数据结构知识点(含算法)

合集下载

复习提纲:算法与数据结构

复习提纲:算法与数据结构

1、算法的概念是为了解决某类问题而规定的一个有限长的操作序列。

特性:①有穷性②确定性③可行性④输入⑤输出评价标准:①正确性②可读性③健壮性④高效性2、算法的复杂度: 算法计算量所需资源的大小时间复杂度:T(n)=O(f(n)),他表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的时间复杂度空间复杂度:S(n)=O(f(n)),算法所需空间的度量。

3、数据结构中的逻辑结构分为:线性和非线性结构4、线性表的两种存储方式:顺序存储和链式存储的特点及比较。

顺序存储:指用一组地址连续的存储单元依次存储线性表的数据元素链式存储:用一组任意的存储单元存储线性表的数据元素。

5、线性表的特点①存在唯一的一个被称作“第一个”的数据元素②存在唯一的一个被称作“最后一个”的数据元素③除第一个之外,结构中的每一个数据元素均只有一个前驱④除最后一个之外,结构中的每一个数据元素均只有一个后继6、在长度为n的顺序表中的第i个位置处插入一个元素,需要移动多少个元素?n-i+17、理解算法:线性表La和Lb,将两个表合并成一个新的线性表并存于La中。

8、带头结点的单链表和不带头结点的单链表为空的条件分别是?带头结点的循环单链表为空的条件是?带头结点的单链表为空的条件:没有下一个节点L->next=NULL不带头结点的单链表为空的条件:L=NULL循环单链表为空的条件:head->next=head带头结点的循环单链表为空的条件是9、在单链表中插入结点的算法中,指针如何修改。

P3410、理解单链表中插入新结点的算法p3411、理解双向链表中插入新结点的算法p4012、理解栈和队列的操作特点:先进后出,先进先出。

已知进栈顺序,求可能的出栈顺序。

链栈相对于顺序栈的优点是什么?链栈在入栈前不需要判断栈是否为满,只需要为入栈元素动态分配一个节点空间13、理解算法:执行进栈操作,则先要判断栈S是否为满,若不满再将记录栈顶的下标变量top加1,再将进栈元素放进栈顶位置上。

数据库技术知识数据结构的算法

数据库技术知识数据结构的算法

数据库技术知识数据结构的算法对于将要参加计算机等级考试的考生来说,计算机等级考试的知识点辅导是非常重要的复习资料。

以下是收集的数据库技术知识数据结构的算法,希望大家认真阅读!1、数据:数据的基本单位是数据元素。

数据元素可由一个或多个数据项组成。

数据项是数据的不可分割的最小单位2、数据结构:数据的逻辑结构、数据的存储结构、数据的运算3、主要的数据存储方式:顺序存储结构(逻辑和物理相邻,存储密度大)和链式存储结构顺序存储结构:顺序存储计算公式Li=L0+(i-1)×K顺序结构可以进行随机存取;插人、删除运算会引起相应节点的大量移动链式存储结构:a、指针域可以有多个,可以指向空,比比顺序存储结构的存储密度小b、逻辑上相邻的节点物理上不一定相邻。

c、插人、删除等不需要大量移动节点4、顺序表:一般情况下,若长度为n的顺序表,在任何位置插入或删除的概率相等,元素移动的平均次数为n/2(插入)和(n-1)/2(删除)。

5、链表:线性链表(单链表和双向链表等等)和非线性链表线性链表也称为单链表,其每个一节点中只包含一个指针域,双链表中,每个节点中设置有两个指针域。

(注意结点的插入和删除操作)6、栈:“后进先出”(LIFO)表。

栈的应用:表达式求解、二叉树对称序周游、快速排序算法、递归过程的实现等7、队列:“先进先出”线性表。

应用:树的层次遍历8、串:由零个或多个字符组成的有限序列。

9、多维数组的顺序存储:10、稀疏矩阵的存储:下三角矩阵顺序存储其他常见的存储方法还有三元组法和十字链表法11、广义表:由零个或多个单元素或子表所组成的有限序列。

广义表的元素可以是子表,而子表的元素还可以是子表12、树型结构:非线性结构。

常用的树型结构有树和二叉树。

二叉树与树的区别:二叉树不是树的特殊情况,树和二叉树之间最主要的区别是:二叉树的节点的子树要区分左子树和右子树,即使在节点只有一棵子树的情况下也要明确指出该子树是左子树还是右子树。

数据结构的重点知识点

数据结构的重点知识点

数据结构的重点知识点数据结构是计算机科学中非常重要的基础知识,它主要研究数据的组织、存储和管理方式。

在学习数据结构的过程中,有一些重点知识点需要特别关注和理解。

本文将从以下几个方面介绍数据结构的重点知识点。

一、线性表线性表是数据结构中最基本、最简单的一种结构。

它包括顺序表和链表两种实现方式。

1. 顺序表顺序表是线性表的一种实现方式,它使用一个连续的存储空间来存储数据。

顺序表的主要操作包括插入、删除和查找等。

2. 链表链表是线性表的另一种实现方式,它使用节点来存储数据,并通过指针将这些节点连接起来。

链表的主要操作包括插入、删除和查找等。

二、栈和队列栈和队列是线性表的特殊形式,它们的主要特点是插入和删除操作只能在特定的一端进行。

1. 栈栈是一种先进后出(LIFO)的数据结构,它的插入和删除操作都在栈顶进行。

栈的主要操作包括入栈和出栈。

2. 队列队列是一种先进先出(FIFO)的数据结构,它的插入操作在队尾进行,删除操作在队头进行。

队列的主要操作包括入队和出队。

三、树和二叉树树是一种用来组织数据的非线性结构,它由节点和边组成。

树的重点知识点主要包括二叉树、二叉搜索树和平衡树等。

1. 二叉树二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点。

二叉树的主要操作包括遍历、插入和删除等。

2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中的所有节点的值都小于根节点的值,右子树中的所有节点的值都大于根节点的值。

