苏教版高中数学选修1-1常用逻辑用语训练.docx
高二数学选修1-1第一章常用逻辑用语
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假判断:例1、判断下列语句是否是命题?若是,判断其真假并说明理由。
1)x>1或x=1;2)如果x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形难道不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出判断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出判断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了判断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出判断.如“把门关上”是祈使句,也不是命题.练一练: 1. 判断下列语句是不是命题。
(1)2+22是有理数; (2)1+1>2; (3)2100是个大数; (4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。
2. 判断下列语句是不是命题。
(1)矩形难道不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)
一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。
高中数学选修1-1第一章《常用逻辑用语》单元测试(一)
105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
苏教版高中数学选修1-1第1章常用逻辑用语章末检测题(含解析)
苏教版高中数学选修1-1第1章常用逻辑用语章末检测题(含解析)一、填空题.给出命题:若函数y=f是幂函数,则函数y=f的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.解析:易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.答案:1.下列命题中,真命题是________.①∃x0∈R,ex0≤0;②∀x∈R,2x>x2;③a+b=0的充要条件是ab=-1;④a>1,b>1是ab>1的充分条件.解析:因为∀x∈R,ex>0,故排除①;取x=2,则22=22,故排除②;a+b=0,取a=b=0,则不能推出ab=-1,故排除③;应填④.答案:④.命题“若x2≥1,则x≥1或x≤-1”的逆否命题是________.解析:命题的条件为“x2≥1”,结论为“x≥1或x≤-1”,否定结论作条件,否定条件作结论,即为其逆否命题.答案:若-10;④函数y=sinx+sin|x|的值域是[-2,2].其中正确命题的序号是________.解析:当G=ab时,有G2=ab,所以a,G,b成等比数列,但当a,G,b成等比数列时,还可以有G=-ab,所以G=ab是a,G,b成等比数列的充分不必要条件,故①正确;当cosαcosβ=1时,有cosα=cosβ=-1或cosα=cosβ=1,即α=21π+π,β=22π+π或α=23π,β=24π,这时α+β=2π+2π或α+β=2π,必有sin =0,故②正确;由于|x-4|的最小值等于0,所以当a≤0时,不等式|x -4|0,故③正确;函数y=sinx+sin|x|=2sinx,x≥00,xx2;④∀x∈R,有x2+4>0.其中的真命题是________.解析:方程x2=2的解只有无理数x=±2,所以不存在有理数x使得方程x2=2成立,故②为假命题;比如存在x =0,使得03=02,故③为假命题,①④显然正确.答案:①④.若非空集合A,B,c满足A∪B=c,且B不是A的子集,则“x∈c”是“x∈A”的________条件.解析:x∈A⇒x∈c,但是x∈c不能推出x∈A.答案:必要不充分.“a=18”是“对任意的正数x,2x+ax≥1”的________条件.解析:a=18⇒2x+ax=2x+18x≥22x×18x=1,另一方面对任意正数x,2x+ax≥1只要2x+ax≥22x×ax=22a ≥1⇒a≥18.答案:充分不必要.已知命题p:关于x的不等式x2+2ax+4>0对∀x∈R 恒成立;命题q:函数y=-x是R上的减函数.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是________.解析:由x2+2ax+4>0对∀x∈R恒成立,得Δ=2-4×41,解得a1,则α必定是锐角.其中真命题的序号是________.解析:①“若xy=1,则x,y互为倒数”的逆命题为“若x,y互为倒数,则xy=1”,是真命题;②“相似三角形的周长相等”的否命题为“两个三角形不相似,则周长不相等”,显然是假命题;③∵b≤-1,∴Δ=4b2-4=-4b≥4>0,∴“若b≤-1,则x2-2bx+b2+b=0有实数根”为真命题,∴其逆否命题也是真命题;④∵当α=7π3时,sinα+cosα>1成立,∴此命题是假命题.答案:①③3.已知命题p:x2-x≥6,q:x∈Z,则使得x∈时,“p且q”与“綈q”同时为假命题的x组成的集合=________.解析:x∈时,“p且q”与“綈q”同时为假命题,即x∈时,p假且q真.故令x2-x0,∴原不等式化为x2-ax +20.∵∀x∈R时,2x2+x+1>0恒成立,∴Δ=2-8,s:x2+x+1>0.如果对∀x∈R,r与s有且仅有一个是真命题.求实数的取值范围.解:∵sinx+cosx=2sinx+π4≥-2,∴当r是真命题时,0恒成立,有Δ=2-40,即x>0,y>0或x0,y>0时,|x+y|=x +y=|x|+|y|,当x2},P={x|x<3},则“x∈或x∈P”是“x∈”的什么条件?求使不等式4x2-2x-1<0恒成立的充要条件.解:x∈或x∈P⇒x∈R,x∈⇔x∈,因为x∈或x∈Px∈,但x∈⇒x∈或x∈P.故“x∈或x∈P”是“x∈”的必要不充分条件.当≠0时,不等式4x2-2x-1<0恒成立⇒4<0,Δ=42+16<0,⇔-4<<0.又当=0时,不等式4x2-2x-1<0,对x ∈R恒成立.故使不等式4x2-2x-1<0恒成立的充要条件是-4<≤0.。
高中数学第一章常用逻辑用语1.1.1四种命题作业苏教版选修1-1(2021年整理)
2018-2019学年高中数学第一章常用逻辑用语1.1.1 四种命题作业苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章常用逻辑用语1.1.1 四种命题作业苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章常用逻辑用语1.1.1 四种命题作业苏教版选修1-1的全部内容。
1。
1.1 四种命题[基础达标]1.下列语句:①错误!是无限循环小数;②x2-3x+2=0;③当x=4时,2x>0;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上.其中不是命题的是________.解析:①是命题,能判断真假.②不是命题,因为语句中含有变量x,在没给变量x赋值前,我们无法判断语句的真假.③是命题,能作出真假判断的语句,是一个真命题.④不是命题,因为并没有对垂直于同一条直线的两条直线是否平行作出判断.⑤是命题,是假命题,因为1既不是合数也不是质数.⑥不是命题,没有作出判断.答案:②④⑥2.命题“若a>b,则2a>2b-1”的否命题为________.解析:∵“a〉b"的否定是“a≤b”,“2a〉2b-1"的否定是“2a≤2b-1",∴原命题的否命题是“若a≤b,则2a≤2b-1”.答案:若a≤b,则2a≤2b-13.命题“对于正数a,若a>1,则lg a>0”及其逆命题、否命题、逆否命题四个命题中真命题的个数为________.解析:原命题“对于正数a,若a>1,则lg a>0”是真命题;逆命题“对于正数a,若lg a>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lg a≤0”是真命题;逆否命题“对于正数a,若lg a≤0,则a≤1”是真命题.答案:44.给出下列命题:①命题“若b2-4ac〈0,则方程ax2+bx+c=0(a≠0)无实根"的否命题;②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b〉0,则错误!>错误!>0"的逆否命题;④“若m〉1,则mx2-2(m+1)x+(m-3)>0的解集为R"的逆命题.其中真命题的序号为________.解析:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为:“若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”,根据一元二次方程根的判定知其为真命题.②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形"的逆命题为:“如果△ABC 为等边三角形,那么AB=BC=CA”,由等边三角形的定义可知其为真命题.③原命题“若a>b>0,则错误!〉错误!>0”为真命题,由原命题与其逆否命题有相同的真假性可知其逆否命题为真命题.④原命题的逆命题为:“若方程mx2-2(m+1)x+(m-3)>0的解集为R,则m〉1”,不妨取m=2验证,当m=2时,有2x2-6x-1>0,Δ=62-4×2×(-1)〉0,其解集不为R,故为假命题.答案:①②③5.命题“若α=错误!,则tan α=1”的逆否命题是________.解析:逆否命题是以原命题的结论的否定作条件,条件的否定作结论.因此逆否命题为:若tan α≠1,则α≠错误!。
数学选修1-1第一章 常用逻辑用语测试题
第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是b a 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个3.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真4.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数; ③梯形不是矩形;④方程21x =的解1x =±。
其中使用逻辑联结词的命题有( )A .1个B .2个C .3个D .4个7.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题8.设集合{}{}|2,|3M x x P x x =>=<,那么“x M ∈,或x P ∈”是“x M P ∈ ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假10.下列命题中的真命题是( )11.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题; 其中真命题为( )A .①②B .②③C .①③D .③④12.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件13.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是( )A.若0(,)a b a b R ≠≠∈,则220a b +≠B.若0(,)a b a b R =≠∈,则220a b +≠C.若0,0(,)a b a b R ≠≠∈且,则220a b +≠D.若0,0(,)a b a b R ≠≠∈或,则220a b +≠二、填空题14.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
高中数学 第一章《常用逻辑用语》章末复习跟踪训练 苏教版选修1-1
