营销问题及平均变化率问题与一元二次方程【公开课教案】

合集下载

九年级数学上册-北师大版九年级上册数学 第2课时 利用一元二次方程解决营销问题及平均变化率问题教案

九年级数学上册-北师大版九年级上册数学      第2课时  利用一元二次方程解决营销问题及平均变化率问题教案

第2课时 利用一元二次方程解决营销问题及平均变化率问题教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。

(n 为相距时间)原数(1 - 平均减少率)n = 。

例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。

针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)课堂练习1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)2、某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。

2.6 第2课时 营销问题及平均变化率问题与一元二次方程

2.6 第2课时 营销问题及平均变化率问题与一元二次方程
第二章 一元二次方程
2.6 应用一元二次方程
第2课时 营销问题及平均变化率问题
学习目标
1.会用一元二次方程的方法解决营销问题及平均变化率 问题.(重点、难点)
2.进一步培养学生化实际问题为数学问题的能力及分析问 题解决问题的能力.
导入新课
问题引入
小明学习非常认真,学习成绩直线上升,第一次月考数 学成绩是80分,第二次月考增长了10%,第三次月考又增长 了10%,问他第三次数学成绩是பைடு நூலகம்少?
分析:设这个增长率为x,则
二月份营业额为:__2_0_0_(1_+_x_)__________. 三月份营业额为:_2_0_0_(_1_+_x_)_2 ______. 根据: 一月、二月、三月的营业额共950万元. . 作为等量关系列方程为:
200+200(1+x) +200(1+x)2=950
例4 某公司去年的各项经营中,一月份的营业额为200万元, 一月、二月、三月的营业额共950万元,如果平均每月营业额的 增长率相同,求这个增长率.
营销问题
a(1+x)2=b,其中a为增长前 的量,x为增长率,2为增长 次数,b为增长后的量.
平均变化率问题
a(1-x)2=b,其中a为降低前的 量,x为降低率,2为降低次 数,b为降低后的量.注意1 与x位置不可调换.
5000
5000(1-x)
500500(010-x(1)(-1x-)x2 )
典例精析
例3 前年生产1吨甲种药品的成本是5000元,随着生产
技术的进步,现在生产1吨甲种药品的成本是3000元,试求
甲种药品成本的年平均下降率是多少?
解:设甲种药品的年平均下降率为x.根据题意,列方