二叉搜索树的主要操作包括查找、插入和删除等。

四、图图是由节点和边组成的一种复杂数据结构。

图的重点知识点主要包括有向图和无向图、图的遍历和最短路径算法等。

1. 有向图和无向图有向图和无向图是图的两种基本形式,它们的区别在于边是否有方向。

有向图的边是有方向的,而无向图的边没有方向。

2. 图的遍历图的遍历是指对图中的每个节点进行访问的过程。

常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

数据结构知识点总结

数据结构知识点总结

数据结构知识点总结数据结构是计算机科学中非常重要的一个概念,它是指一组数据的组织方式,以及对这组数据进行操作的方法。

数据结构可以分为线性结构和非线性结构两种。

下面将对常见的数据结构进行总结,希望能对读者有所帮助。

一、线性结构1. 数组:数组是一种最基本的数据结构,它可以存储一组具有相同类型的数据。

数组的访问时间复杂度为O(1),但插入和删除的时间复杂度较高,为O(n)。

2. 链表:链表是由一系列的节点组成,每个节点包含数据以及指向下一个节点的指针。

链表的访问时间复杂度为O(n),但插入和删除的时间复杂度较低,为O(1)。

3. 栈:栈是一种具有后进先出(LIFO)特点的数据结构,只能在栈顶进行插入和删除操作。

栈的访问、插入、删除的时间复杂度均为O(1)。

4. 队列:队列是一种具有先进先出(FIFO)特点的数据结构,只能在队尾插入元素,在队头删除元素。

队列的访问、插入、删除的时间复杂度均为O(1)。

5. 双向链表:双向链表是在链表的基础上发展而来的数据结构,每个节点不仅包含指向下一个节点的指针,还包含指向上一个节点的指针。

双向链表的插入和删除操作时间复杂度为O(1)。

二、非线性结构1. 树:树是一种由节点和边组成的数据结构,每个节点可以有多个子节点。

树有很多种类型,如二叉树、AVL树、红黑树等。

树的遍历可以分为前序遍历、中序遍历、后序遍历和层序遍历等。

2. 图:图是一种由顶点和边组成的数据结构,每个顶点可以与其他顶点相连。

图可以分为有向图和无向图,常用的应用场景有社交网络和地图导航等。

图的遍历可以分为深度优先搜索和广度优先搜索等算法。

3. 堆:堆是一种特殊的树结构,具有以下特点:每个节点的值都大于等于(或小于等于)其子节点的值,且左子树和右子树都是堆。

堆常用来实现优先队列,常见的堆有二叉堆和斐波那契堆。

4. 哈希表:哈希表是一种根据关键码值(Key value)而直接进行访问的数据结构,通过将关键码值映射到表中的某个位置来实现访问的。

考研数据结构图的必背算法及知识点

考研数据结构图的必背算法及知识点

考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。

这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。

在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。

n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。

对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。

即无向连通图的生成树不是唯一的。

连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。

图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。

最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。

最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。

解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。

他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。

时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。

数据结构总结知识点

数据结构总结知识点

第一章数据结构概念——数据结构,数据元素,数据项,数据类型,抽象数据类型,算法,等。

数据结构定义——指互相有关联的数据元素的集合,用D_S=( D, S ) 或S=( D, R) 表示。

数据结构内容——数据的逻辑结构、存储结构和运算算法效率指标——时间效率(时间复杂度)和空间效率(空间复杂度)总结:数据的逻辑结构和存储结构数据的逻辑结构是数据的机外表示,数据的存储结构是数据的机内表示。

(2) 一种数据的逻辑结构可以用多种存储结构来存储。

(3) 数据结构的基本操作是定义(存在)于逻辑结构,计算机程序设计过程中实现于存储结构。

(4) 采用不同的存储结构,其数据处理的效率往往是不同的。

数据结构?有限个同构数据元素的集合,存在着一定的结构关系,可进行一定的运算。

算法--是对特定问题求解步骤的一种描述,是指令的有限序列。

算法有5个基本特性:有穷性、确定性、可行性、输入和输出第二章1. 数据的逻辑结构是指数据元素之间的逻辑关系,是用户按使用需要建立的。

对2. 线性表的逻辑结构定义是唯一的,不依赖于计算机。

对3. 线性结构反映结点间的逻辑关系是一对一的。

对4. 一维向量是线性表,但二维或N维数组不是。

错5. “同一数据逻辑结构中的所有数据元素都具有相同的 特性”是指数据元素所包含的数据项的个数都相等。

错 插入概率p(i)=1/(n+1) ,删除概率q(i)=1/n插入操作时间效率(平均移动次数)2)1(11)1(1111ni n n i n p E n i n i i is =+-+=+-=∑∑+=+=删除操作时间效率(平均移动次数)21)(1)(11-=-=-=∑∑==n i n n i n q E ni n i i dl 线性表顺序存储结构特点:逻辑关系上相邻的两个元素在物理存储位置上也相邻; 优点:可以随机存取表中任一元素;无需为表示表中元素 之间的逻辑关系而增加额外的存储空间;缺点:在插入、删除某一元素时,需要移动大量元素;表的容量难以确定,表的容量难以扩充。

数据结构与算法基础知识总结

数据结构与算法基础知识总结

数据结构与算法基础知识总结1 算法算法:是指解题方案的准确而完整的描述。

算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。

算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。

特征包括:(1)可行性;(2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性;(3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义;(4)拥有足够的情报。

算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。

指令系统:一个计算机系统能执行的所有指令的集合。

基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。

算法的控制结构:顺序结构、选择结构、循环结构。

算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。

算法复杂度:算法时间复杂度和算法空间复杂度。

算法时间复杂度是指执行算法所需要的计算工作量。

算法空间复杂度是指执行这个算法所需要的内存空间。

2 数据结构的基本基本概念数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。

数据结构是指相互有关联的数据元素的集合。

数据的逻辑结构包含:(1)表示数据元素的信息;(2)表示各数据元素之间的前后件关系。

数据的存储结构有顺序、链接、索引等。

线性结构条件:(1)有且只有一个根结点;(2)每一个结点最多有一个前件,也最多有一个后件。

非线性结构:不满足线性结构条件的数据结构。

3 线性表及其顺序存储结构线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。

在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。

计算机数据结构知识点梳理 顺序查找法、折半查找法

计算机数据结构知识点梳理		顺序查找法、折半查找法
分析:这是一个在单链表中查找结点,在结点内查找给定值的过程。
typedef struct node{ int A[m];
//每个结点含有m个整数,本例m为5 struct node *next;
}LNode, *LinkList; typedef struct{
int j; //正整数在结点内的序号 LNode *s; //结点的指针 }rcd;
}
[题2]顺序存储的某线性表共有123个元素,按分块查找的要求等分为3块。若对索引 表采用顺序查找方法来确定子块,且在确定的子块中也采用顺序查找方法,则在等 概率的情况下,分块查找成功的平均查找长度为( )。
A.21
B. 23
C. 41
D. 62
分析:分块查找成功的平均查找长度为ASL=(s2+s+n)/2s。在本题中,n=123, s=123/3=41,故平均查找长度为23。
对表中每个数据元素的查找过程,可用二叉树来描述,称这个描述折半查找过 程的二叉树为判定树,表的中间结点是二叉树的根,左子表相当于左子树, 右子表相当于右子树。折半查找的过程是从根结点到待查找结点的过程,不 论查找成功或失败,查找长度均不超过树的高度,因此,如果有序表的长度 为n,那么在查找成功时与给定值进行比较的关键字个数至多为[㏒2n] +1。
4 、分块查找法
分块查找法要求将列表组织成以下索引顺序结构: (1)首先将列表分成若干个块(子表)。一般情况下,块的长度均匀, 最后一块 可以不满。每块中元素任意排列,即块内无序,但块与块之间有序。 (2)构造一个索引表。其中每个索引项对应一个块并记录每块的起始位置,以及每 块中的最大关键字(或最小关键字)。索引表按关键字有序排列。
假定将长度为n的表分成b块,且每块含s个元素,则b=n/s。又假定表中每个元素的查 找概率相等,则每个索引项的查找概率为1/b,块中每个元素的查找概率为1/s。

