湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

合集下载

荆州市一中2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市一中2018-2019学年高二上学期数学期末模拟试卷含解析

第 9 页,共 18 页
可得准线方程为 x= 故选:D. 10.【答案】C

【解析】解;∵f′(x)= f′(x)>k>1, ∴ 即 当 x= 即 f( 故 f( 所以 f( 故选:C. 11.【答案】 【解析】选 C.由题意得 log2(a+6)+2log26=9. 即 log2(a+6)=3, ∴a+6=23=8,∴a=2,故选 C. 12.【答案】D 【解析】解:当 α 内有无穷多条直线与 β 平行时,a 与 β 可能平行,也可能相交,故不选 A. 当直线 a∥α,a∥β 时,a 与 β 可能平行,也可能相交,故不选 B. 当直线 a⊂α,直线 b⊂β,且 a∥β 时,直线 a 和直线 b 可能平行,也可能是异面直线,故不选 C. 当 α 内的任何直线都与 β 平行时,由两个平面平行的定义可得,这两个平面平行, 故选 D. 【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况. 13.【答案】C 【解析】解:由已知中三视图可得该几何体是由一个边长为 1 的正方体,截掉一个角(三棱锥)得到 且该三棱锥有条过同一顶点且互相垂直的棱长均为 1 该几何体的表面积由三个正方形,有三个两直角边为 1 的等腰直角三角形和一个边长为 的正三角形组成 >k>1, 时,f( ) )> )< , ,一定出错, )+1> ﹣1= ×k= , >k>1,
D.y=±
x
x y 2 0 y 15.已知变量 x, y 满足约束条件 x 1 ,则 的取值范围是( x x y 7 0

第 2 页,共 18 页
A. [ , 6]
9 5
B. ( , ] [6, )
9 5
C. ( ,3] [6, )
17.函数 f x log 2 x 在点 A 1, 2 处切线的斜率为 18.若执行如图 3 所示的框图,输入

湖北省荆州中学2018-2019学年高二数学上学期第三次双周考试题 文

湖北省荆州中学2018-2019学年高二数学上学期第三次双周考试题 文

荆州中学2018-2019学年高二第一学期第三次双周考试高一数学(文)试卷选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线的倾斜角为,则( )A. 等于0B. 等于4π C . 等于2π D . 不存在 2.已知直线与直线垂直,则 A. 143 B. 52 C .11D . 3 3.若方程220x y x y m +-++=A. (0,)+∞ B. 1(,)2+∞4A. 72 B. 48 C. 5.若变量满足约束条件420,0x yx y x y +≤⎧⎪-≤⎨⎪≥≥⎩,则的最大值是( )A. 2B. 4 C .6 D .106.△ABC 中,内角、、所对的边分别为、、,且222b c a +=,则∠A 等于( )A. 60°B. 30°C. 120°D. 150°7.已知数列{}n a 是等差数列,471015a a a ++=,则其前13项的和是( )A. 45B. 65C. 91D. 1958.在四面体PABC 中,PA PB PC 、、两两垂直,且均相等,E 是AB 的中点,则异面直线AC 与PE 所成的角为( )A.6πB.4πC.3πD.2π 9.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中老年人抽取了3名,则n =( )A. 13B. 12C. 10D. 910.运行如图所示的程序框图,若输出的的值为21-,则判断框中可以填( )A. B.C. D.11.已知1x >,2y >,22xy x y =++,则x y +的最小值是( ) A. 4 B.5 C. 6 D. 712.在中,三个内角、、所对的边分别为、、,若内角、、依次成等差数列,且不等式2680x x -+->的解集为{|A x a =<,则等于( )A. 分,共20分),n x 的均值为5,则样本数据12321,21,21,21n x x x x ++++的(5,1)A ,则圆的方程为______________..已知,函数__________.___________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10 分)已知△ABC 的角A ,B ,C 所对的边分别是设向量(,)m a b =,(sin ,sin )n B A =,(2,2)P b a =--(1)若m ∥n ,试判断△ABC 的形状;(2)若m ⊥p ,边长,3C π∠=,求△ABC 的面积S .18.(本小题满分12 分)已知等差数列{}n a 的前项和为n S ,公差,3550S S +=,1413,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列n n b a ⎧⎫⎨⎬⎩⎭是首项为1,公比为的等比数列,求数列{}n b 的前项和为n T .19.(本小题满分12 分)某电子商务公司对10000名网络购物者2017年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.⑴.求直方图中的a 的值⑵.估计这10000名网络购物者在2017年度的消费的中位数和平均数。

荆州市三中20182019学年高二上学期数学期末模拟试卷含解析

荆州市三中20182019学年高二上学期数学期末模拟试卷含解析

荆州市三中 2018-2019 学年高二上学期数学期末模拟试卷含分析班级 __________座号_____姓名__________分数__________一、选择题1.已知x, y, z均正数,且2x log 2 x , 2 y log 2 y , 2 z log2 z ,()A .x y zB .z x y C.z y z D .y x z 2.已知全集U=R ,会集 M={x|2≤x 1≤2} 和 N={x|x=2k1, k=1, 2,⋯} 的关系的恩(Venn)如所示,暗影部分所示的会集的元素共有()A .3 个 B.2 个C.1 个D.无多个3.已知正方体的不在同一表面的两个点A( 1,2, 1),B(3, 2,3),正方体的棱等于()A .4B.2C.D.24.已知会集A={4 , 5, 6,8} , B={3 , 5, 7, 8} ,会集A∪ B=()A .{5 ,8}B. {4,5, 6,7,8} C.{3,4,5,6, 7,8}D.{4,5,6, 7,8}5.已知数a,b, c 足不等式0< a< b<c< 1,且 M=2 a,N=5 ﹣b, P=()c,M、N、P的大小关系()A .M>N>PB. P<M< N C.N>P>M6.以下算正确的选项是()21455444A 、x3x 3x B、( x5)4x C、x4x 5x D 、x5x507.以下说法正确的选项是()A.圆锥的侧面睁开图是一个等腰三角形;B.棱柱即是两个底面全等且其他各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们构成一个新的棱锥;D.经过圆台侧面上的一点,有无数条母线.8.f( x)=( e-x- e x)(x 1 -1),不等式f (x)< f( 1+ x)的解集()2+ 121 A .( 0,+∞)B.(-∞,-2)11 C.(-2,+∞)D.(-2, 0)9.不等式≤0的解集是()A .(﹣∞,﹣ 1)∪ (﹣ 1, 2)B. [﹣ 1, 2]C.(﹣∞,﹣ 1)∪ [2, +∞) D .(﹣1, 2]10.若直线y=kx ﹣ k 交抛物线y2=4x 于 A ,B 两点,且线段AB 中点到 y 轴的距离为3,则 |AB|= ()A .12 B.10 C.8D.6f ( x5)x211.已知函数f ( x)e x2x 2 ,则 f (2016)()f (x)x2A .e2B.e C. 1 D .1e【命题企图】本题观察分段函数的求值,意在观察分类谈论思想与计算能力.12.已知抛物线y24x 的焦点为F,A(1,0) ,点 P 是抛物线上的动点,则当| PF |的值最小时,PAF 的|PA|面积为()2B. 2C. 22D.4A.2【命题企图】本题观察抛物线的看法与几何性质,观察学生逻辑推理能力和基本运算能力.二、填空题13.已知 a=(cosx﹣ sinx) dx,则二项式(x2﹣)6睁开式中的常数项是.14.如图是正方体的平面睁开图,则在这个正方体中①BM 与 ED 平行;② CN 与 BE 是异面直线;③ CN 与 BM 成 60 角;④ DM 与 BN 是异面直线.以上四个命题中,正确命题的序号是(写出全部你以为正确的命题).15.在等差数列{ a n}中,a12016S10S82 ,则S2016的值等于.,其前 n 项和为 S n,若810【命题企图】本题观察等差数列的通项公式、前n 项和公式,平等差数列性质也有较高要求,属于中等难度.16 .会集 A={x| ﹣ 1<x < 3} , B={x|x < 1} ,则 A ∩B= .17 .已知某几何体的三视图如图 , 正(主)视图中的弧线是半圆,依据图中标出的尺寸,可得这个几何体的表 面积是 _________(单位 :).18.(文科)与直线 x3 y 1 0 垂直的直线的倾斜角为___________.三、解答题19.已知函数 f (x)ax 是定义在( -1,1)上的函数 , f ( 1) 21 x 22 5( 1)求 a 的值并判断函数 f (x) 的奇偶性( 2)用定义法证明函数f (x) 在( -1, 1)上是增函数;20.双曲线 C 与椭圆+ =1 有同样的焦点,直线 y= x 为 C 的一条渐近线.求双曲线 C 的方程.21.设 a , b 互为共轭复数,且( a+b ) 2﹣ 3abi=4 ﹣ 12i .求 a , b 的值.22.( 14 分)已知函数 f ( x) mx a ln x m , g( x)x,此中 m, a 均为实数.e x1( 1)求 g (x) 的极值; 3 分( 2)设 m 1, a 0 ,若对随意的 x1 , x2 [3,4] ( x111x2 ) , f (x2 ) f ( x1 )恒成立,求 a 的最小值;g( x2 )g( x1 )5 分( 3)设 a 2 ,若对随意给定的 x0 (0,e] ,在区间 (0,e] 上总存在 t1 ,t2 (t1 t2 ) ,使得 f (t1 ) f (t2 ) g ( x0 ) 成立,求 m 的取值范围. 6 分23.过抛物线 y2=2px( p> 0)的焦点 F 作倾斜角为 45°的直线交抛物线于 A、 B 两点,若线段 AB 的长为 8,求抛物线的方程.24.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.荆州市三中 2018-2019 学年高二上学期数学期末模拟试卷含分析(参照答案)一、选择题1.【答案】 A【分析】考点:对数函数,指数函数性质.2.【答案】 B【分析】解:依据题意,分析可得暗影部分所示的会集为M ∩N,又由 M={x| ﹣ 2≤x﹣ 1≤2} 得﹣ 1≤x≤3,即 M={x| ﹣ 1≤x≤3} ,在此范围内的奇数有1和3.因此会集 M ∩N={1 , 3} 共有 2 个元素,应选 B.3.【答案】 A【分析】解:∵正方体中不在同一表面上两极点A(﹣ 1, 2,﹣ 1), B ( 3,﹣ 2, 3),∴ AB 是正方体的体对角线, AB=,设正方体的棱长为x,则,解得 x=4 .∴ 正方体的棱长为4,应选: A.【评论】本题主要观察了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.4.【答案】 C【分析】解:∵A={4 , 5, 6, 8} ,B={3 , 5, 7,8} ,∴A∪B={3 , 4,5,6,7,8} .应选 C5. 【答案】 A【分析】 解: ∵0< a < b <c < 1,∴ 1< 2a < 2, < 5﹣b< 1, <()c < 1,﹣b=( b cc5) >( ) >( ) ,即 M >N >P ,应选: A【评论】本题主要观察函数值的大小比较,依据幂函数和指数函数的单一性的性质是解决本题的重点.6. 【答案】 B【分析】试题分析:依据a a可知, B 正确。

荆州市高中2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市高中2018-2019学年高二上学期数学期末模拟试卷含解析

第 8 页,共 18 页
【解析】 排列、组合的实际应用;空间中直线与直线之间的位置关系. 【专题】计算题;压轴题. 【分析】 首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的, 没有公共点的两条棱代 表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的 4 个仓库存放这 8 种化工产品, 求安全存放的不同方法的种数. 首先需要把四棱锥个顶点设出来, 然后分析到四棱锥没有公共点的 8 条棱分 4 组,只有 2 种情况.然后求出即可得到答案. 8 种化工产品分 4 组,设四棱锥的顶点是 P,底面四边形的个顶点为 A、B、C、D. 【解答】解 : 分析得到四棱锥没有公共点的 8 条棱分 4 组,只有 2 种情况, (PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC) 那么安全存放的不同方法种数为 2A44=48. 故选 B. 【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间 几何与概率问题联系在一起有一定的综合性且非常新颖. 11.【答案】D 【解析】解:∵M∪N=M,∴N⊆M, ∴集合 N 不可能是{2,7}, 故选:D 【点评】本题主要考查集合的关系的判断,比较基础. 12.【答案】C 【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为 2 所以,正方体的内切球与外接球的半径之比为: 故选 C a,半径为: a,
A.96 A.∅ B.{1,4}
B.48 C.M D.{2,7}
C.24
D.0 )
11.已知集合 M={1,4,7},M∪N=M,则集合 N 不可能是( 12.正方体的内切球与外接球的半径之比为( A. B. C. D.