2.6 应用一元二次方程(第2课时)北师大版九年级数学上册教学详案

2.6 应用一元二次方程(第2课时)北师大版九年级数学上册教学详案

第二章一元二次方程6 应用一元二次方程第2课时 销售及变化率问题教学目标教学反思1.会用列一元二次方程的方法解决营销问题及平均变化率问题.2.进一步培养学生化实际问题为数学问题的能力和分析问题、解决问题的能力,培养学生应用数学的意识.教学重难点重点:会用列一元二次方程的方法解决营销问题及平均变化率问题.难点:如何找出等量关系.教学过程导入新课某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?探究新知一、温故知新1.某商人将进价为每件8元的某种商品按每件10元出售,则1件的利润是_____;若每天可售出100件,则1天的总利润是_________.2.利润问题的两个主要等量关系:1件的利润=1件的售价-1件的进价;总利润=每件的利润×销售总件数.二、知识讲解1.销售问题与一元二次方程例1 新华商场销售某种冰箱,每台进货价为2 500元.调查发现,当销售价为2 900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5 000元,每台冰箱的定价应为多少元?分析:本题的主要等量关系是:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000元.如果设每台冰箱降价x元,那么每台冰箱的定价就是(2 900-x)元,每台冰箱的销售利润为(2 900-x-2 500)元,平均每天销售冰箱的数量为台.这样就可以列出一个方程,从而使问题得到解决.解:设每台冰箱降价x元. 根据题意,得.整理,得x2- 300x + 22 500 =0.解这个方程,得x1=x2=150.教学反思2 900-150 =2 750.所以,每台冰箱应定价为2 750元.总结:利润问题常见关系式:(1)利润=售价-________;(2)利润率;(3)总利润=____________×销量.2.平均变化率问题与一元二次方程例2 某公司1 月份的生产成本是400 万元,由于改进生产技术,生产成本逐月下降,3 月份的生产成本是361 万元. 假设该公司2,3,4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率.(2)请你预测4 月份该公司的生产成本.解:(1)设该公司每个月生产成本的下降率为x,根据题意,得400(1-x)2= 361.解得x1=5%,x2=1.95>1(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1-5%)= 342.95(万元).答:预测4 月份该公司的生产成本为342.95 万元.总结:若平均增长(或降低)的百分率为x,增长(或降低)前的量是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(其中增长取“+”,降低取“-”).三、练习巩固,拓展提高1.某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8 000元的利润,且尽量减少库存,售价应为多少?分析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8 000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.2.某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.分析:设3,4月份销售额的月平均增长率为x ,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x )万元,4月份的销售额为60(1-10%)(1+x )2万元.解:设3,4月份销售额的月平均增长率为x .根据题意,得60(1-10%)(1+x )2=121.5,则(1+x )2=2.25,解得x 1=0.5,x 2=-2.5(不合题意,舍去).答:3,4月份销售额的月平均增长率为50%.课堂练习1.某地一月份发生禽流感的养鸡场有100家,后来二、 三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月发生禽流感的养鸡场的增长率为x ,依题意列出的方程是( )A.100(1+x )2=250B.100(1+x )+100(1+x )2=250C.100(1-x )2=250D.100(1+x )2+100=2502.某商店将进价为每件8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,若设每件售价为x 元,销售量可表示为( )A.×10 B. 200-×10 C. 200-×10 D. 200-0.5(x -10)×103.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低( )元.A. 0.2或0.3B. 0.4C. 0.3D. 0.24.一件上衣原价为每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?参考答案1.B2.B3.C4.解:设第一次降价的百分率为x ,则第二次降价的百分率为2x ,根据题意得500(1-x )(1-2x )=240,解得x 1=0.2=20%,x 2=1.3=130%(舍去).答:第一次降价的百分率为20%,第二次降价的百分率为40%.课堂小结(学生总结,老师点评)营销问题中的数量关系:(1)单件商品利润=单件商品售价-单件商品进价;教学反思(2)利润率=利润进价=售价―进价进价;(3)售价=进价×(1+利润率);(4)总利润=每件商品的利润×商品的销量.布置作业课本习题2.10板书设计6 应用一元二次方程第2课时 销售及变化率问题。