数据结构 知识点总结

数据结构 知识点总结

数据结构知识点总结一、数据结构基础概念数据结构是指数据元素之间的关系,以及对数据元素进行操作的方法的总称。

数据结构是计算机科学中非常基础的概念,它为计算机程序的设计和实现提供了基础架构。

数据结构的研究内容包括数据的逻辑结构、数据的存储结构以及对数据进行操作的算法。

1.1 数据结构的分类数据结构可以根据数据的逻辑关系和数据的物理存储方式进行分类,常见的数据结构分类包括线性结构、树形结构、图结构等。

1.2 数据结构的基本概念(1)数据元素:数据结构中的基本单位,可以是原子类型或者复合类型。

(2)数据项:数据元素中的一个组成部分,通常是基本类型。

(3)数据结构的逻辑结构:指数据元素之间的逻辑关系,包括线性结构、树形结构、图结构等。

(4)数据结构的存储结构:指数据元素在计算机内存中的存储方式,包括顺序存储结构和链式存储结构等。

1.3 数据结构的特点数据结构具有以下几个特点:(1)抽象性:数据结构是对现实世界中的数据进行抽象和模型化的结果。

(2)实用性:数据结构是在解决实际问题中得出的经验总结,是具有广泛应用价值的。

(3)形式化:数据结构具有精确的数学定义和描述,可以进行分析和证明。

(4)计算性:数据结构是为了使计算机程序更加高效而存在的。

二、线性结构线性结构是数据元素之间存在一对一的关系,是一种最简单的数据结构。

常见的线性结构包括数组、链表、栈和队列等。

2.1 线性表线性表是数据元素之间存在一对一的关系的数据结构,可以采用顺序存储结构或者链式存储结构实现。

(1)顺序存储结构:线性表采用数组的方式进行存储,数据元素在内存中连续存储。

(2)链式存储结构:线性表采用链表的方式进行存储,数据元素在内存中非连续存储,通过指针将它们进行连接。

2.2 栈栈是一种特殊的线性表,只允许在一端进行插入和删除操作,这一端称为栈顶。

栈的操作遵循后进先出(LIFO)的原则。

2.3 队列队列也是一种特殊的线性表,允许在一端进行插入操作,另一端进行删除操作,这两端分别称为队尾和队首。

数据结构基本知识点

数据结构基本知识点

第一章1、什么是数据结构①数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等的学科。

②数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

③4类基本结构:⑴集合;⑵线性(一个前驱,一个后继)结构;⑶树形结构;⑷图状结构或网状结构。

2、数据结构的二元组表示:Data_Structure=(D,S)//D是数据元素的有限集,S是D上关系的有限集。

3、算法的5大特性:⑴有穷性;4、衡量算法的标准:时间复杂度和空间复杂度5、数据的逻辑结构分四类6、数据结构写出逻辑结构,反之。

第二章0、线性表的基本概念。

1、线性表的顺序存储的基本操作:Insert, E Is=n/2 Delete. E dl=(n-1)/22、线性表的顺序存储的特点:连续地址,随机查找。

3、线性表的链式存储的特点:地址不保证连续,顺序查找。

(1)重点1:结构类型P28Typedef struct LNode{ElemType data;Struct LNode *next;}LNode,*LinkList;(2)重点2:基本方法Status GetElem_L(LinkList L,int i,ElemType &e); Status ListInsert_L(LinkList &L,int i,ElemType e); Status ListDelete_L(LinkList &L,int i,ElemType &e); void CreateList_L(LinkList &L,int n);void Print(LinkList L){ LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ printf(“%d,”,p->data);while(p->next){p=p->next; printf(“%d,”,p->data); } printf(“\n”);}}void CountNodes(LinkList L,int &nd){ nd=0;//LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ nd++;//while(p->next){p=p->next; nd++;}//}}voidCountAve(LinkList L,int &av){ int n=0,s=0//av=0;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ s=s+p->data; n++;//while(p->next){p=p->next;s=s+p->data; n++;}// av=s/n;}return av;//}void PrintMax(LinkList L,){ int max;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ max=p->data;while(p->next){p=p->next; if(p->data>max) max=p->data;}//printf(“max=%d\n”,max);}}void DeletaMaxNode(LinkList L,){ int max;LinkList q,t;//q---记录p的前驱结点指针,t-----保存最大结点的前驱指针。

数据结构复习要点(整理版)

数据结构复习要点(整理版)

第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。

2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。

(补充:一个数据元素可由若干个数据项组成。

数据项是数据的不可分割的最小单位。

)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。

(有时候也叫做属性。

)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。

数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。

依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。

2.线性结构:结构中的数据元素之间存在“一对一“的关系。

若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。

3.树形结构:结构中的数据元素之间存在“一对多“的关系。

若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。

4.图状结构:结构中的数据元素存在“多对多”的关系。

若结构为非空集,折每个数据可有多个(或零个)直接后继。

(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。

想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。

逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。

2.链式存储结构:借助指针表达数据元素之间的逻辑关系。

不要求逻辑上相邻的数据元素物理位置上也相邻。

《数据结构与算法》知识点整理

《数据结构与算法》知识点整理

《数据结构与算法》知识点整理《数据结构与算法》知识点整理1:数据结构概述1.1 什么是数据结构1.2 数据结构的作用1.3 数据结构的分类1.4 数据结构的存储方式2:线性表2.1 顺序表2.1.1 顺序表的定义2.1.2 顺序表的基本操作2.2 链表2.2.1 链表的定义2.2.2 链表的基本操作2.3 栈2.3.1 栈的定义2.3.2 栈的基本操作2.4 队列2.4.1 队列的定义2.4.2 队列的基本操作3:树3.1 树的基本概念3.1.1 结点3.1.2 父节点、子节点、兄弟节点 3.2 二叉树3.2.1 二叉树的定义3.2.2 二叉树的遍历方式3.3 平衡二叉树3.3.1 平衡二叉树的定义3.3.2 平衡二叉树的实现4:图4.1 图的基本概念4.1.1 顶点4.1.2 边4.1.3 权重4.2 图的表示方式4.2.1 邻接矩阵4.2.2 邻接表4.3 图的搜索算法4.3.1 深度优先搜索 4.3.2 广度优先搜索5:排序算法5.1 冒泡排序5.2 插入排序5.3 选择排序5.4 快速排序5.5 归并排序6:查找算法6.1 顺序查找6.2 二分查找6.3 哈希查找7:字符串匹配算法7.1 暴力匹配算法7.2 KMP算法7.3 Boyer-Moore算法8:动态规划算法8.1 动态规划的基本概念8.2 0-1背包问题8.3 最长公共子序列问题9:附件9.1 Examples:docx - 包含各章节示例代码的附件文件10:法律名词及注释10:1 数据结构 - 在计算机科学中,数据结构是计算机中存储、组织数据的方式。