第一章?常用逻辑用语?章末复习跟踪训练一、选择题1.以下命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.{x∈N||x-1|<3}是无限集C.空集是任何集合的真子集D.x2-5x=0的根是自然数[答案] D[解析]对选项A,集合是空集,对选项B中的集合为{-1,0,1,2,3},是有限集,对于C,空集不是它本身的真子集,对于D,x2-5x=0的根为0和5,它们都是自然数,应选D.2.b=c=0是二次函数y=ax2+bx+c的图象经过原点的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]假设b=c=0,那么二次函数y=ax2+bx+c=ax2经过原点,假设二次函数y=ax2+bx+c过原点,那么c=0,应选A.3.以下命题正确的选项是()A.∀x∈R,x2+2x+1=0B.∃x∈R,-x+1≥0C.∀x∈N*,log2x>0D.∃x∈R,cos x<2x-x2-3[答案] B[解析]∵x=2时,x2+2x+1=9≠0;x=-1时,-x+1=0;x=1时,log2x=0;对任意x∈R,2x-x2-3=-(x-1)2-2≤-2,而cos x≥-1.因此无论x取何值都有cos x>2x-x2-3,因此只有B正确.二、解答题4.判断以下命题的真假:(1)x∈A∩B当且仅当x∈A且x∈B;(2)x∈Z或x∈Q是x∈R的充分不必要条件;(3)假设α、β为锐角,那么α+β=90°是sinα=cosβ的充要条件;(4)a、b、c成等比数列的充要条件是b=ac;(5)函数f(x)=|x-a|在区间[1,+∞)上为增函数的必要不充分条件是a=1;(6)直线a⊥平面α,当且仅当a垂直于平面α内的两条相交直线.[解析]其中真命题有:(1)(2)(3)(6)(2)x∈Z或x∈Q,即x∈Q,Q R.(3)∵α、β为锐角,α+β=90°,∴sinα=sin(90°-β)=cosβ,∵sinα=cosβ=sin(90°-β),又0°<β<90°,∴0°<90°-β<90°,∵0°<α<90°,∴α=90°-β,∴α+β=90°.(4)a、b、c成等比数列⇒b2=ac⇒b=±ab,b=0,a=0,c=1时满足b=ac,但a、b、c不成等比数列.(5)f(x)=|x-a|在[a,+∞)上为增函数,a≤1时,在[1,+∞)上为增函数,a>1时,在[1,+∞)上不是增函数,故a=1是f(x)=|x-a|在[1,+∞)上为增函数的充分不必要条件.(1)(6)显然正确.5.对命题p:“1是集合{x|x2<a}中的元素〞,q:“2是集合{x|x2<a}中的元素〞,那么a为何值时,“p或q〞是真命题?a为何值时,“p且q〞是真命题?[分析]分别把命题p,q转化为对应的a的范围,然后由真值表,结合集合的运算求出a的范围.[解析]由1是集合{x|x2<a}中的元素,可得a>1,由2是集合{x|x2<a}中的元素,可得a>4,即使得p ,q 为真命题的a 的取值集合分别为P ={a |a >1},T ={a |a >4}.当p ,q 至少一个为真命题时,“p 或q 〞为真命题,那么使“p 或q 〞为真命题的a 的取值范围是P ∪T ={a |a >1};当p ,q 都为真命题时,“p 且q 〞才是真命题,那么使“p 且q 〞为真命题的a 的取值范围是P ∩T ={a |a >4}.6.方程x 2+(2k -1)x +k 2=0,求使方程有两个大于1的根的充要条件.[解析] 设方程的两根为x 1、x 2,使x 1、x 2都大于1的充要条件是⎩⎪⎨⎪⎧ (2k -1)2-4k 2≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0,即⎩⎪⎨⎪⎧ k ≤14,(x 1+x 2)-2>0,x 1x 2-(x 1+x 2)+1>0,由韦达定理,得⎩⎪⎨⎪⎧ k ≤14,-(2k -1)-2>0,k 2+(2k -1)+1>0,解得k <-2.所以所求的充要条件为k <-2.。
苏教版高中数学选修1-1名校测试:常用逻辑用语
常用逻辑用语 专题测试1.设集合I 是全集,A ⊆I ,B ⊆I ,则“A ∪B =I ”是“B =∁I A ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【试题出处】2014·厦门一中模拟【解析】由B =∁I A ⇒A ∪B =I ,而A ∪B =I ⇒/ B =∁I A ,故“A ∪B =I ”是“B =∁I A ”的必要不充分条件.【答案】B【考点定位】充要条件2.已知命题p :∀x ∈R,9x 2-6x +1>0;命题q :∃x ∈R ,sin x +cos x =2,则( )A .綈p 是假命题B .綈q 是真命题C .p ∨q 是真命题D .綈p ∧綈q 是真命题3.下列命题中是假命题的是( )A .∀x ∈⎝ ⎛⎭⎪⎫0,π2,x >sin x B .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R,3x >0D .∃x 0∈R ,lg x 0=04.(2011·山西高考)对于函数y =f (x ),x ∈R ,“y =|f (x )|的图像关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分而不必要条件B .必要而不充分条件C.充要条件D.既不充分也不必要条件5.若命题“∃x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是____________.【试题出处】2014·北京四中模拟【解析】因为“∃x∈R,2x2-3ax+9<0”为假命题,则“∀x∈R,2x2-3ax+9≥0”为真命题.因此Δ=9a2-4×2×9≤0,故-22≤a≤2 2.【答案】-22≤a≤2 2【考点定位】集合的关系和运算6.命题:“对任意a∈R,方程ax2-3x+2=0有正实根”的否定是__________.【试题出处】2014·广州六中模拟【解析】“有正实根”的否定是“无正实根”.故命题“对任意a∈R,方程ax2-3x+2=0有正实根”的否定是“存在a∈R,方程ax2-3x+2=0无正实根”.【答案】存在a∈R,方程ax2-3x+2=0无正实根【考点定位】逻辑用语、真假命题7.判断命题“若a≥0,则x2+x-a=0有实根”的逆否命题的真假.8.设命题p:函数f(x)=(a-32)x是R上的减函数,命题q:函数f(x)=x2-4x+3在[0,a]上的值域为[-1,3],若“p且q”为假命题,“p或q”为真命题,求a的取值范围.。
苏教版高中数学选修1-1≤常用逻辑用语≥练习卷.docx
高中数学学习材料马鸣风萧萧*整理制作≤常用逻辑用语≥练习卷班级_______ 姓名________ 座号________ 一:选择题1.下列说法正确的是( )A 一个命题的逆命题为真,则它的否命题为假B 一个命题的逆命题为真,则它的逆否命题为真C 一个命题的逆否命题为真,则它的否命题为真D 一个命题的否命题为真,则它的逆命题为真2.已知p:{}:,0q ⊆φ {}{}.2,11∈由他们构成的新命题“q p ∧”,“q p ∨”, “p ⌝”中,真命题有( )A 1个B 2个C 3个D 4个3.“1=a ”是“函数)(sin )(cos 22ax ax y -=的最小正周期是π的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件4.q 是p 的充要条件的是( )A 532:,523:->-->+x q x pB b q b a p >>>:,2,2:C p :四边形的两条对角线互相垂直平分D :0:q a p ,≠关于x 的方程1=ax 有唯一解5.两条直线0:,0:22221111=++=++C y B x A l C y B x A l 垂直的充要条件是( ) A 02121=+B B A A B 02121=-B B A AC 12121-=B B A AD 12121=A A B B 6.3=a 是直线032=++a y ax 和直线7)1(3-=-+a y a x 平行且不重合的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件7.下列那个命题的逆命题为真( )A 若b a >,则bc ac >B 若22b a >,则0>>b aC 若13>-x ,则42<<xD 若132>-x ,则22<<x8.“5>x ”的一个必要不充分条件是( )A 6>xB 3>xC 6<xD 10>x二:填空题9.函数)0(2≠++=a c bx ax y 的图像过原点的充要条件是_____________________________.10.“7=+y x ”是“78622=+--y x y x ”的_______________________条件.11.写出命题“若方程02=+-c bx ax 的两根均大于0,则0>ac ”的一个等价命题是_______________________________________________________12.下列命题中,真命题是______________________.① 40能被3或5整除; ②不存在实数x,使012<++x x ;② 对任意实数x ,均有x+1>x; ④方程0322=+-x x 有两个不等的实根; ⑤不等式0112<++-x x x 的解集为φ. 三:解答题13.写出命题“若12,0)1(22-===++-y x y x 且则”的逆命题、否命题、逆否命题,并判断它们的真假.14.写出下列命题的否定,并判断其真假:(1)必有实根;方程0,:2=-+∈∀m x x R m p(2).01,:2≤++∈∃x x R x q 使得15.求使函数3)1(4)54()(22+---+=x a x a a x f 的图像全在x 轴上方成立 的充要条件.16.已知,Z m ∈关于x 的一元二次方程),1(0442=+-m x x)2(0544422=--+-m m mx x求使方程 (1)(2)的根都是整数的充要条件 .参考答案:一:选择题:DBADA CBB二:填空题:9.c=0 , 10. 充分不必要 ,11. 若0,02=+-≤c bx ax ac 则方程的两根不全大于0 12. ①②③⑤ 三:解答题:13. 解:逆命题:若真命题则且;0)1(2,122=++--==y x y x 否命题:若;真命题或则12,0)1(22-≠≠≠++-y x y x 逆否命题:若真命题则或;0)1(2,122≠++--≠≠y x y x14.解:(1)无实数根;使方程0,:2=-+∈∃⌝m x x R m p 真命题。
苏教版高中数学选修1-1高二选修第一章常用逻辑用语测试题(理科).docx
陈店中学高二数学选修第一章常用逻辑用语测试题(理科)班级: 学号: 姓名:一、 选择题(每道题只有一个答案,每道题5分,共50分) 1、下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ③“若m>0,则x 2+x -m 有实根”的逆否命题 ②“正多边形都相似”的逆命题 ④“若x -123是有理数,则x 是无理数”的逆否命题 A 、①②③④ B 、①③④ C 、②③④ D 、①④2一个命题与他们的逆命题、否命题、逆否命题这4个命题中( ) A 、 真命题与假命题的个数相同 B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数一定是可能是奇数,也可能是偶数 3、“用反证法证明命题“如果x<y ,那么51x >51y ”时,假设的内容应该是( ) A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x <51y4、“a ≠1或b ≠2”是“a +b ≠3”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要5、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要6、函数f (x )=x|x+a|+b 是奇函数的充要条件是( )A 、ab =0B 、a +b=0C 、a =bD 、a 2+b 2=07、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( )A 、若x =a 且x =b ,则x 2-(a +b )x +ab =0B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0C 、若x =a 且x =b ,则x 2-(a +b )x +ab ≠0D 、若x =a 或x =b ,则x 2-(a +b )x +ab =0 8、“12m”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要9、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( )A 、 存在实数m ,使得方程x 2+mx +1=0无实根B 、 不存在实数m ,使得方程x 2+mx +1=0有实根C 、 对任意的实数m ,使得方程x 2+mx +1=0有实根D 、 至多有一个实数m ,使得方程x 2+mx +1=0有实根10.若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,其逆命题都是假命题,则"c d ≤"是"e f ≤"的( ) A 、必要非充分条件 B 、充分非必要条件 C 、充分必要条件 D 、既非充分也非必要条件 二、填空题(每道题4分,共20分) 1. 判断下列命题的真假性:①若m>0,则方程x 2-x +m =0有实根 ②若x>1,y>1,则x+y>2的逆命题 ③对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式④△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件 2.“末位数字是0或5的整数能被5整除”的否定形式是 否命题是3. 命题“A ⊆B ”看成一个复合命题,那么这个复合命题的形式是__________,其中构成它的两个简单命题分别是_______________________________________________________________。
苏教版高中数学选修1-1≤常用逻辑用语≥练习卷
