必修4第2章(第3课时)平面向量的线性运算(2)

合集下载

2017人教a版高中数学必修四 第2章第3课时平面向量的线

2017人教a版高中数学必修四 第2章第3课时平面向量的线

课题: 2.2.2向量的减法及其几何意义教学目的:⑴了解相反向量的概念;⑵掌握向量的减法,会作两个向量的减向量教学重点:向量减法的概念和向量减法的作图.教学难点:对向量减法概念的理解讲课类型:新讲课课时安排:1课时教具:多媒体、实物投影仪教学进程:一、温习引入:1.向量的加法:求两个向量和的运算,叫做向量的加法几何中向量加法是用几何作图来概念的,一般有两种方式,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)2.向量加法的互换律:a+b=b+a3.向量加法的结合律:(a+b) +c=a+ (b+c)二、讲解新课:向量的减法1.用“相反向量”概念向量的减法:1“相反向量”的概念:与a长度相同、方向相反的向量记作a2规定:零向量的相反向量仍是零向量(a) = a任一贯量与它的相反向量的和是零向量a + (a) =0若是a、b互为相反向量,则a = b, b = a, a + b = 03向量减法的概念:向量a加上的b相反向量,叫做a与b的差即:a b = a + (b) 求两个向量差的运算叫做向量的减法2.用加法的逆运算概念向量的减法:若b + x= a,则x叫做a与b的差,记作a b 3.求作差向量:已知向量a、b,求作向量∵(a b) + b = a + (b) + b = a +0= a减法的三角形法则作法:在平面内取一点O,作OA= a, OB= b, 则BA= a b即a b能够表示为从向量b的终点指向向量a的终点的向量注意:1AB表示ab强调:差向量“箭头”指向被减数2用“相反向量”概念法作差向量,a b = a + (b)显然,此法作图较繁,但最后作图可统一三、讲解范例:例1已知向量a、b、c、d,求作向量a b、c d解:在平面上取一点O,作OA= a, OB= b, OC= c, OD=d,作BA, DC, 则BA= a b, DC= c d例2平行四边形ABCD中,AB a=,AD b=,用a,b表示向量AC、DB 解:由平行四边形法则得:AC= a + b,DB= AB AD- = a b变式一:当a, b知足什么条件时,a+b与a b垂直?(|a| = |b|)变式二:当a, b知足什么条件时,|a+b| = |a b|?(a, b彼此垂直)变式三:a+b与a b可能是相当向量吗?(不可能,∵对角线方向不同),3,,,ABCD AB a DA b OC cb c a OA===+-=如图平行四边形证明:例b c DA OC OC CB OBb c a OB AB OB BA OA+=+=+=∴+-=-=+=证明:四、课堂练习:五、小结向量减法的概念、作图法六、课后作业:七、板书设计(略)八、课跋文:。

高一必修4平面向量的概念及线性运算

高一必修4平面向量的概念及线性运算

平面向量的概念及线性运算一、知识要点梳理 知识点一:向量的概念1.向量:既有大小又有方向的量叫做向量. 2.向量的表示方法: (1)字母表示法:如,,,a b c →→→等.(2)几何表示法:用一条有向线段表示向量.如,AB CD →→等. (3)向量的有关概念向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度). 零向量:长度为零的向量叫零向量. 单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量. 相反向量: 长度相等且方向相反的向量.共线向量:方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量). 规定:0→与任一向量共线. 知识点二:向量的加(减)法运算1.运算法则:三角形法则、平行四边形法则2.运算律:①交换律:a b b a →→→→+=+;②结合律:()()a b c a b c →→→→→→++=++ 知识点三:数乘向量1.实数与向量的积:实数λ与向量a →的积是一个向量,记作:a λ→(1) ||||||a a λλ→→=;(2)①当λ>0时,a λ→的方向与a →的方向相同; ②当λ<0时,a λ→的方向与a →的方向相反; ③当0λ=时,0a λ→→=. 2.运算律 设,λμ为实数结合律:()()a a λμλμ→→=;分配律:(),()a a a a b a b λμλμλλλ→→→→→→→+=++=+ 3.共线向量基本定理非零向量a →与向量b →共线的充要条件是当且仅当有唯一一个非零实数,λ使b a λ→→=. 经典例题类型一:向量的基本概念1.判断下列各命题是否正确: (1)若||||,a b →→=则a b →→=;(2)若,,,A B C D 是不共线的四点,则AB DC →→=是四边形ABCD 为平行四边形的充要条件; (3)若,,a b b c →→→→==,则.a c →→=(4)两向量,a b →→相等的等价条件是||||a b →→=且//a b →→. 类型二:向量的线性运算2.如图所示,ABCD 的两条对角线相交于点,M 且,,AB a AD b →→→→==用,a b →→表示,,,MA MB MC MD →→→→【变式1】如图,ABC ∆中,点M 是BC 的中点,点N 在边AC 上,且2,AN NC AM =与BN 相交于点,P 求:AP PM 的值.【答案】解:(如图)设则和分别共线,∴存在使故,而∴由基本定理得即类型三:共线向量与三点共线问题 3.设两非零向量1e →和2e →不共线,(1)如果121212,28,3(),AB e e BC e e CD e e →→→→→→→→→=+=+=-求证,,A B D 三点共线. (2)试确定实数,k 使12k e e →→+和12e k e →→+共线. 类型四:综合应用4.如图,已知点,,D E F 分别是ABC ∆三边的中点, 求证:0EA FB DC →→→→++=. 测评 基础达标:1.下面的几个命题:①若||||,a b →→=则,a b →→共线;②长度不等且方向相反的两向量不一定是共线向量; ③若,a b →→满足||a →>||,b →且,a b →→同向,则a →>b →; ④由于0→方向不定,故0→不能与任何向量平行;⑤对于任意向量,a b →→必有||||||a b →→-≤||a b →→+≤||||a b →→+. 其中正确命题的序号是:( )A.①②③B.⑤C.③⑤D.①⑤2.在正六边形ABCDEF 中,O 为其中心,则2FA AB BO ED →→→→+++= ( ) A.FE → B. AC → C. DC → D. FC →3.如图所示,,,D E F 分别是ABC ∆的边,,AB BC CD 的中点,则AF DB →→-= ( ) A. FD → B. FC → C. FE → D. BE →4.若,,O E F 是不共线的任意三点,则以下各式中成立的是( ) A.B.C.D.5.已知向量,,a b →→且2,56,72,AB a b BC a b CD a b →→→→→→→→→=+=-+=-则一定共线的三点是( ) A.A 、B 、D B.A 、B 、C C.B 、C 、D D.A 、C 、D 6.下列命题中,真命题的个数为( )①||||||a b a b a →→→→→+=+⇔与b →方向相同 ②||||||a b a b a →→→→→+=-⇔与b →方向相反 ③||||a b a b a →→→→→+=-⇔与b →有相等的模 ④||||||a b a b a →→→→→-=-⇔与b →方向相同 A.0 B.1 C.2D.37.在ABC ∆中,已知D 是AB 边上一点1,2,,3AD DB CD CA CB λ→→→→→==+则λ= ( )A.23B. 13C. 13-D. 23-8.设12,e e →→是两个不共线的向量,则向量12()m e k e k R →→→=-+∈与向量212n e e →→→=-共线的条件是 ( ) A. 0k = B. 1k = C. 2k = D. 12k =9.已知正方形ABCD 边长为1,,,,AB a BC b AC c →→→→→→===则||a b c →→→++=( )A.0B.3C.D.10.如图,在平行四边形ABCD 中,,M N 分别是,DC BC 中点,已知1,,,AM c AN d →→→→==用,c d →→表示=___________,___________.11.若1212,,,OP a OP b PP PP λ→→→→→→===则OP →= (用,a b →→表示) 12.已知在ABC ∆中,,,D E F 分别是,,BC CA AB 的中点,求证:(1)//DE AB →→;(2) 1||||2DE AB →→=; (3)0AD BE CF →→→→++=.13.已知OAB ∆中,点C 是以A 为中心的B 的对称点,D 是将OB →分成2:1的一个内分点,DC 与OA 交于,E 设,OA a OB b →→→→==. (1)用,a b →→表示,OC DE →→; (2)若,OE OA λ→→=求实数λ的值.。

