA and its -pared with pure PMMA,PMMA/OMMT compo-sites filled with 5wt %showed a 15%increase in tensile strength to 21.4MPa,a 12%increase in elastic modulus to 288.3MPa,little change in elongation at break,which indicated the strength effect of OMMT for PMMA matrix.Tensile tests on PMMA-DPEAA5and PMMA-DPEAA10showed marked reduction of in the tensile strength and elastic modulus compared with pure PMMA.Fortunately,after adding OMMT into PMMA-DPEAA copolymer,the mechanical properties,including tensile strength and elasticmodulus,were to some extent improved compared with PMMA-DPEAA10.Meanwhile,the mechanical properties of PMMA-DPEAA/OMMT nanocompo-sites exhibited almost no deterioration compared with pure PMMA.CONCLUSIONSThe reactive phosphorus–nitrogen-containing mono-mer,DPEAA,was synthesize and characterized.PMMA-DPEAA/OMMT nanocomposites were pre-pared by in situ polymerization by incorporating MMA,DPEAA,and OMMT.The results from XRD and TEM showed that exfoliated PMMA-DPEAA/OMMT nanocomposites were formed.A synergistic effect was found between DPEAA and montmoril-lonite which improved the thermal stability and flame retardancy of pared with pure PMMA,the PHRR of PMMA-DPEAA/OMMT was reduced by about 40%.The LOI value of PMMA-DPEAA/OMMT reached 27.3%.The SEM and TEM images confirmed that a compact,dense,and uni-form intumescent char was formed for PMMA-DPEAA/OMMT nanocomposites after combustion.The EDX analysis results indicated that the carbon content of the char for PMMA-DPEAA/OMMT increased by the synergistic effect of DPEAA and montmorillonite.TABLE IIIThe Results of EDX Analysis of the Residues After Cone Calorimeter TestingSampleMass content (wt %)C O P Si Al Mg PMMA/OMMT 7.9860.1354.4760.88–25.8260.039.4660.172.2760.08PMMA-DPEAA1022.2560.4253.2560.8624.5060.14–––PMMA-DPEAA/OMMT28.8660.1441.5160.8014.4960.1310.6460.203.6660.090.8460.04Figure 10TEM images of the char after cone calorimeter testing:(a)PMMA/OMMT and (b)PMMA-DPEAA/OMMT.TABLE IVMechanical Properties of PMMA and ItsNanocompositesSampleTensile strength (MPa)Elastic modulus (MPa)Elongation at break (%)PMMA18.65256.459.6PMMA/OMMT 21.44288.344.9PMMA-DPEAA517.43247.878.9PMMA-DPEAA1016.15232.789.7PMMA-DPEAA/OMMT18.03259.651.745044HUANG ET AL.Journal of Applied Polymer Science DOI 10.1002/appReferences1.Wang,D.-Y.;Wang,Y.-Z.;Wang,J.-S.;Chen,D.-Q.;Zhou,Q.;Yang,B.;Li,W.-Y.Polym Degrad Stab2005,87,171.2.Ge,X.-G.;Wang, D.-Y.;Wang, C.;Qu,M.-H.;Wang,J.-S.;Zhao,C.-S.;Jing,X.-K.;Wang,Y.-Z.Euro Polym J2007,43, 2882.3.Wang,T.-Z.;Chen,K.-N.J Appl Polym Sci1999,74,2499.4.Chen,G.