荆州市高中2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市高中2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )2. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣23. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( )A .(4,1,1)B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)4. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .05. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3 D .26. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.7. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.8. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限9. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)10.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .011.已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅ B .{1,4} C .M D .{2,7}12.正方体的内切球与外接球的半径之比为( )A .B .C .D .二、填空题13.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .14在这段时间内,该车每100千米平均耗油量为 升.15()23k x =-+有两个不等实根,则的取值范围是 .16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.17.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .18.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .三、解答题19.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)20.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列;(Ⅱ)设b n =a n sin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.21.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面积.22.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.23.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.24.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF. (1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.荆州市高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM=2sin x2,PB =2OM =2OA ·cos ∠AOM =2cos x2,∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,故选B. 2. 【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D . 3. 【答案】C【解析】解:设C (x ,y ,z ),∵点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C ,∴,解得x=4,y=﹣3,z=1,∴C (4,﹣3,1). 故选:C .4. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 5. 【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.6.【答案】B7.【答案】C8.【答案】C【解析】解:z====+i,当1+m>0且1﹣m>0时,有解:﹣1<m<1;当1+m>0且1﹣m<0时,有解:m>1;当1+m<0且1﹣m>0时,有解:m<﹣1;当1+m<0且1﹣m<0时,无解;故选:C.【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.9.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.10.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.11.【答案】D【解析】解:∵M∪N=M,∴N⊆M,∴集合N不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础.12.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,所以,正方体的内切球与外接球的半径之比为:故选C二、填空题13.【答案】①②④.【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN ,因为EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x=时,此时MN 长度最小,对应四边形MENF 的面积最小.所以②正确.③因为EF ⊥MN ,所以四边形MENF 是菱形.当x ∈[0,]时,EM 的长度由大变小.当x ∈[,1]时,EM 的长度由小变大.所以函数L=f (x )不单调.所以③错误.④连结C ′E ,C ′M ,C ′N ,则四棱锥则分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.因为三角形C ′EF 的面积是个常数.M ,N 到平面C'EF 的距离是个常数,所以四棱锥C'﹣MENF 的体积V=h (x )为常函数,所以④正确. 故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.14.【答案】 8 升.【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8. 故答案是:8.15.【答案】53,124⎛⎤⎥⎝⎦【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.16.【答案】A【解析】17.【答案】(0,1).【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.18.【答案】 [4,16] .【解析】解:直线l :(t 为参数),化为普通方程是=,即y=tan α•x+1;圆C 的参数方程(θ为参数),化为普通方程是(x ﹣2)2+(y ﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.三、解答题19.【答案】(1) ()()210473h x x x =+-- (37x <<)(2) 13 4.33x =≈试题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比, 所以可设:()13k f x x =-,()()227g x k x =-,12.00k k ≠≠,,则()()()()21273k h x f x g x k x x =+=+--则 ………………………………………2分 因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套 所以,()()521, 3.569h h ==,即12124212492694k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分所以,()()210473h x x x =+-- (37x <<) ………………………………………8分 (2) 由(1)可知,套题每日的销售量()()210473h x x x =+--,答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分考点:利用导数求函数最值20.【答案】【解析】(I)证明:由S n=2a n﹣n2+3n+2(n∈N*),∴当n≥2时,,a n=S n﹣S n﹣1=2a n﹣2a n﹣1﹣2n+4,变形为a n+2n=2[a n﹣1+2(n﹣1)],当n=1时,a1=S1=2a1﹣1+3+2,解得a1=﹣4,∴a1+2=﹣2,∴数列{a n+2n}是等比数列,首项为﹣2,公比为2;(II)解:由(I)可得a n=﹣2×2n﹣1﹣2n=﹣2n﹣2n.∴b n=a n sinπ=﹣(2n+2n),∵==(﹣1)n,∴b n=(﹣1)n+1(2n+2n).设数列{b n}的前n项和为T n.当n=2k(k∈N*)时,T2k=(2﹣22+23﹣24+…+22k﹣1﹣22k)+2(1﹣2+3﹣4+…+2k﹣1﹣2k)=﹣2k=﹣n.当n=2k﹣1时,T2k﹣1=﹣2k﹣(﹣22k﹣4k)=+n+1+2n+1=+n+1.(III )证明:C n =﹣=,当n ≥2时,c n .∴数列{C n }的前n 项和为P n <==,当n=1时,c 1=成立.综上可得:∀n ∈N *,.【点评】本题考查了等差数列与等比数列的通项公式及其前n 项和公式、“放缩法”、三角函数的诱导公式、递推式的应用,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.21.【答案】【解析】解:(1)f (x )=•=2cos 2x+sin2x=sin2x+cos2x+1=2sin (2x+)+1,令﹣+2k π≤2x+≤+2k π,解得﹣+k π≤x ≤+k π,函数y=f (x )的单调递增区间是[﹣+k π,+k π],(Ⅱ)∵f (A )=2∴2sin (2A+)+1=2,即sin (2A+)= ….又∵0<A <π,∴A=.…∵a=,由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2﹣3bc=7 ①…∵sinB=2sinC ∴b=2c ②…由①②得c 2=.…∴S △ABC=.…22.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知 ,点在椭圆上,,解得.所求椭圆方程为 (Ⅱ)设,,的垂直平分线过点,的斜率存在.当直线的斜率时,当且仅当 时,当直线的斜率时, 设.消去得:由.①,,的中点为由直线的垂直关系有,化简得 ②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;23.【答案】(1)10x y --=;(2)见解析;(3)见解析.【解析】试题分析:(1)当2a =时,求出导数易得()'11f =,即1k =,利用点斜式可得其切线方程;(2)求得可得()21'ax f x x -=,分为0a ≤和0a >两种情形判断其单调性;(3)当102a <<时,根据(2)可 得函数()f x 在()12,上单调递减,故()11a f f x ⎛⎫+< ⎪⎝⎭,即ln 1a a a x x a⎛⎫+<⎪+⎝⎭,化简可得所证结论. 试题解析:(1)当2a =时,()12ln 1f x x x =+-,()112ln1101f =+-=,()221'f x x x =-,()221'1111f =-=,所以函数()f x 在点()10,处的切线方程为()011y x -=⨯-,即10x y --=. (2)()1ln 1f x a x x =+-,定义域为()0+∞,,()2211'a ax f x x x x-=-=. ①当0a ≤时,()'0f x <,故函数()f x 在()0+∞,上单调递减; ②当0a >时,令()'0f x =,得1x= 综上所述,当0a ≤时,()f x 在()0+∞,上单调递减;当0a >时,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增. (3)当102a <<时,由(2)可知,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,显然,12a >,故()1120a ⎛⎫⊆ ⎪⎝⎭,,,所以函数()f x 在()12,上单调递减,对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有01a x <<,所以112a x <+<.所以()11a f f x ⎛⎫+< ⎪⎝⎭,即1ln 1101a a x x ⎛⎫++-< ⎪⎝⎭+,所以ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭,即1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,所以()ln 11a x a x ⎛⎫++< ⎪⎝⎭,即ln 11x aa x +⎛⎫+< ⎪⎝⎭,所以1e x aa x +⎛⎫+< ⎪⎝⎭.24.【答案】【解析】解:(1)证明:∵AE =AF ,∴∠AEF=∠AFE.又B,C,F,E四点共圆,∴∠ABC=∠AFE,∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC. (2)由(1)与∠B=60°知△ABC为正三角形,又EB=EF=2,∴AF=FC=2,设DE=x,DF=y,则AD=2-y,在△AED中,由余弦定理得DE2=AE2+AD2-2AD·AE cos A.,即x2=(2-y)2+22-2(2-y)·2×12∴x2-y2=4-2y,①由切割线定理得DE2=DF·DC,即x2=y(y+2),∴x2-y2=2y,②由①②联解得y=1,x=3,∴ED= 3.。

荆州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

荆州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

荆州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数y=sin (2x+)图象的一条对称轴方程为( )A .x=﹣B .x=﹣C .x=D .x=2. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 3. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log xx y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 4. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .415. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4)C .(,)D .(,)6. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β7. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0D .48. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=09. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .5610.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .11.函数y=(x 2﹣5x+6)的单调减区间为( )A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)12.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+二、填空题13.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).14.如图,在棱长为的正方体1111D ABC A B C D 中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.15.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1 是“单曲型直线”的是 .16.已知线性回归方程=9,则b= .17.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .18.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .三、解答题19.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于﹣.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.20.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .21.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.22.已知函数y=x+有如下性质:如果常数t >0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f (x )=x+,x ∈[1,3],利用上述性质,求函数f (x )的单调区间和值域;(2)已知函数g (x )=和函数h (x )=﹣x ﹣2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得h (x 2)=g (x 1)成立,求实数a 的值.23.设M 是焦距为2的椭圆E :+=1(a >b >0)上一点,A 、B 是椭圆E 的左、右顶点,直线MA 与MB 的斜率分别为k 1,k 2,且k 1k 2=﹣.(1)求椭圆E 的方程;(2)已知椭圆E :+=1(a >b >0)上点N (x 0,y 0)处切线方程为+=1,若P是直线x=2上任意一点,从P 向椭圆E 作切线,切点分别为C 、D ,求证直线CD 恒过定点,并求出该定点坐标.24.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.荆州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解:对于函数y=sin (2x+),令2x+=k π+,k ∈z ,求得x=π,可得它的图象的对称轴方程为x=π,k ∈z , 故选:A .【点评】本题主要考查正弦函数的图象的对称性,属于基础题.2. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4π个单位得到函数)4(π+x f 的图象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4(++πx f3)43sin(23]6)4(31sin[2++=+++=πππx x .3. 【答案】C【解析】由||)(x a x f =始终满足1)(≥x f 可知1>a .由函数3||log xx y a =是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0||log 3<=x x y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 4. 【答案】B 【解析】试题分析:()21212121101010242=⨯+⨯+⨯=,故选B. 考点:进位制 5. 【答案】D【解析】解:y'=2x ,设切点为(a ,a 2)∴y'=2a ,得切线的斜率为2a ,所以2a=tan45°=1,∴a=,在曲线y=x 2上切线倾斜角为的点是(,).故选D .【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.6.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.7.【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=﹣x,则f(x)+f(﹣x)=f(0)=0,所以,f(﹣x)=﹣f(x),所以,函数f(x)为奇函数.又f(3)=4,所以,f(﹣3)=﹣f(3)=﹣4,所以,f(0)+f(﹣3)=﹣4.故选:B.【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.8.【答案】C【解析】解:圆x2+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C.【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.9.【答案】D【解析】考点:1.斜率;2.两点间距离.10.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为:=4,另一个侧面的面积为:=4,四个面中面积的最大值为4;故选C.11.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.12.【答案】A【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.二、填空题13.【答案】 ②④【解析】解:根据题意得:圆心(k ﹣1,3k ),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确; 考虑两圆的位置关系,圆k :圆心(k ﹣1,3k ),半径为k 2,圆k+1:圆心(k ﹣1+1,3(k+1)),即(k ,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R ﹣r=(k+1)2﹣k 2=2k+,任取k=1或2时,(R ﹣r >d ),C k 含于C k+1之中,选项①错误; 若k 取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k 2=2k 4,即10k 2﹣2k+1=2k 4(k ∈N*),因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点,选项④正确. 则真命题的代号是②④. 故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.14.【答案】⎣⎦ 【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.15.【答案】①②.【解析】解:∵|PM|﹣|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即,(x>0).对于①,联立,消y得7x2﹣18x﹣153=0,∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.对于②,联立,消y得x2=,∴y=2是“单曲型直线”.对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.对于④,联立,消y得20x2+36x+153=0,∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.故符合题意的有①②.故答案为:①②.【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.16.【答案】4.【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.17.【答案】(﹣∞,3].【解析】解:f′(x)=3x2﹣2ax+3,∵f(x)在[1,+∞)上是增函数,∴f′(x)在[1,+∞)上恒有f′(x)≥0,即3x2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f′(1)=﹣2a+6≥0,∴a≤3;实数a的取值范围是(﹣∞,3].18.【答案】 3 .【解析】解:直线l 的方程为ρcos θ=5,化为x=5.点(4,)化为.∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)因为点B 与A (﹣1,1)关于原点O 对称,所以点B 得坐标为(1,﹣1). 设点P 的坐标为(x ,y )化简得x 2+3y 2=4(x ≠±1).故动点P 轨迹方程为x 2+3y 2=4(x ≠±1)(Ⅱ)解:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0)则.因为sin ∠APB=sin ∠MPN ,所以所以=即(3﹣x 0)2=|x 02﹣1|,解得因为x 02+3y 02=4,所以故存在点P 使得△PAB 与△PMN 的面积相等,此时点P 的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.20.【答案】(1)2=AD ;(2)3π=B .【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.21.【答案】【解析】解:(1)由已知得:f′(x)=.要使函数f(x)在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a>0可知,只需a,x∈[1,+∞)即可.易知,此时=1,所以只需a ≥1即可.(2)结合(1),令f ′(x )==0得.当a ≥1时,由(1)知,函数f (x )在[1,e]上递增,所以f (x )min =f (1)=0;当时,,此时在[1,)上f ′(x )<0,在上f ′(x )>0,所以此时f (x )在上递减,在上递增,所以f (x )min =f ()=1﹣lna ﹣;当时,,故此时f ′(x )<0在[1,e]上恒成立,所以f (x )在[1,e]上递减,所以f (x )min =f (e )=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法.22.【答案】【解析】解:(1)由已知可以知道,函数f (x )在x ∈[1,2]上单调递减,在x ∈[2,3]上单调递增,f (x )min =f (2)=2+2=4,又f (1)=1+4=5,f (3)=3+=;f (1)>f (3)所以f (x )max =f (1)=5 所以f (x )在x ∈[1,3]的值域为[4,5].(2)y=g (x )==2x+1+﹣8设μ=2x+1,x ∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u ≤2,即0≤x ≤时,g (x )单调递减,所以递减区间为[0,];当2≤u ≤3,即≤x ≤1时,g (x )单调递增,所以递增区间为[,1];由g (0)=﹣3,g ()=﹣4,g (1)=﹣,得g (x )的值域为[﹣4,﹣3].因为h (x )=﹣x ﹣2a 为减函数,故h (x )∈[﹣1﹣2a ,﹣2a],x ∈[0,1]. 根据题意,g (x )的值域为h (x )的值域的子集,从而有,所以a=.23.【答案】【解析】(1)解:设A(﹣a,0),B(a,0),M(m,n),则+=1,即n2=b2•,由k1k2=﹣,即•=﹣,即有=﹣,即为a2=2b2,又c2=a2﹣b2=1,解得a2=2,b2=1.即有椭圆E的方程为+y2=1;(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2),则两切线方程PC,PD分别为:+y1y=1,+y2y=1,由于P点在切线PC,PD上,故P(2,t)满足+y1y=1,+y2y=1,得:x1+y1t=1,x2+y2t=1,故C(x1,y1),D(x2,y2)均满足方程x+ty=1,即x+ty=1为CD的直线方程.令y=0,则x=1,故CD过定点(1,0).【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.24.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,由1x ty =+及2212x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22t y y y y t t +=-=-++. 111x ty =+,221x ty =+,∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++=22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++.综上所述,在x 轴上存在点5(,0)4Q 使得716QA QB ⋅=-恒成立.。