北师大版九年级数学上册《应用一元二次方程》第2课时示范公开课教学设计

北师大版九年级数学上册《应用一元二次方程》第2课时示范公开课教学设计

第二章一元二次方程6 应用一元二次方程第2课时一、教学目标1.利用一元二次方程解决平均变化率问题和销售问题.2.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程.3.在列方程解决实际问题的过程中,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤.4.能根据具体问题的实际意义检验结果的合理性,增强数学应用意识和能力.二、教学重难点重点:利用一元二次方程解决决平均变化率问题和销售问题.难点:分析具体问题中的数量关系、建立方程模型并解决问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1某公司1 月份的生产成本是400 万元,由于改进生产技术,生产成本逐月下降,3 月份的生产成本是361 万元. 假设该公司2,3 月每个月生产成本的下降率都相同. 求每个月生产成本的下降率.分析:设每月生产成本的下降率为x.等量关系:从1月份连续下降两个月后的生产成本=3月份的生产成本解:设该公司每个月生产成本的下降率为x,根据题意,得400(1-x)2=361.解得x1=5%,x2=1.95>1(不合题意,舍去).所以,每个月生产成本的下降率为5%.例2 某商场今年2月份的营业额为440万元,4月份的营业额达到633.6万元.求2月份到4月份营业额的月平均增长率.分析:设2月份到4月份营业额的月平均增长率为x.等量关系:从2月份开始连续增加两个月后的营业额=4月份的营业额解:设2月份到4月份营业额的月平均增长率为x,根据题意,得440(1+x)2=633.6.解得x1=0.2=20%,x2=-2.2(舍去).所以,3月份到5月份营业额的月平均增长率为20%.注意:增长率不可为负,但可以超过1.例3新华商场销售某种冰箱,每台进货价为2500 元.市场调研表明:当销售价为2900 元时,平均每天能售出8 台;而当销售价每降低50 元时,平均每天就能多售出4 台.商场要想使这种冰箱的销售利润平均每天达到5000 元,每台冰箱的降价应为多少元?分析:售价- 进价= 利润,每台利润×每天的销售量= 每天的总利润设每台冰箱降价x元,售价每降低50 元,多售出4 台.台.售价每降低100 元,多售出4×10050售价每降低x元,多售出4×x台.50解:设每台冰箱降价x元,根据题意,得) = 5000.( 2900-x-2500)(8+4×x50解这个方程,得x1 = x2 = 150.2900-150 = 2750(元).所以,每台冰箱应定价为2750 元.【做一做】某商场将进货价为30 元的台灯以40 元售出,平均每月能售出600 个.调查发现:售价在40 元至60 元范围内,这种台灯的售价每上涨1 元,其销售量就将减少10 个.为了实现平均每月10 000 元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?解:设这种台灯售价上涨x元,根据题意,得(40+x-30)(600-10x) = 10000.解这个方程,得x1 = 10,x2 = 40(舍).售价为:40+x = 40+10 = 50(元).应购置台灯:600-10x = 600-10×10 = 500(个).所以,这种台灯的售价应定为50元,这时应购进台灯500个.【方法归纳】思维导图的形式呈现本节课的主要内容:。

人教版初三数学上册《第课时平均变化率与一元二次方程》教案

人教版初三数学上册《第课时平均变化率与一元二次方程》教案

第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.(2014·新疆乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.。

2022年初中数学精品教案《利用一元二次方程解决营销问题及平均变化率问题2》公开课专用

2022年初中数学精品教案《利用一元二次方程解决营销问题及平均变化率问题2》公开课专用

第2课时利用一元二次方程解决营销问题及平均变化率问题教学内容本节课主要学习建立一元二次方程的数学模型解决营销问题及平均变化率问题。

教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.数学思考经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

解决问题通过解决营销问题及平均变化率问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:列一元二次方程解有关营销及平均变化率问题的应用题难点:发现问题中的等量关系关键:建立一元二次方程的数学模型教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、复习引入1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,•第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.2.某糖厂2002年食糖产量为at,如果在以后两年平均增长的百分率为x,•那么预计2004年的产量将是________.【活动方略】教师演示课件,给出题目.学生口答,老师点评。

【设计意图】复习基本的变化率问题,掌握其数量关系,为继续学习建立一元二次方程的数学模型解变化率问题作好铺垫.二、探索新知【问题情境】两年前生产1t甲种药品的成本是5000元,生产1t•乙种药品的成本是6000元,随着生产技术的进步,现在生产1t甲种药品的成本是3000元,生产1t•乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?老师点评:绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,•乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,•乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题. 解:设甲种药品成本的年平均下降率为x ,则一年后甲种药品成本为5000(1-x )元,两年后甲种药品成本为5000(1-x )元. 依题意,得5000(1-x )2=3000解得:x 1≈0.225,x 2≈1.775(不合题意,舍去) 设乙种药品成本的平均下降率为y . 则:6000(1-y )2=3600 整理,得:(1-y )2 解得:y ≈答:两种药品成本的年平均下降率一样大.【思考】经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状态? 【活动方略】学生分组、讨论解答。