高中数学学习材料(灿若寒星 精心整理制作)≤常用逻辑用语≥练习卷班级_______ 姓名________ 座号________ 一:选择题1.下列说法正确的是( )A 一个命题的逆命题为真,则它的否命题为假B 一个命题的逆命题为真,则它的逆否命题为真C 一个命题的逆否命题为真,则它的否命题为真D 一个命题的否命题为真,则它的逆命题为真2.已知p:{}:,0q ⊆φ {}{}.2,11∈由他们构成的新命题“q p ∧”,“q p ∨”, “p ⌝”中,真命题有( )A 1个B 2个C 3个D 4个3.“1=a ”是“函数)(sin )(cos 22ax ax y -=的最小正周期是π的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件4.q 是p 的充要条件的是( )A 532:,523:->-->+x q x pB b q b a p >>>:,2,2:C p :四边形的两条对角线互相垂直平分D :0:q a p ,≠关于x 的方程1=ax 有唯一解5.两条直线0:,0:22221111=++=++C y B x A l C y B x A l 垂直的充要条件是( ) A 02121=+B B A A B 02121=-B B A AC 12121-=B B A AD 12121=A A B B 6.3=a 是直线032=++a y ax 和直线7)1(3-=-+a y a x 平行且不重合的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件7.下列那个命题的逆命题为真( )A 若b a >,则bc ac >B 若22b a >,则0>>b aC 若13>-x ,则42<<xD 若132>-x ,则22<<x8.“5>x ”的一个必要不充分条件是( )A 6>xB 3>xC 6<xD 10>x二:填空题9.函数)0(2≠++=a c bx ax y 的图像过原点的充要条件是_____________________________.10.“7=+y x ”是“78622=+--y x y x ”的_______________________条件.11.写出命题“若方程02=+-c bx ax 的两根均大于0,则0>ac ”的一个等价命题是_______________________________________________________12.下列命题中,真命题是______________________.① 40能被3或5整除; ②不存在实数x,使012<++x x ;② 对任意实数x ,均有x+1>x; ④方程0322=+-x x 有两个不等的实根; ⑤不等式0112<++-x x x 的解集为φ. 三:解答题13.写出命题“若12,0)1(22-===++-y x y x 且则”的逆命题、否命题、逆否命题,并判断它们的真假.14.写出下列命题的否定,并判断其真假:(1)必有实根;方程0,:2=-+∈∀m x x R m p(2).01,:2≤++∈∃x x R x q 使得15.求使函数3)1(4)54()(22+---+=x a x a a x f 的图像全在x 轴上方成立 的充要条件.16.已知,Z m ∈关于x 的一元二次方程),1(0442=+-m x x)2(0544422=--+-m m mx x求使方程 (1)(2)的根都是整数的充要条件 .参考答案:一:选择题:DBADA CBB二:填空题:9.c=0 , 10. 充分不必要 ,11. 若0,02=+-≤c bx ax ac 则方程的两根不全大于0 12. ①②③⑤ 三:解答题:13. 解:逆命题:若真命题则且;0)1(2,122=++--==y x y x 否命题:若;真命题或则12,0)1(22-≠≠≠++-y x y x 逆否命题:若真命题则或;0)1(2,122≠++--≠≠y x y x14.解:(1)无实数根;使方程0,:2=-+∈∃⌝m x x R m p 真命题。
高二数学选修1-1第一章常用逻辑用语
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以推断真假的陈述句叫做命题.其中推断为真的语句叫做真命题,推断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假推断:例1、推断下列语句是否是命题?若是,推断其真假并说明理由。
1)x>1或x=1;2)假如x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形莫非不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出推断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出推断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了推断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出推断.如“把门关上”是祈使句,也不是命题.练一练: 1. 推断下列语句是不是命题。
(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。
2. 推断下列语句是不是命题。
(1)矩形莫非不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。
(易错题)高中数学选修1-1第一章《常用逻辑用语》测试(答案解析)(3)
一、选择题1.已知命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭,命题p 的否定是( ) A .1,04xx R ⎛⎫∃∈> ⎪⎝⎭ B .1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭ C .1,04x x R ⎛⎫∀∈≤ ⎪⎝⎭D .1,04xx R ⎛⎫∀∉≤ ⎪⎝⎭2.命题“x R ∀∈,210x x +-<”的否定是( )A .x R ∃∈,210x x +->B .x R ∃∈,210x x +-≥C .x R ∀∈,210x x +-≥D .x R ∀∈,210x x +->3.使“不等式241122x x -+⎛⎫> ⎪⎝⎭成立”的一个充分不必要条件是( )A .1x <B .0x <C .1x >D .0x >4.命题“a ∀∈R ,20a >或20a =”的否定形式是( ) A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.命题“x R ∀∈,24cos 0x x +>”的否定为( ) A .x R ∀∈,24cos 0x x +< B .x R ∀∈,24cos 0x x +≤ C .x R ∃∈,24cos 0x x +<D .x R ∃∈,24cos 0x x +≤6.命题“x R ∀∈,2210x x -+>”的否定为( ) A .x R ∀∈,2210x x -+< B .x R ∀∉,2210x x -+> C .x R ∃∈,2210x x -+≥ D .x R ∃∈,2210x x -+≤ 7.命题“210x x x ∀>->,”的否定是( )A .21,0x x x ∃≤->B .21,0x x x ∀>-≤C .21,0x x x ∃>-≤D .21,0x x x ∀≤-> 8.若0a >,0b >,则“a b >”是“ln ln a b b a ->-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.设x ∈R ,则“20x -=”是“24x =”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.已知命题()0:0,p x ∃∈+∞,00sin 0x x +<,则p ⌝为( ) A .()0,x ∀∈+∞,sin 0x x +≥B .()0,x ∀∈+∞,sin 0x x +<C .()00,x ∃∉+∞,00sin 0x x +<D .()00,x ∃∉+∞,00sin 0x x +≥11.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin3πB .13C .2D .π12.若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题,则实数m 的最大值为( )A B .C .3D .二、填空题13.为迎接2022年北京冬奥会,短道速滑队组织甲、乙、丙等6名队员参加选拔赛,已知比赛结果没有并列名次记“甲得第一名”为p ,“乙得第一名”为q ,“丙得第一名”为r ,若p q ∨是真命题,()p r ⌝∨是真命题,则得第一名的是______________.14.命题“R x ∃∈,sin 1x ≤”的否定是___________. 15.给出以下几个结论: ①若0a b >>,0c <,则c c a b<; ②如果b d ≠且,b d 都不为0,则111221n n nn n n nd b d db db dbb d b++----+++⋅⋅⋅++=-,*n N ∈;③若1e ,2e 是夹角为60的两个单位向量,则122ae e ,1232be e 的夹角为60;④在ABC 中,三内角,,A B C 所对的边分别为,,a b c ,则()22cos cos c a B b A a b -=-;其中正确结论的序号为______.16.已知命题p :“∀x ∈[1,2],x 2+1≥a ”,命题q :“∃x 0∈R ,x 02+2ax 0+1=0”,若命题“¬p ∨¬q ”是假命题,则实数a 的取值范围是_____. 17.现给出五个命题: ①a ∀∈R ,212a a +>; ②223,,2()2a b R a b a b ∀∈+>--;> ④4()cos ,0,cos 2f x x x x π⎛⎫=+∈ ⎪⎝⎭的最小值等于4;⑤若不等式2210kx x k -+-<对[]1,1k ∀∈-都成立,则x 12x <<. 所有正确命题的序号为______18.命题:“x R ∀∈,2210x x ++>”的否定为____________;19.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,给出下列命题: ①若//,m n αα⊂,则//m n ; ②若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ;③若,,//αβαβ⊥⊂n m ,则m n ⊥; ④ ,,,αγβγαβγ⊥⊥⋂=⊂m n ,则m n ⊥. 其中真命题是__________.20.设有两个命题:(1)不等式|||1|x x a -->的解集为∅;(2)函数()f x =a 的取值范围为________.三、解答题21.已知集合()(){}140A x x x =--≤,{}5B x a x a =-<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若命题“AB =∅”为真命题,求实数a 的取值范围.22.设函数()22)lg(3f x x x =+-的定义域为集合A ,函数1()||g x a x x =+-在[-3,-1]上存在零点时的a 的取值集合B . (1)求AB ;(2)若集合2{}0|C x x p =+≥,若x C ∈是x A ∈充分条件,求实数p 的取值范围. 23.已知0,a >给出下列两个命题::p 函数()()ln 1ln2af x x x=+--小于零恒成立; :q 关于x 的方程()2110x a x +-+=一根在0,1上,另一根在1,2上.若p q ∨为真命题, p q ∧为假命题,求实数a 的取值范围. 24.已知函数()af x x =和()24g x x ax a =++.(1)命题p :()f x 是[)0,+∞上的增函数,命题q :关于的方程()0g x =有实根,若p q ∧为真,求实数a 的取值范围;(2)若“[]1,2x ∈”是“()0g x ≤”的充分条件,求实数a 的取值范围. 25.已知集合A 是函数()2lg 208y x x=--的定义域,集合B 是不等式22210x x a -+-≥(0a >)的解集,p :x A ∈,q :x B ∈.(1)若A B =∅,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求实数a 的取值范围.26.给定命题p :对任意实数x 都有210ax ax ++>成立;命题q :关于x 的方程20x x a -+=有实数根.如果p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据命题的否定的定义,写出命题的否定,然后判断. 【详解】命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭的否定是:1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭. 故选:B . 2.B解析:B 【分析】根据全称命题的否定是特称命题即可得正确答案. 【详解】命题“x R ∀∈,210x x +-<”的否定是x R ∃∈,210x x +-≥ 故选:B3.B解析:B 【分析】根据指数函数的性质,求得不等式的解集,再结合充分不必要条件和选项,即可求解. 【详解】由不等式241122x x -+⎛⎫> ⎪⎝⎭,可得24122x x -++>,即241x x -+>+,解得1x <,结合选项,可得“不等式241122x x -+⎛⎫> ⎪⎝⎭成立”的一个充分不必要条件可以是0x <.故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.D解析:D 【分析】全称命题的否定为特称命题,即可选出答案. 【详解】全称命题的否定为特称命题,故“x R ∀∈,24cos 0x x +>”的否定为“x R ∃∈,24cos 0x x +≤”,故选:D6.D解析:D 【分析】本题可根据全称命题的否定是特称命题得出结果. 【详解】因为全称命题的否定是特称命题,所以命题“x R ∀∈,2210x x -+>”的否定为“x R ∃∈,2210x x -+≤”, 故选:D.7.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C8.C解析:C 【分析】构造函数()ln f x x x =+,根据,a b 的范围结合函数的单调性以及充分条件和必要条件的定义即可得正确答案. 