电源完整性设计详解

合集下载

电源完整性理解与设计

电源完整性理解与设计

电源完整性理解与设计一、定义:电源完整性(Powerintegrity)简称PI,是确认电源来源及目的端的电压及电流是否符合需求。

电源完整性在现今的电子产品中相当重要。

有几个有关电源完整性的层面:芯片层面、芯片封装层面、电路板层面及系统层面。

在电路板层面的电源完整性要达到以下三个需求:1、使芯片引脚的电压噪声+电压纹波比规格要求要小一些(例如芯片电源管脚的输入电压要求1V之间的误差小于+/-50mV)2、控制接地反弹(地弹)(同步切换噪声SSN、同步切换输出SSO)3、降低电磁干扰(EMI)并且维持电磁兼容性(EMC):电源分布网络(PDN)是电路板上最大型的导体,因此也是最容易发射及接收噪声的天线。

1.1“地弹”:是指芯片内部“地”电平相对于电路板“地”电平的变化现象。

以电路板“地”为参考,就像是芯片内部的“地”电平不断的跳动,因此形象的称之为地弹(groundbounce)。

当器件输出端由一个状态跳变到另一个状态时,地弹现象会导致器件逻辑输入端产生毛刺。

对于任何形式封装的芯片,其引脚必会存在电感电容等寄生参数,而地弹主要是由于GND引脚上的阻抗引起的。

集成电路的规模越来越大,开关速度不断提高,地弹噪声如果控制不好就会影响电路的功能,因此有必要深入理解地弹的概念并研究它的规律。

我们可以用下图来直观的解释一下。

图中开关Q的不同位置代表了输出的“0”“1”两种状态。

假定由于电路状态装换,开关Q接通RL低电平,负载电容对地放电,随着负载电容电压下降,它积累的电荷流向地,在接地回路上形成一个大的电流浪涌。

随着放电电流建立然后衰减,这一电流变化作用于接地引脚的电感LG,这样在芯片外的电路板“地”与芯片内的地之间,会形成一定的电压差,如图中VG。

这种由于输出转换引起的芯片A的输出变化,产生地弹。

这对芯片A的输入逻辑是有影响的。

接收逻辑把输入电压和芯片内部的地电压差分比较确定输入,因此从接收逻辑来看就象输入信号本身叠加了一个与地弹噪声相同的噪声。

电源完整性设计指导

电源完整性设计指导

电源、地平面的功能与设计原理............................................................................................. 20 2.1 电地平面的阻抗与滤波功能.....................................................................................21 2.1.1 电地平面地目标阻抗......................................................................................... 21 2.1.2 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 目标阻抗的获得..................................................................................................21 电地平面的信号参考功能......................................................................................... 26 电地平面的 EMI 抑制 ................................................................................................ 28 PCB 叠层的处理:.............................................................................................28 PCB 分割、布局、布线和电源平面分配问题 ...............................................28 地平面地划分和处理......................................................................................... 29 地电平面谐振地处理......................................................................................... 30 电源滤波的处理..................................................................................................31 其他与 EMI 密切相关的问题 ........................................................................... 31

电源完整性设计1

电源完整性设计1

电源完整性设计1
为什么要重视电源噪声问题
芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。

随着芯片的集成度越来越高,内部晶体管数量越来越大。

芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。

芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。

对内部各个晶体管的操作通常由内核时钟或片内外设时钟同步,但是由于内部延时的差别,各个晶体管的状态转换不可能是严格同步的,当某些晶体管已经完成了状态转换,另一些晶体管可能仍处于转换过程中。

芯片内部处于高电平的门电路会把电源噪声传递到其他门电路的输入部分。

如果接受电源噪声的门电路此时处于电平转换的不定态区域,那么电源噪声可能会被放大,并在门电路的输出端产生矩形脉冲干扰,进而引起电路的逻辑错误。

芯片外部电源引脚处的噪声通过内部门电路的传播,还可能会触发内部寄存器产生状态转换。

除了对芯片本身工作状态产生影响外,电源噪声还会对其他部分产生影响。

比如电源噪声会影响晶振、PLL、DLL 的抖动特性,AD 转换电路的转换精度等。

解释这些问题需要非常长的篇幅,本文不做进一步介绍,我会在后续文章中详细讲解。

由于最终产品工作温度的变化以及生产过程中产生的不一致性,如果是由于电源系统产生的问题,电路将非常难调试,因此最好在电路设计之初就遵循某种成熟的设计规则,使电源系统更加稳健。