必修4第二章2.2平面向量的线性运算

必修4第二章2.2平面向量的线性运算
(2)如果小船在河南岸M处,对岸北偏东30°有一码头N,小船的航向如何确定才能直线到达对岸码头?(河水自西向东流)
考点4向量加减法的基本运算
【例4】化简:(1) - - ;
(2)( - )-( - ).
【变式4】化简:
(1) - + - ;
(2) + + - .
考点5用已知向量表示其他向量
【例5】如图,解答下列各题:
C.与向量b方向相同D.与向量b方向相反
3.化简 - + ,所得的结果是().
A. B. C.0D.
4.如图,在四边形ABCD中,设A=a,=b,=c,则=().
A.a-b+cB.b-(a+c)C.a+b+cD.b-a+c
5.化简4(a-b)-3(a+b)-b=().
A.a-2bB.a
C.a-6bD.a-8b
各式:
① + + ;
② + + + .
考点2利用向量证明几何问题
【例2】在平行四边形ABCD的对角线BD的延长线及反向延长线上,取点F、E,使BE=DF(如图).用向量的方法证明:四边形AECF也是平行四边形.
【变式2】已知四边形ABCD的对角线AC与BD相交于点O,且 = , = .
用向量法证明:四边形ABCD是平行四边形.
6.已知向量a=e1-2e2,b=2e1+e2,其中e1、e2不共线,则a+b与c=6e1-2e2的关系为().
A.不共线B.共线C.相等D.无法确定
二.填空题
7.当非零向量a,b满足________时,a+b平分a与b的夹角
8.若菱形ABCD的边长为2,则| - + |=________.
9.梯形ABCD中,AB∥DC,AC与BD交于点O,则 - + - + =________.

高中数学必修4第二章:平面向量2.2平面向量的线性运算

高中数学必修4第二章:平面向量2.2平面向量的线性运算
知识回顾
向量的表示:AB或a
有向线段
向量
向量的大小 (长度、模)
向量的方向
单位向量 与零向量
相等向量与 平行向量 相反向量 (共线向量)
既有大小又有方向的量叫向量; 向量不能比较大小,但向量的模可以比较大小。
新课导入
大三通之前,由 于大陆和台湾没有直 航,因此要从台湾去 上海探亲,乘飞机要 先从台北到香港,再 从香港到上海,这两 次位移之和是什么?
解:(1)OA OC OB;
(2)BC FE AD;
E
D
FO
C
(3)OA FE 0.
A
B
(1)向量加法交换律: a b b a
D
a
C
b
b a+b
A
a
B
(2)向量加法结合律:
(a+b)+c a (b c)
D
c
C
D
c
C
(a + b) + c
a+b
a + (b + c) b
b+c b
B
B
A
a
-c.
通法提炼 两个向量的减法可以转化为向量的加法来进行.例如, 作a-b,可以先作-b,然后作a+-b即可,也可以直接 用向量减法的三角形法则,把两向量的起点重合,则差向 量就是连接两个向量的终点,指向被减向量的终点的向量.
如图,已知不共线的两个非零向量a,b,求作向量a- b,b-a,-a-b.
2(2008安徽)若 AB (2,4), AC (1, 3),
则BC ( B )
A.(1,1) C.(3,7)
B.(-1,-1) D.(-2,-4)