【详解】设()ln f x x x =+,则()f x 在()0,∞+上单调递增,因为a b >,所以()()f a f b >即ln ln a a b b +>+,可得ln ln a b b a ->-, 所以由“a b >”可以得出“ln ln a b b a ->-”若ln ln a b b a ->-则ln ln a a b b +>+,即()()f a f b >, 因为()ln f x x x =+在()0,∞+上单调递增,所以a b >, 所以由ln ln a b b a ->-可以得出a b >,所以若0a >,0b >,则“a b >”是“ln ln a b b a ->-”的充要条件, 故选:C 【点睛】关键点点睛:本题解题的关键点是构造函数()ln f x x x =+,将ln ln a b b a ->-转化为ln ln a a b b +>+,利用函数的单调性比较大小. 9.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】20x -=,即2x =时,一定有24x =,充分的,但24x =时,2x =±, 不一定是2x =,不必要,因此应为充分不必要条件. 故选:A . 10.A解析:A 【分析】利用特称命题的否定可得出结论. 【详解】命题p 为特称命题,该命题的否定为():0,p x ⌝∀∈+∞,sin 0x x +≥. 故选:A.11.B解析:B 【分析】根据已知条件得出实数a 的取值范围,由此可得出合适的选项. 【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 3π=.故满足条件的选项为B. 故选:B.12.B解析:B 【分析】将存在性命题进行否定,得全称命题为真,从而由tan tan()3x π≥-=m ≤【详解】若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题, 则“,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan x m ≥”是真命题,因为,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan tan()3x π≥-=m ≤.故选:B.二、填空题13.乙【分析】直接利用复合命题的真假判断推理得到答案【详解】由是真命题可知pq 中至少有一个是真命题因为比赛结果没有并列名次说明第一名要么是甲要么是乙;且r 是假命题;又是真命题则是真命题即p 是假命题故得第解析:乙 【分析】直接利用复合命题的真假判断推理得到答案.【详解】由p q ∨是真命题,,可知p 、q 中至少有一个是真命题,因为比赛结果没有并列名次,说明第一名要么是甲,要么是乙;且r 是假命题; 又()p r ⌝∨是真命题,则p ⌝是真命题,即p 是假命题. 故得第一名的是乙. 故答案为:乙. 【点睛】复合命题真假的判定: (1) 判断简单命题的真假;(2) 根据真值表判断复合命题的真假.14.【分析】由特称命题的否定为全称命题即可得解【详解】命题为特称命题由特称命题的否定为全称命题所以命题的否定是:故答案为:解析:x R ∀∈,sin 1x >【分析】由特称命题的否定为全称命题,即可得解. 【详解】命题“R x ∃∈,sin 1x ≤”为特称命题,由特称命题的否定为全称命题 所以命题“R x ∃∈,sin 1x ≤”的否定是:x R ∀∈,sin 1x > 故答案为:x R ∀∈,sin 1x >15.②④【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确【详解】对于①由知:又①错误;对于②数列是以为公比的等比数列②正确;解析:②④ 【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确. 【详解】对于①,由0a b >>知:11a b <,又0c <,c c a b∴>,①错误; 对于②,数列1221,,,,,n n n n nd d b d b db b ---⋅⋅⋅是以1b b d d ⎛⎫≠ ⎪⎝⎭为公比的等比数列, 111112211n n nnn n n n n n n b d b d b d b d d d d b d b db b b d b d b d d++++-----⋅-+++⋅⋅⋅++===-∴--,②正确;对于③,121cos602e e ⋅==, ()()221212112217232626222a b e e e e e e e e ∴⋅=+⋅-+=-+⋅+=-++=-,()22212112224442a e e e e e e =+=+⋅+=+=(22111223912496b e e e e e =-=-⋅+=-=1cos ,2a ba b a b⋅∴<>==-⋅,,120a b ∴<>=,③错误;对于④,由余弦定理得:22222222222222222a c b b c a a c b b c a c a b a b ac bc ⎛⎫+-+-+---+⋅-⋅==- ⎪⎝⎭,④正确. 故答案为:②④. 【点睛】本题考查命题真假性的判断,涉及到不等式的性质、等比数列求和、平面向量夹角的计算、余弦定理化简等知识,考查学生对于上述四个部分知识的掌握的熟练程度,属于综合型考题.16.∪12【分析】利用复合命题的真假性判断出的真假性即可求解【详解】若为真则;若为真则△即或;命题是假命题均为假命题即均为真命题;;或;故答案为:【点睛】本题考查了复合命题的真假性考查学生的分析能力计算解析:(],1-∞∪[1,2] 【分析】利用复合命题的真假性判断出p ,q 的真假性即可求解. 【详解】若p 为真,则:2p a ;若q 为真,则△2440a =-,即1a -或1a ; 命题“p q ⌝∨⌝”是假命题,p ∴⌝,q ⌝均为假命题,即p ,q 均为真命题;∴211a a a ⎧⎨-⎩或;1a ∴-或12a ;故答案为:(-∞,1][1-,2]. 【点睛】本题考查了复合命题的真假性,考查学生的分析能力,计算能力,推理能力;属于中档题.17.②③⑤【分析】①时不成立;②作差后再配方可得答案;③利用分析法证明;④不满足基本不等式的条件;⑤构造关于的一次函数再利用一次函数的单调性可求出的取值范围【详解】解:①当时所以①不正确;②因为所以成立解析:②③⑤ 【分析】①1a =时不成立;②作差后再配方可得答案;③利用分析法证明;④不满足基本不等式的条件;⑤构造关于k 的一次函数,再利用一次函数的单调性可求出x 的取值范围 【详解】解:①当1a =时,212a a +=,所以 ①不正确;②因为222222232()23(1)()1210a a b a b a b b a b +----++=+=+-++>, 所以223,,2()2a b R a b a b ∀∈+>--成立;③>>>③正确;④由于0,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 0,1x ∈,因为4()cos 4cos f x x x=+≥=,而此时要()cos 20,1x =∉,所以取不到等号,所以4()cos ,0,cos 2f x x x x π⎛⎫=+∈ ⎪⎝⎭的最小值不等于4,所以④不正确; ⑤令22()21(1)21f k kx x k x k x =-+-=--+,因为不等式2210kx x k -+-<对[]1,1k ∀∈-都成立,所以(1)0(1)0f f -<⎧⎨<⎩,即2212101210x x x x ⎧--+<⎨--+<⎩12x <<,所以⑤正确故答案为:②③⑤ 【点睛】此题考查了不等式的性质,利用分析法证明不等式,基本不等式,属于中档题.18.【分析】根据全称命题的否定是特称命题进行求解即可【详解】解:命题是全称命题则命题的否定是特称命题命题的否定为故答案为:【点睛】本题主要考查含有量词的命题的否定根据全称命题的否定是特称命题是解决本题的解析:0x R ∃∈,200210x x ++≤【分析】根据全称命题的否定是特称命题进行求解即可. 【详解】解:命题是全称命题,则命题的否定是特称命题,∴命题“x R ∀∈,2210x x ++>”的否定为0x R ∃∈,200210x x ++≤. 故答案为:0x R ∃∈,200210x x ++≤.【点睛】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键,属于基础题.19.②③④【分析】利用线面关系逐一分析即可【详解】对于①若则或异面故错误;对于②由线面平行的判定定理知:若且则故正确;对于③由面面平行的性质定理以及线面垂直的性质定理可知:若则故正确;对于④设在面内任取解析:②③④ 【分析】利用线面关系逐一分析即可. 【详解】对于①,若//,m n αα⊂,则//m n 或,m n 异面,故错误; 对于②,由线面平行的判定定理知:若,//αβ⋂=m m n , 且,n n αβ⊄⊄,则//,//αβn n ,故正确;对于③,由面面平行的性质定理以及线面垂直的性质定理可知: 若,,//αβαβ⊥⊂n m ,则m n ⊥,故正确; 对于④,设,a b αγβγ==,在面γ内任取点O ,作,OA a OB b ⊥⊥,由,αγβγ⊥⊥,得OA α⊥,OB β⊥,故OA m ⊥,OB m ⊥,则m γ⊥,又γ⊂n ,则m n ⊥,故正确;故答案为:②③④【点睛】本题考查了命题的真假判断、线面之间的位置关系、面面平行的性质定理、线面垂直的性质定理,考查了考生的空间想象能力,属于基础题.20.【分析】分别求出两个命题为真时的的取值范围然后根据复合命题的真假确定结论【详解】其取值范围是不等式的解集为即恒成立若(1)为真命题则若(2)为真命题则(1)(2)均为真命题可得所以若(1)(2)至少解析:(,1)(2,)-∞⋃+∞【分析】分别求出两个命题为真时的a 的取值范围,然后根据复合命题的真假确定结论.【详解】1,1,121,01,1,0x x x x x x ≥⎧⎪--=-<<⎨⎪-≤⎩,其取值范围是[]1,1-,不等式|||1|x x a -->的解集为∅即|||1|x x a --≤恒成立,若(1)为真命题,则1a ≥,若(2)为真命题,则240a -≤,22a -≤≤,(1)(2)均为真命题,可得12a ≤≤,所以若(1)(2)至少有一个是假命题,则1a <或2a >.故答案为:(,1)(2,)-∞⋃+∞.【点睛】本题考查由复合命题的真假求参数取值范围,解题时可先求出每个命题为真时的参数范围,然后根据复合命题的真值有确定结论.在遇到“至少”、“至多”等时可从反面入手比较简单.三、解答题21.(1)()4,6;(2){|1a a ≤或}9a ≥.【分析】(1)先得到集合A ,然后依据题意可得A B ⊆,最后简单计算即可.(2)根据AB =∅可得1a ≤或54a -≥,直接计算即可. 【详解】(1)依题意,解得{}14A x x =≤≤∵若x A ∈是x B ∈的充分条件,∴A B ⊆, 514a a -<⎧⎨>⎩,解得46a <<,故实数a 的取值范围是()4,6(2)命题“A B =∅”为真命题,∴A B =∅由1a ≤或54a -≥,解得1a ≤或9a ≥ ,所求实数a 的取值范围是{|1a a ≤或}9a ≥22.(1)10,33⎡⎫--⎪⎢⎣⎭;(2)1,2⎛⎫-∞- ⎪⎝⎭. 【分析】(1)先分别求出集合A ,B ,由此能求出A B ;(2)求出集合{|}0{|}22C x x p x x p =+≥=≥-,由x C ∈是x A ∈充分条件,得到C A ⊆,由此能求出实数p 的取值范围.【详解】(1)∵函数()22)lg(3f x x x =+-的定义域为集合A , ∴2230|3{}{|A x x x x x =+->=<-或1}x >,∵函数1()||g x a x x =+-在[31]--,上存在零点时的a 的取值集合B , ∴()0g x =在[]3,1x ∈--有解1110,2||3a x x x x ⎡⎤⇒=-=+∈--⎢⎥⎣⎦, 即10,23B ⎡⎤=--⎢⎥⎣⎦, ∴10,33A B ⎡⎫⋂=--⎪⎢⎣⎭. (2)∵集合{|}0{|}22C x x p x x p =+≥=≥-,x C ∈是x A ∈充分条件, ∴C A ⊆,∴21p ->,解得12p <-, ∴实数p 的取值范围是1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题主要考查交集、实数的取值范围的求法,考查函数性质、交集定义、充分条件等基础知识,考查运算求解能力,属于基础题.23.][97,3,42⎛⎫⋃+∞ ⎪⎝⎭. 【分析】由()0f x <恒成立,采用分离参数法求得a 的取值范围,再由方程根的存在定理求出a 的范围,而p q ∨为真命题, p q ∧为假命题,则,p q 一真一假,结合集合的运算,由此可得a 的范围.【详解】由已知得()12a ln x ln x +<-恒成立,即010{0212a x a x a x x>+>>-+<-恒成立,即 21924a x ⎛⎫>--+ ⎪⎝⎭在()1,2x ∈-恒成立;函数21924a x ⎛⎫>--+ ⎪⎝⎭在()1,2-上的最大值为94;9;4a ∴>即9:4p a >; 设()()211,f x x a x =+-+则由命题()()()010:{1302720f q f a f a =>=-<=->,解得: 73;2a <<即7:3;2q a << 若p q ∨为真命题, p q ∧为假命题,则,p q 一真一假. ①若p 真q 假,则: 9{403a a ><≤或994{,3,742a a a >∴<≤≥或7;2a ≥ ②若p 假q 真,则: 904{,;732a a a <≤∴∈∅<< ∴实数a 的取值范围为][97,3,42⎛⎫⋃+∞ ⎪⎝⎭. 【点睛】由“p 或q”为真,“p 且q”为假判断出p 和q 一真一假后,再根据命题与集合之间的对应关系求m 的范围.逻辑联结词与集合的运算具有一致性,逻辑联结词中“且”“或”“非”恰好分别对应集合运算的“交”“并”“补”.24.