电源完整性设计(2)电源系统噪声余量分析
绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是。

电源完整性设计

电源完整性设计

电容对于交流信号呈现低阻抗特性,因此加入电容,实际上就是 降低了电源系统的交流阻抗。 瞬态电流的剧变也要使得电压变化很小,这就要求阻抗足够低。 事实上,电源分配系统设计的原则便是使阻抗最小。
从储能的角度来理解电源退耦,非常直观易懂,但是对电路设计 帮助不大。从阻抗的角度理解电容退耦,能让我们的设计有章可 循。
从电源系统的角度进行去耦设计
不同容值的电容并联
反谐振
A.不同容值的电容并联,其阻抗特性曲线的底部要比相同容值并联阻 抗曲线的底部平坦,因而能更有效地在很宽的频率范围内减小阻抗。 B.在反谐振频率点处会产生EMI问题,合理的选择电容,尽可能的压低 反谐振点处的阻抗。
从电源系统的角度进行去耦设计
合理选择电容组合
相同容值的电容并联
使用很多电容并联能有效地减小阻抗。63 个0.0316uF的小电容(每个 电容ESL为1nH)并联的效果相当于一个具有0.159nH ESL 的1.9908uF 的电容。
从电源系统的角度进行去耦设计
单个电容
并联电容
单个电容及并联电容的阻抗特性如图所示。并联后仍有相同的 谐振频率,但是并联电容在每一个频率点上的阻抗都小于单个 电容。要在很宽的频率范围内满足目标阻抗要求,需要并联大 量的同值电容。
从电源系统的角度进行去耦设计
电容的去耦半径
理解去耦半径可以通过考察噪声源和电容补偿电流之间的相位关系感知源自压波动电源平面的电 压波动
去耦电容
放电补偿
去耦电容感知电压波动和放电到波动区域,都有时间延迟,因而便有相位 上的不一致。特定的电容,对与它自谐振频率相同的噪声补偿效果最好, 我们以这个频率来衡量这种相位关系。 补偿电流: 。自谐振频率为f,对应波长为λ,A是电流幅度, R为需要补偿的区域到电容的距离,C为信号传播速度。 R=λ/4时,电流和噪声源完全反相,补偿能量无法到达,去耦作用消失。 R=0时,全补偿。 要求R远小于λ/4,经验数据是λ/40~ λ/50.

电源完整性

电源完整性

引言电源完整性这一概念是以信号完整性为基础的,两者的出现都源自电路开关速度的提高。

当高速信号的翻转时间和系统的时钟周期可以相比时,具有分布参数的信号传输线、电源和地就和低速系统中的情况完全不同了。

与信号完整性是指信号在传输线上的质量相对应,电源完整性是指高速电路系统中电源和地的质量。

它在对高速电路进行仿真时,往往会因信号参考层的不完整造成信号回流路径变化多端,从而引起信号质量变差和产品的EMI性能变差,并直接影响信号完整性。

为了提高信号质量、产品的EMI性能,人们开始研究怎样为信号提供一个稳定、完整的参考平面,并随之提出了电源完整性的概念。

EDA厂商Cadence公司资深技术工程师曾指出,在未来的三到五年内,电源完整性设计将取代信号完整性设计成为高速PCB设计新的难点和重点。

电源完整性的影响因素及措施电源完整性的作用是为系统所有的信号线提供完整的回流路径。

但在技术高速发展以及生产成本的控制下,往往不能为所有的信号线提供理想而完整的回流路径,这就是说,在高速电路中,不能够简单地将电源和地当作理想的情况来处理。

这主要是因为地弹噪声太大、去耦电容设计不合理、回流影响严重、多电源/地平面的分割不当、地层设计不合理、电流分配不均匀、高频的趋肤效应导致系统阻抗变化等诸多因素都会破坏电源完整性。

地弹噪声地弹噪声也称为同步开关噪声(SSN),通常认为是由电路的感应引起的。

当电路中有较大的瞬态电流出现时(比如多条信号线上的信号同时翻转),会在电路分布参数所引起的感性阻抗上产生瞬态电压,进而便引起SSN。

芯片封装结构的SSN是由于突变的电流流过封装结构的引脚、引线和焊盘等寄生电感所导致。

如芯片的多个输出管脚同时触发时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压波动,此波动对其他共电源/地总线的静态驱动将构成严重的干扰,甚至引起误触发。

电源完整性设计:需要多大的电容量

电源完整性设计:需要多大的电容量

电源完整性设计-需要多大的电容量 需要多大的电容量 有两种方法确定所需的电容量。

第一种方法利用电源驱动的负载计算电容量。

这种方法 没有考虑 ESL 及 ESR 的影响,因此很不精确,但是对理解电容量的选择有好处。

第二种方 法就是利用目标阻抗(Target Impedance )来计算总电容量,这是业界通用的方法,得到了 广泛验证。

你可以先用这种方法来计算,然后做局部微调,能达到很好的效果,如何进行局 部微调,是一个更高级的话题。

下面分别介绍两种方法。

方法一:利用电源驱动的负载计算电容量 设负载(容性)为 30pF,要在 2ns 内从 0V 驱动到 3.3V,瞬态电流为:(公式 5) 如果共有 36 个这样的负载需要驱动,则瞬态电流为:36*49.5mA=1.782A 。

假设容许电压波 动为:3.3*2.5%=82.5 mV,所需电容量为 C=I*dt/dv=1.782A*2ns/0.0825V=43.2nF 说明:所加的电容实际上作为抑制电压波纹的储能元件,该电容必须在 2ns 内为负载提供 1.782A 的电流, 同时电压下降不能超过 82.5 mV, 因此电容值应根据 82.5 mV 来计算。

记住: 电容放电给负载提供电流,其本身电压也会下降,但是电压下降的量不能超过 82.5 mV(容 许的电压波纹) 。

这种计算没什么实际意义,之所以放在这里说一下,是为了让大家对去耦 原理认识更深。

方法二:利用目标阻抗计算电容量(设计思想很严谨,要吃透) 为了清楚的说明电容量的计算方法,我们用一个例子。

要去耦的电源为 1.2V,容许电 压波动为 2.5%,最大瞬态电流 600mA, 第一步:计算目标阻抗第二步:确定稳压电源频率响应范围。

和具体使用的电源片子有关,通常在 DC 到几百 kHz 之间。

这里设为 DC 到 100kHz 。

在 100kHz 以下时,电源芯片能很好的对瞬态电流做出反应,高于 100kHz 时,表现为很高 的阻抗,如果没有外加电容,电源波动将超过允许的 2.5%。

电源完整性设计详解

电源完整性设计详解

电源完整性设计详解目 录1 为什么要重视电源噪声问题?....................................................................- 1 -2 电源系统噪声余量分析................................................................................- 1 -3 电源噪声是如何产生的?............................................................................- 2 -4 电容退耦的两种解释....................................................................................- 3 -4.1 从储能的角度来说明电容退耦原理。