湖北省荆州中学高二上学期期末考试数学(文)Word版含答案

湖北省荆州中学高二上学期期末考试数学(文)Word版含答案

荆州中学2017~2018学年度上学期期 末 考 试 卷年级:高二 科目:数学(文科)一、选择题(本大题共12个小题,每小题5分,共60分,每小题只有一个选项符合题意)1.抛物线212y x =的准线方程是 ( ) A. 18y =- B. 12y =- C. 18x =- D. 12x =- 2.已知命题p :R x ∃∈使得12x x +<,命题2q :R,1x x x ∀∈+>,下列为真命题的是() A. ()q p ⌝∧ B. ()p q ∧⌝ C.q p ∧ D. ()()p q ⌝∧⌝3.圆22460x y x y +-+=和圆2260x y y +-=交于A B 、两点,则直线AB 的方程是( )A. 30x y -=B. 30x y +=C. 30x y -=D. 30x y +=4.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为( )5.“15k <<”是“方程22151x y k k +=--表示椭圆”的什么条件( ) A. 充分不必要条件 B.必要不充分条件C. 充要条件D. 既不充分也不必要条件6.执行如图所示的程序框图,输出20172018s =,那么判断框内应填( )A. 2017?k ≤B. 2018?k ≥C. 2017?k ≥D. 2018?k ≤7.已知正三棱锥的侧棱长是底面边长的3倍,则侧棱与底面所成的角的余弦值为( )A. 128.若()2,2P -为圆()221100x y -+=的弦AB 的中点,则直线AB 的方程为(). A.260x y --= B.220x y ++= C.220x y +-= D.260x y --=9.已知圆1F :()22236x y ++=,定点()22,0F ,A 是圆1F 上的一动点,线段2F A 的垂直平分线交半径1F A 于P 点,则P 点的轨迹C 的方程是( ) A. 22143x y += B. 22134x y += C. 22195x y += D. 22159x y += 10.甲、乙两名同学打算在下午自习16:00-17:00期间去向杨老师问问题,预计解答完一个学生的问题需要15分钟.若甲乙两人在16:00-17:00内的任意时刻去问问题是相互独立的,则两人独自去时不需要等待的概率是( ) A. 316 B. 516 C. 716 D. 91611.已知0,0a b >>,且3a b +=,则14a b +的最小值为( ) A. 2B. 3 C. 4 D. 512.将一颗六个面分别标有点数1,2,3,4,5,6的正方体形状的骰子投掷两次,第一次、第二次出现的点数分别记为a b 、,设直线1:2l ax by +=与2:22l x y +=平行的概率为1P ,相交的概率为2P ,则圆22:16C x y +=上到直线126211()PxP y -+=的距离为2的点的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4个小题,每小题5分,共20分)13.学生A ,B 在高三8次月考的化学成绩用茎叶图表示如图,其中学生A 的平均成绩与学生B 的成绩的众数相等,则m =__________.14.在ABC ∆中,三顶点()2,4A ,()1,2B -,()1,0C ,点(),P x y 在ABC ∆内部及边界运动,则z x y =-最大值为_________.15.在球面上有,,,A B C D 四个点,如果,,AD AB AB BC ⊥⊥,BC AD ⊥1,AD =2,AB =3,BC =则该球的表面积为________.16.已知A 、B 、P 是双曲线22221x y a b-=上不同的三点,且A 、B 两点关于原点O 对称,若直线PA 、PB 的斜率乘积3PA PB k k ⋅=,则该双曲线的离心率e =_______.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,已知cos cos cos a B b A C +=. (Ⅰ)求角C 的值.(Ⅱ)若CA CB ⋅= ,求ABC ∆的面积ABC S ∆的值.18.(本题满分12分)已知0m >,2:280p x x --≤,:22q m x m -≤≤+.(Ⅰ)若p 是q 的充分不必要条件,求实数m 的取值范围;(Ⅱ)若3m =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围.19.(本题满分12分)为对期中七校联考成绩进行分析,随机抽查了其中3000名考生的成绩,根据所得数据画了如下的样本频率分布直方图. (Ⅰ)求成绩在[)600,700的频率;(Ⅱ)根据频率分布直方图估算出样本数据的平均数和中位数;(Ⅲ)我校共有880人参加这次考试,请根据频率分布直方图估计我校成绩在[)650,700这段的人数?20.(本题满分12分)已知直线10ax y -+=与圆22:6440C x y x y +-++=交于,A B 两点,过点()5,1P -的直线l 与圆C 交于,M N 两点,(Ⅰ)若直线l 垂直平分弦AB ,求实数a 的值; (Ⅱ)若4MN =,求直线l 的方程;21.(本题满分12分)已知三棱锥A BCD -中,BCD ∆是等腰直角三角形,且BC CD ⊥,4BC =,AD ⊥平面BCD ,2AD =.(Ⅰ)求证:平面ABC ⊥平面ADC(Ⅱ)若E 为AB 的中点,求点A 到平面CDE 的距离.22.(本题满分12分) 已知椭圆22154x y +=,过右焦点2F 的直线l 交椭圆于M ,N 两点.l 的方程; (Ⅱ)若直线l 的斜率存在,线段MN 的中垂线与x 轴相交于点(),0P a ,求实数a 的取值范围.荆州中学2017—2018学年上学期高二年级期末考试文科数学试题参考答案及评分标准一、 选择题BCABB ADACD BB二、 填空题13:514:1 15:14π 16:2三、解答题17、解:(1)cos cos cos a B b A C +=由正弦定理得sin cos sin cos cos A B B A C C +=,∴sin()cos A B C C +=∴sin cos C C C =cos 2C ∴=又0C π<<,∴π4C =.…………………………………5分(2)∵cos CA CB ab C ⋅===∴11sin ()222ABC S ab C ab ∆===10分 18、解:(1)记命题p 的解集为A=[-2,4], 命题q 的解集为B=[2-m ,2+m],∵p 是q 的充分不必要条件 ∴∴22{ 24m m -≤-+≥,解得:4m ≥. …………………………………5分(2)∵“p q ∨”为真命题,“p q ∧”为假命题,∴命题p 与q 一真一假,①若p 真q 假,则241,,5x x or x -≤≤⎧⎨<->⎩»,解得:[)2,1x ∈--…………………8分②若p 假q 真,则2,,415x or x x <->⎧⎨-≤≤⎩,解得:(]4,5x ∈. ………………11分 综上得:[)(]2,14,5x ∈-- .………………………………………12分19、解:(1)根据频率分布直方图,得:成绩在[600,700)的频率为0.003500.001500.2⨯+⨯= ;…………………………………………2分(2)设样本数据的平均数为a ,中位数为b ,0.002504250.004504750.00550525a =⨯⨯+⨯⨯+⨯⨯0.005505750.003506250.00150675+⨯⨯+⨯⨯+⨯⨯540=…………………………………………………………5分根据直方图估计中位数b 在[500,550)段0.002500.004500.005(500)0.5b ⨯+⨯+⨯-=解得540b = ……………………………………………………8分所以数据的平均数和中位数都是540(3)成绩在[650,700)的频率为:0.001×50=0.05,所以我校880名学生生中成绩在[650,700)的人数为:0.05×880=44(人),……12分20、解:(Ⅰ)由于圆22:6440C x y x y +-++=即22:(3)(2)9C x y -++=圆心()3,2C -,半径为3,直线10ax y -+=即1y ax =+ 由于l 垂直平分弦AB ,故圆心()3,2C -必在直线l 上,所以l 的过点()5,1P -和()3,2C - 所以2AB k a ==-, …………………………………………………………6分 (Ⅱ)设直线l 的方程是(5)1y k x =--, C 到l 的距离解得2k =-,……………………………………………………………10分所以l 的方程是:2(5)1y x =--- 即l 方程为:290x y +-=………………………………………………12分21、解:(1)证明:AD ⊥ 平面,BCD BC ⊂平面BCD ,AD BC ∴⊥,又,BC CD CD AD D ⊥= ,BC ∴⊥平面ACD ,又BC ⊂平面ABC ,∴平面ABC ⊥平面ACD . …………………………………5分(2)由已知可得CD =,取CD 中点为F ,连结EF ,132ED EC AB === ,ECD ∴∆为等腰三角形,EF ∴= ECD S ∆=8分由(1)知BC ⊥平面,ACDE ∴到平面ACD 的距离为122BC =, 4ACD S ∆=,……………10分 设A 到平面CED 的距离为d ,有11233A ECD ECD E ACD ACD V S d V S -∆-∆=⋅⋅==⋅⋅,解得d =A ∴到平面CDE………………………………12分 22、解:(1)当直线l的斜率不存在时,M ⎛ ⎝⎭,1,N ⎛ ⎝⎭,1分 当直线l 的斜率存在时,设()11,M x y ,()22,N x y ,直线l 的方程为()1y k x =-,①又椭圆的方程为22154x y +=,② 由①②可得()222254105200k x k x k +-+-=, ∴21221054k x x k +=+,212252054k x x k -+=+,…………………………………3分 ∴()22121212216154k y y k x x x x k -⎡⎤=-++=⎣⎦+,…………………………………4分 ,解得24k =,………………………5分 ∴2k =±,即直线l 的方程为()21y x =-或()21y x =--.………………………6分(2)由(1)可知()121228254k y y k x x k k -+=+-=+, 设MN 的中点为Q ,即22254,5454k k Q k k ⎛⎫- ⎪++⎝⎭,…………………………8分 1PQ MN k k ⋅=- ,直线PQ 的方程是令0y =解得10分 当0k =时,M ,N 为椭圆长轴的两个端点,则点P 与原点重合,当0k ≠时,10,5a ⎛⎫∈ ⎪⎝⎭,…………………………………………………11分综上所述,存在点P 且10,5a ⎡⎫∈⎪⎢⎣⎭.………………………………………12分。

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

荆州中学高二圆月期末考数学(文科)试题一,选择题:本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.设,则地一个必要不充分款件是()A. B. C. D.【结果】A【思路】【思路】当时,是成立,当成立时,不一定成立,依据必要不充分款件地判定方式,即可求解.【详解】由题意,当时,是成立,当成立时,不一定成立,所以是地必要不充分款件,故选A.【点睛】本题主要考查了必要不充分款件地判定问题,其中解答中熟记必要不充分款件地判定方式是解答本题地关键,着重考查了推理与论证能力,属于基础题.2.已知椭圆长轴在轴上,若焦距为4,则等于()A. 4B. 5C. 7D. 8【结果】8【思路】由椭圆地长轴在y轴上,则a2=m﹣2,b2=8﹣m,c2=a2﹣b2=2m﹣10.由焦距为4,即2c=4,即有c=2.即有2m﹣10=4,解得m=7.故结果为:7.3.已知直线和平面,若,,则过点且平行于地直线()A. 只有一款,不在平面内B. 只有一款,且在平面内C. 有无数款,一定在平面内D. 有无数款,不一定在平面内【结果】B【思路】【思路】假设m是过点P且平行于l地直线,n也是过点P且平行于l地直线,则与平行公理得出地结论矛盾,进而得出结果.【详解】假设过点P且平行于l地直线有两款m与n,则m∥l且n∥l由平行公理得m∥n,这与两款直线m与n相交与点P相矛盾,故过点且平行于地直线只有一款,又因为点P在平面内,所以过点P且平行于l地直线只有一款且在平面内.故选:B【点睛】本题主要考查了空间中直线与直线之间地位置关系,空间中直线与平面地位置关系.过一点有且只有一款直线与已知直线平行.4.已知数列是等差数列,且,则公差()A. B. 4 C. 8 D. 16【结果】B【思路】试题思路:等差数列中考点:等差数列地性质5.“更相减损术”是《九章算术》中记录地一种求最大公约数地算法,按其算理流程有如下程序框图,若输入地,分别为165,66,则输出地为()A. 2B. 3C. 4D. 5【结果】B【思路】【思路】由题中程序框图知,该程序地功能是利用循环结构计算并输出变量地值,模拟程序地运行过程,思路循环中各变量地变化情况,即可得到结果.【详解】由程序框图可知:输入时,满足,则,满足,则,满足,则,不满足,此时输出,故选B.【点睛】本题主要考查了循环结构地程序框图地计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构。