(1)14a ≥;(2)4,9⎛⎤-∞- ⎥⎝⎦ 【分析】(1)首先计算p 真,p 真时a 的范围,再根据p q ∧为真得到不等式组,即可得到答案. (2)首先根据题意得到()()11502490g a g a ⎧=+≤⎪⎨=+≤⎪⎩,再解不等式组即可.【详解】(1)因为()af x x =是[)0,+∞上的增函数,所以0a >,即p 真:0a >, 方程()0g x =有实根,则21640a a -≥,14a ≥或0a ≤.即q 真:14a ≥或0a ≤. 因为p q ∧为真,所以0104a a a >⎧⎪⎨≥≤⎪⎩或,解得14a ≥. (2)因为“[]1,2x ∈”是“()0g x ≤”的充分条件,所以()()11502490g a g a ⎧=+≤⎪⎨=+≤⎪⎩,解得49a . 所以实数a 的取值范围:4,9⎛⎤-∞- ⎥⎝⎦. 【点睛】本题主要考查了根据复合命题的真假求参数,同时考查了充分条件,属于中档题. 25.(1) 11a ≥;(2) 01a <≤.【分析】(1)分别求函数()2lg 208y x x=--的定义域和不等式22210(0)x x a a -+->的解集化简集合A B ,,由A B =∅得到区间端点值之间的关系,解不等式组得到a 的取值范围;(2)求出p ⌝对应的x 的取值范围,由p ⌝是q 的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解a 的范围.【详解】(1)由条件得: {|102}A x x =-<<, {|1B x x a =+或1}x a - 若A B =Φ,则必须满足121100a a a +≥⎧⎪-≤-⎨⎪>⎩所以,a 的取值范围为: 11a ≥(2)易得: p ⌝: 2x ≥或10x ≤-,∵p ⌝是q 的充分不必要条件,{|2x x ∴或10}x -是{|1B x x a =+或1}x a -的真子集,则121100a a a +≤⎧⎪-≥-⎨⎪>⎩,解得:01a <≤∴a 的取值范围为: 01a <≤【点睛】本题考查的知识点是充要条件的定义,考查了对数函数的定义域以及一元二次不等式的解法,正确理解充要条件的定义,是解答的关键.26.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】根据p q ∨为真命题,p q ∧为假命题,可判断出p 与q 一真一假,分类讨论即可得出实数a 的取值范围.【详解】对任意实数x 都有210ax ax ++>恒成立0a ⇔=或200440a a a a >⇔≤<∆=-<⎧⎨⎩; 关于x 的方程20x x a -+=有实数根11404a a ⇔∆=-≥⇔≤; 由于p q ∨为真命题,p q ∧为假命题,则p 与q 一真一假;(1)如果p 真,且q 假,有04a ≤<,且11444a a >⇒<<; (2)如果q 真,且p 假,有0a <或4a ≥,且104a a ≤⇒<. 所以实数a 的取值范围为:()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】 本题主要考查根据复合命题的真假求参数的取值范围,考查不等式恒成立问题及一元二次方程存在解问题,考查学生的计算求解能力,属于中档题.。
高中数学第一章常用逻辑用语1.2简单的逻辑联结词作业苏教版选修1-1(2021年整理)
2018-2019学年高中数学第一章常用逻辑用语1.2 简单的逻辑联结词作业苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章常用逻辑用语1.2 简单的逻辑联结词作业苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章常用逻辑用语1.2 简单的逻辑联结词作业苏教版选修1-1的全部内容。
1。
2 简单的逻辑联结词[基础达标]1.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是________.①綈p或q;②p且q;③綈p且綈q;④綈p或綈q。
解析:不难判断命题p为真命题,命题q为假命题,从而上述叙述中只有綈p或綈q为真命题.答案:④2.已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1或p2;q2:p1且p2;q3:綈p1或p2;q4:p1且綈p2中,真命题有________.解析:易知p1是真命题;对p2,取特殊值来判断,如取x1=1〈x2=2,得y1=错误!<y2=错误!;取x3=-1>x4=-2,得y3=错误!<y4=错误!,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.答案:q1,q43.若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是________.解析:由p或q的否定是真命题,知p或q为假命题,因此p、q为假命题.答案:p假q假4.对于命题p、q,若p且q为真命题,则下列四个命题:①p或綈q是真命题;②p且綈q是真命题;③綈p且綈q是假命题;④綈p或q是假命题.其中真命题是________.解析:∵p且q真,则p真,q真,∴綈p假,綈q假,所以只有①③为真命题.答案:①③5.给出两个命题:p:|x|=x的充要条件是x为正实数,q:奇函数的图象一定关于原点对称,则綈p∧q为________命题(填“真"、“假”).解析:∵p为假命题,∴綈p为真命题,又∵q为真命题,故綈p∧q为真命题.答案:真6.若命题p:不等式4x+6>0的解集为{x|x>-错误!},命题q:关于x的不等式(x-4)(x-6)〈0的解集为{x|4<x〈6},则“p且q”,“p或q",“綈p”形式的复合命题中的真命题是________.解析:因为命题p为真命题,q为真命题,所以“綈p”为假命题,“p或q”,“p且q”为真命题.答案:p或q,p且q7.分别指出下列各组命题构成的“p∧q"“p∨q"“綈p”形式的命题的真假.(1)p:6〈6。
苏教版高中数学选修1-1常用逻辑用语训练.docx
新课标数学选修1-1常用逻辑用语训练一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。
1.有三个语句:⑴2x <;⑵210x -=;⑶20,()x x R <∈,其中是真命题的为 ( )A .⑴ ⑵B .⑴ ⑶C .⑵D .⑶2.下列语句中是命题的为 ( )A .你到过北京吗?B .对顶角难道不相等吗?C .啊!我太高兴啦!D .求证:2是无理数3.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程21x =的解1x =±。
其中,复合命题有 ( )A .1个B .2个C .3个D .4个4.“220a b +≠”的含义为 ( )A .,a b 不全为0B . ,a b 全不为0C .,a b 至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为05.若命题“⌝p ”与命题“p ∨q ”都是真命题,那么 ( )A .命题p 与命题q 的真值相同B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 不一定是真命题6.命题p :若A B B =,则A B ⊆;命题q :若A B ⊄,则A B B ≠。
那么命题p 与命题q 的关系是 ( )A .互逆B .互否C .互为逆否命题D .不能确定7.若A :a ∈R,|a |<1, B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.有下列四个命题:①“若x+y=0 , 则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤1 ,则x 2 + 2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为 ( )A .①②B .②③C .①③D .③④9.设集合A={x |x 2+x -6=0},B={x |m x +1=0} ,则B 是A 的真子集的一个充分不必要的条件是( )A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .m=21-C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭10.设集合M={x| x>2},P={x|x<3},那么“x ∈M,或x ∈P ”是“x ∈M ∩P ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件二、填空题:请把答案填在题中横线上。
高中数学苏教版选修1-1学案:第一章 常用逻辑用语 1.1.1 四种命题 Word版含答案
1.1.1四种命题[学习目标]1.了解命题的逆命题、否命题与逆否命题的意义.2.会分析四种命题的相互关系.知识点一命题的定义(1)定义:能够判断真假的语句叫做命题.(2)真假命题:命题中判断为真的语句叫做真命题,判断为假的语句叫做假命题.(3)命题的一般形式:命题的一般形式为“若p则q”.通常,命题中的p是命题的条件,q是命题的结论.知识点二四种命题的概念(1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题. (2)互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这两个命题叫做互否命题.其中一个命题叫做原命题,另一个叫做原命题的否命题.(3)互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个叫做原命题的逆否命题.知识点三四种命题的真假性的判断原命题为真,它的逆命题不一定为真;它的否命题也不一定为真.原命题为真,它的逆否命题一定为真.题型一命题及其真假的判定例1判断下列语句是不是命题,若是,判断真假,并说明理由.(1)求证3是无理数.(2)若x∈R,则x2+2x+1≥0.(3)你是高二学生吗?(4)并非所有的人都喜欢苹果.(5)一个正整数不是质数就是合数.(6)x+3>0.解(1)祈使句,不是命题.(2)是真命题,因为x2+2x+1=(x+1)2≥0.对于x∈R,不等式恒成立.(3)是疑问句,不能判断真假,不是命题.(4)是真命题.(5)是假命题,正整数1既不是质数,也不是合数.(6)不是命题.不能判断真假.反思与感悟要判断一个命题是真命题,一般需要经过严格的推理论证,在判断时,要有理有据,有时应综合各种情况作出正确的判断.而判断一个命题是假命题,只需举出一个反例即可. 跟踪训练1判断下列语句是不是命题,若是,判断其真假,并说明理由.(1)函数y=sin2x-cos2x的最小正周期是π.(2)若x=4,则2x+1<0.(3)垂直于同一条直线的两直线平行吗?(4)一个等比数列的公比大于1时,该数列为递增数列.(5)求证:x∈R时,方程x2-x+1=0无实数根.解(1)(2)(4)是命题.(3)(5)不是命题.命题(1)中,y=sin2x-cos2x=-cos2x,显然其最小正周期为π,是真命题.命题(2)中,当x=4,2x+1>0,是假命题.(3)是一个疑问句,不是命题.命题(4)中,当等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.(5)是一个祈使句,没有作出判断,不是命题.题型二四种命题的概念例2写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)若m·n<0,则方程mx2-x+n=0有实数根;(2)弦的垂直平分线经过圆心,且平分弦所对的弧;(3)若m≤0或n≤0,则m+n≤0;(4)在△ABC中,若a>b,则∠A>∠B.解(1)逆命题:若方程mx2-x+n=0有实数根,则m·n<0,假命题.否命题:若m·n≥0,则方程mx2-x+n=0没有实数根,假命题.逆否命题:若方程mx2-x+n=0没有实数根,则m·n≥0,真命题.(2)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线,真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧,真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线,真命题.(3)逆命题:若m+n≤0,则m≤0或n≤0,真命题.否命题:若m>0且n>0,则m+n>0,真命题.逆否命题:若m+n>0,则m>0且n>0,假命题.(4)逆命题:在△ABC中,若∠A>∠B,则a>b,真命题.否命题:在△ABC中,若a≤b,则∠A≤∠B,真命题.逆否命题:在△ABC中,若∠A≤∠B,则a≤b,真命题.反思与感悟(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.跟踪训练2判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,并判断其真假.(1)若x2+y2=0,则x,y全为零;(2)若在二次函数y=ax2+bx+c(a≠0)中,b2-4ac<0,则该函数图象与x轴有交点.解(1)该命题为真命题.逆命题:若x,y全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x,y不全为零,真命题.逆否命题:若x,y不全为零,则x2+y2≠0,真命题.(2)该命题为假命题.逆命题:若二次函数y=ax2+bx+c(a≠0)的图象与x轴有交点,则b2-4ac<0,假命题.否命题:若在二次函数y=ax2+bx+c(a≠0)中,b2-4ac≥0,则该函数图象与x轴无交点,假命题.逆否命题:若二次函数y=ax2+bx+c(a≠0)的图象与x轴无交点,则b2-4ac≥0,假命题.