-H.;Yang,B.;Wang,Y.-Z.J Appl Polym Sci2006,102,4978.5.Ai,H.;Xu,K.;Liu,H.-A.;Chen,M.-C.Polym Eng Sci200949,1879.6.Gao,L.-P.;Wang,D.-Y.;Wang,Y.-Z.;Wang,J.-S.;Yang,B.Polym Degrad Stab2008,93,1308.7.Lu,Z.;Cheng,B.;Huang,X.;Ren,Y.;Yan,G.;Xi,P.;Li,Z.;Zhang,J.;Kang,W.Patent(CN)101113211,2008.8.Paula,D.R.;Robeson,L.M.Polymer2008,49,3187.9.Rao,Y.-Q.;Pochan,J.M.Macromolecules2007,40,290.10.Shi,Y.-R.;Kashiwagi,T.;Walters,R.N.;Gilman,J.W.;Lyon,R.E.;Sogah,D.Y.Polymer2009,50,3478.11.Vyazovkin,S.;Dranca,I.;Fan,X.-W.;Advincula,R.J PhysChem B2004,108,11672.12.Joseph,S.;Focke,W.W.Polym Compos2011,32,252.kshmi,M.S.;Narmadha,B.;Reddy,B.S.R.Polym DegradStab2008,93,201.14.Han,Y.Q.Polym Compos2009,30,66.15.Lim,S.K.;Kim,J.W.;Chi,I.N.;Kwon,Y.K.;Choi,H.J.Chem Mater2002,14,1989.16.Rehab,A.;Akelah,A.;Agag,T.;Shalaby,N.Polym Compos2008,28,108.17.Chuang,T.-H.;Guo,W.-J.;Cheng,K.-C.;Chen,S.-W.;Wang,H.-T.;Yen,Y.-Y.J Polym Res2004,11,169.18.Asif,A.;Lakshmana Rao,V.;Saseendran,V.;Ninan,K.N.Polym Eng Sci2009,49,756.19.Song,R.-J.;Wang,Z.;Meng,X.-Y.,Zhang,B.-Y.;Tang,T.JAppl Polym Sci2007,106,3488.20.Tang,Y.;Hu,Y.;Wang,S.-F.;Gui,Z.;Chen,Z.-Y.;Fan,W.-C.Polym Int2003,52,1396.21.Gilman,J.W.;Jackson,C.L.;Morgan,A.B.;Harris,R.,Jr.Chem Mater2000,12,1866.22.Berta,M.;Lindsay,C.;Pans,G.;Camino,G.Polym DegradStab2006,91,1179.23.Bourbigot,S.;Devaux,E.;Xavier Polym Degrad Stab2002,75,397.24.Zhang,H.-F.;Wang,Y.-Q.;Wu,Y.-P.;Zhang,L.-Q.;Yang,J.JAppl Polym Sci2005,97,844.25.Ma,H.-Y.;Xu,Z.-B.;Tong,L.-F.;Gu,A.-G.;Fang,Z.-P.PolymDegrad Stab2006,91,2951.26.Valera-Zaragoza,M.;Ramı´rez-Vargas,E.;Medellı´n-Rodrı´guez,F.J.;Huerta-Martı´nez, B.M.Polym Degrad Stab2006,91,1319.27.Xie,F.;Wang,Y.-Z.;Yang,B.;Liu,Y.Macromol Mater Eng2006,291,247.28.Ma,Z.-L.;Gao,J.-G.;Bai,L.-G.J Appl Polym Sci2004,92,1388.29.Wang,D.-Y.;Cai,X.-X.;Qu,M.-H.;Liu,Y.;Wang,J.-S.;Wang,Y.-Z.Polym Degrad Stab2008,93,2186.30.Peng,H.-Q.;Zhou,Q.;Wang,D.-Y.;Chen,L.;Wang,Y.-Z.JInd Eng Chem2008,14,589.31.Isitman,N.-A.;Kaynak,C.Polym Degrad Stab2010,95,1523.32.Costache,M.-C.;Wang, D.-Y;Heidecker,M.-J.;Manias, E.;Wilkie,C.-A.Polym Adv Tech2006,17,272.33.Zhu,J.;Start,P.;Mauritz,K.-A.;Wilkie,C.-A.Polym DegradStab2002,77,253.34.Tang,Y.;Wang,D.-Y.;Jing,X.-K.;Ge,X.-G.;Yang,B.;Wang,Y.-Z.J Appl Polym Sci2008,108,1216.35.Huang,G.-B.;Gao,J.-R.;Li,Y.-J.;Han,L.Wang;X.PolymDegrad Stab2010,95,245.36.Isitman,N.-A.;Gunduz,H.-O.;Kaynak,C.Polym Degrad Stab2009,94,2241.37.Ma,H.-Y.;Tong,L.-F.;Xu,Z.-B.;Fang,Z.-P.Appl Clay Sci2008,42,238.PMMA-DPEAA/OMMT NANOCOMPOSITES5045Journal of Applied Polymer Science DOI10.1002/app。