10:2 线性表 - 线性表是数据元素的有限序列,元素之间具有线性关系。

10:3 顺序表 - 顺序表是用一组地址连续的存储单元依次存储线性表的元素。

10:4 链表 - 链表是一种数据元素按照顺序存放,元素之间通过指针进行关联的数据结构。

10:5 栈 - 栈是一种特殊的线性表,只能在一端进行插入和删除操作。

信息学奥赛数据结构知识点归纳最新背诵版

信息学奥赛数据结构知识点归纳最新背诵版
3
40],[34,58],[20,90],[18,98]}
e.快速排序,被认为是在所有同数量级 O(nlogn)
的排序方法中,其平均性能是最好的。f. 堆排
序,g.基数排序
排序方法
比较次数
移动次数
最好 最差 最好
最差
稳 附加存储

最好
பைடு நூலகம்最差
直接插入排序 n
n2
0
n2

1
折半插入排序 冒泡排序 快速排序 简单选择排序 锦标赛排序 堆排序 归并排序
信息学奥赛数据结构知识点归纳
数据结构知识点归纳 数据结构的定义:数据在计算机中的组织。包 括逻辑结构( 数据之间的逻辑关系),存储结 构(数据之间关系的计算机表示),数据运算。 注意逻辑结构与具体的计算机无关。 算法基本特性:1.有穷性(有限时间)2.确定 性(算法确切)3.可行性(存在基本操作)4.有输 入(0++)5.有输出(1++) 一、顺序表: 线性表(a1,a2…,an)有唯一的第一个和最后一 个元素(n≥0)。其余的有唯一的前驱和后继。 在顺序表的第 i 个位置前插入一个数据元素, 需要向后移动 n - i +1 个元素,删除第 i 个 位置的元素需要向前移动 n- i 个元素。双链 表:例如在 q 所指结点的后面插入一个值为 x 的 新 结 点 方 法 (1) p->rlink=q->rlink; (2) p->llink=q; (3) q->rlink->llink=p; (4) q->rlink=p; 例 如 删 除 q 所 指 结 点 后 的 结 点 方 法 (1) q->llink->rlink=q->rlink;(2) q->rlink->llink=q->llink; 二、栈和队列 1、栈:允许在表的一端插入和删除的线性表。 栈底,不允许操作,栈顶,允许操作。原则: LIFO 后进先出。【例】设进栈顺序是(a,b,c,d), 不可能的出栈序列是:( C ) A. (a,b,c,d) B.(a,c,b,d) C. (a,d,b,c) D. (d,c,b,a) 2、队列:允许在表的一端插入,另一端删除 的线性表,队尾:插入端 队首:删除端;原 则:FIFO 先进先出,顺序队列空: front= rear, 队满:rear=MAX,循环队列空:rear=front, 队满为:(rear + 1)%MAX = front 三、数组: 四、树和二叉树 1.树的定义和术语 定义:是由 n (n≥0)个结点构成的有限集合,n=0 的树称为空树;当 n≠0 时,树中的结点应该满 足以下两个条件:(1) 有且仅有一个特定的结 点称之为根;(2) 其余结点分成 m(m≥0)个互不 相交的有限集合 T1, T2,……Tm,其中每一个集合 又都是一棵树,称 T1, T2,……Tm 为根结点的子 树。 结点:数据元素 + 若干指向子树的分支 结点的度:分支的个数

考研数据结构必须掌握的知识点与算法-打印版

考研数据结构必须掌握的知识点与算法-打印版

考研数据结构必须掌握的知识点与算法-打印版《数据结构》必须掌握的知识点与算法第一章绪论1、算法的五个重要特性(有穷性、确定性、可行性、输入、输出)2、算法设计的要求(正确性、可读性、茁壮性、效率与低存储量需求)3、算法与程序的关系:(1)一具程序别一定满脚有穷性。

例操作系统,只要整个系统别遭破坏,它将永久不可能停止,即使没有作业需要处理,它仍处于动态等待中。

所以,操作系统别是一具算法。

(2)程序中的指令必须是机器可执行的,而算法中的指令则无此限制。

算法代表了对咨询题的解,而程序则是算法在计算机上的特定的实现。

(3)一具算法若用程序设计语言来描述,则它算是一具程序。

4、算法的时刻复杂度的表示与计算(那个比较复杂,具体看算法本身,普通关怀其循环的次数与N的关系、函数递归的计算)第二章线性表1、线性表的特点:(1)存在唯一的第一具元素;(这一点决定了图别是线性表)(2)存在唯一的最终一具元素;(3)除第一具元素外,其它均惟独一具前驱(这一点决定了树别是线性表)(4)除最终一具元素外,其它均惟独一具后继。

2、线性表有两种表示:顺序表示(数组)、链式表示(链表),栈、队列基本上线性表,他们都能够用数组、链表来实现。

3、顺序表示的线性表(数组)地址计算办法:(1)一维数组,设DataType a[N]的首地址为A0,每一具数据(DataType 类型)占m个字节,则a[k]的地址为:A a[k]=A0+m*k(其直截了当意义算是求在数据a[k]的前面有多少个元素,每个元素占m个字节)(2)多维数组,以三维数组为例,设DataType a[M][N][P]的首地址为A000,每一具数据(DataType 类型)占m个字节,则在元素a[i][j][k]的前面共有元素个数为:M*N*i+N*j+k,其其地址为:A a[i][j][k]=A000+m*(M*N*i+N*j+k);4、线性表的归并排序:设两个线性表均差不多按非递减顺序排好序,现要将两者合并为一具线性表,并仍然接非递减顺序。