题型三四种命题的关系例3下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四条边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中是真命题的是________.答案①②③解析①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四条边相等的四边形是正方形”的否命题是“四条边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题.所以真命题是①②③. 反思与感悟要判断四种命题的真假:首先,要熟练掌握四种命题的相互关系,注意它们之间的相互性;其次,利用其他知识判断真假时,一定要对有关知识熟练掌握.跟踪训练3下列命题中为真命题的是________.(填序号)①“正三角形都相似”的逆命题;②“若m>0,则x2+2x-m=0有实根”的逆否命题;③“若x-2是有理数,则x是无理数”的逆否命题.答案②③解析①原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”,故为假命题.②原命题的逆否命题为“若x2+2x-m=0无实根,则m≤0”.∵方程无实根,∴判别式Δ=4+4m<0,∴m<-1,即m≤0成立,故为真命题.③原命题的逆否命题为“若x不是无理数,则x-2不是有理数”.∵x不是无理数,∴x是有理数.又2是无理数,∴x-2是无理数,不是有理数,故为真命题.正确的命题为②③.题型四等价命题的应用例4判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a<2”的真假.解原命题的逆否命题为“已知a,x为实数,若a≥2,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集”.判断真假如下:函数y=x2+(2a+1)x+a2+2的图象开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,因为a≥2,所以4a-7>0,即抛物线与x轴有交点,所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,故原命题的逆否命题为真.所以原命题为真.反思与感悟因为原命题与它的逆否命题的真假性相同,所以我们可以利用这一点,通过证明原命题的逆否命题的真假性来肯定原命题的真假性.这种证明方法叫做逆否证法,它也是一种间接的证明方法.跟踪训练4判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解∵m>0,∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.化归思想的应用例5判断命题“若x2-y2≠0,则x-y,x+y中至少有一个不等于0”的真假.分析原命题的真假性不容易判断,可以找出其逆否命题,若其逆否命题的真假性容易判断,则根据互为逆否的两个命题的真假性之间的关系,就可以解决原命题的真假性问题了.解原命题的逆否命题:若x-y,x+y都等于0,则x2-y2=0.由x-y=0,x+y=0,得x2-y2=(x+y)(x-y)=0.因此,原命题的逆否命题是真命题.所以原命题是真命题.解后反思条件与结论都含有否定词的命题在判断其真假时,会有一定的困难,这时最好转化为判断其逆否命题的真假,这种化归的思想是解题的重要思想方法.根据已知集合求参数范围例6已知p:M={x|x2-2x-80≤0},q:N={x|x2-2x+1-m2≤0,m>0}.如果“若p,则q”为真,且“若q,则p”为假,求实数m的取值范围.分析先求不等式的解集,再根据条件建立不等式组求解即可.解p:M={x|x2-2x-80≤0}={x|-8≤x≤10},q :N ={x |x 2-2x +1-m 2≤0,m >0}={x |1-m ≤x ≤1+m ,m >0}.因为“若p ,则q ”为真,且“若q ,则p ”为假,所以M N ,所以⎩⎪⎨⎪⎧ m >0,1-m ≤-8,1+m >10或⎩⎪⎨⎪⎧ m >0,1-m <-8,1+m ≥10, 即⎩⎪⎨⎪⎧ m >0,m ≥9,m >9或⎩⎪⎨⎪⎧ m >0,m >9,m ≥9,解得m >9,即实数m 的取值范围是{}m |m >9.解后反思由“若p ,则q ”为真,“若q ,则p ”为假,得M ⊆N ,但N M ,故M N ,即“1-m 与-8”和“1+m 与10”不能同时取等号.事实上,当m =9时,两个集合相等.1.下列语句不是命题的个数为________.①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.答案1解析①③④可以判断真假,是命题,②不能判断真假,所以不是命题.2.命题“若a >b ,则a -1>b -1”的否命题是________.答案若a ≤b ,则a -1≤b -1解析直接按否命题的构成改写.3.命题“若平面向量a ,b 共线,则a ,b 方向相同”的逆否命题是______________________________,它是________命题(填“真”或“假”).答案若平面向量a ,b 的方向不相同,则a ,b 不共线假4.给出以下命题:①“若a ,b 都是偶数,则a +b 是偶数”的否命题;②“正多边形都相似”的逆命题;③“若m >0,则x 2+x -m =0有实根”的逆否命题.其中为真命题的是________.答案③解析①否命题是“若a ,b 不都是偶数,则a +b 不是偶数”.假命题.②逆命题是“若两个多边形相似,则这两个多边形为正多边形”.假命题.③∵Δ=1+4m ,m >0时,Δ>0,∴x 2+x -m =0有实根,即原命题为真.∴逆否命题为真.5.“若sin α=12,则α=π6”的逆否命题是“__________________”,逆否命题是________命题(填“真”或“假”).答案若α≠π6,则sin α≠12假 解析逆否命题是“若α≠π6,则sin α≠12”是假命题.1.根据命题的意义,可以判断真假的陈述句是命题,命题的条件与结论之间属于因果关系,真命题需要给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“若p ,则q ”的形式.含有大前提的命题写成“若p ,则q ”的形式,大前提应保持不变,且不写在条件p 中.3.写四种命题时,可以按下列步骤进行:(1)找出命题的条件p 和结论q ;(2)写出条件p 的否定非p 和结论q 的否定非q ;(3)按照四种命题的结构写出所有命题.4.每一个命题都有条件和结论组成,要分清条件和结论.5.判断命题的真假可以根据互为逆否命题的真假性相同来判断,这也是反证法的理论基础.。
【数学】第一章《常用逻辑用语》综合测试(苏教版选修1-1)
高中苏教选修(1-1)第1章常用逻辑用语综合测试题一、选择题1.下列语句中,命题和真命题的个数分别是( ) ①垂直于同一条直线的两条直线平行吗? ②一个数不是奇数就是偶数③大角所对的边大于小角所对的边;④x y +是有理数,则x y ,也都是有理数; ⑤求证x ∈R ,方程210x x ++=无实数根. A .4,1 B .2,2 C .3,0 D .2,1答案:C2.①“若240b ac ->,则关于x 的方程20ax bx c ++=的解集必含有两个元素”; ②“矩形的对角线相等”的逆命题;③“若a b >,则a c b c ++≥”的否命题. 其中真命题的个数有( ) A .0个 B .1个 C .2个 D .3个 答案:A3.若语句:p x A B ∈ ,则“非p ”是( ) A .x A B ∉ B .x A ∉或x B ∉ C .x A ∉且x B ∉D .x A B ∈答案:B4.语句:p α是第二象限角;语句:sin tan 0q αα<,则p 是q 成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 答案:A5.下列判断错误的是( )A .命题“若p ,则q ”与命题“若非q ,则非p ”等价B .“22am bm <”是“a b <”的充要条件 C .“菱形的对角线互相垂直”的否定为假命题D .{}:12p ∅,Ü,{}:412q ,Ü,则“p 或q ”为真命题 答案:B6.命题:p 若a b ∈R ,,则1a b +>是1a b +>的充分不必要条件;命题:q 函数12y x =--的定义域是(][)13--+ ∞,,∞,则( )A .“p 或q ”为假B .“p 且q ”为真C .“p 且q ”为假D .以上均不对答案:C7.在下列结论中,正确的结论为( )①“p 且q ”为真是“p 或q ”为真的充分不必要条件 ②“p 或q ”为假是“p 或q ”为真的充分不必要条件 ③“p 或q ”为真是“非p ”为假的必要不充分条件 ④“非p ”为真是“p 且q ”为假的必要不充分条件 A .①② B .①③C .②④D .③④答案:B8.若函数()()f x g x ,的定义域和值域都是R ,则“()()f x gx <”成立的充要条件是( )A .0x ∃∈R ,使00()()f x g x <B .存在无数多个实数x ,使得()()f x g x <C .x ∀∈R ,都有1()()2f xg x +< D .不存在实数x ,使得()()f x g x ≥ 答案:D9.命题:p 不等式11x xx x >--的解集为{}|01x x <<;命题1:05q a <≤是函数2()2(1)2f x ax a x =+-+在区间(]4-∞,上为减函数的充分不必要条件,则( )A .p 真q 假B .“p 且q ”为真C .“p 或q ”为假D .p 假q 真答案:B10.设函数()f x 的定义域为R ,有下列三个命题:①若存在常数M ,使得对x ∀∈R ,有()f x M ≤,则M 是函数()f x 的最大值; ②若0x ∃∈R ,使得对x ∀∈R ,且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;③若0x ∃∈R ,使得对x ∀∈R 有0()()f x f x ≤,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( )A .0B .1C .2D .3 答案:C11.设αβ,为两个不同的平面,l m ,为两条不同的直线,且l α⊂,m β⊂.有如下两个命题:①若αβ∥,则l m ∥;②若l m ⊥,则αβ⊥,那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题 答案:D12.若()f x 是R 上的减函数,且(0)3f =,(3)1f =-,设{}|()12P x f x t =+-<,{}|()1Q x f x =<-,若“x P ∈”是“x Q ∈”的充分不必要条件,则实数t 的取值范围是( ) A .{}|0t t ≤B .{}|0t t ≥C .{}|3t t -≥D .{}|3t t -≤答案:D 二、填空题13.存在性命题“存在一个被7整除的整数不是奇数”的否定是 . 答案:所有被7整除的整数都是奇数14.如果命题A 的否命题是B ,B 的逆命题为C ,则C 为A 的逆命题的 命题. 答案:否15.2()210p x ax x =++>,若对x ∀∈R ,()p x 是真命题,则实数a 的取值范围是 . 答案:1a >16.有下面四个命题:①命题“若1xy =,则x y ,互为倒数”的逆命题; ②命题“存在两个等边三角形,它们不相似”的否定; ③命题“若1m ≤,则220x x m -+=有实根”的逆否命题;④命题“若A B B = ,则A B ⊆”的逆否命题.其中真命题的是 .(填上你认为正确的命题的序号) 答案:①②③ 三、解答题17.已知命题:末位是0的整数,可以被5整除.把命题改写成“若p ,则q ”的形式,并写出它的逆命题、否命题与逆否命题,并判断真假.解:原命题:若一个整数的末位数是0,则这个整数可以被5整除.它是真命题. 逆命题:若一个整数可以被5整除,则这个整数的末位数是0.它是假命题. 否命题:若一个整数的末位数不是0,则这个整数不能被5整除.它是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数不是0.它是真命题.18.分别写出由下列各组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的命题,并判断它们的真假.(1):p 平行四边形的对角线相等; :q 平行四边形的对角线互相平分;(2):p 方程2160x -=的两根的符号不同;:q 方程2160x -=的两根的绝对值相等.解:(1)p 或q :平行四边形的对角线相等或互相平分. p 且q :平行四边形的对角线相等且互相平分. 非p :有的平行四边形的对角线不相等.由于p 假q 真,所以p 或q 真,p 且q 假,非p 真;(2)p 或q :方程2160x -=的两根符号不同或绝对值相等.p 且q :方程2160x -=的两根符号不同且绝对值相等.非p :方程2160x -=的两根符号相同.由于p 真q 真,所以p 或q 、p 且q 为真,非p 为假.19.给出问题:已知语句:20p m -<<,01n <<;语句:q 关于x 的方程20x mx n ++=有两个小于1的正根.试分析p 是q 的什么条件.一位同学给出了如下解答:设关于x 的方程20x mx n ++=有两个小于1的正根12x x ,,则101x <<,201x <<,所以1202x x <+<,且1201x x <<. 由根与系数的关系,得1212x x m x x n +=-⎧⎨=⎩,,则0201m n <-<⎧⎨<<⎩,,所以20m -<<,01n <<. 