湖北省荆州中学高二数学上学期第二次双周考试题 文

湖北省荆州中学高二数学上学期第二次双周考试题 文

荆州中学2018—2019学年度高二年级上学期第二次双周考试数学试题(文科)(考试时间:120分钟 总分:150分)一、选择题(本大题共12个小题,每小题5分,共60分;在每个小题给出的四个选项中,有且只有一个是符合题目要求的)1.设集合{|4},sin 40A x x m ==︒≤,则下列关系中正确的是()A .m A ⊂B .m A ⊄C .{}m A ∈D .A m ∈2.设平面向量(1,2),(2,)y ==-a b ,若a b ∥,则|3|+a b 等于()ABC .D 3.下列函数中,既是奇函数又是区间(0,)+∞上的增函数的是()A .12t x =B .1y x -=C .3y x =D .2x y =4.若0<<a b ,则下列结论不正确的是()A .22a b <B .2ab b <C .2211ab a b <D .0a b +<5.若{}n a 为等差数列,n S 是其前n 项和,且1122π3S =,则6tan a 的值为()A B .C . D . 6.直线01=+-y x 的倾斜角是()A .4πB .2πC .43πD .3π 7.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入()俯视图A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.一个几何体的三视图如图所示,则这个几何体的体积等于()A .12B .3C .563D .49.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=() A .15B C D .110.把函数sin ()y x x =∈R 的图象上所有的点向左平移6π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为() A .sin(23y x x π=-∈R B .1sin(),26y x x π=+∈R C .sin(23y x x π=+∈RD .1sin(),26y x x π=-∈R11.已知不等式组⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥0表示的平面区域被直线2x +y -k =0平分成面积相等的两部分,则实数k 的值为() A .2 B .2 C .2 D .-2αABP12.如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则PAB ∆面积的最大值是() A .239B . 536C .12D .24二、填空题(本大题共4个小题,每小题5分,共20分) 13.若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为 . 14.在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 .15.设,x y 满足约束条件2010 3x y x y x +-⎧⎪⎨-+≥≤⎪⎩≥,若z mx y =+的最小值为3-,则m 的值为 .16.已知点M (a ,b )与点N (0,-1)在直线3x -4y +5=0的两侧,给出以下结论:①3a -4b +5>0;②当a >0时,a +b 有最小值,无最大值;③a 2+b 2>1; ④当a >0且a ≠1时,b +1a -1的取值范围是⎝ ⎛⎭⎪⎫-∞,-94∪⎝ ⎛⎭⎪⎫34,+∞.其中正确的序号是 .三、解答题(本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a cos cos )2(=-. (Ⅰ)求角B 的大小; (Ⅱ)若2,4==a A π,求ABC ∆的面积.β18.(本小题满分12分)设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(Ⅰ)若1Ω与2Ω有且只有一个公共点,求a 的值;(Ⅱ)记()S a 为1Ω与2Ω公共部分的面积,则函数()S a 的取值范围是 .19.(本小题共12分)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.20. (本小题满分12分)已知圆C:0138222=+--+y x y x ,直线l :10()ax y a R +-=∈(Ⅰ)若直线l 被圆C 截得的弦长为l 的方程;(Ⅱ)若2a =,P 是直线l 上的动点,PA,PB 是圆C 的切线,A,B 是切点,求四边形PACB面积的最小值.21.(本小题满分12分)数列{}n a 的前n 项和为n S ,若13a =,点1(,)n n S S +在直线*11()n y x n n n+=++∈N 上. (Ⅰ)求证:数列n S n ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)若数列{}n b 满足2n a n n b a =⋅,求数列{}n b 的前n 项和n T ;22.(本小题满分12分)如图,已知圆C 与y 轴相切于点T (0,2),与x 轴的正半轴交于两点M ,N (点M 在点N 的左侧),且|MN |=3.(Ⅰ)求圆C 的方程;(Ⅱ)过点M 任作一直线与圆O :x 2+y 2=4相交于A ,B 两点,连接AN ,BN ,试问:是否为定值?若是,求出其定值,若不是,请说明理由。

荆州市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q2. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.3. 已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )A .﹣3B .3C .﹣1D .14. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .5. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A.2 B.C.D.36.已知等比数列{a n}的前n项和为S n,若=4,则=()A.3 B.4 C.D.137.下列命题中正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”C.“”是“”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是“”8.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A. B.(4+π)C. D.9.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.310.在△ABC中,已知a=2,b=6,A=30°,则B=()A.60°B.120°C.120°或60°D.45°11.如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}12.已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞C .(,3][6,)-∞+∞D .[3,6]13.已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个 14.设函数f (x )=则不等式f (x )>f (1)的解集是( )A .(﹣3,1)∪(3,+∞)B .(﹣3,1)∪(2,+∞)C .(﹣1,1)∪(3,+∞)D .(﹣∞,﹣3)∪(1,3)15.若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B .4±C. D.2±二、填空题16.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.17.设函数()()()31321xa x f x x a x a x π⎧-<⎪=⎨--≥⎪⎩,,,若()f x 恰有2个零点,则实数的取值范围是 .18.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .19.设实数x ,y满足,向量=(2x ﹣y ,m),=(﹣1,1).若∥,则实数m 的最大值为 .三、解答题20.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.21.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.22.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.23.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.24.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.25.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.荆州市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.2.【答案】A3.【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax+y,得y=﹣ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.若a>0,则目标函数的斜率k=﹣a<0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.若a<0,则目标函数的斜率k=﹣a>0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.综上a=1.故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.4.【答案】B【解析】解:若,则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,化为a2+c2﹣b2=﹣ac,∴cosB==﹣,∵B∈(0,π),∴B=,故选:B.【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.5.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.6.【答案】D【解析】解:∵S n为等比数列{a n}的前n项和,=4,∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),解得=13.故选:D.【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.7.【答案】D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.8.【答案】D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.9.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.10.【答案】C【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B∈(0°,180°),∴B=120°或60°.故选:C.11.【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,∵全集U=R,M={x|x>2},N={0,1,2,3},∴∁M={x|x≤2},∴∁M∩N={0,1,2},故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.12.【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 13.【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 14.【答案】A【解析】解:f (1)=3,当不等式f (x )>f (1)即:f (x )>3 如果x <0 则 x+6>3可得 x >﹣3,可得﹣3<x <0.如果 x ≥0 有x 2﹣4x+6>3可得x >3或 0≤x <1综上不等式的解集:(﹣3,1)∪(3,+∞) 故选A .15.【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.二、填空题16.【答案】()2212x y -+=或()2212x y ++=【解析】试题分析:由题意知()0,1F ,设2001,4P x x ⎛⎫⎪⎝⎭,由1'2y x =,则切线方程为()20001142y x x x x -=-,代入()0,1-得02x =±,则()()2,1,2,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2212x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()2212x y ++=.1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质. 17.【答案】11[3)32⎡⎤+∞⎢⎥⎣⎦,,【解析】考点:1、分段函数;2、函数的零点.【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对()3x g x a =-于轴的交点个数进行分情况讨论,特别注意:1.在1x <时也轴有一个交点式,还需31a ≥且21a <;2. 当()130g a =-≤时,()g x 与轴无交点,但()h x 中3x a =和2x a =,两交点横坐标均满足1x ≥.18.【答案】 (﹣1,﹣1) .【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).19.【答案】 6 .【解析】解:∵ =(2x ﹣y ,m ),=(﹣1,1).若∥, ∴2x ﹣y+m=0, 即y=2x+m ,作出不等式组对应的平面区域如图: 平移直线y=2x+m ,由图象可知当直线y=2x+m 经过点C 时,y=2x+m 的截距最大,此时z 最大.由,解得,代入2x ﹣y+m=0得m=6.即m 的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.三、解答题20.【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】(Ⅰ)的可能取值为.,,分布列为:(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.,,,分布列为:.应先回答所得分的期望值较高.21.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C:,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以.当且仅当,即时等号成立.所以的最小值为.22.【答案】【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.23.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.24.【答案】(1)a =12(2)(-∞,-1-1e ].(3)827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥22ln x x. 令g (x )=22ln xx ,x >0,则g '(x )=()3212ln x x -.令g '(x )=0,解得x当x ∈(0g '(x )>0,所以g (x )在(0当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g (1e, 所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e].(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.②当53<a<2时,当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.因为h'(a)=3a2-6a+3=3(a-1)2≥0.所以h(a)在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.③当a≥2时,当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.25.【答案】【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.第21 页,共21 页。

荆州市三中2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市三中2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知均为正实数,且,,,则( ),,x y z 22log xx =-22log yy -=-22log z z -=A .B .C .D .x y z <<z x y <<z y z <<y x z<<2. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有()A .3个B .2个C .1个D .无穷多个3. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .24. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=()A .{5,8}B .{4,5,6,7,8}C .{3,4,5,6,7,8}D .{4,5,6,7,8}5. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为()A .M >N >PB .P <M <NC .N >P >M6. 下列计算正确的是( )A 、B 、C 、D 、2133x xx ÷=4554()x x =4554x xx =4455x x -=7. 下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.8. 设f (x )=(e -x -e x )(-),则不等式f (x )<f (1+x )的解集为()12x +112A .(0,+∞)B .(-∞,-)12C .(-,+∞)D .(-,0)12129. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]10.若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=()A .12B .10C .8D .611.已知函数,则( )(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩(2016)f -=A .B .C .1D .2e e 1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.12.已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C.D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.二、填空题13.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .14.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).15.在等差数列中,,其前项和为,若,则的值等}{n a 20161-=a n n S 2810810=-S S 2016S于 .【命题意图】本题考查等差数列的通项公式、前项和公式,对等差数列性质也有较高要求,属于中等难度.n 16.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .17.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).18.(文科)与直线垂直的直线的倾斜角为___________.10x +-=三、解答题19.已知函数是定义在(-1,1)上的函数, 2(x)1ax f x =+12(25f =(1)求的值并判断函数的奇偶性a (x)f (2)用定义法证明函数在(-1,1)上是增函数;(x)f20.双曲线C 与椭圆+=1有相同的焦点,直线y=x 为C 的一条渐近线.求双曲线C 的方程.21.设a ,b 互为共轭复数,且(a+b )2﹣3abi=4﹣12i .求a ,b 的值.22.(14分)已知函数,其中m ,a 均为实数.1()ln ,()ex x f x mx a x m g x -=--=(1)求的极值; 3分()g x (2)设,若对任意的,恒成立,求的最小值; 1,0m a =<12,[3,4]x x ∈12()x x ≠212111()()()()f x f xg x g x -<-a 5分(3)设,若对任意给定的,在区间上总存在,使得 成立,2a =0(0,e]x ∈(0,e]1212,()t t t t ≠120()()()f t f t g x ==求的取值范围. 6分m 23.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,求抛物线的方程.24.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.荆州市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】考点:对数函数,指数函数性质.2.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.3.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.4.【答案】C【解析】解:∵A={4,5,6,8},B={3,5,7,8},∴A∪B={3,4,5,6,7,8}.故选C5. 【答案】A【解析】解:∵0<a <b <c <1,∴1<2a <2,<5﹣b <1,<()c <1,5﹣b =()b >()c >()c ,即M >N >P ,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键. 6. 【答案】B 【解析】试题分析:根据可知,B 正确。

精品解析:【百强校】湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题(解析版)

精品解析:【百强校】湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题(解析版)