高中数学必修四同步学习必修四第二章平面向量-平面向量的线性运算学习过程

高中数学必修四同步学习必修四第二章平面向量-平面向量的线性运算学习过程

r uuur r r 2b ,OC a 3b ,试判断
A 、 B、 C 三点之uu间ur 的位置关系.
解:∵uuru AB = OB - OA = a+2b-(a+b) =b,

AC uuru

OC - uuur
OA

a+3b-
(a+b)

2
b,
∴ AC = 2 AB .
所以, A 、 B、 C 三点共线.
例 2.如u图uu,r 平行r 四边u形uur ABrCD 的两条r 对角r线相交于
点uuMru u,ur且u uAuuBr =uuaru , AD = b ,试用 a , b 表示向量
平面向量的线性运算
学习过程
知识点一:向量的加法 ( 1)定义已知非零向量
rr a, b ,在平面内任取一点
r
r
A ,作 AB = a ,BC = b ,则向量 AC
rr
rr
rr
叫做 a 与 b 的和,记作 a b ,即 a b = AB + BC = AC .
求两个向量和的运算,叫做叫向量的加法.这种求
知识点二:向量的减法
r
r
( 1)相反向量:与 a 长度相同、方向相反的向量 .记作 a 。
rr
r
( 2)①向量 a 和 - a 互为相反向量,即 –(- a ).
②零向量的相反向量仍是零向量. ③任一向量与其相反向量的和是零向量,即
r r r rr a + (- a )=(- a )+ a = 0 .
[来源 :]
则确定.
( 2)向量加法的平行四边形法则
以点 O 为起点作向量 OA a

人教A版高中数学必修四 第2章(第3课时)《平面向量的线性运算》(2)教案

人教A版高中数学必修四 第2章(第3课时)《平面向量的线性运算》(2)教案

课 题: 2.2.2向量的减法及其几何意义教学目的:⑴了解相反向量的概念; ⑵掌握向量的减法,会作两个向量的减向量教学重点:向量减法的概念和向量减法的作图.教学难点:对向量减法定义的理解授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.向量的加法:求两个向量和的运算,叫做向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)2.向量加法的交换律:a +b =b +a3.向量加法的结合律:(a +b ) +c =a + (b +c )二、讲解新课:向量的减法1.用“相反向量”定义向量的减法: 1︒“相反向量”的定义:与a 长度相同、方向相反的向量记作 -a 2︒规定:零向量的相反向量仍是零向量-(-a ) = a 任一向量与它的相反向量的和是零向量 + (-a ) =0如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 03︒向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法2.用加法的逆运算定义向量的减法:若b + x = a ,则x 叫做a 与b 的差,记作a - b3.求作差向量:已知向量a 、b ,求作向量∵(a -b ) + b = a + (-b ) + b = a +0 = a减法的三角形法则作法:在平面内取一点O ,作OA = a , OB = b , 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量注意:1︒AB 表示a - b 强调:差向量“箭头”指向被减数2︒用“相反向量”定义法作差向量,a - b = a + (-b )显然,此法作图较繁,但最后作图可统一三、讲解范例:例1已知向量a 、b 、c 、d ,求作向量a -b 、c -d解:在平面上取一点O ,作OA = a , OB = b , OC = c , OD =d ,作BA , DC , 则BA = a -b , DC = c -d例2平行四边形ABCD 中,AB a = ,AD b = ,用a ,b 表示向量AC 、 解:由平行四边形法则得:AC = a + b , DB = AB AD - = a -b变式一:当a , b 满足什么条件时,a +b 与a -b 垂直?(|a | = |b |)变式二:当a , b 满足什么条件时,|a +b | = |a -b |?(a , b 互相垂直)变式三:a +b 与a -b 可能是相当向量吗?(不可能,∵对角线方向不同),3,,,ABCD AB a DA b OC c b c a OA===+-= 如图平行四边形证明:例 b c DA OC OC CB OB b c a OB AB OB BA OA+=+=+=∴+-=-=+= 证明:四、课堂练习:五、小结 向量减法的定义、作图法六、课后作业:七、板书设计(略)八、课后记:。

人教A版高中数学必修4第二章 平面向量2.2 平面向量的线性运算课件(3)

人教A版高中数学必修4第二章 平面向量2.2 平面向量的线性运算课件(3)

r
r
r
思 与向考量题2ar:
向量 3a 与向量 有什么关系?
a 有什么关系? 向量
3a
r
r
r
r
(的1)3向倍量,即3a3的ar 方3向ar .与 a 的方向相同, 向量 3a的长度是 a
r
r
r
r
(2)向量3a的r方向r与 a 的方向相反, 向量3a的长度是 a
的3倍,即 3a 3 a .
精品PPT
C
3 AB BC A
B
D
3AC
∴ AC与 AE 共线.
精品PPT
定理的应用:
(1)有关向量共线问题:
(2)证明三点共线的问题:
AB BC(BC 0) A、B、C三点共线
精品PPT
例3:设a,b是两个不共线的向量,
AB a b,BC 2a 8b,CD 3 a b ,
求证:A,B,D三点共线.
如何作出
r a
r a
r a
和(ar)Biblioteka r (a)r (a)?
r
rrr
r rr
a
aaa
a a a
uuur uuur Ouuur Auuur rB r rC N r rM r Q r P
OC
OA
uuur
AB
r
BC
a
a
uuaur
记r: a ra a r 3a
r
即: OC 3a. 同理可得: PN (a) (a) (a) 3a
c)
(3ar
2br
cr)
a 5b 2c
注:向量与实数之间可以像多项式
一样进行运算.
精品PPT
精品PPT