又命题:20p m -<<,01n <<, 故p 是q 的充要条件.该同学的解答正确吗?试给出判断,并说明理由.解:该同学的解答是错误的,原因是由101x <<,201x <<得到1202x x <+<, 且1201x x <<并不是完全等价的,如取13m =-,12n =,则211032x x -+=. 此时方程的114092∆=-⨯<无解,更谈不上有两个小于1的正根,易知q p p q ⇒,¿,从而p 是q 的充要条件是错误的.正确的结论应为p 是q 的必要不充分条件.20.已知{}138M x x x =++->,{}2|(8)80N x x a x a =+--≤.(1)求a 的一个值,使它成为{}|58M N x x =< ≤的一个充分不必要条件; (2)求a 的一个取值范围,使它成为{}|58M N x x =< ≤的一个必要不充分条件.解:由已知有{}|35M x x x =<->或,{}|()(8)0N x x a x =+-≤. (1) 显然当35a --≤≤,即53a -≤≤时,{}|58M N x x =< ≤. 取0a =,由{}|58M N x x =< ≤,不能推出0a =. 所以0a =是{}|58M N x x =< ≤的一个充分不必要条件;(2)当{}|58M N x x =< ≤时,53a -≤≤,此时有3a ≤.但当3a ≤时推不出{}|58M N x x =< ≤.21.已知0ab ≠,求证1a b +=的充要条件是33220a b ab a b ++--=. 证明:必要性: 1a b +=,即1b a =-,33223322(1)(1)(1)a b ab a b a a a a a a ∴++--=+-+----323222133120a a a a a a a a a =+-+-+---+-=.充分性:33220a b ab a b ++--= ,即2222()()()0a b a ab b a ab b +-+--+=,22()(1)0a ab b a b ∴-++-=.又0ab ≠,即0a ≠且0b ≠,22223024b a ab b a b ⎛⎫∴-+=--≠ ⎪⎝⎭,只有1a b +=.综上,当0ab ≠时,1a b +=的充要条件是33220a b ab a b ++--=.22.已知条件:510m x a ->>和条件21:0231n x x >-+.请选取适当的实数a 的值,分别利用所给的两个条件构成形如“如果p ,则q ”形式的命题,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.(本题为开放题,a 值不惟一) 解:由已知条件m 即51x a -<-或51x a ->,15a x -∴<,或15ax +>, 已知条件n 即22310x x -+>,12x ∴<或1x >.令4a =,则m 即35x <-或1x >,此时必有m n ⇒成立,反之不然,故可以选取的一个实数4a =,p 为m ,q 为n ,对应的命题是“如果m ,则n ”. 由以上过程可知这一过程的原命题为真命题,但它的逆命题为假命题. 注:本题为一开放题,答案不惟一,只需a 满足1152a -≤且115a+≥即可.。
新苏教版数学(选修1-1)本章练测:第1章-常用逻辑用语(含答案)
第1章常用逻辑用语(苏教版选修1-1)一、填空题(本大题共14小题,每小题5分,共70分)1.下列说法中,不正确的是_________.①“若则”与“若则”是互逆的命题;②“若则”与“若则”是互否的命题;③“若则”与“若则”是互否的命题;④“若则”与“若则”互为逆否命题.2.若命题“”是假命题,则实数的取值范围是_____.3.集合,,则“”是“”的____条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4.设,若是的必要不充分条件,则实数的取值范围是___.5.命题将函数的图象向右平移个单位长度得到函数的图象;命题函数的最小正周期是,则复合命题“或”“且”“非”中真命题的个数是______.6.已知命题,命题,若命题“”是真命题,则实数的取值范围是__.7.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“是“一元二次不等式a+bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.8.关于的函数有以下命题:①,;②;③,都不是偶函数;④,使f是奇函数.其中假命题的序号是___.9.有限集合中元素的个数记作,设A,B都是有限集合,给出下列命题:①的充要条件是=;②的必要条件是;③的充分条件是;④的充要条件是.其中正确的命题是____.10.已知命题使;命题,都有给出下列结论:①命题“”是真命题;②命题“”是假命题;③命题“”是真命题;④命题“”是假命题,其中正确的是____.11.若为定义在D上的函数,则“存在D,使得”是“函数为非奇非偶函数”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)12.命题:“如果+=0,则x=2且y=-1”的逆否命题为.13.已知命题p:命题q:若命题p是命题q的充分不必要条件,则实数的范围是____________.14.下列命题:①“若,则互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若则”的逆命题,其中真命题是(填序号).二、解答题(本大题共6小题,共90分)15.(本小题满分14分)设命题为“若,则关于的方程有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.16.(本小题满分14分)已知命题:任意,,如果命题是真命题,求实数的取值范围.17.(本小题满分14分)求证:方程m-2x+3=0有两个同号且不相等的实根的充要条件是0<m<.18.(本小题满分16分)若函数的图象和轴恒有公共点,求实数的取值范围.19.(本小题满分16分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?20.(本小题满分16分)设设p :实数x 满足-4ax +3<0,其中a >0;q :实数x 满足(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.第1章 常用逻辑用语(苏教版选修1-1)答题纸得分:___一、填空题1.2. 3. 4. 5.6.7. 8. 9.10.11. 12. 13. 14.二、解答题15.解:16.解:17.解:18.解:19.解:20.解:第1章常用逻辑用语(苏教版选修1-1)参考答案1.②解析:“若则”与“若则”是互为逆否的命题,②不正确,故选②.2.解析:已知命题是假命题,则它的否定为真命题,命题的否定为的判别式3.必要不充分解析:集合集合,故,,所以“”是“”的必要不充分条件.4.解析:由已知得若成立,则,若成立,则.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以所以.5.2解析:将函数y=的图象向右平移个单位长度得到函数y==的图象,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数,最小正周期为,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个.6.解析:若p成立,对.因为若q成立,则方程因为命题“”是真命题,所以p真q真,故7.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件.x≠1≠1,反例:x=-1=1,∴“x≠1”是“≠1”的不充分条件.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件.8.①③解析:对于命题①,若==成立,,所以命题①是假命题;对于函数f,当=时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.9.①②解析:,集合和集合没有公共元素,①正确;,集合中的元素都是集合中的元素,②正确;③错误;,则集合中的元素与集合中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.10.②③解析:因为,所以命题p是假命题,是真命题;由函数y=的图象可得,命题q是真命题,是假命题.所以命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题.所以②③正确.11.充分不必要解析:存在D,使得;若函数为非奇非偶函数,可能定义域不关于原点对称,所以“存在D,使得”是“函数为非奇非偶函数”的充分不必要条件.12.如果x≠2或y≠-1,则+≠0 解析:“x=2且y=-1”的否定为“x≠2或y≠-1”,“+=0”的否定为+≠0,故原命题的逆否命题为“如果x≠2或y≠-1,则+≠0”.13.解析:两个命题可分别表示为或,或,要使命题是命题的充分不必要条件,则解得.14.①②③解析:“若,则互为倒数”的逆命题为“若互为倒数,则”,是真命题;“四边相等的四边形是正方形”的逆命题为“正方形是四边相等的四边形”,是真命题,所以否命题也是真命题;“梯形不是平行四边形”是真命题,所以其逆否命题是真命题;“若则”的逆命题为“若则”,当不成立,是假命题.所以真命题为①②③.15.解:否命题为“若,则关于的方程没有实数根”;逆命题为“若关于的方程有实数根,则”;逆否命题为“若关于的方程没有实数根,则”.由方程的判别式,得,此时方程有实数根.因为使,所以方程有实数根,所以原命题为真,从而逆否命题为真.但方程有实数根,必须,不能推出,故逆命题为假,从而否命题为假.16.解:因为命题是真命题,所以是假命题.又当是真命题,即恒成立时,应有,所以当是假命题时,.所以实数的取值范围是.17.证明:(1)充分性:∵0<m<,∴方程m-2x+3=0根的判别式Δ=4-12m>0,且>0,∴方程m-2x+3=0有两个同号且不相等的实根.(2)必要性:若方程m-2x+3=0有两个同号且不相等的实根,则有解得0<m<.综合(1)(2)可知,方程m-2x+3=0有两个同号且不相等的实根的充要条件是0<m<. 18.解:(1)当时,=的图象与轴恒相交;(2)当时,二次函数=的图象和轴恒有公共点的充要条件是恒成立,即恒成立,又是一个关于的二次不等式,恒成立的充要条件是解得.综上,当时,;当时,.19.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.20.解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若是q的充分不必要条件,即q,且p.设A={x|p},B={x|q},则A B,又A={x|p}={x|x≤a或x≥3a},B={x|q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.。
苏教版高中数学选修1-1高二课时训练1.2简单的逻辑联结词.docx
一、填空题1.已知全集U =R ,A ⊆U ,B ⊆U ,如果命题p :a ∈(A ∪B ),则命题“非p ”是________.2.命题p :0不是自然数,命题q :π是无理数,在命题“p 且q ”“p 或q ”“﹁p ” “﹁q ”中,假命题是________,真命题是________.3.已知命题p :∅⊆{0},q :直线的倾斜角的取值范围是[0,π],由它们组成的“p ∨q ”、“p ∧q ”、“﹁p ”形式的新命题中,真命题的个数为________.4.已知下列命题:①梯形不是平行四边形;②等腰三角形的两个腰相等;③3≥2;④6是54和72的公约数.其中含有逻辑联结词的命题有:________.5.用“或”、“且”、“非”填空,使命题成为真命题:(1)x ∈A ∪B ,则x ∈A ________x ∈B ;(2)x ∈A ∩B ,则x ∈A ________x ∈B ;(3)若ab =0,则a =0________b =0;(4)a ,b ∈R,若a >0________b >0,则ab >0.6.若命题p :不等式ax +b >0的解集为{x |x >-b a},命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },则“p ∧q ”“p ∨q ”“﹁p ”形式的复合命题中的真命题是__________________.7.命题p :a 2+b 2<0(a ,b ∈R);命题q :a 2+b 2≥0(a ,b ∈R),则下列结论正确的是________. ①“p ∨q ”为真 ②“p ∧q ”为真③“﹁p ”为假 ④“﹁q ”为真8.已知命题p :存在x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p 且q ”是真命题;②命题“p 且非q ”是假命题;③命题“非p 或q ”是真命题;④命题“非p 或非q ”是假命题.其中正确的是________.9.已知命题p :函数y =log 0.5(x 2+2x +a )的值域为R ,命题q :函数y =-(5-2a )x 是减函数.若p 或q 为真命题,p 且q 为假命题,则实数a 的取值范围是________.二、解答题10.将下列命题用“或”、“且”、“非”联结成新命题,并判断它们的真假:(1)p :3是9的约数,q :3是18的约数;(2)p :菱形的对角线一定相等,q :菱形的对角线一定互相垂直.11.对命题p :1是集合{x |x 2<a }中的元素;q :2是集合{x |x 2<a }中的元素,则a 为何值时,“p 或q ”为真?a 为何值时,“p 且q ”为真?12.