..............................................- 3 -4.2 从阻抗的角度来理解退耦原理。

......................................................- 4 -5 实际电容的特性............................................................................................- 5 -6 电容的安装谐振频率....................................................................................- 8 -7 局部去耦设计方法......................................................................................- 10 -8 电源系统的角度进行去耦设计..................................................................- 12 -8.1 著名的Target Impedance(目标阻抗)..........................................- 12 -8.2 需要多大的电容量............................................................................- 13 -8.3 相同容值电容的并联........................................................................- 15 -8.4 不同容值电容的并联与反谐振(Anti-Resonance)......................- 16 -8.5 ESR对反谐振(Anti-Resonance)的影响......................................- 17 -8.6 怎样合理选择电容组合....................................................................- 18 -8.7 电容的去耦半径................................................................................- 20 -8.8 电容的安装方法................................................................................- 21 -9 结束语..........................................................................................................- 24 -电源完整性设计详解1、为什么要重视电源噪声问题?芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。

集成电路中电源完整性分析与优化

集成电路中电源完整性分析与优化

集成电路中电源完整性分析与优化哎呀,一说起集成电路中的电源完整性分析与优化,这可真是个既有趣又有点复杂的话题。

就拿我前阵子遇到的一件事儿来说吧。

我有个朋友在一家小型电子厂工作,他们正在研发一款新的智能设备。

结果在测试阶段,总是出现莫名其妙的故障,一会儿屏幕闪烁,一会儿系统卡顿。

经过一番排查,发现问题竟然出在电源完整性上!咱们先来说说电源完整性是啥。

简单来讲,就是确保集成电路中电源的供应稳定、干净,没有杂波和干扰。

这就好比咱们家里用电,如果电压不稳,那电灯可能会忽明忽暗,电器也容易出毛病。

在集成电路里也是一样,如果电源不干净、不稳定,那整个电路系统就可能会“闹脾气”,不好好工作。

那怎么去分析电源完整性呢?这可得有一双“火眼金睛”。

首先,得看看电源的布线合不合理。

就像咱们修马路,如果路修得弯弯曲曲、宽窄不一,那车跑起来能顺畅吗?电源布线也是这个道理,如果线走得乱七八糟,电流通过的时候就会遇到阻碍,产生压降和噪声。

再来说说电源的阻抗。

阻抗这东西就像电路中的“拦路虎”,如果阻抗不匹配,那电源能量的传输就会大打折扣。

想象一下,你想给朋友递个东西,结果中间有人伸手拦一下,东西能顺利到朋友手里吗?还有电容的布局和选型也很关键。

电容就像是电路中的“小水库”,能储存和释放电能,起到平滑电源波动的作用。

要是电容选得不对或者放的位置不合适,那“小水库”可就发挥不了作用啦。

分析完了,就得想办法优化。

优化的方法有很多,比如说合理规划电源平面,让电流能够顺畅地流动;选择合适的去耦电容,把电源中的杂波“吃掉”;还有优化电源的布线,减少阻抗。

就像我朋友他们那个产品,经过仔细的分析和优化,重新调整了电源布线,增加了一些合适的去耦电容,问题终于解决了,产品也顺利投入生产。

总之,集成电路中的电源完整性分析与优化可不是一件简单的事儿,需要我们像侦探一样,仔细观察、认真分析,找到问题的根源,然后对症下药,才能让集成电路稳定可靠地工作。

这不仅需要扎实的理论知识,还需要丰富的实践经验。

电源完整性设计

电源完整性设计

电源完整性设计在电路设计中,一般我们很关心信号的质量问题,但有时我们往往局限在信号线上进行研究,而把电源和地当成理想的情况来处理,虽然这样做能使问题简化,但在高速设计中,这种简化已经是行不通的了。

尽管电路设计比较直接的结果是从信号完整性上表现出来的,但我们绝不能因此忽略了电源完整性设计。

因为电源完整性直接影响最终PCB 板的信号完整性。

电源完整性和信号完整性二者是密切关联的,而且很多情况下,影响信号畸变的主要原因是电源系统。

例如,地反弹噪声太大、去耦电容的设计不合适、回路影响很严重、多电源/地平面的分割不好、地层设计不合理、电流不均匀等等。

1)电源分配系统电源完整性设计是一件十分复杂的事情,但是如何近年控制电源系统(电源和地平面)之间阻抗是设计的关键。

理论上讲,电源系统间的阻抗越低越好,阻抗越低,噪声幅度越小,电压损耗越小。

实际设计中我们可以通过规定最大的电压和电源变化范围来确定我们希望达到的目标阻抗,然后,通过调整电路中的相关因素使电源系统各部分的阻抗(与频率有关)目标阻抗去逼近。