高中数学必修4:2.2 平面向量的线性运算(人教版高中数学必修4第二章平面向量)

高中数学必修4:2.2 平面向量的线性运算(人教版高中数学必修4第二章平面向量)

AB BC CD _A__D__
AB BC CD DE __A_E__
加法三角形法则:首尾相连
向量加法(二):平行四边形法则
平行四边形法则: OA + OB = OC
b a
A
a
C
O
b
B
向量加法
(1)规定:0 + a = a + 0 = a
(2)求三个或三个以上的向量和时,用三角形法则更 简单.
λ>0 λ<0
特别地,当λ=0或a=0时,0a=_0__或λ0=__0_.
向量数乘的运算律
① λ(μa)=____(_λ_μ_)a_____; ② (λ+μ)a=___λ_a_+__μ_a___;
③ λ(a+b)=___λ_a_+__λ_b___.
2(3a)=(2×3)a=6a (2+3)a=2a+3a=5a 2(a+b)=2a+2b
例1 已知 λ∈R,下列关系式正确吗?
① 若λ=0, 则 λa=0; ② 若a=0,则λa=0;
③ |λa|=|λ|a;
④ |λa|=λ|a|.
解析:实数λ与向量a的积λa也是一个向量,所以①错,② 正确;|λa|=|λ||a|,所以③④错.
想一想?
向量与实数可以求积(数乘),结果是个向量. 那么向量和实数可以进行加减运算吗? 提示:不可以. 向量与实数不能进行加减运算,如1+a和λ-a无法运算.
QP
(-a)+(-a)+(-a)
PN PQQM MN a a a =3 a
(-a)+(-a)+(-a)=-3a
-3a方向与a方向相反 |-3a|=__3_|a|=|-3| |a|

高中数学人教版必修四第二章平面向量的线性运算

高中数学人教版必修四第二章平面向量的线性运算

A、AD 1 AB 4 AC 33
C、AD 4 AB 1 AC 33
B、AD
1 3
AB
Байду номын сангаас
4 3
AC
D、AD 4 AB 1 AC 33
M A
B
C
D
N
AD AM AN 1 AB 4 AC 33
变式1:设 M 为平行四边形 ABCD 对角线的交点, O 为平行四边形 ABCD所在平面内任意一点, 则 OA OB OC OD 等于( )
自我检测:
4、在平行四边形 ABCD中,AB AD AB AD , 则必有( C )
A. AD 0 B. 四边形 ABCD是菱形 C. 四边形 ABCD是矩形 D. 四边形 ABCD是正方形
1、平面向量的线性运算及基本定理的应用
例1 (2015全国)设 D 为 ABC 所在平面内一点,
BC 3CD,则( )
BM _____53____ AB
MB 3
自我检测:
3、设 e1、e2 是两个不共线的向量,则下列各组
向量中,不能作为该平面内所有向量的一组基 底的是___(_2_)__(4_)____.
(1)3e1,2e2
(2)0,e1 e2
(3)e1 e2 ,e1 e2 (4)e1 2e2,2e1 4e2
问题1:我们已经学习过向量的哪些运算? 它们的运算结果是什么?
加法、减法、数乘三种运算 线性运算的结果都是向量. 共线向量定理:
向量a(a 0) 与 b 共线,当且仅当存在唯
一实数 ,使__b_____a__.
平面向量基本定理:
设 e1, e2是同一平面内的两个不共线向量,
那么对于该平面内的任意向量 a ,有且只有

高中数学人教A版 必修4第二章课件 2.2 平面向量的线性运算

高中数学人教A版 必修4第二章课件 2.2 平面向量的线性运算

O
a
A
ab
b
B
C
平行四边形法则
思考:1如何求共线向量的和?
a
b
(1)
A
B
C
ab
a
b
(2)
C
A
B
ab
2 a + b 的模与的模有何关系?
若a,b方向相同,则 | a b || a | | b |
若a,b方向相反,则 | a b || a | | b(| 或 | b | | a |)
例1.已知向量 a,b, c,d,
bd c a
作法:
求作向量 a b, c d.
A
BD
C
bd
a
c
O
1.在 平 面 上 任 取 点O, 作OA a, OB b, OC
c, OD d .
2.作BA, DC ,则BA a b, DC c d为 所 求.
限时训练(3分钟) P96 练习1、2、3
(3) 0,a 0, a与a是共线向量;
(4) >0,a 0, a与 a方向一定相同;
(5) <0,a 0, a与 a方向一定相反;
A.2 B.3 C.4
D.5
2.如图,在任意四边形ABCD中,E为AD的中 点,F为BC的中点,求证:
AB DC 2EF
一个实数,使得b a.
思考:若 a 0 则结论如何?
例2:已知向量 AD 3AB ,
DE 3BC ,试判断
AC与AE 是否共线。
E
C
A
B
D
解: AE AD DE
C
ห้องสมุดไป่ตู้