数据结构必考知识点归纳

数据结构必考知识点归纳

数据结构必考知识点归纳数据结构是计算机科学中的核心概念之一,它涉及到数据的组织、存储、管理和访问方式。

以下是数据结构必考知识点的归纳:1. 基本概念:- 数据结构的定义:数据结构是数据元素的集合,这些数据元素之间的关系,以及在这个集合上定义的操作。

- 数据类型:基本数据类型和抽象数据类型(ADT)。

2. 线性结构:- 数组:固定大小的元素集合,支持随机访问。

- 链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。

- 单链表:每个节点指向下一个节点。

- 双链表:每个节点同时指向前一个和下一个节点。

- 循环链表:最后一个节点指向第一个节点或第一个节点指向最后一个节点。

3. 栈(Stack):- 后进先出(LIFO)的数据结构。

- 主要操作:push(入栈)、pop(出栈)、peek(查看栈顶元素)。

4. 队列(Queue):- 先进先出(FIFO)的数据结构。

- 主要操作:enqueue(入队)、dequeue(出队)、peek(查看队首元素)。

- 特殊类型:循环队列、优先队列。

5. 递归:- 递归函数:一个函数直接或间接地调用自身。

- 递归的三要素:递归终止条件、递归工作量、递归调用。

6. 树(Tree):- 树是节点的集合,其中有一个特定的节点称为根,其余节点称为子节点。

- 二叉树:每个节点最多有两个子节点的树。

- 二叉搜索树(BST):左子树的所有节点的值小于或等于节点的值,右子树的所有节点的值大于或等于节点的值。

7. 图(Graph):- 图是由顶点(节点)和边(连接顶点的线)组成的。

- 图的表示:邻接矩阵、邻接表。

- 图的遍历:深度优先搜索(DFS)、广度优先搜索(BFS)。

8. 排序算法:- 基本排序:选择排序、冒泡排序、插入排序。

- 效率较高的排序:快速排序、归并排序、堆排序。

9. 查找算法:- 线性查找:在数据结构中顺序查找。

- 二分查找:在有序数组中查找,时间复杂度为O(log n)。

考研408数据结构必背算法

考研408数据结构必背算法

考研408数据结构必背算法数据结构是计算机科学中非常重要的一门课程,也是考研408计算机专业的必修课之一。

在考研408数据结构中,有一些算法是必须要背诵的,因为它们是解决各种问题的基础。

下面我将介绍一些考研408数据结构必背算法。

首先是线性表的顺序存储结构。

线性表是最基本的数据结构之一,它包括顺序表和链表两种存储方式。

顺序表是将元素按照顺序存放在一块连续的存储空间中,通过下标来访问元素。

顺序表的插入和删除操作比较耗时,但是查找操作比较快速。

链表是将元素存放在一系列的节点中,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表的插入和删除操作比较方便,但是查找操作比较耗时。

掌握线性表的顺序存储结构对于理解其他数据结构非常重要。

其次是栈和队列。

栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行插入和删除操作。

栈的应用非常广泛,比如函数调用、表达式求值等。

队列是一种先进先出(FIFO)的数据结构,只能在队尾进行插入操作,在队头进行删除操作。

队列的应用也非常广泛,比如进程调度、打印任务等。

掌握栈和队列的实现和应用对于理解其他数据结构和算法非常重要。

再次是树和二叉树。

树是一种非线性的数据结构,它由节点和边组成。

树的每个节点可以有多个子节点,但是每个节点只有一个父节点。

二叉树是一种特殊的树,每个节点最多有两个子节点。

二叉树的遍历有前序遍历、中序遍历和后序遍历三种方式。

掌握树和二叉树的遍历算法对于理解其他高级数据结构和算法非常重要。

最后是图的遍历和最短路径算法。

图是一种非线性的数据结构,它由节点和边组成。

图的遍历有深度优先搜索(DFS)和广度优先搜索(BFS)两种方式。

深度优先搜索是一种先访问子节点再访问兄弟节点的方式,广度优先搜索是一种先访问兄弟节点再访问子节点的方式。

最短路径算法是解决图中两个节点之间最短路径问题的算法,常用的算法有Dijkstra算法和Floyd算法。

掌握图的遍历和最短路径算法对于解决实际问题非常重要。

数据结构(从概念到算法)第一章 绪论

数据结构(从概念到算法)第一章 绪论
态)。
(2)可读性:算法的变量命名、格式符合行业规范,并在关键处给出注释,
以提升算法的可理解性。
(3)健壮性:算法能对不合理的输入给出相应的提示信息,并做出相应处
理。
(4)高执行效率与低存储量开销:涉及算法的时间复杂度和空间复杂度评
判。
算法设计的一般步骤
1.3.1算法定义与性质
算法设计出来后有多种表述方法,一般有如下几种描述工具:第一种是自然语
良好基础,数据结构与算法设计密不可分。算法是对特定问题求解步骤的一种描述。
换言之,算法给出了求解一个问题的思路和策略。
一个算法应该具有以下 5 个特征。
(1)有穷性,即算法的最基本特征,要求算法必须在有限步(或有限时间)
之后执行完成。
(2)确定性,即每条指令或步骤都无二义性,具有明确的含义。
(3)可行性,即算法中的操作都可以通过已经实现的基本运算执行有限次
成的集合,数据对象是数据的一个子集。实例说明如下。
由 4 个整数组成的数据对象: D1={20,- 30,88,45}
由正整数组成的数据对象: D2={1,2,3,…}
数据结构的基本概念
(5)数据结构。数据结构是相互之间存在一种或多种特定关系的数据元素
的集合。数据元素之间的关系称为结构,主要有 4 类基本结构,如下图所示。
址,数据'C'的指针指向数据'D'的结点地址,具体如图所示。
数据结构的基本概念
上图数据元素存储的地址在整体上具有前后次序,但实际对单链表数据元素
所分配的存储空间是随机的。如下图 所示,数据元素'A'在物理存储地址上可能位
于数据元素'B'和'D'存储地址之后。

数据结构与算法知识点必备

数据结构与算法知识点必备

数据结构与算法知识点必备一、数据结构知识点1. 数组(Array)数组是一种线性数据结构,它由相同类型的元素组成,通过索引访问。

数组的特点是随机访问速度快,但插入和删除操作较慢。

常见的数组操作包括创建、访问、插入、删除和遍历。

2. 链表(Linked List)链表是一种动态数据结构,它由节点组成,每一个节点包含数据和指向下一个节点的指针。

链表的特点是插入和删除操作快,但访问速度较慢。

常见的链表类型包括单向链表、双向链表和循环链表。

3. 栈(Stack)栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行插入和删除操作。

常见的栈操作包括入栈(push)和出栈(pop)。

4. 队列(Queue)队列是一种先进先出(FIFO)的数据结构,只能在队尾插入元素,在队头删除元素。

常见的队列操作包括入队(enqueue)和出队(dequeue)。

5. 树(Tree)树是一种非线性数据结构,由节点和边组成。

树的特点是层次结构、惟一根节点、每一个节点最多有一个父节点和多个子节点。

常见的树类型包括二叉树、二叉搜索树、平衡二叉树和堆。

6. 图(Graph)图是一种非线性数据结构,由节点和边组成。

图的特点是节点之间的关系可以是任意的,可以有环。

常见的图类型包括有向图、无向图、加权图和连通图。

7. 哈希表(Hash Table)哈希表是一种根据键(key)直接访问值(value)的数据结构,通过哈希函数将键映射到数组中的一个位置。

哈希表的特点是查找速度快,但内存消耗较大。

常见的哈希表操作包括插入、删除和查找。

二、算法知识点1. 排序算法(Sorting Algorithms)排序算法是将一组元素按照特定顺序罗列的算法。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序。

2. 查找算法(Search Algorithms)查找算法是在一组元素中寻觅特定元素的算法。

常见的查找算法包括线性查找、二分查找和哈希查找。

(完整word版)数据结构(C++版)知识点及相应题目

(完整word版)数据结构(C++版)知识点及相应题目

第一章知识点P3 ·数据结构从逻辑上划分为:(1)线性结构(2)非线性结构: 树型结构和图型结构P4 ·从存储结构(物理结构)上划分:(1)顺序结构:所有元素存放在一片连续的存储单元中,逻辑上相邻的元素存放到计算机内存中仍然相邻(2)链式结构:所有元素存放在可以不连续的存储单元中,但元素之间的关系可以通过地址确定,逻辑上相邻的元素存放到计算机内存后不一定是相邻的。