荆州中学高二元月期末考数学(文科)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,则的一个必要不充分条件是()A. B. C. D.【答案】A【解析】【分析】当时,是成立,当成立时,不一定成立,根据必要不充分条件的判定方法,即可求解. 【详解】由题意,当时,是成立,当成立时,不一定成立,所以是的必要不充分条件,故选A.【点睛】本题主要考查了必要不充分条件的判定问题,其中解答中熟记必要不充分条件的判定方法是解答本题的关键,着重考查了推理与论证能力,属于基础题.2.已知椭圆长轴在轴上,若焦距为4,则等于()A. 4B. 5C. 7D. 8【答案】8【解析】由椭圆的长轴在y轴上,则a2=m﹣2,b2=8﹣m,c2=a2﹣b2=2m﹣10.由焦距为4,即2c=4,即有c=2.即有2m﹣10=4,解得m=7.故答案为:7.3.已知直线和平面,若,,则过点且平行于的直线()A. 只有一条,不在平面内B. 只有一条,且在平面内C. 有无数条,一定在平面内D. 有无数条,不一定在平面内【答案】B【解析】【分析】假设m是过点P且平行于l的直线,n也是过点P且平行于l的直线,则与平行公理得出的结论矛盾,进而得出答案.【详解】假设过点P且平行于l的直线有两条m与n,则m∥l且n∥l由平行公理得m∥n,这与两条直线m与n相交与点P相矛盾,故过点且平行于的直线只有一条,又因为点P在平面内,所以过点P且平行于l的直线只有一条且在平面内.故选:B【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面的位置关系.过一点有且只有一条直线与已知直线平行.4.已知数列是等差数列,且,则公差()A. B. 4 C. 8 D. 16【答案】B【解析】试题分析:等差数列中考点:等差数列的性质5.“更相减损术”是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如下程序框图,若输入的,分别为165、66,则输出的为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由题中程序框图知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案.【详解】由程序框图可知:输入时,满足,则,满足,则,满足,则,满足,则,满足,则,满足,则,不满足,此时输出,故选B.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.6.如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. 2B. 3C. 4D. 6【答案】A【解析】【分析】根据给定的三视图可知,该几何体底面表示一个上底为1,下底为2,高为2的直角梯形,且几何体的高为2的四棱锥,再根据体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体底面表示一个上底为1,下底为2,高为2的直角梯形,且几何体的高为2的四棱锥,所以该四棱锥的体积为,故选A.【点睛】本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.7.已知点,,若点是圆上的动点,则面积的最大值是()A. 2B. 4C. 6D.【答案】C【解析】【分析】由题意,求得的直线方程为,取得圆心C到直线的距离为,得到点P到直线的最远距离为,即可求得答案.【详解】由题意知,点,,则的直线方程为,又由圆的圆心坐标,半径为,所以圆心C到直线的距离为,所以点P到直线的最远距离为,所以的最大面积为,故选C.【点睛】本题主要考查了直线与圆的位置关系的应用问题,其中解答中合理利用直线与圆的位置关系,求得圆上的点到直线的最远距离是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.已知,若不等式恒成立,则的最大值为()A. 9B. 12C. 18D. 24【答案】A【解析】【分析】由已知不等式分离变量,然后利用基本不等式求得的最大值,即可得到答案.【详解】由题意知,若不等式恒成立,即恒成立,又因为,当且仅当,即时等号成立,所以,即的最大值为,故选A.【点睛】本题主要考查了不等式的恒成立问题,以及利用基本不等式求最值,其中解答中根据题意分离变量,再利用基本不等式求得最小值是解答的关键,着重考查了分离参数思想,及推理与计算能力,属于中档试题9.设,满足约束条件,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】由约束条件作出可行域,目标函数为两点连线的斜率,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数,利用数形结合得结论.【详解】画出表示的可行域,表示可行域内的点与点连线的斜率,由,得,,由图知,的范围是,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.已知点,分别为椭圆:的左、右焦点,点在椭圆C上,线段的中点在轴上,若,则椭圆的离心率为()A. B. C. D.【答案】D【解析】【分析】由题意,知点在椭圆C上,线段的中点在轴上,求得,在直角中,得到,整理得,即可求解,得到答案.【详解】由题意,知点在椭圆C上,线段的中点在轴上,可得点轴,且点,所以在直角中,,且,所以,即,整理得,两边同除得,解得或(舍去),故选D.【点睛】本题考查了椭圆的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).11.已知点是函数的对称中心,则函数的一个单调区间可以为()A. B. C. D.【答案】A【解析】【分析】由题意知,求得函数的解析式,利用三角函数的性质,求得函数的单调区间,即可作出判定,得到答案.【详解】由题意知,点是函数的对称中心,所以,取,解得,即,令,整理得,令,得,即函数在区间单调递减,故选A.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中求得三角函数的解析式,熟记三角函数的性质,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.已知是圆:上两点,点且,则最小值是()A. B. C. D.【答案】C【解析】【分析】设是线段MN的中点求得其轨迹是以为圆心,半径为的圆,再利用圆的性质和弦长公式,即可求解得到答案.【详解】如图所示,设是线段MN的中点,则,因为,所以,于是,在直角中,,,由勾股定理得,整理得,故的轨迹是以为圆心,半径为的圆,故,又由圆的弦长公式可得,故选C.【点睛】本题主要考查了向量的数量积的应用,以及直线与圆的位置关系和圆的弦长公式的应用,其中解答中求得弦MN的中点的轨迹,合理利用圆的性质和圆的弦长公式求解是解答的关键,着重考查了分析问题和解答问题的能力,以及转化思想的应用,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分.13.从某高中随机选取5名高二男生,由他们身高和体重的数据得到的回归直线方程为,数据列表是:则其中的数据________.【答案】70【解析】【分析】由题意,根据表中的数据,求得数据的中心为,代入回归直线的方程,即可求解.【详解】由题意,根据表中的数据可得,,即数据的中心为,又由回归直线的方程为,即,解得.【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线的方程经过数据的中心是解答本题的关键,着重考查了推理与运算能力,属于基础题.14.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.【答案】【解析】【分析】由题意,得长方形的面积为,以O点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,再由面积比的几何概型,即可求解.【详解】由题意,如图所示,可得长方形的面积为,以O点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,所以取到的点到的距离大于1的表示圆的外部在矩形内部分部分,所以概率为.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.15.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是________【答案】 y=-0.5x+4【解析】设弦为,且,代入椭圆方程得,两式作差并化简得,即弦的斜率为,由点斜式得,化简得.16.已知圆:,圆:,动圆与圆相切,与圆外切,则圆心的轨迹方程是_______________.【答案】或【解析】【分析】当圆P与圆M与圆N都相外切时,得到圆P的圆心的轨迹为,当圆P与圆M相内切,与圆N 相外切时,利用椭圆的定义,可得此时,即可得到答案.【详解】如图所示,当圆P与圆M与圆N都相外切时,此时圆P的圆心的轨迹为;当圆P与圆M相内切,与圆N相外切时,此时满足,两式相加,可得,根据椭圆的定义可知,点P的轨迹是以M、N为焦点的椭圆,且,所以,则,此时点P的轨迹方程为,综上所述,点P的轨迹方程为或.【点睛】本题主要考查了圆与圆的位置关系的应用,以及椭圆的定义的应用,其中解答中合理分类讨论,利用椭圆的定义求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.若命题:,;命题:,,若为真命题,求实数的取值范围.【答案】【解析】【分析】由题意,根据二次函数的性质,当命题为真命题时,得到,再根据指数函数的性质,当命题为真命题时,得到,进而根据与同时为真,即可求解.【详解】由题意,命题,当时,不等式成立,当时,由题意知,综上可知.由命题可知,当时,,则,∴:,由题意知:与同时为真,则,∴.【点睛】本题主要考查了根据命题的真假求解参数的取值范围问题,其中解答中根据二次函数的性质和指数函数的性质,分别求得当命题为真命题时,实数的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.18.已知函数.(Ⅰ)当时,求的值域;(Ⅱ)已知的内角的对边分别为,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)根据三角恒等变换的公式,化简得,利用三角函数的图象与性质,即可求解.(Ⅱ)由题意,根据(1)可得,再在中,由余弦定理,求得,利用面积公式,即可求解. 【详解】(Ⅰ)由题意,根据三角恒等变换的公式,化简得,∵,则,,即函数的值域为.(Ⅱ)由题意,得,∴.在中,由余弦定理得,解得,所以.【点睛】本题主要考查了三角函数的图象与性质,以及余弦定理和三角形面积公式的应用,其中解答中准确利用三角恒等变换的公式化简函数的解析式,及合理利用余弦定理和面积公式,准确计算是解答本题的关键,着重考查了推理与计算能力,属于基础题.19.设数列的前项和为,已知,.(Ⅰ)求的通项公式;(Ⅱ)若数列满足,求的前项和.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)由题意,利用数列的递推公式,化简得,且,得到是以3为首项,2为公差的等差数列,即可求解数列的通项公式;(Ⅱ)由(Ⅰ)可得,,利用裂项法,即可求解其前n项和.【详解】(Ⅰ)由题意,知,则,两式相减得:,∵,∴,且,∴是以3为首项,2为公差的等差数列,∴.(Ⅱ)由(Ⅰ)可得,∴.【点睛】本题主要考查了数列递推公式的应用,以及利用等差数列的定义的应用和“裂项法”求解数列的前n项和,其中解答中合理利用数列的递推公式,利用定义求解数列的通项公式是解答本题的关键,同时注意裂项后的求和的项数是解答的一个易错点,着重考查了推理与运算能力,属于基础题.20.为增强市民的环境保护意识,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成5组第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第1组有5人.(Ⅰ)分别求出第3,4,5组志愿者人数,若在第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有1名志愿者被抽中的概率.【答案】(Ⅰ)利用分层抽样在第三,第四,第五组中分别抽取3人,2人,1人.(Ⅱ)【解析】【分析】(Ⅰ)由题意,因为第一组有5人,求得,分别求得第三组、第四组、第五组,根据分层抽样,即可得到结果;(Ⅱ)记第三组的3名志愿者为,,,第四组的2名志愿者为,,第五组的1名志愿者为,求得从6名志愿者中抽取2名志愿者构成基本事件的总数,进而得到其中第三组的3名志愿者,,至少有一名志愿者被抽中的所含基本事件的总数,利用古典概型及概率的公式,即可求解.【详解】(Ⅰ)由题意,因为第一组有5人,则,,∴第三组有人,第四组有人,第五组有人.∴利用分层抽样在第三,第四,第五组中分别抽取3人,2人,1人.(Ⅱ)记第三组的3名志愿者为,,,第四组的2名志愿者为,,第五组的1名志愿者为,则从6名志愿者中抽取2名志愿者有,,,,,,,,,,,,,,,共15种.其中第三组的3名志愿者,,至少有一名志愿者被抽中的有,,,,,,,,,,,,共12种.则第三组至少有1名志愿者被抽中的概率为.【点睛】本题主要考查的是古典概型及其概率计算公式,属于基础题.解题时要正确找出随机事件A包含的基本事件的个数和试验中基本事件的总数,令古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.21.如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中点,则,而平面平面,而,∴平面.(Ⅱ)根据三棱锥的体积公式,得.【点睛】本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.22.已知椭圆的右焦点,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)若点在圆上,且在第一象限,过点作圆的切线交椭圆于两点,问是否为定值?如果是,求出该定值;如果不是,说明理由。

湖北省荆州中学2018学年高二上学期期末考试数学文试题

湖北省荆州中学2018学年高二上学期期末考试数学文试题

荆州中学2018~2018学年度上学期期 末 考 试 卷年级:高二 科目:数学(文科)本试题卷共4页,三大题22小题.全卷满分150分,考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知椭圆2214y x +=,则其焦点的坐标为( )A.()3,0± B. ()0,3± C. () D. (0, 2.已知变量x 与变量y 负相关,且由观测数据计算得到样本的平均数4, 6.5x y ==,则由该观测数据算得的线性回归方程可能是 ( )A .2 1.5y x =-B .0.8 3.3y x =+C .214.5y x =-+D .0.69.1y x =-+ 3.下列说法不正确...的是( ) A .若“p q ∨”为假命题,则,p q 均为假命题B .“1x =”是“1x ≥”的充分不必要条件C .“1sin 2x =”的必要不充分条件是“6x π=” D .若命题p :200,0x R x ∃∈≥,则命题p ⌝:2,0x R x ∀∈<4 .如右图所示,程序框图(算法流程图)的输出结果是( )A .16 B .2524C .34D .11125. 从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电都齐全的概率是( )A.310B.15C.35D.45共有学生2000名,各年级男、女生6. 某校人数如下表:如果从全校学生中随机抽取一名学生,抽到二年级女生的概率为0.19.现用分层抽样的方法在全校学生中分年级抽取64名学生参加某项活动,则应在三年级中抽取的学生人数为( )A . 24B . 18C . 12D . 167.已知()()1ln f x f x x '=+,则()f e =( ) A. 1e +B. eC. 2e +D. 38.某三棱锥的三视图如右图所示,则该三棱锥的表面积是( ) A.2+ 5B.4+ 5C.2+2 5D.59. 过抛物线24y x =的焦点作直线交抛物线于,A B 两点,线段AB 的中点的横坐标为3,则 线段AB 的长为( )A .5B . 8C . 7D . 9 10. 曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +211.如图,四棱锥S-ABCD 的底面为正方形,SD⊥底面ABCD , 则下列结论中不正确...的是( ) A .AC⊥SBB .AB∥平面SCDC .AB 与SC 所成的角等于DC 与SA 所成的角D .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角12.F 是双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于B ,若2AF FB =,则双曲线C 的离心率为( )B. 2C.二、填空题:本大题共4小题,每小题5分,共20分. 请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.13.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m =________.14.下列各数)9(85 、)4(1000 、)2(111111中最小的数是___________.15.已知函数()331f x x x =-+,则(2f '= . 16.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-,对[0,1],()0x f x ∀∈≥的概率是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 设a 是实数,对函数22()233f x x x a a =-++-和抛物线C :24y x =,有如下两个命题::p 函数()f x 的最小值小于0;:q 抛物线24y x =上的动点2(,)4a M a 到焦点F 的距离大于2. 已知“p ⌝”和“p q ∧”都为假命题,求实数a 的取值范围.18.(本小题满分12分)已知圆C 过点()1,4A ,()3,2B ,且圆心C 在直线30x y +-=上. (1)求圆C 的方程;(2)若点(),P x y 是圆C 上的动点,z x y =+,求z 的最大值.19. 本小题满分12分)某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩(均为整数,满分100分)分成六段,然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四个小组的频率以及频率分布直方图中第四个小矩形的高; (2)估计这次考试的及格率(60分及60分以上为及格)和平均分;20. (本题满分12分)已知四棱柱1111ABCD A B C D -的底面ABCD 是边长为2的菱形,AC BD O = ,1AA = 1BD AA ⊥,160BAD A AC ∠=∠= , 点M 是棱AA 1的中点.(1) 求证:A 1O ⊥平面ABCD ; (2) 求三棱锥AMD B -的体积.21.(本小题满分12分)设椭圆2222:1y x M a b+=(0a b >>)经过点(1P ,其离心率与双曲线122=-y x 的离心率互为倒数. (Ⅰ)求椭圆M 的方程;(Ⅱ) 动直线:l y m =+交椭圆M 于A B 、两点,求PAB ∆面积 的最大值.22.(本小题满分12分)已知平面直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 方程为2sin ρθ=;2C的参数方程为1122x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(Ⅰ)写出曲线1C 的直角坐标方程和2C 的普通方程;(Ⅱ)设点P 为曲线1C 上的任意一点,求点P 到曲线2C 距离的取值范围.荆州中学2018~2018学年度上学期期 末 考 试 卷年级:高二 科目:数学(文科)命题人:陈静 审题人:鄢先进参考答案一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分.) 13. 8 14. )2(111111 15. 32- 16. 23三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. p ⌝ 和p q ∧都是假命题,p ∴为真命题,q 为假命题. ………………2分2222()233(1)34f x x x a a x a a =-++-=-++- ,2min ()340f x a a ∴=+-<,所以,41a -<<; ………………6分又 抛物线24y x =的准线为1x =-,q 为假命题,2124a MF ∴=+≤,22a ∴-≤≤. ………………10分 故所求a 的取值范围为[2,1)-. ………………12分18.解答:(1)设圆心坐标为(a,b),则222222(1)(3)(3)(2)30a b r a b r a b ⎧-+-=⎪-+-=⎨⎪+-=⎩解得:1,2,2a b r ===,故圆的方程为:4)2()1(22=-+-y x ………………6分(2)令z x y =+,即y x z =-+,当这条直线与圆相切时,它在y 轴上的截距最大或最小,可求得最大值为:223+ ………………12分 19.解答:(1)第四小组分数在[70,80)内的频率为:1-(0.018+0.01+0.015+0.015+0.185)⨯10=0.30 则第四个小矩形的高为=0.18………6分 (2)由题意60分以上的各组频率和为:(0.015+0.18+0.185+0.018)×10=0.75, 故这次考试的及格率约为75%, 由45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.18=71,得本次考试中的平均分约为71: ………12分 20.(1) 11BD AA BD AC BD A AC ⊥⊥⊥,得面于是1BD A O ⊥, AC BD O ⋂= 菱形 ……6分(2)体积转换法:因为⊥O A 1平面ABCD , M 为O A 1的中点, 所以M 到平面ABCD 的距离为23211=O A , 三角形ABD 的面积为3, 23==--ABD M AMD B V V ………12分21. (Ⅰ)则椭圆的离心率为2c e a ==,由已知,得22222112b a b c c a+=⎪⎪=+⎨⎪⎪=⎪⎩,∴ ⎪⎩⎪⎨⎧===222b c a ,所求椭圆M 的方程为 22142y x +=.…………………4分(Ⅱ)由⎪⎩⎪⎨⎧=++=142222y x m x y ,得22440x m ++-=,由0)4(16)22(22>--=∆m m得,m -<1122(,),(,)A x y B x y,122x x m ∴+=-,21244m x x -= .∴12|||AB x x =-==.又P 到AB 的距离为3||m d =.则1||2ABCS AB d ∆====…………………10分22(8)2ABCm m S ∆+-∴≤=当且仅当2(m =±∈-取等号.∴max ()ABC S ∆=分 22.解:(I )曲线1C 方程为2sin ρθ=,可得22sin ρρθ=,可得222x y y +=∴1C 的直角坐标方程:()2211x y +-=,2C的参数方程为112x t y ⎧=-+⎪⎪⎨⎪=⎪⎩,消去参数t 可得: 2C0y -=.…(5分)(II )由(I )知,1C 为以(0,1)为圆心,r=1为半径的圆,1C 的圆心(0,1)到C2的距离为112d-==<,则1C 与2C 相交,P 到曲线2C 距离最小值为0,最大值为12d r +=, 则点P 到曲线2C 距离的取值范围为1[0,]2+.……(10分)。