高一数学必修4示范教案:第二章第二节平面向量的线性运算(第三课时)Word版含解析

高一数学必修4示范教案:第二章第二节平面向量的线性运算(第三课时)Word版含解析

(1) 有一个为零向量; (2)两个都为零向量; (3) 同向且模相等; (4) 同向且模不等; (5) 反向且模 相等; (6)反向且模不等.
讨论结果: ①数与向量的积仍是一个向量, 向量的方向由实数的正负及原向量的方向确 定,大小由 |λ| ·|a|确定.
②它的几何意义是把向量 a 沿 a 的方向或 a 的反方向放大或缩小. ③向量的平行与直线的平行是不同的, 直线的平行是指两条直线在同一平面内没有公共 点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.
1 λμa = λμa; 2 λ+ μa= λa+ μa; 3 λa+ b = λa+ λb.
特别地,我们有 (-λ)a=- (λa)= λ(- a), λ( a- b)= λa- λb. 对问题③,向量共线的等价条件是:如果 a(a≠ 0)与 b 共线,那么有且只有一个实数 λ,
使 b= λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量
a(a≠ 0)、 b,如果有
一个实数 λ,使 b= λa,那么由向量数乘的定义,知 a 与 b 共线.反过来,已知向量 a 与 b
共线, a≠ 0,且向量 b 的长度是向量 a 的长度的 μ倍,即 |b |= μ|a|,那么当 a 与 b 同方向时,
有 b= μa;当 a 与 b 反方向时,有 b=- μa.
(3)原式= 2a+3b- c- 3a+ 2b- c=- a+ 5b- 2c. 点评: 运用向量运算的运算律, 解决向量的数乘. 其运算过程可以仿照多项式运算中的
“合并同类项 ” .
变式训练
若 3m+ 2n= a, m- 3n= b,其中 a, b 是已知向量,求 m, n.
解: ∵3m+ 2n= a,

必修四 2.2 平面向量的线性运算(教案)

必修四 2.2  平面向量的线性运算(教案)