北师大版九年级上册数学 第2课时 营销问题及平均变化率问题第2课时 营销问题及平均变化率问题教案1(

北师大版九年级上册数学      第2课时  营销问题及平均变化率问题第2课时  营销问题及平均变化率问题教案1(

第2课时 利用一元二次方程解决营销问题及平均变化率问题教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。

(n 为相距时间)原数(1 - 平均减少率)n = 。

例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。

针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)课堂练习1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)2、某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。

北师大版九年级上册数学 第2课时 营销问题及平均变化率问题第2课时 营销问题及平均变化率问题教案1

北师大版九年级上册数学      第2课时  营销问题及平均变化率问题第2课时  营销问题及平均变化率问题教案1

第2课时 利用一元二次方程解决营销问题及平均变化率问题教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。

(n 为相距时间)原数(1 - 平均减少率)n = 。

例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。

针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)课堂练习1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)2、某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。

初三数学九年级上册2.6 第2课时 利用一元二次方程解决营销问题及平均变化率问题1教学设计

初三数学九年级上册2.6 第2课时  利用一元二次方程解决营销问题及平均变化率问题1教学设计

第2课时利用一元二次方程解决营销问题及平均变化率问题1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,•第二年的产量为_______kg,第三年2.某糖厂2002年食糖产量为at,如果在以后两年平均增长的百分率为x,•那么预计2004年的产量将是_____ 3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年4.某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x元,则每天可卖出(350-10x)件,但5.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的(1)求底至底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到底全市汽车拥有量不超过最多不能超过多少万辆。

6.某乡产粮大户,粮食产量为50吨,由于加强了经营和科学种田,粮食产量上升到60.5吨.求平均每年粮食增长的百分率.7.某种手表,原来每只售价96元,经过连续2次降价后,售价54元,平均每次降价的百分率是多少?8.邳州市某工厂捐款1万元给希望工程,以后每年都捐款,计划到共捐款4.75万元,问该厂捐款的年平均增长率是多少?9.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。