P5 ·算法的五大特性:(1)输入(2)输出(3)有穷性(4)确定性(5)可行性(可执行)P6 ·算法分析的任务/方面:(1)时间复杂度(重点是计算时间复杂度[P9 1-5 P10 1-12)(2)空间复杂度(性):一个算法在执行时所占有的内存开销,称为空间频度课后部分习题解释:1-2简述下列概念:数据、数据元素、数据类型、数据结构、逻辑结构、存储结构、线性结构、非线性结构。

◆ 数据:指能够被计算机识别、存储和加工处理的信息载体。

◆ 数据元素:就是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理◆ 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

◆ 数据结构:指的是数据之间的相互关系,即数据的组织形式。

一般包括三个方面的内容:数据的逻辑结构、存储结构和数据的运算。

◆ 逻辑结构:指各数据元素之间的逻辑关系。

◆ 存储结构:就是数据的逻辑结构用计算机语言的实现。

◆ 线性结构:数据逻辑结构中的一类,它的特征是若结构为非空集,则该结构有且只有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。

线性表就是一个典型的线性结构。

◆ 非线性结构:数据逻辑结构中的另一大类,它的逻辑特征是一个结点可能有多个直接前驱和直接后继。

补充习题⑴()是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。

【解答】数据元素⑶从逻辑关系上讲,数据结构主要分为()、()、()和()。

数据结构期末复习重点知识点总结

数据结构期末复习重点知识点总结

第一章绪论一、数据结构包括:逻辑结构、存储结构、运算(操作)三方面内容。

二、线性结构特点是一对一。

树特点是一对多图特点是多对多三、数据结构的四种存储结构:顺序存储、链式存储、索引存储、散列存储顺序存储结构和链式存储结构的区别?线性结构的顺序存储结构是一种随机存取的存储结构。

线性结构的链式存储是一种顺序存取的存储结构。

逻辑结构分类:集合线性树图,各自的特点。

或者分为线性结构和非线性结构。

四、算法的特征P13五、时间复杂度(1) i=1; k=0;while(i<n){ k=k+10*i;i++;}分析:i=1; //1k=0; //1while(i<n) //n{ k=k+10*i; //n-1i++; //n-1}由以上列出的各语句的频度,可得该程序段的时间消耗:T(n)=1+1+n+(n-1)+(n-1)=3n可表示为T(n)=O(n)六、数据项和数据元素的概念。

第二章线性表一、线性表有两种存储结构:顺序存储和链式存储,各自的优、缺点。

二、线性表的特点。

三、顺序表的插入、思想、时间复杂度o(n)、理解算法中每条语句的含义。

(1)插入的条件:不管是静态实现还是动态实现,插入的过程都是从最后一个元素往后挪动,腾位置。

静态是利用数组实现,动态是利用指针实现。

不管静态还是动态,在表中第i个位置插入,移动次数都是n-i+1。

四、顺序表的删除、思想、时间复杂度o(n)、理解算法中每条语句的含义。

(1)删除的条件:不管是静态实现还是动态实现,删除的过程都是从被删元素的下一位置向前挪动。

静态是利用数组实现,动态是利用指针实现。

不管静态还是动态,删除表中第i个元素,移动次数都是n-i。

五、顺序表的优缺点?为什么要引入链表?答:顺序表的优点是可以随机存取,缺点是前提必须开辟连续的存储空间且在第一位置做插入和删除操作时,数据的移动量特别大。

如果有一个作业是100k,但是内存最大的连续存储空间是99K,那么这个作业就不能采用顺序存储方式,必须采用链式存储方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概念总结第一章概论1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R)结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系3.数据类型a.基本数据类型整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b.复合数据类型复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多)5.四种基本存储映射方法:顺序、链接、索引、散列6.算法的特性:通用性、有效性、确定性、有穷性7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化8.渐进算法分析a.大Ο分析法:上限,表明最坏情况b.Ω分析法:下限,表明最好情况c.Θ分析法:当上限和下限相同时,表明平均情况第二章线性表1.线性结构的基本特征a.集合中必存在唯一的一个“第一元素”b.集合中必存在唯一的一个“最后元素”c.除最后元素之外,均有唯一的后继d.除第一元素之外,均有唯一的前驱2.线性结构的基本特点:均匀性、有序性3.顺序表a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L(设每个元素需占用L个存储单元)c. 线性表的优缺点:优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样缺点:空间难以扩充d.检索:ASL=【Ο(1)】e.插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n)】f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n)】4.链表4.1单链表a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等b.带头结点的怎么判定空表:head和tail指向单链表的头结点c.链表的插入(q->next=p->next; p->next=q;)【Ο(n)】d.链表的删除(q=p->next;p->next = q->next;delete q;)【Ο(n)】e.不足:next仅指向后继,不能有效找到前驱4.2双链表a.增加前驱指针,弥补单链表的不足b.带头结点的怎么判定空表:head和tail指向单链表的头结点c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;)d.删除:(p->prev->next = p->next;p->next->prev = p->prev; p->prev = p->next = NULL; delete p;)4.3顺序表和链表的比较4.3.1主要优点a.顺序表的主要优点没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利b.链表的主要优点无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况4.3.2应用场合的选择a.不宜使用顺序表的场合经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素b.不宜使用链表的场合当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相比其比例较大时,应该慎重选择第三章栈与队列1.栈a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种b.应用:1)数制转换while (N) {N%8入栈; N=N/8;}while (栈非空){出栈; 输出;}2)括号匹配检验不匹配情况:各类括号数量不同;嵌套关系不正确 算法:逐一处理表达式中的每个字符ch :ch=非括号:不做任何处理 ch=左括号:入栈ch=右括号:if (栈空) return falseelse {出栈,检查匹配情况, if (不匹配) return false }如果结束后,栈非空,返回false 3)表达式求值 3.1中缀表达式:计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右 3.2后缀表达式:<表达式> ::= <项><项> + | <项><项>-|<项><项> ::= <因子><因子> * |<因子><因子>/|<因子><因子> ::= <常数> • <常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 3.3中缀表达式转换为后缀表达式InfixExp 为中缀表达式,PostfixExp 为后缀表达式初始化操作数栈OP ,运算符栈OPND ;OPND.push('#'); 读取InfixExp 表达式的一项操作数:直接输出到PostfixExp 中; 操作符: 当‘(’:入OPND; 当‘)’:OPND 此时若空,则出错;OPND 若非空,栈中元 素依次弹出,输入PostfixExpz 中,直到遇到‘(’为止;若 为‘(’,弹出即可 当‘四则运算符’:循环(当栈非空且栈顶不是‘(’&& 当前运算符优先级>栈顶运算符优先级),反复弹出栈顶运 算符并输入到PostfixExp 中,再将当前运算符压入栈 3.4后缀表达式求值 初始化操作数栈OP ;while (表达式没有处理完) { item = 读取表达式一项; 操作数:入栈OP ;运算符:退出两个操作数,重复计算,并将结果入栈}c.递归使用的场合:定义是递归的;数据结构是递归的;解决问题的方法是递归的2.队列a.若线性表的插入操作在一端进行,删除操作在另一端进行,则称此线性表为队列b.循环队列判断队满对空:队空:front==rear;队满:(rear+1)%n==front第五章二叉树1.概念a. 一个结点的子树的个数称为度数b.二叉树的高度定义为二叉树中层数最大的叶结点的层数加1c.二叉树的深度定义为二叉树中层数最大的叶结点的层数d.如果一棵二叉树的任何结点,或者是树叶,或者恰有两棵非空子树,则此二叉树称作满二叉树e.如果一颗二叉树最多只有最下面的两层结点度数可以小于2;最下面一层的结点都集中在该层最左边的位置上,则称此二叉树为完全二叉树f.当二叉树里出现空的子树时,就增加新的、特殊的结点——空树叶组成扩充二叉树,扩充二叉树是满二叉树外部路径长度E:从扩充的二叉树的根到每个外部结点(新增的空树叶)的路径长度之和内部路径长度I:扩充的二叉树中从根到每个内部结点(原来二叉树结点)的路径长度之和2.性质a. 二叉树的第i层(根为第0层,i≥0)最多有2^i个结点b. 深度为k的二叉树至多有2k+1-1个结点c. 任何一颗二叉树,度为0的结点比度为2的结点多一个。