人教版新课标普通高中◎数学④必修2.2 平面向量的线性运算教案 A第1课时教学目标一、知识与技能1.掌握向量的加减法运算,并理解其几何意义.2.会用三角形法则和平行四边形法则作两个向量的和向量和差向量,培养数形结合解决问题的能力.3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加减法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;二、过程与方法1.位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,由此引入本课题.2.运用向量的定义和向量相等的定义得出向量加减法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解.三、情感、态度与价值观1.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识.2.体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.教学重点、难点教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量和差向量.教学难点:理解向量加减法的定义.教学关键:向量加法的三角形法则和平行四边形法则的探究引导.教学突破方法:由物理中力的合成与分解拓展延伸,引导学生探讨得到结论.教法与学法导航教学方法;启发诱导,讲练结合.学习方法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教学准备教师准备:多媒体或实物投影仪、尺规.1教师备课系统──多媒体教案2 学生准备:练习本、尺规.教学过程一、创设情境,导入新课上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.数能进行运算,向量是否也能进行运算呢?这一节,我们将借助于物理中位移的合成、力的合成来学习向量的加法和减法.二、主题探究,合作交流提出问题:1.类比数的加法,猜想向量的加法,应怎样定义向量的加法?2.向量加法的法则是什么?3.与数的运算法则有什么不同?师生互动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图.某对象从A点经B点到C点,两次位移AB、BC的结果,与A 点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题.图(1)表示橡皮条在两个力的作用下,沿着G C的方向伸长了EO;图(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F 叫做F1与F2的合力.人教版新课标普通高中◎数学④必修合力F与力F1、F2有怎样的关系呢?由图(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:1.向量加法的定义:如下图,已知非零向量a、b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a +b,即a+b=AB+BC=AC.求两个向量和的运算,叫做向量的加法.2.向量加法的法则:(1)向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.位移的合成可以看作向量加法三角形法则的物理模型.(2)向量加法的平行四边形法则如图,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法平行四边形法则的物理模型.对于零向量与任一向量a,我们规定a+0=0+a=a.提出问题1.两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?2.思考|a+b|,|a|,|b|存在着怎样的关系?3.数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?师生互动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与3教师备课系统──多媒体教案结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:1.两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.2.当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.3.如下左图,作AB=a,AD=b,以AB、A D为邻边作ABC D,则BC=b,DC=a.因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a.如上右图,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c,AD=AB+BD=AB+(BC+CD)=a+(b+c),所以(a+b)+c=a+(b+c).综上所述,向量的加法满足交换律和结合律.提出问题①如何理解向量的减法?②向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?师生互动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.于是-(-a)=a.我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.所以,如果a、b是互为相反的向量,那么4人教版新课标普通高中◎数学④必修a=-b,b=-a,a +b=0.A.平行四边形法则如上图,设向量AB=b,AC=a,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b.又b+BC=a,所以BC=a-b.由此,我们得到a-b的作图方法.B.三角形法则如上图,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b 可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.讨论结果:①向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.②向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.三、拓展创新,应用提高例1如下左图,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.在向量加法的作图中,学生体会作法中在平面内任取一点O的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.5教师备课系统──多媒体教案 6 解:作法一:在平面内任取一点O (上中图),作OA =a ,AB =b ,则OB =a +b .作法二:在平面内任取一点O (上右图),作OA =a ,OB =b .以OA 、OB 为邻边作OACB ,连接OC ,则OC =a +b . 例2 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如下图所示,一艘船从长江南岸A 点出发,以5 k m/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2 k m/h .(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.解:如上右图所示,AD 表示船速,AB 表示水速,以A D 、AB 为邻边作ABC D ,则AC 表示船实际航行的速度.(2)在Rt △ABC 中,|AB |=2,|BC |=5,所以|AC |=2952|||AB |2222=+=+BC ≈5.4. 因为tan ∠CAB =229,由计算器得∠CAB =68°. 答:船实际航行速度的大小约为5.4 km/h ,方向与水的流速间的夹角为68°. 点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.例3 如图(1)已知向量a 、b 、c 、d ,求作向量a -b ,c -d .活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需人教版新课标普通高中◎数学④ 必修 7 要选点平移作出两个同起点的向量. 作法:如图(2),在平面内任取一点O ,作OA =a ,OB =b ,OC =c ,OD =d .则BA =a -b ,DC =c -d .例4 如图,ABC D 中, AB =a ,AD =b ,你能用a 、b 表示向量AC 、DB 吗?活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC =a +b ,同样,由向量的减法,知DB =AB -AD =a -b .四、小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.课堂作业1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b ③0-a =-a ④-(-a )=a ⑤a +(-a )=0A .5B .4C .3D .22.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF -DB 等于( )A .FDB .FC C .FED .BE3.下列式子中不能化简为AD 的是( )A .(AB +CD )+BC B .(AD +MB )+(BC +CM )C .BM AD MB -+ D .OC -OA +CD教师备课系统──多媒体教案8 4.已知A、B、C三点不共线,O是△ABC内一点,若OA+OB+OC=0,则O是△ABC的()A.重心B.垂心C.内心D.外心参考答案:1.C 2.D 3.C 4.A.第2课时教学目标一、知识与技能1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.二、过程与方法充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.三、情感、态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.教学重点、难点教学重点:实数与向量积的意义、两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.教学关键:两个向量共线的等价条件的探究过程的引导.教学突破方法:从向量共线的定义出发,引导学生分组讨论,得出结果.教法与学法导航教学方法:问题式教学,启发诱导.学习方法:合作探讨,在向量加减法的基础上进行推广.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前一节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相人教版新课标普通高中◎数学④ 必修 9同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.二、主题探究,合作交流 提出问题: ① 探究:已知非零向量a ,试一试作出a +a +a 和(-a )+(-a )+(-a ).② 你能说明它们的几何意义吗?③ 引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?师生互动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图可发现,OC =OA +AB +BC =a +a +a .类似数的乘法,可把a +a +a 记作3a ,即OC =3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a |=3|a |.同样,由下图可知,PN =MN QM PQ ++=(-a )+(-a )+(-a ),即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1) |λa |=|λ||a |;(2) 当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反.由(1)可知,λ=0时,λa =0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律:教师备课系统──多媒体教案10 设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a 与b同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.三、拓展创新,应用提高例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2如图,已知任意两个非零向量a、b,试作OA=a+b,OB=a+2b,OC=a+3b.你能判断A、B、C三点之间的位置关系吗?为什么?人教版新课标普通高中◎数学④ 必修11活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A 、B 、C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.解:分别作向量OA 、OB 、OC 过点A 、C 作直线AC (如上图).观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.事实上,因为AB =OB -OA =a +2b -(a +b )=b , 而AC =OC -OA =a +3b -(a +b )=2b , 于是AC =2AB .所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3 如图,ABC D 的两条对角线相交于点M ,且AB =a ,AD =b ,你能用a 、b 表示MA MB MC 、、和MD 吗?活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.教师备课系统──多媒体教案12解:在ABC D 中,∵AC =AB +AD =a +b ,DB =AB -AD =a -b , 又∵平行四边形的两条对角线互相平分, ∴MA =21-AC =21-(a +b )=21-a -21b , MB =21DB =21(a -b )=21a -21b ,MC =21AC =21a +21b ,MD =MB -=-21DB =-21a +21b .点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.四、小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件.2.体会本节学习中用到的思想方法:特殊到一般、归纳、猜想、类比、分类讨论、等价转化.课堂作业1.31[21(2a +8b )-(4a -2b )]等于( ) A .2a -b B .2b -a C .b -a D .a -b2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( ) A .1 B .-1 C .±1 D .0 3.若向量方2x -3(x -2a )=0,则向量x 等于( )A .56a B .-6a C .6a D .56-a 4.在△ABC 中,AE =51AB ,EF ∥BC ,EF 交AC 于F ,设AB =a ,AC =b ,则BF用a 、b 表示的形式是BF =_________.5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC 平面上的任意一点,若OA +OC OB +=31e 1-21e 2,则OP ON OM ++=________.人教版新课标普通高中◎数学④ 必修136.已知△ABC 的重心为G ,O 为坐标原点,OA =a ,OB =b ,OC =c , 求证:OG =31(a +b +c ).参考答案:1.B2. C3. C 4.-a +51b 5.31e 1-21e 2. 6.连接A G 并延长,设A G 交BC 于M . ∵AB =b -a ,AC =c -a ,BC =c -b ,∴AM =AB +21BC =(b -a )+21(c -b )=21(c +b -2a ). ∴AG =32AM =31(c +b -2a ).∴OG =OA +AG =a +31(c +b -2a )=31(a +b +c ).教案 B第1课时教学目标一、知识与技能1.理解向量加减法的含义,并掌握加减法的三角形法则和平行四边形法则; 2.会用向量加法的交换律与结合律进行向量运算. 二、过程与方法经历向量加减法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.三、情感、态度与价值观经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质. 教学重点、难点重点:运用向量加减法的三角形法则和平行四边形法则,作两个向量的和向量和差向量.难点: 理解向量的加减法法则及其几何意义.教师备课系统──多媒体教案14教学设想一、创设情境:类比是人类思维中最具创新的一部分,数能进行加减乘除的运算,向量也具有数的特征,那么向量也应该是可以进行运算的,那么向量的运算又如何呢?二、探究新知:(一)教师引导学生仔细阅读课本,分组讨论,归纳如下: 1.定义:求两个向量的和的运算,叫做向量的加法. 注意:两个向量的和仍旧是向量(简称和向量)2.三角形法则:强调:(1)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点. (2)可以推广到n 个向量连加.(3)a a a =+=+00.(4)不共线向量都可以采用这种法则——三角形法则. 3.已知向量a 、b ,求作向量a +b . 作法:在平面内取一点O , 作a OA = b AB =, 则b a OB +=.4.加法的交换律和平行四边形法则 上题中b +a 的结果与a +b 是否相同,验证结果相同.从而得到:(1)向量加法的平行四边形法则;(2)向量加法的交换律:a +b =b +a . 5. 向量加法的结合律:ABC Daca +b+c ba +bb+c ●A B a +b a +b a a b b a b a a +b b O ABaaa bb b人教版新课标普通高中◎数学④ 必修15(a +b ) +c =a + (b +c )证:作图:使a AB =, b BC =, c CD =,则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+,∴(a +b ) +c =a + (b +c ).从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.(二)教师引导学生仔细阅读课本,类比向量加法的定义和运算法则,分组讨论,归纳如下:1.用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a . (2) 规定:零向量的相反向量仍是零向量.-(-a )= a .任一向量与它的相反向量的和是零向量.a +(-a )= 0. 如果a 、b 互为相反向量,则a = -b , b = -a ,a + b = 0.(3) 向量减法的定义:.向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a +(-b ).求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b . 3.求作差向量:已知向量a 、b ,求作差向量. ∵(a -b )+ b = a +(-b )+ b = a + 0 = a .作法:在平面内取一点O , 作OA = a ,OB = b . 则BA = a - b .即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.AOABaB ’b -bbBa + (-b )abO a bBa ba -b教师备课系统──多媒体教案16注意:(1)BA 表示a - b .强调:差向量“箭头”指向被减数.(2)用“相反向量”定义法作差向量,a - b = a + (-b ).显然,此法作图较繁,但最后作图可统一.4.探究:(1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a .(2)若a ∥b , 如何作出a - b ? 三、例题讲解例1 如图,O 为正六边形ABC D EF 的中心,作出下列向量:(1)OA +OC ;(2)BC +FE ;(3)OA +FE .解:(1)因四边形OABC 是以OA 、OC 为邻边的平行四边形,OB 是其对角线, 故OA +OC =OB .(2)因BC =FE ,故BC +EF 与BC 方向相同,长度为BC 的长度的2倍, 故BC +FE =AD . (3)因OD =FE , 故OA +FE =OA +OD =0.点评: 向量的运算结合平面几何知识,在长度和方向两个方面做文章.应深刻理解向a -b A A B B B ’ O a -b a a bb O A O B a -b a -b B A O -b。