为了扩大销售,增加盈利,商场决定采取适当的降价措施。

经调查发现,在一定范围内,衬衫的单价每降一元,商场平均每天可多售出2件。

如果商场通过销售这批衬衫每天要盈利1200元,衬衫的单价应降多少元?10.某商场礼品柜台购进大量贺年卡,一种贺年卡平均每天可销售500张,每张盈利0.3元。

为了尽快减少库存,商场决定采取适当的措施。

调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天多售出300张。

商场要想平均每天盈利160元,每张贺年卡应降价多少元?。

《21.3 第2课时 平均变化率与一元二次方程》教案、导学案

《21.3 第2课时 平均变化率与一元二次方程》教案、导学案

《第2课时平均变化率与一元二次方程》教案【教学目标】1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.【教学过程】一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2017年的产量是100万件,计划2019年产量达到121万件.假设2017年到2019年这种产品产量的年增长率相同.(1)求2017年到2019年这种产品产量的年增长率;(2)2018年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2018年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2018年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x=-3.2(舍),x2=0.2,1所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x =80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计【教学反思】教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.《第2课时平均变化率与一元二次方程》教案【教学内容】建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化状况.【教学目标】掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法.【重难点关键】1.重点:如何全面地比较几个对象的变化状况.2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状况.教具、学具准备小黑板【教学过程】一、复习引入(学生活动)请同学们独立完成下面的题目.问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?老师点评:总利润=每件平均利润×总件数.设每张贺年卡应降价x 元,•则每件平均利润应是(0.3-x )元,总件数应是(500+0.1x ×100) 解:设每张贺年卡应降价x 元则(0.3-x )(500+1000.1x )=120 解得:x=0.1答:每张贺年卡应降价0.1元.二、探索新知刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.例1.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,•好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从“复习引入”中,我们可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+0.25y ×34)=120 即(34-y )(200+136y )=120 整理:得68y 2+49y-15=0y=49268-±⨯ ∴y ≈-0.98(不符题意,应舍去)y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.(学生活动)例2.两年前生产1t 甲种药品的成本是5000元,生产1t•乙种药品的成本是6000元,随着生产技术的进步,现在生产1t 甲种药品的成本是3000元,生产1t•乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?老师点评:绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,•乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,•乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.解:设甲种药品成本的年平均下降率为x ,则一年后甲种药品成本为5000(1-x )元,两年后甲种药品成本为5000(1-x )元.依题意,得5000(1-x )2=3000解得:x 1≈0.225,x 2≈1.775(不合题意,舍去)设乙种药品成本的平均下降率为y .则:6000(1-y )2=3600整理,得:(1-y )2=0.6解得:y ≈0.225答:两种药品成本的年平均下降率一样大.因此,虽然绝对量相差很多,但其相对量也可能相等.三、巩固练习新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,•平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,•商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少?四、应用拓展例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)](3)月销售成本不超过10000元,那么销售量就不超过1000040=250kg,在这个提前下,•求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8000解得:x1=80,x2=60当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).五、归纳小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.六、布置作业复习巩固2 综合运用7、9.1.教材P532.选用作业设计:一、选择题1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().A.12人 B.18人 C.9人 D.10人2.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x增加到(x+10%),则x是().A.12% B.15% C.30% D.50%3.育才中学从2016年到2019年四年内师生共植树1997棵,已知该校2016年植树342棵,2017年植树500棵,如果2018年和2019年植树的年增长率相同,那么该校2019年植树的棵数为().A.600 B.604 C.595 D.605二、填空题1.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.2.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.3.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,设每次倒出液体xL,•则列出的方程是________.三、综合提高题1.上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?2.某果园有100棵桃树,一棵桃树平均结1000个桃子,•现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,•如果要使产量增加15.2%,那么应多种多少棵桃树?3.某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a (a>0)个成品,且每个车间每天都生产b (b>0)个成品,质量科派出若干名检验员周一、•周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.(1)这若干名检验员1天共检验多少个成品?(用含a 、b 的代数式表示)(2)若一名检验员1天能检验45b 个成品,则质量科至少要派出多少名检验员?答案:一、1.C 2.B 3.D二、1.2 2.1 3.(1-63x )2=2863 三、1.甲:设上升率为x ,则100(1+x )2=121,x=10%乙:设上升率为y ,则200(1+y )2=288,y=20%,那么乙商场年均利润的上升率大.2.设多种x 棵树,则(100+x )(1000-2x )=100×1000×(1+15.2%)•,• 整理,•得:•x 2-400x+7600=0,(x-20)(x-380)=0,解得x 1=20,x 2=3803.(1)2222a b +⨯=a+2b 或2253a b +⨯(2)因为假定每名检验员每天检验的成品数相同.所以a+2b=2103a b,解得:a=4b所以(a+2b)÷45b=6b÷45b=304=7.5(人)所以至少要派8名检验员.《第2课时平均变化率与一元二次方程》导学案教学目标掌握建立数学模型以解决增长率与降低率问题。

2022年初中数学精品教案《营销问题及平均变化率问题与一元二次方程》公开课专用

2022年初中数学精品教案《营销问题及平均变化率问题与一元二次方程》公开课专用

2.6应用一元二次方程第2课时营销问题及平均变化率问题与一元二次方程教学目标【知识与能力】通过探索,学会解决有关营销的问题和平均比变化率的问题.【过程与方法】经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.【情感态度价值观】通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.教学重难点【教学重点】列一元二次方程解决实际问题.【教学难点】寻找实际问题中的相等关系.课前准备课件等.教学过程一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到万元,求3,4月份销售额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x ,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x )万元,4月份的销售额为60(1-10%)(1+x )2万元.解:设3,4月份销售额的月平均增长率为x .根据题意,得60(1-10%)(1+x )2=,则(1+x )2=,解得x 1=,x 2=-(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%. 方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a ,变化后的量为b ,平均每年的增长率(或降低率)为x ,则两年后的值为a (1±x )2.由此列出方程a (1±x )2=b ,求出所需要的量.三、板书设计营销问题及平均变化率⎩⎪⎨⎪⎧营销问题平均变化率问题四、教学反思经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.第1课时教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