湖北省荆门市2018-2019学年高二上学期期末质量检测数学(文)试题 Word版含解析

湖北省荆门市2018-2019学年高二上学期期末质量检测数学(文)试题 Word版含解析

荆门市2018—2019学年度上学期期末高二年级质量检测数学(文科)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.经过点,倾斜角为地直线方程为 A. B. C. D.【结果】D【思路】【思路】先求出直线地斜率,再由点斜式求得直线地方程.【详解】倾斜角为地直线地斜率,再依据直线经过点,由点斜式求得直线地方程为,即,故选:D.【点睛】本题考查了由点斜式地方式求直线地方程,属于基础题.2.为了解某地区地中小学生视力情况,拟从该地区地中小学生中抽取部分学生进行调查,事先已了解到该地区小学,初中,高中三个学段学生地视力情况有较大差异,而男女生视力情况差异不大,在下面地抽样方式中,最正确地抽样方式是( )A. 简单随机抽样B. 按分层抽样C. 按学段分层抽样D. 系统抽样【结果】C【思路】试题思路:符合分层抽样法地定义,故选C.考点:分层抽样.3.阅读如图地程序框图,运行相应地程序,若输入N地值为15,则输出N地值为 A. 0B. 1C. 2D. 3【结果】D【思路】【思路】该程序地功能是利用循环结构计算并输出变量N地值,思路循环中各变量值地变化情况,可得结果.【详解】模拟程序地运行,可得满足款件N能被3整除,不满足款件,执行循环体,不满足款件N能被3整除,不满足款件,执行循环体,不满足款件N能被3整除,满足款件,退出循环,输出N地值为3.故选:D.【点睛】本题考查了程序框图地应用问题,解题时应模拟程序框图地运行过程,属于基础题.4.复数A. 1B. -1C.D.【结果】D【思路】【思路】利用复数代数形式地乘除运算,再由虚数单位地性质求解.【详解】,.故结果为:【点睛】本题考查复数代数形式地乘除运算,考查复数地基本概念,是基础题.5.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择地游戏盘是A. B. C. D.【结果】A【思路】由几何概型公式:A中地概率为,B中地概率为,C中地概率为,D中地概率为.本题选择A选项.点睛:解答几何概型问题地关键在于弄清题中地考察对象和对象地活动范围.当考察对象为点,点地活动范围在线段上时,用线段长度比计算。

荆州市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

荆州市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

1111] 5. 若函数 f(x)=ax2+bx+1 是定义在[﹣1﹣a,2a]上的偶函数,则该函数的最大值为( A.5 B.4 C.3 D.2
6. 已知函数 f(x)= x3+(1﹣b)x2﹣a(b﹣3)x+b﹣2 的图象过原点,且在原点处的切线斜率是﹣3,则不 等式组 A. B. 所确定的平面区域在 x2+y2=4 内的面积为( C.π D.2π )
∴AB 的中点 M 到原点的距离的最小值为 故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题. 8. 【答案】D 【解析】解:A.命题“若 x2=1,则 x=1”的否命题为“若 x2≠1,则 x≠1”,故 A 错误, B.由 x2+5x﹣6=0 得 x=1 或 x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故 B 错误, C.命题“∃x∈R,使得 x2+x+1<0”的否定是:“∀x∈R,均有 x2+x+1≤0﹣5,故 C 错误,
11.在二项式(x3﹣ )n(n∈N*)的展开式中,常数项为 28,则 n 的值为( A.12 B.8 C.6 D.4
12.如图,一个底面半径为 R 的圆柱被与其底面所成角是 30°的平面所截,截面是一个椭圆,则该椭圆的离心 率是( )
A.
B.
C.
D.
二、填空题
13.设全集 U={0,1,2,3,4},集合 A={0,1,2},集合 B={2,3},则(∁UA)∪B= . 14.设所有方程可以写成(x﹣1)sinα﹣(y﹣2)cosα=1(α∈[0,2π])的直线 l 组成的集合记为 L,则下列说法正 确的是 ; ①直线 l 的倾斜角为 α; ②存在定点 A,使得对任意 l∈L 都有点 A 到直线 l 的距离为定值; ③存在定圆 C,使得对任意 l∈L 都有直线 l 与圆 C 相交; ④任意 l1∈L,必存在唯一 l2∈L,使得 l1∥l2; ⑤任意 l1∈L,必存在唯一 l2∈L,使得 l1⊥l2. 15.如图是正方体的平面展开图,则在这个正方体中① BM 与 ED 平行;② CN 与 BE 是异面直线; ③ CN 与 BM 成 60 角;④ DM 与 BN 是异面直线. 以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题(精品解析)

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题(精品解析)

荆州中学高二元月期末考数学(文科)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,则的一个必要不充分条件是()A. B. C. D.【答案】A【解析】【分析】当时,是成立,当成立时,不一定成立,根据必要不充分条件的判定方法,即可求解.【详解】由题意,当时,是成立,当成立时,不一定成立,所以是的必要不充分条件,故选A.【点睛】本题主要考查了必要不充分条件的判定问题,其中解答中熟记必要不充分条件的判定方法是解答本题的关键,着重考查了推理与论证能力,属于基础题.2.已知椭圆长轴在轴上,若焦距为4,则等于()A. 4B. 5C. 7D. 8【答案】8【解析】由椭圆的长轴在y轴上,则a2=m﹣2,b2=8﹣m,c2=a2﹣b2=2m﹣10.由焦距为4,即2c=4,即有c=2.即有2m﹣10=4,解得m=7.故答案为:7.3.已知直线和平面,若,,则过点且平行于的直线()A. 只有一条,不在平面内B. 只有一条,且在平面内C. 有无数条,一定在平面内D. 有无数条,不一定在平面内【答案】B【解析】【分析】假设m是过点P且平行于l的直线,n也是过点P且平行于l的直线,则与平行公理得出的结论矛盾,进而得出答案.【详解】假设过点P且平行于l的直线有两条m与n,则m∥l且n∥l由平行公理得m∥n,这与两条直线m与n相交与点P相矛盾,故过点且平行于的直线只有一条,又因为点P在平面内,所以过点P且平行于l的直线只有一条且在平面内.故选:B【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面的位置关系.过一点有且只有一条直线与已知直线平行.4.已知数列是等差数列,且,则公差()A. B. 4 C. 8 D. 16【答案】B【解析】试题分析:等差数列中考点:等差数列的性质5.“更相减损术”是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如下程序框图,若输入的,分别为165、66,则输出的为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由题中程序框图知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案.【详解】由程序框图可知:输入时,满足,则,满足,则,满足,则,不满足,此时输出,故选B.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.6.如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. 2B. 3C. 4D. 6【答案】A【解析】【分析】根据给定的三视图可知,该几何体底面表示一个上底为1,下底为2,高为2的直角梯形,且几何体的高为2的四棱锥,再根据体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体底面表示一个上底为1,下底为2,高为2的直角梯形,且几何体的高为2的四棱锥,所以该四棱锥的体积为,故选A.【点睛】本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.7.已知点,,若点是圆上的动点,则面积的最大值是()A. 2B. 4C. 6D.【答案】C【解析】【分析】由题意,求得的直线方程为,取得圆心C到直线的距离为,得到点P到直线的最远距离为,即可求得答案.【详解】由题意知,点,,则的直线方程为,又由圆的圆心坐标,半径为,所以圆心C到直线的距离为,所以点P到直线的最远距离为,所以的最大面积为,故选C.【点睛】本题主要考查了直线与圆的位置关系的应用问题,其中解答中合理利用直线与圆的位置关系,求得圆上的点到直线的最远距离是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.已知,若不等式恒成立,则的最大值为()A. 9B. 12C. 18D. 24【答案】A【解析】【分析】由已知不等式分离变量,然后利用基本不等式求得的最大值,即可得到答案.【详解】由题意知,若不等式恒成立,即恒成立,又因为,当且仅当,即时等号成立,所以,即的最大值为,故选A.【点睛】本题主要考查了不等式的恒成立问题,以及利用基本不等式求最值,其中解答中根据题意分离变量,再利用基本不等式求得最小值是解答的关键,着重考查了分离参数思想,及推理与计算能力,属于中档试题9.设,满足约束条件,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】由约束条件作出可行域,目标函数为两点连线的斜率,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数,利用数形结合得结论.【详解】画出表示的可行域,表示可行域内的点与点连线的斜率,由,得,,由图知,的范围是,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.已知点,分别为椭圆:的左、右焦点,点在椭圆C上,线段的中点在轴上,若,则椭圆的离心率为()A. B. C. D.【答案】D【解析】【分析】由题意,知点在椭圆C上,线段的中点在轴上,求得,在直角中,得到,整理得,即可求解,得到答案.【详解】由题意,知点在椭圆C上,线段的中点在轴上,可得点轴,且点,所以在直角中,,且,所以,即,整理得,两边同除得,解得或(舍去),故选D.【点睛】本题考查了椭圆的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).11.已知点是函数的对称中心,则函数的一个单调区间可以为()A. B. C. D.【答案】A【解析】【分析】由题意知,求得函数的解析式,利用三角函数的性质,求得函数的单调区间,即可作出判定,得到答案.【详解】由题意知,点是函数的对称中心,所以,取,解得,即,令,整理得,令,得,即函数在区间单调递减,故选A.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中求得三角函数的解析式,熟记三角函数的性质,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.已知是圆:上两点,点且,则最小值是()A. B. C. D.【答案】C【解析】【分析】设是线段AB的中点求得其轨迹是以为圆心,半径为的圆,再利用圆的性质和弦长公式,即可求解得到答案.【详解】如图所示,设是线段AB的中点,则,因为,所以,于是,在直角中,,,由勾股定理得,整理得,故的轨迹是以为圆心,半径为的圆,故,又由圆的弦长公式可得,故选C.【点睛】本题主要考查了向量的数量积的应用,以及直线与圆的位置关系和圆的弦长公式的应用,其中解答中求得弦MN的中点的轨迹,合理利用圆的性质和圆的弦长公式求解是解答的关键,着重考查了分析问题和解答问题的能力,以及转化思想的应用,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分.13.从某高中随机选取5名高二男生,由他们身高和体重的数据得到的回归直线方程为,数据列表是:则其中的数据________.【答案】70【解析】【分析】由题意,根据表中的数据,求得数据的中心为,代入回归直线的方程,即可求解.【详解】由题意,根据表中的数据可得,,即数据的中心为,又由回归直线的方程为,即,解得.【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线的方程经过数据的中心是解答本题的关键,着重考查了推理与运算能力,属于基础题.14.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.【答案】【解析】【分析】由题意,得长方形的面积为,以O点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,再由面积比的几何概型,即可求解.【详解】由题意,如图所示,可得长方形的面积为,以O点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,所以取到的点到的距离大于1的表示圆的外部在矩形内部分部分,所以概率为.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.15.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是________【答案】 y=-0.5x+4【解析】设弦为,且,代入椭圆方程得,两式作差并化简得,即弦的斜率为,由点斜式得,化简得.16.已知圆:,圆:,动圆与圆相切,与圆外切,则圆心的轨迹方程是_______________.【答案】或【解析】【分析】当圆P与圆M与圆N都相外切时,得到圆P的圆心的轨迹为,当圆P与圆M相内切,与圆N相外切时,利用椭圆的定义,可得此时,即可得到答案.【详解】如图所示,当圆P与圆M与圆N都相外切时,此时圆P的圆心的轨迹为;当圆P与圆M相内切,与圆N相外切时,此时满足,两式相加,可得,根据椭圆的定义可知,点P的轨迹是以M、N为焦点的椭圆,且,所以,则,此时点P的轨迹方程为,综上所述,点P的轨迹方程为或.【点睛】本题主要考查了圆与圆的位置关系的应用,以及椭圆的定义的应用,其中解答中合理分类讨论,利用椭圆的定义求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.若命题:,;命题:,,若为真命题,求实数的取值范围. 【答案】【解析】【分析】由题意,根据二次函数的性质,当命题为真命题时,得到,再根据指数函数的性质,当命题为真命题时,得到,进而根据与同时为真,即可求解.【详解】由题意,命题,当时,不等式成立,当时,由题意知,综上可知.由命题可知,当时,,则,∴:,由题意知:与同时为真,则,∴.【点睛】本题主要考查了根据命题的真假求解参数的取值范围问题,其中解答中根据二次函数的性质和指数函数的性质,分别求得当命题为真命题时,实数的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.18.已知函数.(Ⅰ)当时,求的值域;(Ⅱ)已知的内角的对边分别为,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)根据三角恒等变换的公式,化简得,利用三角函数的图象与性质,即可求解.(Ⅱ)由题意,根据(1)可得,再在中,由余弦定理,求得,利用面积公式,即可求解. 【详解】(Ⅰ)由题意,根据三角恒等变换的公式,化简得,∵,则,,即函数的值域为.(Ⅱ)由题意,得,∴.在中,由余弦定理得,解得,所以.【点睛】本题主要考查了三角函数的图象与性质,以及余弦定理和三角形面积公式的应用,其中解答中准确利用三角恒等变换的公式化简函数的解析式,及合理利用余弦定理和面积公式,准确计算是解答本题的关键,着重考查了推理与计算能力,属于基础题.19.设数列的前项和为,已知,.(Ⅰ)求的通项公式;(Ⅱ)若数列满足,求的前项和.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)由题意,利用数列的递推公式,化简得,且,得到是以3为首项,2为公差的等差数列,即可求解数列的通项公式;(Ⅱ)由(Ⅰ)可得,,利用裂项法,即可求解其前n项和.【详解】(Ⅰ)由题意,知,则,两式相减得:,∵,∴,且,∴是以3为首项,2为公差的等差数列,∴.(Ⅱ)由(Ⅰ)可得,∴.【点睛】本题主要考查了数列递推公式的应用,以及利用等差数列的定义的应用和“裂项法”求解数列的前n 项和,其中解答中合理利用数列的递推公式,利用定义求解数列的通项公式是解答本题的关键,同时注意裂项后的求和的项数是解答的一个易错点,着重考查了推理与运算能力,属于基础题.20.为增强市民的环境保护意识,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成5组第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第1组有5人.(Ⅰ)分别求出第3,4,5组志愿者人数,若在第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有1名志愿者被抽中的概率.【答案】(Ⅰ)利用分层抽样在第三,第四,第五组中分别抽取3人,2人,1人.(Ⅱ)【解析】【分析】(Ⅰ)由题意,因为第一组有5人,求得,分别求得第三组、第四组、第五组,根据分层抽样,即可得到结果;(Ⅱ)记第三组的3名志愿者为,,,第四组的2名志愿者为,,第五组的1名志愿者为,求得从6名志愿者中抽取2名志愿者构成基本事件的总数,进而得到其中第三组的3名志愿者,,至少有一名志愿者被抽中的所含基本事件的总数,利用古典概型及概率的公式,即可求解.【详解】(Ⅰ)由题意,因为第一组有5人,则,,∴第三组有人,第四组有人,第五组有人.∴利用分层抽样在第三,第四,第五组中分别抽取3人,2人,1人.(Ⅱ)记第三组的3名志愿者为,,,第四组的2名志愿者为,,第五组的1名志愿者为,则从6名志愿者中抽取2名志愿者有,,,,,,,,,,,,,,,共15种.其中第三组的3名志愿者,,至少有一名志愿者被抽中的有,,,,,,,,,,,,共12种.则第三组至少有1名志愿者被抽中的概率为.【点睛】本题主要考查的是古典概型及其概率计算公式,属于基础题.解题时要正确找出随机事件A包含的基本事件的个数和试验中基本事件的总数,令古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.21.如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中点,则,而平面平面,而,∴平面.(Ⅱ)根据三棱锥的体积公式,得.【点睛】本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.22.已知椭圆的右焦点,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)若点在圆上,且在第一象限,过点作圆的切线交椭圆于两点,问是否为定值?如果是,求出该定值;如果不是,说明理由。