高中数学教案 必修4教案 第二章 平面向量 2.2平面向量的线性运算

高中数学教案 必修4教案 第二章 平面向量 2.2平面向量的线性运算

2.2 平面向量的线性运算[教学目标]一、知识与能力:1.掌握向量的加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量;2.能准确表述向量加法的交换律和结合律,并能熟练运用它们进行计算;3.掌握向量减法的概念,能准确做出两个向量的差向量,理解向量的减法运算可以转化为向量的加法运算。

4.理解实数与向量的积和它的几何意义;5.理解实数与向量的积的三条运算律,并会运用它们进行计算;6.理解一个向量与非零向量共线的充要条件;会表示与非零向量共线的向量,能判断两个向量是否共线二、过程与方法:1.经历向量加法三角形法则和平行四边形法则的归纳过程;2.体会数形结合的数学思想方法.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.[教学重点]向量加法、减法定义的理解;实数与向量的积的定义、运算律,向量共线的充要条件.[教学难点]向量加法、减法的意义;向量共线的充要条件.[教学时数]2课时。

[教学过程]第一课时一、新课导入1.物理学中,两次位移,OA AB的结果与位移OB是相同的。

2.物理学中,作用于物体同一点的两个不共线的合力如何求得?3.引入:两个向量的合成可用“平行四边形法则”和“三角形法则”求出,本节将研究向量的加法。

二、向量的加法1.已知向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB BC AC+=求两个向量和的运算,叫做向量的加法.这种求作两个向量的方法叫做三角形法则,简记“首尾相连,首是首,尾是尾”。

以同一点O为起点的两个已知向量a,b为邻边作OABC,则以O为起点的对角线OC就是a与b的和。

我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。

对于零向量与任一向量a,规定a+0=0+a=a例1 已知向量a,b,用两种方法求作向量a+b。

作法一:在平面内任取一点O,作OA=a,AB=b,则OB=a+b.作法二:在平面内任取一点O,做OA=a,OB=b,以OA、OB为邻边作OBCA,则OC=a+b。