2)地反弹当高速器件的边缘速率低于0.5ns 时,来自大容量数据总线的数据交换速率特别快,当它在电源层中产生足以影响信号的强波纹时,就会产生电源不稳定问题。

当通过地回路的电流变化时,由于回路电感会产生一个电压,当上升沿缩短时,电流变化率增大,地反弹电压增加。

此时,地平面(地线)已经不是理想的零电平,而电源也不是理想的直流电位。

当同时开关的门电路增加时,地反弹变得更加严重。

对于128 位的总线,可能有50_100 个I/O 线在相同的时钟沿切换。

这时,反馈到同时切换的I/O 驱动器的电源和地回路的电感必须尽可能的低,否则,连到相同的地上的静止将出现一个电压毛刷。

地反弹随处可见,如芯片、封装、连接器或电路。

Cadence-PDN电源完整性分析

Cadence-PDN电源完整性分析

Cadence PDN电源平面完整性分析——孙海峰 随着超大规模集成电路工艺的发展,芯片工作电压越来越低,而工作速度越来越快,功耗越来越大,单板的密度也越来越高,因此对电源供应系统在整个工作频带内的稳定性提出了更高的要求。

电源完整性设计的水平直接影响着系统的性能,如整机可靠性,信噪比与误码率,及EMI/EMC等重要指标。

板级电源通道阻抗过高和同步开关噪声SSN过大会带来严重的电源完整性问题,这些会给器件及系统工作稳定性带来致命的影响。

PI设计就是通过合理的平面电容、分立电容、平面分割应用确保板级电源通道阻抗满足要求,确保板级电源质量符合器件及产品要求,确保信号质量及器件、产品稳定工作。

Cadence PCB PDN analysis电源平面分析主要可以解决以下几个问题:板级电源通道阻抗仿真分析,在充分利用平面电容的基础上,通过仿真分析确定旁路电容的数量、种类、位置等,以确保板级电源通道阻抗满足器件稳定工作要求。

板级直流压降仿真分析,确保板级电源通道满足器件的压降限制要求。

板级谐振分析,避免板级谐振对电源质量及EMI的致命影响等。

那么Cadence PCB PDN analysis如何对PCB进行电源平面完整性的分析?接下来,我将以一个3v3如下图所示的电源平面为例,来进行该平面的电源平面分析。

对图中3v3电源平面进行完整性分析,具体步骤将作详细解析。

在对该电源平面进行分析之前,我们需要首先确定PCB参数的精确,如:电源平面电平Identify DC Nets、PCB叠层参数Cross-Section等,这些参数都必须和PCB板厂沟通(板厂对叠层参数生产能力不同),在此基础上精确参数方能得到精确的分析结果。

这些参数也可以在PDN Analysis分析界面上点击Identify DC Nets,Cross-Section来调整优化。

1. 认识PCB PDN analysis分析界面调用Allegro PCB PDN Option或者Allegro SI-GXL的license打开PCB设计分析界面,然后在该界面中执行Analyze/PDN Analysis命令即可打开PDN分析界面。

电源完整性整理要点

电源完整性整理要点

电源完整性分析-郝晓飞PI电源完整性(Power Integrity ,简称PI ):当大量芯片内的电路输出级同时动作时,会产生较大的瞬态电流,这时由于供电线路上的电阻电感的影响,电源线上和地线上电压就会波动和变化 ,良好的电源分配网络设计是电源完整性的保证。

造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;二是电流回路存在电感。

从表面形式上来看又可以分为三类:同步开关噪声(SSN ),有时被称为Δi 噪声,地弹(Ground bounce )现象也可归于此类;非理想电源阻抗影响;谐振及边缘效应。

电源完整性的作用是为系统所有的信号线提供完整的回流路径。

破坏电源完整性的主要因素只要有以下几种:地弹噪声太大,去耦电容设计不合理,回流影响严重,多电源、地平面的分割不当,地层设计不合理,电流分配不均匀,高频的趋肤效应导致系统阻抗变化等等。

正常情况下,电压波动范围不超过+/-5%。

例如,一个10v 的电源,允许的波动范围为5%,最大瞬间电流为1A,那么最大电源阻抗为:Ω=⨯=⨯=0.51A5%V 5)()(arg )()(最大电流允许的波动范围正常电源电压et r Z然而,目前电路设计的趋势是电压变小,瞬时电流变大,从上面的公式可以看到,最大的电源阻抗呈现下降的趋势,这就更加要求我们在电源完整性设计的过程中减小电源阻抗。

在设计电源阻抗的时候,我们不仅要计算直流阻抗(电阻),还要考虑高频下的交流阻抗(主要是电感)。

一般在时钟的上升和下降沿,电源系统会产生瞬间的电流变化,用如下公式来表达受阻抗影响的电源电压波动:dtdiL R i V drop ⋅+⋅= 通过观察公式,我们在设计过程中可以考虑通过如下措施达到降低电源的电阻和电感:① 使用电阻率低的材料,比如铜;② 用较厚、较粗的电源线,并尽可能减少长度; ③ 降低接触电阻; ④ 减小电源内阻; ⑤ 电源尽量靠近GND ; ⑥合理使用去耦电容。

第四讲——电源完整性及相关设计

第四讲——电源完整性及相关设计

电源完整性及相关设计融合电路与电磁场主要指数模混合设计和EMI/EMC设计。

SI、PI、timing之间是互相影响的。

电路抽象的层次逻辑层(Logic Level):功能、行为描述,如:HDL等。

电路层(Circuit Level): 求解V/I 方程,基于接点, 使用spice 集中或分布等效电路,如:原理图、spice网表等。

电磁层(EM Level): 求解Maxwell方程,基于物理结构,解决隐含原理图问题,如2D、2.5D、3D 场分析.可以将电路设计抽象为下面几个层次:1.逻辑层(Logic Level):功能、行为描述,比如HDL方式,设计FPGA。