湖北荆州中学18-19学度高二上年末考试-数学(文)

湖北荆州中学18-19学度高二上年末考试-数学(文)

湖北荆州中学18-19学度高二上年末考试-数学(文)【一】选择题〔本大题共10小题,每题5分,共50分、在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕、.A 命题“假设21x =,那么1x =”的否命题为:“假设21x =,那么1x ≠”; .B 命题“x R ∃∈,220x x ++<”的否定是“x R ∀∈,220x x ++≥”; .C 命题“假设x y =,那么22x y =”的逆否命题是假命题;.D m n N ∈、,命题“假设m n +是奇数,那么m n 、这两个数中一个为奇数,另一个为偶数”的逆命题为假命题.2.假设抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,那么p 的值为〔〕 .A 2-.B 2.C 4-.D 43.给出以下程序语句:0 THEN 2*1 IF 0 THEN 0 ^21 END IF END IF PRINT INPUT x xIF x y x ELSEx y ELSE y x y>=+===-“”;运行时,从键盘输入2-,那么输出结果为〔〕.A 2-.B 1.C 3.D 04.如图表示甲、乙两名运动员每场竞赛得分的茎叶图.那么甲得分的中位数与乙得分的中位数之和为〔〕.A 56分.B 57分.C 58分.D 59分5.45a=是直线4(1)90x a y -++=与直线2(1)60a x ay --+=垂直的〔〕 .A 充分不必要条件.B 必要不充分条件.C 充分必要条件.D 既不充分也不必要条件6.执行如下图的程序框图,输出的T 等于〔〕.A 10 .B 15 .C 20 .D 307.某校共有学生2000名,各年级男、女生人数如下表:假如从全校学生中随机抽取一名学生,抽到二年级女生的概率为0.19.现用分层抽样的方法在全校学生中分年级抽取64名学生参加某项活动,那么应在三年级中抽取的学生人数为〔〕.A 24.B 18.C 12.D 168.假设点A 的坐标为(3, 2),F 为抛物线22yx =的焦点,点P 是抛物线上的一动点,那么||||PA PF +取最小值时点P 的坐标为〔〕.A (0, 0).B (1, 1) .C (2, 2).D 1(, 1)29.假设右边框图所给程序运行的结果20102011S =,那么判断框中能够填入的关于k 的判断条件是〔〕.A 2010k < .B 2009k < .C 2010k > .D 2009k >10.过双曲线222:1y M x b-=的左顶点A 作斜率为1的直线l .假设l 与双曲线M 的两条渐近线分别相交于点B C 、,且B 是AC 的中点,那么双曲线M 的离心率为〔〕.A 2.B 3.C .D【二】填空题〔本大题共5小题,每题5分,共25分〕11.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),……,第五组[17,18].右图是按上述分组方法得到的频率分布直方图.假设成绩大于或等于14秒且小于16秒认为良好,那么该班在这次百米测试中成绩良好的人数为.12.椭圆2214x y +=的两个焦点分别为12F F 、,过1F 作垂直于x 轴的直线与椭圆相交,其中一个交点为P ,那么2||PF =.13.过点(3, 1)M -且被点M 平分的双曲线2214x y -=的弦所在直线方程为. 14.设2()4f x x a =+(那个地方0a >),假设对[1,1]x ∀∈-,()f x 的值基本上集合{|014}y y a ≤≤+的元素,那么实数a 的取值范围为.15.如图,把椭圆2212516x y +=的长轴AB 分成8等分,过每个分点作x 轴的垂线交椭圆的上半部分于1234567P P P P P P P 、、、、、、七个点,F 是椭圆的左焦点,那么1234||||||||P F P F P F P F ++++++. 【三】解答题〔本大题共6小题,共75分,解承诺写出文字说明、证明过程或演算步骤、〕16.(本小题总分值12分) 设a 是实数,对函数22()233f x x x a a =-++-和抛物线C :24y x =,有如下两个命题::p 函数()f x 的最小值小于0;:q 抛物线24y x =上的点2(, )4a M a 到其准线的距离2d >.“p ⌝”和“p q ∧”都为假命题,求a 的取值范围.17.(本小题总分值12分)某流感中心对温差与甲型51H N 病毒感染数之间的相关关系进行研究,他们每天在实验室放入数量相同的甲型51H N 病毒和100头家禽,然后分别记录了12月11号至12月15号每天昼夜温差与实验室里100头家禽的感染数,得到如下资料:(Ⅰ)求这天的平均感染数和方差;(Ⅱ)从12月11号至12月15号中任取两天,这两天的感染数分别记为x ,y .用{, }x y 的形式列出所有的差不多事件〔{, }x y 和{, }y x 视为同一事件〕,并求事件“||9x y -≥”的概率.〔参考公式:方差2222121[()()()]n sx x x x x x n=-+-++-〕18.(本小题总分值12分)士兵甲和士兵乙进行射击竞赛.甲一次射击命中9环的概率为45,命中10环的概率为110;乙一次射击命中9环的概率为34,命中10环的概率为15.〔Ⅰ〕现在甲和乙各自独立地同时向目标靶打一发子弹,求〔1〕事件“甲命中环数不低于9环”的概率; 〔2〕事件“乙命中环数低于9环”的概率;〔Ⅱ〕假设士兵甲连打三发子弹,在目标靶上的着弹点A B C 、、刚好是边长为3 cm 的等边三角形的三个顶点.士兵乙瞄准ABC ∆区域打〔可不能打到ABC ∆外〕第四发子弹, 那么乙此次射击的着弹点距A B C 、、的距离都超过1 cm 的概率为多少?〔弹孔大小忽略不计〕19.〔本小题总分值12分〕如图,直线1:2l y x =与抛物线2148y x =-交于A B 、两点,线段AB 的垂直平分线与直线1l :10y x =-交于点D .〔Ⅰ〕求点D 的坐标;〔Ⅱ〕当动点P 在抛物线上运动时,求点P 到直线1l 的距离的最小值. 20、〔本小题总分值13分〕双曲线12222=-by a x (0a >,0b >)的渐近线方程为=y x ,左焦点为(2,0)F -. 〔Ⅰ〕求双曲线的方程; 〔Ⅱ〕直线12y x n =+交双曲线于不同的两点A B 、,假设FA FB ⊥,求实数n 的值. 21.(本小题总分值14分)设椭圆2222:1y x M a b +=〔0a b >>〕通过点P ,其离心率2e =.〔Ⅰ〕求椭圆M 的方程;(注意椭圆的焦点在y 轴上哦!)(Ⅱ)直线:l y m =+交椭圆于A B 、两点,且PAB ∆的面积为m 的值.参考答案【一】选择题1. 12 3 4 5 6 7 8 9 10 2. B DCBACDCA D【二】填空题 11.2712.7213.3450x y +-=14.[2,3]15.35 【三】解答题 16.p ⌝和p q ∧基本上假命题,p ∴为真命题,q 为假命题.………………2分2222()233(1)34f x x x a a x a a =-++-=-++-,2min ()340f x a a ∴=+-<,因此,41a -<<;………………6分又抛物线24y x =的准线为1x =-,q 为假命题,2124a d ∴=+≤,22a ∴-≤≤. ………………10分故所求a 的取值范围为[2,1)-.………………12分 17.〔Ⅰ〕这5天的平均感染数为23322429171252555++++==,方差222222(2325)(3225)(2425)(2925)(1725)13426.855s -+-+-+-+-===. ………………6分〔Ⅱ〕所有差不多事件为:{23,32},{23,24},{23,29},{23,17},{32,24},{32,29},{32,17},{24,29},{24,17},{29,17},差不多事件总数为10,记满足||9x y -≥的事件为A ,那么事件A 包含的差不多事件为{23,32},{32,17},{29,17},因此,3()10P A =. 故事件||9x y -≥的概率为310.………………12分 18.(Ⅰ)(1)记“一次射击甲命中环数不低于9环”为事件E ,“甲一次射击命中9环”为事件1E ,“甲一次射击命中10环”为事件2E ,那么12E E E =+,12,E E 互斥,所求概率为1212419()()()()51010P E P E E P E P E =+=+=+=.………………4分 (2)记“一次射击乙命中环数不低于9环”为事件F ,同〔1〕,3119()4520P F =+=,又“乙一次射击命中环数低于9环”与F 为对立事件,故所求概率为19112020-=. ………………8分〔Ⅱ〕因为着弹点假设与A B C 、、的距离都超过1cm ,那么着弹点就不能落在分别以A B C 、、为中心,半径为1cm 的三个扇形区域内,只能落在图中阴影部分内. 因为19=33sin 60,24ABC S ∆⨯⨯=图中阴影部分的面积为21312342ABC S S ππ∆'=-⨯⨯⨯=-,故所求概率为1ABCS p S ∆'==.………………12分〔Ⅱ〕设P 点坐标为00(,)x y ,P 到直线1l 的距离为d ,那么200148yx =-,222001|410|x x d -+-====2=,当04x =时,mind ==P ∴到直线1l 的距离的最小值为.………………12分20.(Ⅰ)双曲线渐近线方程为y =,b a ∴=,223a b ∴=,又F 为(2,0)-,2c ∴=,2224a b c ∴+==,因此223,1a b ==,双曲线方程为2213x y -=.………………5分(Ⅱ)设A B 、坐标分别为11(,)x y 、22(,)x y ,由方程组221213y x n x y ⎧=+⎪⎪⎨⎪-=⎪⎩,得22133(1)04x nx n --+=,其2221943(1)31204n n n ∆=+⨯⨯+=+>, 1212x x n +=,21212(1)x x n =-+,FA FB ⊥,0FA FB ∴=,1122(2,),(2,)FA x y FB x y =+=+,1212(2)(2)0x x y y ∴+++=,而112211,22y x n y x n =+=+, 121211(2)(2)()()022x x x n x n ∴+++++=,即2121254()4042n x x x x n +++++=,2254(12)(1)124042n n n n +∴⨯-++⨯++=,2824110n n -+=,……………11分因此64n ±=.………………13分 21.〔Ⅰ〕由,得222222112ab a bc c a+=⎪⎪=+⎨⎪⎪=⎪⎩,∴⎪⎩⎪⎨⎧===222b c a ,所求椭圆M 的方程为22142y x +=、 ………………5分〔Ⅱ〕由⎪⎩⎪⎨⎧=++=142222y x m x y ,得22440x m ++-=,由0)4(16)22(22>--=∆m m得,m -<<1122(,),(,)A x y B x y,12x x ∴+=,21244m x x -=.∴12|||AB x x =-===………………10分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荆州中学高二元月期末考数学(文科)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,则的一个必要不充分条件是()A. B. C. D.【答案】A【解析】【分析】当时,是成立,当成立时,不一定成立,根据必要不充分条件的判定方法,即可求解.【详解】由题意,当时,是成立,当成立时,不一定成立,所以是的必要不充分条件,故选A.【点睛】本题主要考查了必要不充分条件的判定问题,其中解答中熟记必要不充分条件的判定方法是解答本题的关键,着重考查了推理与论证能力,属于基础题.2.已知椭圆长轴在轴上,若焦距为4,则等于()A. 4B. 5C. 7D. 8【答案】8【解析】由椭圆的长轴在y轴上,则a2=m﹣2,b2=8﹣m,c2=a2﹣b2=2m﹣10.由焦距为4,即2c=4,即有c=2.即有2m﹣10=4,解得m=7.故答案为:7.3.已知直线和平面,若,,则过点且平行于的直线()A. 只有一条,不在平面内B. 只有一条,且在平面内C. 有无数条,一定在平面内D. 有无数条,不一定在平面内【答案】B【解析】【分析】假设m是过点P且平行于l的直线, n也是过点P且平行于l的直线,则与平行公理得出的结论矛盾,进而得出答案.【详解】假设过点P且平行于l的直线有两条m与n,则m∥l且n∥l由平行公理得m∥n,这与两条直线m与n相交与点P相矛盾,故过点且平行于的直线只有一条,又因为点P在平面内,所以过点P且平行于l的直线只有一条且在平面内.