n0 = n2 + 1d. 满二叉树定理:非空满二叉树树叶数等于其分支结点数加1e. 满二叉树定理推论:一个非空二叉树的空子树(指针)数目等于其结点数加1f. 有n个结点(n>0)的完全二叉树的高度为⌈log2(n+1)⌉,深度为⌈log2(n+1)⌉−1g. 对于具有n个结点的完全二叉树,结点按层次由左到右编号,则有:1) 如果i = 0为根结点;如果i>0,其父结点编号是(i-1)/22) 当2i+1<n,i结点的左子结点是2i+1;否则i结点没有左子结点3) 当2i+2<n,i结点的右子结点是2i+2;否则i结点没有右子结点3.周游(重点为由前序中序/中序后序求得二叉树)a.深度优先周游二叉树,可以有下列三种周游顺序:(实现:栈)1) 前序周游(tLR次序):访问根结点;前序周游左子树;前序周游右子树2) 中序周游(LtR次序):中序周游左子树;访问根结点;中序周游右子树3) 后序周游(LRt次序):后序周游左子树;后序周游右子树;访问根结点b. 广度周游二叉树:从二叉树的顶层(根结点)开始,自上至下逐层遍历;在同一层中,按照从左到右的顺序对结点逐一访问(实现:队列)4.存储链式存储结构,顺序存储结构(仅限完全二叉树:因为完全二叉树排列紧凑)5.二叉搜索树(BST)a.判定:是一颗空树;或者是具有下列性质的二叉树:对于任何一个结点,设其值为K,则该结点的左子树(若不空)的所有结点的值都小于K;右子树(若不空)的所有结点的值都大于K;它的左右子树也分别为二叉搜索树b.性质:按照中序周游将各结点打印出来,得到的排列按照由小到大有序c.检索:从根结点开始,在二叉搜索树中检索值K如果根结点储存的值为K,则检索结束如果K小于根结点的值,则只需检索左子树如果K大于根结点的值,则只检索右子树该过程一直持续到找到K或者遇上叶子结点如果遇上叶子结点仍没有发现K,则查找失败**查找关键码:把查找时所经过的点一次写出d.插入:用待插入结点与树根比较,若待插入的关键值小于树根的关键值,就进入左子树,否则进入右子树;在子树中,按照同样的方式沿检索路径直到叶结点,将新结点插入到二叉搜索树的叶子结点位置e.创建:从空的BST开始,将关键码按BST定义一次插入f.删除:与插入相反,删除在查找成功之后进行,并且要求在删除二叉排序树上某个结点之后,仍然保持二叉排序树的特性,删除过程分为如下情况:1)被删除的结点是叶子:直接将其删除即可2)被删除的结点只有左子树或只有右子树:直接将要删除的点删除后,将该点的左(右)孩子和上面结点相连3)被删除结点有左、右子树:若p有左右子树,则在左子树里找中序周游的最后一个结点r,将r的右指针置成指向p的右子树的根,用结点p的左子树的根去代替被删除的结点p6.堆a.最小/大堆定义:最小堆:是个关键码序列{k0, k1…kn-1},具有如下特性(i=0,1,…,⌊n/2⌋-1)k i ≤k 2i+1(左孩子)k i ≤k 2i+2(右孩子)(即父≤2个孩子)类似可以定义最大堆k i ≥k 2i+1k i ≥k 2i+2 (即父≥2个孩子)b.建“初堆”:按序列建立完全二叉树,从其中最后一个有孩子的结点开始按堆的定义调整c.插入:插入点追加到最后,自下而上依次比较父与子,直到满足堆的定义d.删除:用最后结点替换被删结点,自上至下调整成堆e.移出最小/大值:可以将堆中最后一个位置上的元素(数组中实际的最后一个元素)移到根的位置上,利用从左开始向下筛选对堆重新调整7.Huffman树a.概念路径:从树中一个结点到另一个结点之间的分支构成这两个结点间的路径结点路径长度:从根结点到该结点的路径上分支的数目树的路径长度:树中每个结点的路径长度之和b.带权的路径长度树中所有叶子结点的带权路径长度之和=其中:w k:权值l k:结点到根的路径长度c.编码:左0右1d.如何构建:选取序列中最小的相加生成树如此反复第六章树1.概念若<k,k'>∈N,则称k是k'的父结点,k'是k的子结点若有序对<k,k'>及<k,k″>∈N,则称k'和k″互为兄弟若有一条由k到达ks的路径,则称k是ks的祖先,ks是k的子孙2.树/森林与二叉树的相互转换a.树转换成二叉树加线: 在树中所有兄弟结点之间加一连线抹线: 对每个结点,除了其最左孩子外,去除其与其余孩子之间的连线旋转: 以树的根结点为轴心,将整树顺时针转45°b.二叉树转化成树加线:若p结点是双亲结点的左孩子,则将p的右孩子,右孩子的右孩子,……沿分支找到的所有右孩子,都与p的双亲用线连起来抹线:抹掉原二叉树中双亲与右孩子之间的连线调整:将结点按层次排列,形成树结构c.森林转换成二叉树将各棵树分别转换成二叉树将每棵树的根结点用线相连以第一棵树根结点为二叉树的根,再以根结点为轴心,顺时针旋转,构成二叉树型结构d.二叉树转换成森林抹线:将二叉树中根结点与其右孩子连线,及沿右分支搜索到的所有右孩子间连线全部抹掉,使之变成孤立的二叉树还原:将孤立的二叉树还原成树3.周游a.先根(次序)周游若树不空,则先访问根结点,然后依次先根周游各棵子树b.后根(次序)周游若树不空,则先依次后根周游各棵子树,然后访问根结点c.按层次周游若树不空,则自上而下自左至右访问树中每个结点4.存储结构“左子/右兄”二叉链表表示法:结点左指针指向孩子,右结点指向右兄弟,按树结构存储,无孩子或无右兄弟则置空5. “UNION/FIND算法”(等价类)判断两个结点是否在同一个集合中,查找一个给定结点的根结点的过程称为FIND归并两个集合,这个归并过程常常被称为UNION“UNION/FIND”算法用一棵树代表一个集合,如果两个结点在同一棵树中,则认为它们在同一个集合中;树中的每个结点(除根结点以外)有仅且有一个父结点;结点中仅需保存父指针信息,树本身可以存储为一个以其结点为元素的数组6.树的顺序存储结构a. 带右链的先根次序表示法在带右链的先根次序表示中,结点按先根次序顺序存储在一片连续的存储单元中每个结点除包括结点本身数据外,还附加两个表示结构的信息字段,结点的形式为:info是结点的数据;rlink是右指针,指向结点的下一个兄弟;ltag是一个左标记,当结点没有子结点(即对应二叉树中结点没有左子结点时),ltag为1,否则为0b. 