2.电路层(Circuit Level):求解V/I 方程,基于节点, 使用spice 集中或分布等效电路,方式有原理图、spice网表等。

关心信号的模拟特性。

3. 电磁层(EM Level):求解Maxwell方程,基于物理结构,解决隐含原理图问题,关注器件位置的远近,平面分割,信号回路,滤波电容的特性等。

方式有2D(如传输线分析)、2.5D(如FEM分析)、3D场分析(典型软件是ANSOFT公司的HFSS)。

关心电磁波在PCB中的传播。

分析问题时将电路层和电磁场层结合起来,可以解决大部分问题。

隐含原理图的负面影响电路的信躁比(SNR)电路的不确定性(timing & amplitudeuncertainty)EMI/EMC/ESD需要多考虑一些隐含的东西,如滤波等。

常见工程问题复杂数模混合PCB的电源、地分割与连接。

噪声耦合的路径分析。

去耦电容的选择与放置。

过孔的设计与放置。

电源平面的滤波。

通道与通道之间的干扰与不匹配。

BER, EMC/EMI/ESD等可靠性指标问题。

常见的工程问题主要有:1.复杂数模混合PCB的电源、地分割与连接。

2.噪声耦合的路径分析。

电子元器件通过电磁场相互影响,可能是信号线,也可能是平面会藕合噪声。

电源完整性基础讲解

电源完整性基础讲解

电源完整性基础讲解1.从信号完整性角度分析电源将SI以大类来看,其SI&PI&EMI三者的关系:2.电源完整性系统框图3.电源分配网络PDN讲解:电源完整性(PI)更关注于电源路径及终端,也就是电源分配网络(PDN)。

从源端稳压模块(VRM)经过路径(单层直达或过孔转换的几个层面),到达终端,最终流向使用芯片或经过线缆到使用设备。

电源路径与信号路径是有区别的,电源分配网络中一个电源路径可以在一个节点分成多个路径,或者说转换成多个电源,终端挂多个元器件,可以理解为一对多。

而信号路径只能一对一。

既然电源分配网络是为终端设备提供所需电源,那就是有要求,就需要对电源分配网络管控。

如信号路径,除了保证返回电流,还要尽量保证返回路径的低阻抗。

由于是一对多的情况,这样的管控,才能保证返回电流不相互重叠,不会发生地弹,即尽量避免开关噪声(SSN)。

基本要求是,保证供电电压稳定,至少能够维持在一个很小的容差范围内,通常在+/-5%以内。

电源的测试中有纹波测试,这个纹波测试标准就是+/-5%。

讲到返回电流,这里就要分为直流部分和交流部分。

直流部分:终端设备需要稳定的电压输出,电源分配网络互连之间串联电阻的存在,直流部分通过,就会产生压降,通常称为IR 压降。

当电流发生波动时,压降也会随之波动,从而影响终端设备的识别。

之前的USB设备好像最低电压值4.75 V。

交流部分:当交流电流通过电源路径时,电源分配网络上也将产生电压降,这个压降会随着频率发生变化:电源路径的不同(层数&Shape宽度等),造成的压降变化是不同的,输出稳定电压到终端的难度很大,我们所要做的只是保证电压的变化在一定的范围之内,也就是所谓的噪声容差。

上式就可能转换为目标阻抗:既然保证不了路径上电压的稳定,那么电源分配网络的电流在波动的情况下,就需要保持电源分配网络阻抗低于目标阻抗。

需要注意的是,即使同一个电源芯片或模块,针对不同的产品,也会给出不同的标准。

电源完整性分析与设计

电源完整性分析与设计
电力 电子 ● P o we r E l e c t r o n i c s
电源完整性 分析与设计
文/ 沙 卓 恒
上 的电阻值尽量的小。理想状态下可 以假设传 本 文 将通 过对 电源完整 性 简 单 介 绍和 分析 来使 得在 产 品的设 计过 程 中能 降低设 计 的 复杂度 、 并更快,更好的完成产 品。
作者单位
江苏国光信 息产 业股份有 限公 司 江苏省常州
市 2 1 3 0 0 0
量保证源端输 出的电压到接收端 的电压能保持

与感抗 正好抵消,此时的阻抗为最小 。所 以设
计 时 尽 量 选 用 和 工 作 频 率 相 近 的 电容 。 因此 在
致 性 。为 此 需 要 让 驱 动 端 到 接 收 端 的传 输 线
2 3 2 ・电子 技术 与软 件工 程
E l e c t r o n i c T e c h n o l o g y &S o f t w a r e E n g i n e e r i n g
3 电源 完 整 性 的设 计 目标 与 分析
电 源 完 整 性 需 要 解 决 的最 大 问 题 就 是 尽
电感, 寄生 电阻 串联而 成元 件 。串联 的 R L C
是存在 电容 白谐振频率 f o 。其中 f o 的左边称为
容 性 , 右边 称 为 感 性 , 发 生 谐 振 时 电容 的 容 抗
输 线 的 阻 抗 为 零 , 那 么 该 传 输 线 上 的 任 一 点 的
对 去耦 电容进 行选 择的时候需要充分利用其容
性 的特 性 。 也可 以根 据 实 际设 计 需求 进 行 多 电
电压都相 等,即驱动端到接收端的 电压为一定 值 。然而 实际传 输线的阻抗是不为零 的,传输 线或者传 输平面都存在一定的损耗 ,因此供端 电压到接 收端的电压并不是恒 定值。