营销问题及平均变化率问题与一元二次方程

营销问题及平均变化率问题与一元二次方程

教学目标:知识与技能:通过探索,学会解决有关营销的问题和平均比变化率的问题情感态度与价值观:通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能
一、创设情境
我们经常从电视新闻中听到或看到有关增长率
的问题,例如今年我市人均收入Q元,比去年同期
后使生产总值翻一番……由此我们可以看出,增长
探索增长率问题.
解:设原值为1,平均年增长率为x,则根据题
的增长率为多少时可以实现市财政净收入翻一番例2、某商店经销一种销售成本为每千克40
元的水产品,椐市场分析,若按每千克50元
1.某工厂准备在两年内使产值翻一番,求平

每年增长的百分率.(精确到0.1%)
2、某种服装,平均每天可销售20件,若每件
降价1元,则每天可多售5件。

如果每天要盈利
例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千
千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千。

初三数学九年级上册2.6 第2课时 营销问题及平均变化率问题与一元二次方程1教学设计

初三数学九年级上册2.6 第2课时 营销问题及平均变化率问题与一元二次方程1教学设计

第2课时营销问题及平均变化率问题与一元二次方程1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x)万元,4月份的销售额为60(1-10%)(1+x)2万元.解:设3,4月份销售额的月平均增长率为x.根据题意,得60(1-10%)(1+x)2=121.5,则(1+x)2=2.25,解得x1=0.5,x2=-2.5(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%. 方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a ,变化后的量为b ,平均每年的增长率(或降低率)为x ,则两年后的值为a (1±x )2.由此列出方程a (1±x )2=b ,求出所需要的量.三、板书设计 营销问题及平均变化率 ⎩⎪⎨⎪⎧营销问题平均变化率问题经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.。

北师大版九年级上册数学北师大版九年级上册数学 第2课时 营销问题及平均变化率问题教案1

北师大版九年级上册数学北师大版九年级上册数学      第2课时  营销问题及平均变化率问题教案1

第2课时 利用一元二次方程解决营销问题及平均变化率问题教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。

(n 为相距时间)原数(1 - 平均减少率)n = 。

例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。

针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)课堂练习1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)2、某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。

九年级数学初三下册:2.6 第2课时 营销问题及平均变化率问题与一元二次方程教案

九年级数学初三下册:2.6 第2课时 营销问题及平均变化率问题与一元二次方程教案
平均变化率问题
a(1-x)2=b,其中a为降低前的 量,x为降低率,2为降低次 数,b为降低后的量.注意1 与x位置不可调换.
讲授新课
一 利用一元二次方程解决营销问题
例1 :新华商场销售某种冰箱,每台进价为2500元.市场调研表明: 当销售价为2900元时,平均每天能售出8台;而当销价每降低50元 时,平均每天能多售4台.商场要想使这种冰箱的销售利润平均每 天达到5000元,每台冰箱的定价应为多少元?
分析:本题的主要等量关系是: 每台冰箱的销售利润×平均每天销售冰箱的数量 = 5000元. 如果设每台冰箱降价x元,那么每台冰箱的定价就是(2900 - x)元,每
解:设每件商品涨价x元,根据题意,得
(40+ x - 30)(600 - 10x)= 10000.