带双标记位的先根次序表示法规定当结点没有下一个兄弟(即对应的二叉树中结点没有右子结点时)rtag为1,否则为0 c. 带双标记位的层次次序表示法结点按层次次序顺序存储在一片连续的存储单元中第七章图1.定义a.假设图中有n个顶点,e条边:含有e=n(n-1)/2条边的无向图称作完全图含有e=n(n-1) 条弧的有向图称作有向完全图若边或弧的个数e < nlogn,则称作稀疏图,否则称作稠密图b. 顶点的度(TD)=出度(OD)+入度(ID)顶点的出度: 以顶点v为弧尾的弧的数目顶点的入度: 以顶点v为弧头的弧的数目c.连通图、连通分量若图G中任意两个顶点之间都有路径相通,则称此图为连通图若无向图为非连通图,则图中各个极大连通子图称作此图的连通分量d.强连通图、强连通分量对于有向图,若任意两个顶点之间都存在一条有向路径,则称此有向图为强连通图否则,其各个极大强连通子图称作它的强连通分量e.生成树、生成森林假设一个连通图有n个顶点和e条边,其中n-1条边和n个顶点构成一个极小连通子图,称该极小连通子图为此连通图的生成树对非连通图,则将由各个连通分量构成的生成树集合称做此非连通图的生成森林2.存储结构a.相邻矩阵表示法表示顶点间相邻关系的矩阵若G是一个具有n个顶点的图,则G的相邻矩阵是如下定义的n×n矩阵:A[i,j]=1,若(Vi, Vj)(或<Vi, Vj>)是图G的边A[i,j]=0,若(Vi, Vj)(或<Vi, Vj>)不是图G的边b.邻接表表示法为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点Vi的边(有向图中指以Vi为尾的弧)(建立单链表时按结点顺序建立)3.周游a. 深度优先周游:从图中某个顶点V0出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发,深度优先搜索遍历图中的其余顶点,直至图中所有与V0有路径相通的顶点都被访问到为止b. 广度优先周游:从图中的某个顶点V0出发,并在访问此顶点之后依次访问V0的所有未被访问过的邻接点,随后按这些顶点被访问的先后次序依次访问它们的邻接点,直至图中所有与V0有路径相通的顶点都被访问到为止,若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止4.拓扑排序拓扑排序的方法是:1)选择一个入度为0的顶点且输出之2)从图中删掉此顶点及所有的出边3)回到第1步继续执行,直至图空或者图不空但找不到无前驱(入度为0)的顶点为止5.单源最短路径(Dijkstra算法)6.每对顶点间的最短路径(Floyd算法)7.最小生成树a.Prim算法b.Kruskal算法c.两种算法比较:Prim算法适合稠密图,Kruskal算法适合稀疏图第八章内排序第十章检索1.平均检索长度(ASL)是待检索记录集合中元素规模n的函数,其定义为:ASL=Pi为检索第i个元素的概率;Ci为找到第i个元素所需的比较次数2.散列a.除余法用关键码key除以M(取散列表长度),并取余数作为散列地址散列函数为:hash(key) =key mod Mb.解决冲突的方法开散列方法:把发生冲突的关键码存储在散列表主表之外(在主表外拉出单链表)闭散列方法:把发生冲突的关键码存储在表中另一个位置上c.线性探查基本思想:如果记录的基位置存储位置被占用,就在表中下移,直到找到一个空存储位置;依次探查下述地址单元:d0+1,d0+2,...,m-1,0,1,...,d0-1;用于简单线性探查的探查函数是:p(K, i) = id.散列表的检索1.假设给定的值为K,根据所设定的散列函数h,计算出散列地址h(K)2. 如果表中该地址对应的空间未被占用,则检索失败,否则将该地址中的值与K比较3. 若相等则检索成功;否则,按建表时设定的处理冲突方法查找探查序列的下一个地址,如此反复下去,直到某个地址空间未被占用(可以插入),或者关键码比较相等(有重复记录,不需插入)为止e.散列表的删除:删除后在删除地点应加上墓碑(被删除标记)f.散列表的插入:遇到墓碑不停止,知道找到真正的空位置第十一章索引技术1.概念:a.主码:数据库中的每条记录的唯一标识b.辅码:数据库中可以出现重复值的码2.B树a.定义:B树定义:一个m阶B树满足下列条件:(1) 每个结点至多有m个子结点;(2) 除根和叶外其它每个结点至少有⌈⌉个子结点;(3) 根结点至少有两个子结点例外(空树,or独根)(4) 所有的叶在同一层,可以有⌈⌉- 1到m-1个关键码(5) 有k个子结点的非根结点恰好包含k-1个关键码b.查找在根结点所包含的关键码K1,…,Kj中查找给定的关键码值(用顺序检索(key少)/二分检索(key 多));找到:则检索成功;否则,确定要查的关键码值是在某个Ki和Ki+1之间,于是取pi所指结点继续查找;如果pi指向外部结点,表示检索失败.c.插入找到的叶是插入位置,若插入后该叶中关键码个数<m,插入完成;否则分裂,中间为分界码(插入到父结点),若父结点上溢则继续向上分裂d.删除删除的关键码不在叶结点层:先把此关键码与它在B树里的后继对换位置,然后再删除该关键码(叶中删)删除的关键码在叶结点层:删除后关键码个数不小于⌈⌉- 1——直接删除关键码个数小于⌈⌉- 1,如果兄弟结点关键码个数不等于⌈⌉- 1——从兄弟结点移若干个关键码到该结点中来(父结点中的一个关键码要做相应变化)如果兄弟结点关键码个数等于⌈⌉- 1——合并3.B+树m阶B+树的结构定义如下:(1)每个结点至多有m个子结点;(2)每个结点(除根外)至少有⌈⌉个子结点;(3)根结点至少有两个子结点;(4)叶在同一层,有⌈⌉..m个key,叶包含全部key,B+树的叶结点链接成一个双链表(5)有k个子结点的结点必有k个关键码。

相关文档
最新文档