ADS信号完整性与电源完整性的仿真分析与设计

ADS信号完整性与电源完整性的仿真分析与设计

ADS信号完整性与电源完整性的仿真分析与设计ADS(Advanced Design System)是一种强大的电子设计自动化(EDA)软件,用于电路和系统级设计。

在电路设计中,信号完整性(SI)和电源完整性(PI)是非常重要的因素。

因此,进行ADS信号完整性和电源完整性的仿真分析与设计是必不可少的。

信号完整性是指在高速数字信号传输的过程中,保持信号的完整性,避免信号的损失和失真。

电源完整性是指在高速数字电路中,保持电源电压稳定和电源噪声控制在可接受的范围内。

信号完整性和电源完整性在高速数字设计中相互影响,因此需要进行综合的仿真分析和设计。

首先,进行ADS信号完整性仿真分析与设计。

在进行信号完整性仿真时,主要考虑以下因素:1.传输线特性:对于高速信号传输,传输线特性是非常重要的。

可以通过ADS中的传输线模型来模拟传输线参数,如阻抗、延迟等。

通过仿真分析传输线的特性,可以确定合适的传输线设计参数。

2.反射和串扰:在高速信号传输过程中,反射和串扰是常见的问题。

可以通过ADS中的S参数仿真来分析信号的反射和串扰情况。

根据仿真结果,可以进行线路调整和匹配设计,减少反射和串扰产生的影响。

3.功耗和功耗分布:在高速数字设计中,功耗和功耗分布对信号完整性有着重要的影响。

可以通过仿真分析电路的功耗和功耗分布,根据仿真结果进行优化设计,提高信号完整性。

同时,进行ADS电源完整性仿真分析与设计。

在进行电源完整性仿真时,主要考虑以下因素:1.电源电压稳定:在高速数字电路中,电源电压的稳定性对电路性能有着重要的影响。

可以通过ADS中的电源仿真模块来分析电源电压的稳定性,并根据仿真结果进行电源电路设计和优化。

2.电源噪声:在高速数字电路中,电源噪声是一个常见的问题。

可以通过ADS中的噪声仿真模块来分析电源噪声的影响,并根据仿真结果进行滤波器设计和优化,降低电源噪声对电路性能的影响。

3.电源供电线路:在进行电源完整性设计时,还需要考虑电源供电线路的设计。

电源的完整性培训

电源的完整性培训

电源的完整性培训概要•1,电源完整性的定义•2,电源传输系统的阻抗•3,电源传输系统的噪声•4,电源传输系统中的电容•5,一般的设计原则电源完整性的定义•电源完整性:简称PI(power integrity),指在高速系统中,电压在整个电源传输系统上保持稳定。

电源传输系统(PDS power deliver system)在不同频率上,阻抗特性不同,使PCB板上电源层与地层间的电压在电路板的各处不尽相同,从而造成供电不连续,产生电源噪声,使芯片不能正常工作;同时由于高频辐射,电源完整性问题还会带来EMC/EMI问题。

电源系统的阻抗•电源系统的阻抗:理想电源的阻抗为0,0阻抗保证了源端电压与负载端电压一致,而实际的系统中因为电感的存在导致了负载端电压的波动,如下图:电源系统的阻抗•电源平面的阻抗计算公式:电源平面的电感:电源平面的电容:上面的电源阻抗计算公式是在没有考虑平面谐振的情况下得出的。

•电源平面的目标阻抗:电源平面的目标阻抗•Ztarget目标阻抗•Power Supply Voltage是工作电压•Allowed Ripple 是允许的工作电压纹波系数•Current 是工作电流•如1.8V的工作电流2A,允许的纹波系数5%,那么它的目标阻抗为:•平面的谐振•电源、地平面可以看作一个电容器,但是在高频时,由于分布电感ESL的影响,电源、地平面相当于一个谐振腔,具有谐振特性,而且自谐振频率是物理结构函数,在其谐振频率上将表现出很高的阻抗,如果信号工作频率或者其高次谐波正好在这个谐振频率上,那么整个系统就是一个巨大的干扰辐射源。

平面的谐振•平面谐振的示意图:电源传输系统的噪声电源系统噪声大略有以下几种:•纹波与开关电源高频干扰噪声•同步开关噪声•非理想电源平面阻抗的影响•电源平面的谐振效应•电源地反弹•大功率模拟电路如功放、大电流继电器等同步开关噪声•同步开关噪声(Simultaneous Switch Noise,简称SSN):是指当器件处于开关状态,产生瞬间变化的电流(di/dt),在经过回流途径上存在的电感时,形成交流压降,从而引起噪声,所以也称为Δi噪声。