已知命题p :函数f (x )=log a |x |在区间(0,+∞)上单调递增,命题q :关于x 的方程x 2+2x +log a 32=0的解集只有一个子集,若“p 或q ”为真,“﹁p 或﹁q ”也为真,求实数a 的取值范围.答案1解析:一般情况下,复合命题“p 或q ”的否定为“非p 且非q ”,所以a ∉(A ∪B )⇔a ∈(∁U A ∩∁U B ).答案:a ∈(∁U A ∩∁U B )2答案:“p 且q ”与“﹁q ” “p 或q ”与“﹁p ”3解析:∵命题p 为真命题,q 为假命题,∴命题“p ∨q ”为真命题,“p ∧q ”为假命题,“﹁p ”为假命题.答案:14解析:①是“非p ”形式的命题;③是“p 或q ”形式的命题;④是“p 且q ”形式的命题.答案:①③④5答案:(1)或 (2)且 (3)或 (4)且6解析:因为命题p 、q 均为假命题,所以“p ∨q ”、“p ∧q ”为假命题,“﹁p ”为真命题.答案:﹁p7解析:∵p 假q 真,∴p ∨q 为真,p ∧q 为假,﹁p 为真,﹁q 为假.答案:①8解析:可判断p 真,q 真.答案:①②③④9解析:若命题p 为真,需x 2+2x +a >0恒成立,则Δ=4-4a <0,解之得a >1;若命题q 为真,则需5-2a >1,解之得a <2.而p 或q 为真命题,p 且q 为假命题,故命题p 为真且命题q 为假,或者命题p 为假且命题q 为真,根据数轴找出各集合的交集即可得答案.答案:a ≤1或a ≥210解:(1)p ∨q :3是9的约数或是18的约数,是真命题;p ∧q :3是9的约数且是18的约数,是真命题;﹁p :3不是9的约数,是假命题;﹁q :3不是18的约数,是假命题.(2)p ∨q :菱形的对角线一定相等或互相垂直,是真命题;p ∧q :菱形的对角线一定相等且互相垂直,是假命题;﹁p :菱形的对角线不一定相等,是真命题;﹁q :菱形的对角线不一定互相垂直,是假命题.11解:若p 为真,则1∈{x |x 2<a },所以12<a ,即a >1;若q 为真,则2∈{x |x 2<a },即a >4.若“p 或q ”为真,则a >1或a >4,即a >1;若“p 且q ”为真,则a >1且a >4,即a >4.12解:当命题p 为真命题时,应有a >1;当命题q 为真命题时,应有关于x 的方程x2+2x +log a 32=0无解,∴Δ=4-4log a 32<0,解得1<a <32,∵“p 或q ”为真,“﹁p 或﹁q ”也为真.∴应该有两种情况:(1)p 为真且q 为假,则﹁p 为假且﹁q 为真;(2)p 为假且q 为真,则﹁p 为真且﹁q 为假.由(1)得⎩⎪⎨⎪⎧ a >1a ≤1或a ≥32,解得a ≥32; 由(2)得⎩⎪⎨⎪⎧ a ≤11<a <32,该不等式组无解.综上可知,实数a 的取值范围是[32,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料唐玲出品新课标数学选修1-1常用逻辑用语训练一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。
1.有三个语句:⑴2x <;⑵210x -=;⑶20,()x x R <∈,其中是真命题的为 ( )A .⑴ ⑵B .⑴ ⑶C .⑵D .⑶2.下列语句中是命题的为 ( )A .你到过北京吗?B .对顶角难道不相等吗?C .啊!我太高兴啦!D .求证:2是无理数3.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数; ③梯形不是矩形;④方程21x =的解1x =±。
其中,复合命题有 ( )A .1个B .2个C .3个D .4个4.“220a b +≠”的含义为 ( )A .,a b 不全为0B . ,a b 全不为0C .,a b 至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为05.若命题“⌝p ”与命题“p ∨q ”都是真命题,那么 ( )A .命题p 与命题q 的真值相同B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 不一定是真命题6.命题p :若A B B =,则A B ⊆;命题q :若A B ⊄,则A B B ≠。
那么命题p 与命题q 的关系是 ( )A .互逆B .互否C .互为逆否命题D .不能确定7.若A :a ∈R,|a |<1, B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.有下列四个命题:①“若x+y=0 , 则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤1 ,则x 2 + 2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为 ( )A .①②B .②③C .①③D .③④9.设集合A={x |x 2+x -6=0},B={x |m x +1=0} ,则B 是A 的真子集的一个充分不必要的条件是( )A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .m=21-C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭10.设集合M={x| x>2},P={x|x<3},那么“x ∈M,或x ∈P ”是“x ∈M ∩P ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件二、填空题:请把答案填在题中横线上。
11.命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 ;12.已知各个命题A 、B 、C 、D ,若A 是B 的充分不必要条件,C 是B 的必要不充分条件,D是C 的充分必要条件,试问D 是A 的 条件(填:充分不必要、必要不充分、充要、既不充分也不必要);13.“△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为 ;14.用“充分、必要、充要”填空:①p ∨q 为真命题是p ∧q 为真命题的______条件;②⌝p 为假命题是p ∨q 为真命题的______条件;③A :|x - 2 |<3, B :x 2- 4x - 15<0, 则A 是B 的_____条件.三、解答题:解答应写出文字说明、证明过程或演算步骤。
15.写出下列命题的“⌝P ”命题:(1)正方形的四边相等。
(2)平方和为0的两个实数都为0。
(3)若ABC ∆是锐角, 则ABC ∆的任何一个内角是锐角。
(4)若0abc =,则,,a b c 中至少有一为0。
(5)若(1)(2)0,12x x x x --≠≠≠则且。
16.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假。
(1)p: 梯形有一组对边平行;q :梯形有一组对边相等。
(2)p: 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解。
(3)p: 不等式0122>+-x x 解集为R ;q: 不等式1222≤+-x x 解集为φ。
(4)p: ∅⊂≠{}0;:0.q φ∈17.命题:已知a 、b 为实数,若x 2+ax+b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假。
18.判断下列命题的真假:(1)已知,,,,a b c d R ∈若,,.a c b d a b c d ≠≠+≠+或则(2)已知,,,,a b c d R ∈若,,.a c b d a c b d +≠+≠≠则或(3)若21,20m x x m >-+=则方程无实数根。
(4)若A B ⊄, 则.AB B ≠19.证明2是无理数。
20.已知方程22(21)0x k x k +-+=。
求使方程有两个大于1的实数根的充要条件。
21.已知1:123x p --≤;2:210(0)q x x m -+≤> 若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围。
参考答案一、选择题:DBCAB CACBA二、填空题:11.若△ABC 有两个内角相等,则它是等腰三角形; 12.必要不充分条件;12.分析:回答D 是A 的什么条件,即判断命题A 与D 之间能否用推断符号相联系。
解:依题意知,,A B ⇒ 且 B A ① B ⇒C ,且C B ②D ⇔C ③ ∴ A ⇒D , 即D 是A 的必要条件。
若 D ⇒A ,则由,A B ⇒得 D ⇒B 。
又 D ⇔C , ∴ C ⇒B ,这与C B 矛盾。
∴ D A 。
即 D 是A 的不充分条件。
故D 是A 的必要不充分条件。
注意:在判断D 是否为A 的必要条件时,虽然由已知不能得到D ⇒A ,但要肯定D A ,还需证明,否则其必要性不能确定。
这是容易忽视的。
13.△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角;14.必要不充分、充分不必要、充要。
一、 解答题:15.解:⑴正方形的四边不都相等;⑵平方和为0的两个实数不都为0;⑶若ABC ∆是锐角, 则ABC ∆的任何一个内角不都是锐角;⑷若0abc =,则,,a b c 中没有一个为0;⑸若(1)(2)0,12x x x x --≠==则或。
点评:(1)“或”、“且”、“非”的理解与集合的“并”、“交”、“补”概念可结合起来考虑;(2)理解对命题中关键词的否定:关键词 等于 大于 小于 是 都是 至少一个 至多一个 任意 …P 或Q P 且Q 否定 不等于 不大于 不小于 不是 不都是 一个没有 至少两个 存在 … 非P 且非Q 非P 或非Q质疑:23x x <≥或是复合命题吗?——不是复合命题,因为23x x <≥与都不是命题。
不要认为凡是含有逻辑联结词的语句就是复合命题。
16.解:⑴ p 真,q 假, ∴“p ∨q”为真,“p ∧q”为假,“⌝p ”为假。
⑵ p 真,q 真, ∴“p ∨q”为真,“p ∧q”为真,“⌝p ”为假。
⑶ p 假,q 假, ∴“p ∨q”为假,“p ∧q”为假,“⌝p ”为真。
⑷ p 真,q 假, ∴“p ∨q”为真,“p ∧q”为假,“⌝p ”为假。
点评:按复合命题真值表判断其真假,关键是对简单命题真假的判断。
例5。
已知命题“⌝p 或⌝q ”是假命题,则下列命题的真假是:①p ∧q 是 ——; ② p ∨q 是——;③⌝p 是 ——。
分析与点评:根据符合命题真假知,命题⌝p 、⌝q 都是假命题,从而p 、q 都是假命题。
17.解:逆命题:已知a 、b 为实数,若0,0422≤++≥-b ax x b a则有非空解集. 否命题:已知a 、b 为实数,若02≤++b ax x 没有非空解集,则.042<-b a逆否命题:已知a 、b 为实数,若.042<-b a 则02≤++b ax x 没有非空解集。
原命题、逆命题、否命题、逆否命题均为真命题.归纳:①互为逆否的一对命题,同真或同假;②互逆的一对命题,不一定同真假;③互否的一对命题,不一定同真假。
质疑:①注意逆命题、否命题、逆否命题总是相对于原命题而言的,而原命题是已知、或认定、指定的命题也是相对的。
②对一个命题,总可以将其分为“条件”与“结论”两部分,从而总可以将一个命题写成“若p 则q.”的形式。
③命题中的条件、结论是开语句也可以,不一定要是命题。
18.分析:利用互为逆否的两个命题同真同假的关系,将不易判断真假的命题,转化为判断其逆否命题的真假(尤其是对否定式语句的命题)——充分利用等价转化的思想方法。
解⑴因为“已知,,,,a b c d R ∈若,,.ac bd a b c d ≠≠+≠+或则”的逆否命题是:“已知,,,,a b c d R ∈若,,.a b c d a c b d +=+==则且”我们不难举反例说明其逆否命题不正确,从而原命题是假命题。
⑵因为“已知,,,,a b c d R ∈若,,.a c b d a c b d +≠+≠≠则或”的逆否命题是:“已知,,,,a b c d R ∈若,,.a c b d a c b d ==+=+且则”这是一个真命题,因而原命题也是真命题;⑶因为“若21,20mx x m >-+=则方程无实数根”的逆否命题是:“若方程220x x m -+=有实数根,1m ≤则” 当方程220x x m -+=有实数根时,440,1m m ∆=-≥≤成立。
故其逆否命题正确,从而原命题是真命题; ⑷因为“若A B ⊄, 则.A B B ≠”的逆否命题“若A B B =, 则A B ⊆”不正确, 故“若A B ⊄, 则.A B B ≠”是假命题。
19.分析:要证2不是一个分数,直接去证明有困难,可以转化为证明命题2是有理数为假命题。
证明:假设2=(,,,)n m n N m n m+∈且互质,则2222,n m n =即为偶数。
n ∴为偶数。
设.2,n k k N +=∈ 则222242,2.k m m k ==即同理,m 为偶数。
2,,m n ∴是的一个约数,这与,m n 互质矛盾。
∴ 假设不成立。
∴2是无理数。
思考与归纳:(1)“2是无理数”,“2是无理数”两个命题之间有何关系?——不具备互逆、互否、互为逆否关系,而是其中一个对另一个的否定。
即对“2是有理数”的肯定判断与否定判断。
亦即 p:2是有理数。
⌝q:2是无理数。
(2) 要证命题p 为真,通过证明命题⌝p 为假,从而肯定命题p 为真的证明方法称反证法(3)证法证题的一般步骤是:①假设命题的结论不成立,即假设结论的反面成立—— 反判②从这个假设出发,经过推理论证,得出矛盾—— 归谬③由矛盾的产生可以判断假设不成立,从而肯定命题的结论正确 ——否定假设,肯定结论。