故选:B【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面的位置关系.过一点有且只有一条直线与已知直线平行.4.已知数列是等差数列,且,则公差()A. B. 4 C. 8 D. 16【答案】B【解析】试题分析:等差数列中考点:等差数列的性质5.“更相减损术”是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如下程序框图,若输入的,分别为165、66,则输出的为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由题中程序框图知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案.【详解】由程序框图可知:输入时,满足,则,满足,则,满足,则,不满足,此时输出,故选B.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.6.如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. 2B. 3C. 4D. 6【答案】A【解析】【分析】根据给定的三视图可知,该几何体底面表示一个上底为1,下底为2,高为2的直角梯形,且几何体的高为2的四棱锥,再根据体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体底面表示一个上底为1,下底为2,高为2的直角梯形,且几何体的高为2的四棱锥,所以该四棱锥的体积为,故选A.【点睛】本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.7.已知点,,若点是圆上的动点,则面积的最大值是()A. 2B. 4C. 6D.【答案】C【解析】【分析】由题意,求得的直线方程为,取得圆心C到直线的距离为,得到点P 到直线的最远距离为,即可求得答案.【详解】由题意知,点,,则的直线方程为,又由圆的圆心坐标,半径为,所以圆心C到直线的距离为,所以点P到直线的最远距离为,所以的最大面积为,故选C.【点睛】本题主要考查了直线与圆的位置关系的应用问题,其中解答中合理利用直线与圆的位置关系,求得圆上的点到直线的最远距离是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.已知,若不等式恒成立,则的最大值为()A. 9B. 12C. 18D. 24【答案】A【解析】【分析】由已知不等式分离变量,然后利用基本不等式求得的最大值,即可得到答案.【详解】由题意知,若不等式恒成立,即恒成立,又因为,当且仅当,即时等号成立,所以,即的最大值为,故选A.【点睛】本题主要考查了不等式的恒成立问题,以及利用基本不等式求最值,其中解答中根据题意分离变量,再利用基本不等式求得最小值是解答的关键,着重考查了分离参数思想,及推理与计算能力,属于中档试题9.设,满足约束条件,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】由约束条件作出可行域,目标函数为两点连线的斜率,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数,利用数形结合得结论.【详解】画出表示的可行域,表示可行域内的点与点连线的斜率,由,得,,由图知,的范围是,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.已知点,分别为椭圆:的左、右焦点,点在椭圆C上,线段的中点在轴上,若,则椭圆的离心率为()A. B. C. D.【答案】D【解析】【分析】由题意,知点在椭圆C上,线段的中点在轴上,求得,在直角中,得到,整理得,即可求解,得到答案.【详解】由题意,知点在椭圆C上,线段的中点在轴上,可得点轴,且点,所以在直角中,,且,所以,即,整理得,两边同除得,解得或(舍去),故选D.【点睛】本题考查了椭圆的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).11.已知点是函数的对称中心,则函数的一个单调区间可以为()A. B. C. D.【答案】A【解析】【分析】由题意知,求得函数的解析式,利用三角函数的性质,求得函数的单调区间,即可作出判定,得到答案.【详解】由题意知,点是函数的对称中心,所以,取,解得,即,令,整理得,令,得,即函数在区间单调递减,故选A.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中求得三角函数的解析式,熟记三角函数的性质,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.已知是圆:上两点,点且,则最小值是()A. B. C. D.【答案】C【解析】【分析】设是线段AB的中点求得其轨迹是以为圆心,半径为的圆,再利用圆的性质和弦长公式,即可求解得到答案.【详解】如图所示,设是线段AB的中点,则,因为,所以,于是,在直角中,,,由勾股定理得,整理得,故的轨迹是以为圆心,半径为的圆,故,又由圆的弦长公式可得,故选C.【点睛】本题主要考查了向量的数量积的应用,以及直线与圆的位置关系和圆的弦长公式的应用,其中解答中求得弦MN的中点的轨迹,合理利用圆的性质和圆的弦长公式求解是解答的关键,着重考查了分析问题和解答问题的能力,以及转化思想的应用,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分.13.从某高中随机选取5名高二男生,由他们身高和体重的数据得到的回归直线方程为,数据列表是:则其中的数据________.【答案】70【解析】【分析】由题意,根据表中的数据,求得数据的中心为,代入回归直线的方程,即可求解. 【详解】由题意,根据表中的数据可得,,即数据的中心为,又由回归直线的方程为,即,解得.【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线的方程经过数据的中心是解答本题的关键,着重考查了推理与运算能力,属于基础题.14.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.【答案】【解析】【分析】由题意,得长方形的面积为,以O点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,再由面积比的几何概型,即可求解.【详解】由题意,如图所示,可得长方形的面积为,以O点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,所以取到的点到的距离大于1的表示圆的外部在矩形内部分部分,所以概率为.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.15.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是________【答案】 y=-0.5x+4【解析】设弦为,且,代入椭圆方程得,两式作差并化简得,即弦的斜率为,由点斜式得,化简得.16.已知圆:,圆:,动圆与圆相切,与圆外切,则圆心的轨迹方程是_______________.【答案】或【解析】【分析】当圆P与圆M与圆N都相外切时,得到圆P的圆心的轨迹为,当圆P与圆M相内切,与圆N相外切时,利用椭圆的定义,可得此时,即可得到答案.【详解】如图所示,当圆P与圆M与圆N都相外切时,此时圆P的圆心的轨迹为;当圆P与圆M相内切,与圆N相外切时,此时满足,两式相加,可得,根据椭圆的定义可知,点P的轨迹是以M、N为焦点的椭圆,且,所以,则,此时点P的轨迹方程为,综上所述,点P的轨迹方程为或.【点睛】本题主要考查了圆与圆的位置关系的应用,以及椭圆的定义的应用,其中解答中合理分类讨论,利用椭圆的定义求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.若命题:,;命题:,,若为真命题,求实数的取值范围.【答案】【解析】【分析】由题意,根据二次函数的性质,当命题为真命题时,得到,再根据指数函数的性质,当命题为真命题时,得到,进而根据与同时为真,即可求解.【详解】由题意,命题,当时,不等式成立,当时,由题意知,综上可知.由命题可知,当时,,则,∴:,由题意知:与同时为真,则,∴.【点睛】本题主要考查了根据命题的真假求解参数的取值范围问题,其中解答中根据二次函数的性质和指数函数的性质,分别求得当命题为真命题时,实数的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.18.已知函数.(Ⅰ)当时,求的值域;(Ⅱ)已知的内角的对边分别为,,求的面积. 【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)根据三角恒等变换的公式,化简得,利用三角函数的图象与性质,即可求解.(Ⅱ)由题意,根据(1)可得,再在中,由余弦定理,求得,利用面积公式,即可求解.【详解】(Ⅰ)由题意,根据三角恒等变换的公式,化简得,∵,则,,即函数的值域为.(Ⅱ)由题意,得,∴.在中,由余弦定理得,解得,所以.【点睛】本题主要考查了三角函数的图象与性质,以及余弦定理和三角形面积公式的应用,其中解答中准确利用三角恒等变换的公式化简函数的解析式,及合理利用余弦定理和面积公式,准确计算是解答本题的关键,着重考查了推理与计算能力,属于基础题.19.设数列的前项和为,已知,.(Ⅰ)求的通项公式;(Ⅱ)若数列满足,求的前项和.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)由题意,利用数列的递推公式,化简得,且,得到是以3为首项,2为公差的等差数列,即可求解数列的通项公式;(Ⅱ)由(Ⅰ)可得,,利用裂项法,即可求解其前n项和. 【详解】(Ⅰ)由题意,知,则,两式相减得:,∵,∴,且,∴是以3为首项,2为公差的等差数列,∴.(Ⅱ)由(Ⅰ)可得,∴.【点睛】本题主要考查了数列递推公式的应用,以及利用等差数列的定义的应用和“裂项法”求解数列的前n项和,其中解答中合理利用数列的递推公式,利用定义求解数列的通项公式是解答本题的关键,同时注意裂项后的求和的项数是解答的一个易错点,着重考查了推理与运算能力,属于基础题.20.为增强市民的环境保护意识,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成5组第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第1组有5人.(Ⅰ)分别求出第3,4,5组志愿者人数,若在第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有1名志愿者被抽中的概率.【答案】(Ⅰ)利用分层抽样在第三,第四,第五组中分别抽取3人,2人,1人.(Ⅱ)【解析】【分析】(Ⅰ)由题意,因为第一组有5人,求得,分别求得第三组、第四组、第五组,根据分层抽样,即可得到结果;(Ⅱ)记第三组的3名志愿者为,,,第四组的2名志愿者为,,第五组的1名志愿者为,求得从6名志愿者中抽取2名志愿者构成基本事件的总数,进而得到其中第三组的3名志愿者,,至少有一名志愿者被抽中的所含基本事件的总数,利用古典概型及概率的公式,即可求解.【详解】(Ⅰ)由题意,因为第一组有5人,则,,∴第三组有人,第四组有人,第五组有人.∴利用分层抽样在第三,第四,第五组中分别抽取3人,2人,1人.(Ⅱ)记第三组的3名志愿者为,,,第四组的2名志愿者为,,第五组的1名志愿者为,则从6名志愿者中抽取2名志愿者有,,,,,,,,,,,,,,,共15种.其中第三组的3名志愿者,,至少有一名志愿者被抽中的有,,,,,,,,,,,,共12种.则第三组至少有1名志愿者被抽中的概率为.【点睛】本题主要考查的是古典概型及其概率计算公式,属于基础题.解题时要正确找出随机事件A包含的基本事件的个数和试验中基本事件的总数,令古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.21.如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中点,则,而平面平面,而,∴平面.(Ⅱ)根据三棱锥的体积公式,得.【点睛】本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.22.已知椭圆的右焦点,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)若点在圆上,且在第一象限,过点作圆的切线交椭圆于两点,问是否为定值?如果是,求出该定值;如果不是,说明理由。

相关文档
最新文档