x2 - 50x +400 = 0.
解得 x1 = 10,x2 = 40. 经检验, x1=10,x2=40都是原方程的解.
当x = 10时, 售价为: 40+10=50(元), 销售量为: 600 - 10×10=500(件). 当x = 40时, 售价为: 40+40=80(元), 销售量为: 600 - 10×40=200(件). ∵要尽量减少库存, ∴售价应为80元.
200+200(1+x) +200(1+x)2=950
例4 某公司去年的各项经营中,一月份的营业额为200万元, 一月、二月、三月的营业额共950万元,如果平均每月营业额的 增长率相同,求这个增长率.
解:设这个增长率为x.根据题意,得 200+200(1+x) +200(1+x)2=950 整理方程,得 4x2+12x-7=0,

新北师版初中数学九年级上册2.6第2课时营销问题及平均变化率问题与一元二次方程公开课优质课导学案

新北师版初中数学九年级上册2.6第2课时营销问题及平均变化率问题与一元二次方程公开课优质课导学案

第2课时营销问题及平均变化率问题与一元二次方程学习目标:1. 列一元二次方程解决实际问题,并能对方程解的合理性进行检验.2. 体会一元二次方程是刻画现实世界数量关系的工具,感受数学的价值.重点:用一元二次方程刻画现实问题——市场营销.难点:理解题意,找出相等关系.【预习案】1.利润= -;利润= ×;利息= ×2.某种商品的进价为10元,当售价为x元时,此时能销售该商品(x+10)个,此时获利是1500元,则该商品的售价为________元.3.某种商品的进价为a元,商店将价格提高20%销售,经过一段时间,又以九折的价格促销,这时这种商品的价格是().A.a元 B.0.9a元 C. 1.12a元 D.1.08a元4.某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x,则可列方程为( )A.48(1-x)2=36 B.48(1+x)2=36 C.36(1-x)2=48 D.36(1+x)2=48【探究案】一、创设情境导入新课问题导入:列方程解应用题的一般步骤是什么?二、请同学们以小组单位认真阅读P54页例2的解题词过程,然后回答下面的问题。

例2:新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台,而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?问题:1、请填写下表每天的销售量(台)每台的利润(元)总利润(元)降价前降价后2、写出本题的等级量关系。

三、归纳销售问题中相关概念及等量关系:1、概念:①利润②成本;③利润率;④本息和;⑤利息;⑥本金;2、等量关系: 1、利润= -;利润=×;利息=×四、请同学们以小组单位认真阅读课本54页“做一做中的应用问题某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明,这种台灯的售价每上涨1元,其销售量就减少10个,为了实现平均每月10000元的销售利润,这种台灯的售价为多少?这时应进台灯多少个?【训练案】1、某种商品原价是100元,经过两次提价后的价格是120元,求平均每次降价的百分率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时营销问题及平均变化率问题与一元二次方程
1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)
2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.
一、情景导入
某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?
二、合作探究
探究点一:利用一元二次方程解决营销问题
某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?
解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.
解:设每件商品涨价x元,根据题意,得
(50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30.
经检验,x1=10,x2=30都是原方程的解.
当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).
当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).
∵要尽量减少库存,∴售价应为60元.
方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.
探究点二:利用一元二次方程解决平均变化率问题
某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.
解析:设3,4月份销售额的月平均增长率为x,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x)万元,4月份的销售额为60(1-10%)(1+x)2万元.
解:设3,4月份销售额的月平均增长率为x.
根据题意,得60(1-10%)(1+x)2=121.5,则(1+x)2=2.25,
解得x1=0.5,x2=-2.5(不合题意,舍去).
所以,3,4月份销售额的月平均增长率为50%.方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a,变化后的量为b,平均每年的增长率(或降低率)为x,则两年后的值为a(1±x)2.由此列出方程a(1±x)2=b,求出所需要的量.
三、板书设计
营销问题及平均变化率
⎩⎪⎨⎪⎧营销问题平均变化率问题
经历将实际问题抽象为代数问题的过
程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.。

相关文档
最新文档