信号完整性与电源完整性的详细分析

信号完整性与电源完整性的详细分析

信号完整性与电源完整性的详细分析最近在论坛里看到一则关于电源完整性的提问,网友质疑大家普遍对信号完整性很重视,但对于电源完整性的重视好像不够,主要是因为,对于低频应用,开关电源的设计更多靠的是经验,或者功能级仿真来辅助即可,电源完整性分析好像帮不上大忙,而对于50M -100M以内的中低频应用,开关电源中电容的设计,经验法则在大多数情况下也是够用的,甚至一些芯片公司提供的Excel表格型工具也能搞定这个频段的问题,而对于100M以上的应用,基本就是IC的事情了,和板级没太大关系了,所以电源完整性仿真,除非能做到芯片到芯片的解决方案,加上封装以及芯片的模型,纯粹做板级的仿真意义不大,真是这样吗?其实电源完整性可做的事情还很多,下面就来了解了解吧。

信号完整性与电源完整性分析信号完整性(SI)和电源完整性(PI)是两种不同但领域相关的分析,涉及数字电路正确操作。

在信号完整性中,重点是确保传输的1在接收器中看起来就像1(对0同样如此)。

在电源完整性中,重点是确保为驱动器和接收器提供足够的电流以发送和接收1和0。

因此,电源完整性可能会被认为是信号完整性的一个组成部分。

实际上,它们都是关于数字电路正确模拟操作的分析。

分析的必要性如果计算资源是无限的,这些不同类型的分析可能不存在。

整个电路将会被分析一次,而电路某一部分中的问题将会被识别并消除。

但除了受实际上可仿真哪些事物的现实束缚之外,具有不同领域分析的优点在于,可成组解决特定问题,而无需归类为“可能出错的任何事物”。

在信号完整性中,例如,重点是从发射器到接收器的链路。

可仅为发射器和接收器以及中间的一切事物创建模型。

这使得仿真信号完整性变得相当简单。

另一方面,要仿真电源完整性可能有点困难,因为“边界”有点不太明确,且实际上对信号完整性领域中的项目具有一定的依赖性。

在信号完整性中,目标是消除关于信号质量、串扰和定时的问题。

所有这些类型的分析都。

高速PCB中电源完整性的设计

高速PCB中电源完整性的设计

高速PCB中电源完整性的设计
中心议题:
* 电源噪声的起因及分析
* 去耦电容的应用
* 电源回路的设计
解决方案:
* 电源的分层设计来考虑
* 电容与芯片尽可能靠近芯片器件* 利用电源层和地层作为回路,减少了返回环路面积
一、引言
随着PCB 设计复杂度的逐步提高,对于信号完整性的分析除了反射,串扰以及EMI 之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。

尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,于是人们提出了新的名词:电源完整性,简称
PI(powerintegrity)。

当今国际市场上,IC 设计比较发达,但电源完整性设计还是一个薄弱的环节。

因此本文提出了PCB 板中电源完整性问题的产生,分析了影响电源完整性的因素并提出了解决PCB 板中电源完整性问题的优化方法与经验设计,具有较强的理论分析与实际工程应用价值。

二、电源噪声的起因及分析
对于电源噪声的起因我们通过一个与非门电路图进行分析。

图1 中的电路图为一个三输入与非门的结构图,因为与非门属于数字器件,它是通过1 和0 电平的切换来工作的。

随着IC 技术的不断提高,数字器件的切换速度也越来越快,这就引进了更多的高频分量,同时回路中的电感在高频下就很容易引起电。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于博士信号完整性研究网电源完整性设计详解作者:于争 博士2009年4月10日目 录1 为什么要重视电源噪声问题?....................................................................- 1 -2 电源系统噪声余量分析................................................................................- 1 -3 电源噪声是如何产生的?............................................................................- 2 -4 电容退耦的两种解释....................................................................................- 3 -4.1 从储能的角度来说明电容退耦原理。

..............................................- 3 -4.2 从阻抗的角度来理解退耦原理。

......................................................- 4 -5 实际电容的特性............................................................................................- 5 -6 电容的安装谐振频率....................................................................................- 8 -7 局部去耦设计方法......................................................................................- 10 -8 电源系统的角度进行去耦设计..................................................................- 12 -8.1 著名的Target Impedance(目标阻抗)..........................................- 12 -8.2 需要多大的电容量............................................................................- 13 -8.3 相同容值电容的并联........................................................................- 15 -8.4 不同容值电容的并联与反谐振(Anti-Resonance)......................- 16 -8.5 ESR对反谐振(Anti-Resonance)的影响......................................- 17 -8.6 怎样合理选择电容组合....................................................................- 18 -8.7 电容的去耦半径................................................................................- 20 -8.8 电容的安装方法................................................................................- 21 -9 结束语..........................................................................................................- 24 -电源完整性设计详解1、为什么要重视电源噪声问题?芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。

随着芯片的集成度越来越高,内部晶体管数量越来越大。

芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。

芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。

对内部各个晶体管的操作通常由内核时钟或片内外设时钟同步,但是由于内部延时的差别,各个晶体管的状态转换不可能是严格同步的,当某些晶体管已经完成了状态转换,另一些晶体管可能仍处于转换过程中。

芯片内部处于高电平的门电路会把电源噪声传递到其他门电路的输入部分。

如果接受电源噪声的门电路此时处于电平转换的不定态区域,那么电源噪声可能会被放大,并在门电路的输出端产生矩形脉冲干扰,进而引起电路的逻辑错误。

芯片外部电源引脚处的噪声通过内部门电路的传播,还可能会触发内部寄存器产生状态转换。

除了对芯片本身工作状态产生影响外,电源噪声还会对其他部分产生影响。

比如电源噪声会影响晶振、PLL、DLL的抖动特性,AD转换电路的转换精度等。

解释这些问题需要非常长的篇幅,本文不做进一步介绍,有兴趣的可以关注于博士信号完整性研究网,我会在后续文章中详细讲解。

由于最终产品工作温度的变化以及生产过程中产生的不一致性,如果是由于电源系统产生的问题,电路将非常难调试,因此最好在电路设计之初就遵循某种成熟的设计规则,使电源系统更加稳健。

2、电源系统噪声余量分析绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是±5%。

例如:对于3.3V 电压,为满足芯片正常工作,供电电压在3.13V到3.47V之间,或3.3V±165mV。

对于1.2V 电压,为满足芯片正常工作,供电电压在1.14V到1.26V之间,或1.2V±60mV。

这些限制可以在芯片datasheet中的recommended operating conditions部分查到。

这些限制要考虑两个部分,第一是稳压芯片的直流输出误差,第二是电源噪声的峰值幅度。

老式的稳压芯片的输出电压精度通常是±2.5%,因此电源噪声的峰值幅度不应超过±2.5%。

当然随着芯片工艺的提高,现代的稳压芯片直流精度更高,可能会达到±1%以下,TI公司的开关电源芯片TPS54310精度可达±1%,线性稳压源AMS1117可达±0.2%。

但是要记住,达到这样的精度是有条件的,包括负载情况,工作温度等限制。

因此可靠的设计还是以±2.5%这个值更把握些。

如果你能确保所用的芯片安装到电路板上后能达到更高的稳压精度,那么你可以为你的这款设计单独进行噪声余量计算。

本文着重电源部分设计的原理说明,电源噪声余量将使用±2.5%这个值。

电源噪声余量计算非常简单,方法如下:比如芯片正常工作电压范围为3.13V到3.47V之间,稳压芯片标称输出3.3V。

安装到电路板上后,稳压芯片输出3.36V。

那么容许电压变化范围为3.47-3.36=0.11V=110mV。

稳压芯片输出精度±1%,即±3.363*1%=±33.6 mV。

电源噪声余量为110-33.6=76.4 mV。

计算很简单,但是要注意四个问题:第一,稳压芯片输出电压能精确的定在3.3V么?外围器件如电阻电容电感的参数也不是精确的,这对稳压芯片的输出电压有影响,所以这里用了3.36V这个值。

在安装到电路板上之前,你不可能预测到准确的输出电压值。

第二,工作环境是否符合稳压芯片手册上的推荐环境?器件老化后参数还会和芯片手册上的一致么?第三,负载情况怎样?这对稳压芯片的输出电压也有影响。

第四,电源噪声最终会影响到信号质量。

而信号上的噪声来源不仅仅是电源噪声,反射串扰等信号完整性问题也会在信号上叠加噪声,不能把所有噪声余量都分配给电源系统。

所以,在设计电源噪声余量的时候要留有余地。

另一个重要问题是:不同电压等级,对电源噪声余量要求不一样,按±2.5%计算的话,1.2V电压等级的噪声余量只有30mV。

这是一个很苛刻的限制,设计的时候要谨慎些。

模拟电路对电源的要求更高。

电源噪声影响时钟系统,可能会引起时序匹配问题。

因此必须重视电源噪声问题。

3、电源噪声是如何产生的?电源系统的噪声来源有三个方面:第一,稳压电源芯片本身的输出并不是恒定的,会有一定的波纹。

这是由稳压芯片自身决定的,一旦选好了稳压电源芯片,对这部分噪声我们只能接受,无法控制。

第二,稳压电源无法实时响应负载对于电流需求的快速变化。

稳压电源芯片通过感知其输出电压的变化,调整其输出电流,从而把输出电压调整回额定输出值。

多数常用的稳压源调整电压的时间在毫秒到微秒量级。

因此,对于负载电流变化频率在直流到几百KHz之间时,稳压源可以很好的做出调整,保持输出电压的稳定。

当负载瞬态电流变化频率超出这一范围时,稳压源的电压输出会出现跌落,从而产生电源噪声。

现在,微处理器的内核及外设的时钟频率已经超过了600兆赫兹,内部晶体管电平转换时间下降到800皮秒以下。

这要求电源分配系统必须在直流到1GHz范围内都能快速响应负载电流的变化,但现有稳压电源芯片不可能满足这一苛刻要求。

我们只能用其他方法补偿稳压源这一不足,这涉及到后面要讲的电源去耦。

第三,负载瞬态电流在电源路径阻抗和地路径阻抗上产生的压降。

PCB板上任何电气路径不可避免的会存在阻抗,不论是完整的电源平面还是电源引线。

对于多层板,通常提供一个完整的电源平面和地平面,稳压电源输出首先接入电源平面,供电电流流经电源平面,到达负载电源引脚。

地路径和电源路径类似,只不过电流路径变成了地平面。

完整平面的阻抗很低,但确实存在。

如果不使用平面而使用引线,那么路径上的阻抗会更高。

另外,引脚及焊盘本身也会有寄生电感存在,瞬态电流流经此路径必然产生压降,因此负载芯片电源引脚处的电压会随着瞬态电流的变化而波动,这就是阻抗产生的电源噪声。

在电源路径表现为负载芯片电源引脚处的电压轨道塌陷,在地路径表现为负载芯片地引脚处的电位和参考地电位不同(注意,这和地弹不同,地弹是指芯片内部参考地电位相对于板级参考地电位的跳变)。

4、电容退耦的两种解释采用电容退耦是解决电源噪声问题的主要方法。

这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。

相关文档
最新文档