高一数学 必修4示范教案:第二章第二节平面向量的线性运算(第二课时) Word版含解析

高一数学  必修4示范教案:第二章第二节平面向量的线性运算(第二课时) Word版含解析

第二章第二节 平面向量的线性运算第二课时教学过程导入新课思路1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法.由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数.向量的减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课.思路2.(直接导入)数的减法运算是加法运算的逆运算.本节课,我们继续学习向量加法的逆运算——减法.引导学生去探究、发现. 推进新课新知探究 提出问题①向量是否有减法?②向量进行减法运算,必须先引进一个什么样的新概念? ③如何理解向量的减法?④向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a 和-a 互为相反向量. 于是-(-a )=a .我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a +(-a )=(-a )+a =0.所以,如果a 、b 是互为相反的向量,那么a =-b ,b =-a ,a +b =0. (1)平行四边形法则如图1,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义,知AE →=a +(-b )=a -b .图1又b +BC →=a ,所以BC →=a -b .由此,我们得到a -b 的作图方法. (2)三角形法则如图2,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从b 的终点指向a 的终点的向量,这是向量减法的几何意义.图2讨论结果:①向量也有减法运算.②定义向量减法运算之前,应先引进相反向量.与数x 的相反数是-x 类似,我们规定,与a 长度相等,方向相反的量,叫做a 的相反向量,记作-a .③向量减法的定义.我们定义a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量. 规定:零向量的相反向量是零向量.④向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.提出问题①上图中,如果从a 的终点到b 的终点作向量,那么所得向量是什么? ②改变上图中向量a 、b 的方向使a ∥b ,怎样作出a -b 呢?讨论结果:①AB →=b -a . ②略. 应用示例例1如图3(1),已知向量a 、b 、c 、d ,求作向量a -b ,c -d .图3活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量.作法:如图3(2),在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,OD →=d . 则BA →=a -b ,DC →=c -d . 变式训练在ABCD 中,下列结论错误的是( ) A.AB →=DC → B.AD →+AB →=AC → C.AB →-AD →=BD → D.AD →-BC →=0分析:A 显然正确,由平行四边形法则可知B 正确,C 中,AB →-AD →=BD →错误,D 中,AD →-BC →=AD →+DA →=0正确. 答案:C例2如图4,在ABCD 中,AB →=a ,AD →=b ,你能用a 、b 表示向量AC →、DB →吗?图4活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC →=a +b ,同样,由向量的减法,知DB →=AB →-AD →=a -b .变式训练1.已知一点O 到ABCD 的3个顶点A 、B 、C 的向量分别是a 、b 、c ,则向量OD →等于( ) A .a +b +c B .a -b +c C.a +b -c D .a -b -c解析:如图5,点O 到平行四边形的三个顶点A 、B 、C 的向量分别是a 、b 、c ,结合图形有OD →=OA →+AD →=OA →+BC →=OA →+OC →-OB →=a -b +c .图5答案:B2.若AC →=a +b ,DB →=a -b .①当a 、b 满足什么条件时,a +b 与a -b 垂直? ②当a 、b 满足什么条件时,|a +b|=|a -b|?③当a 、b 满足什么条件时,a +b 平分a 与b 所夹的角? ④a +b 与a -b 可能是相等向量吗?解:如图6,用向量构建平行四边形,其中向量AC →、DB →恰为平行四边形的对角线且AB =a ,AD =b .图6由平行四边形法则,得 AC →=a +b ,DB →=AB →-AD →=a -b . 由此问题就可转换为:①当边AB 、AD 满足什么条件时,对角线互相垂直?(|a|=|b|) ②当边AB 、AD 满足什么条件时,对角线相等?(a 、b 互相垂直) ③当边AB 、AD 满足什么条件时,对角线平分内角?(|a|、|b|相等) ④a +b 与a -b 可能是相等向量吗?(不可能,因为对角线方向不同)点评:灵活的构想,独特巧妙,数形结合思想得到充分体现.由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题的威力与魅力,教师引导学生注意领悟.例3判断题:(1)若非零向量a 与b 的方向相同或相反,则a +b 的方向必与a 、b 之一的方向相同.(2)△ABC 中,必有AB →+BC →+CA →=0.(3)若AB →+BC →+CA →=0,则A 、B 、C 三点是一个三角形的三顶点. (4)|a +b|≥|a -b |.活动:根据向量的加、减法及其几何意义.解:(1)a 与b 方向相同,则a +b 的方向与a 和b 方向都相同; 若a 与b 方向相反,则有可能a 与b 互为相反向量,此时a +b =0的方向不确定,说与a 、b 之一方向相同不妥.(2)由向量加法法则AB →+BC →=AC →,AC →与CA →是互为相反向量,所以有上述结论.(3)因为当A 、B 、C 三点共线时也有AB →+BC →+AC →=0,而此时构不成三角形. (4)当a 与b 不共线时,|a +b|与|a -b|分别表示以a 和b 为邻边的平行四边形的两条对角线的长,其大小不定.当a 、b 为非零向量共线时,同向则有|a +b|>|a -b|,异向则有|a +b|<|a -b |;当a 、b 中有零向量时,|a +b|=|a -b |. 综上所述,只有(2)正确.例4若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13] D .(3,13)解析:BC →=AC →-AB →.(1)当AB →、AC →同向时,|BC →|=8-5=3;(2)当AB →、AC →反向时,|BC →|=8+5=13;(3)当AB →、AC →不共线时,3<|BC →|<13.综上,可知3≤|BC →|≤13. 答案:C点评:此题可直接应用重要性质||a|-|b||≤|a +b|≤|a|+|b |求解. 变式训练已知a 、b 、c 是三个非零向量,且两两不共线,顺次将它们的终点和始点相连接而成一三角形的充要条件为a +b +c =0.证明:已知a ≠0,b ≠0,c ≠0,且两两不共线,(1)必要性:作AB →=a ,BC →=b ,则由假设CA →=c ,另一方面a +b =AB →+BC →=AC →.由于CA →与AC →是一对相反向量,∴有AC →+CA →=0, 故有a +b +c =0.(2)充分性:作AB →=a ,BC →=b ,则AC →=a +b ,又由条件a +b +c =0, ∴AC →+c =0.等式两边同加CA →,得CA →+AC →+c =CA →+0.∴c =CA →,故顺次将向量a 、b 、c 的终点和始点相连接成一三角形. 知能训练 课本本节练习 解答:1.直接在课本上据原图作(这里从略). 2.DB →,CA →,AC →,AD →,BA →.点评:解题中可以将减法变成加法运算,如AB →-AD →=DA →+AB →=DB →,这样计算比较简便.3.图略. 课堂小结1.先由学生回顾本节学习的数学知识:相反向量,向量减法的定义,向量减法的几何意义,向量差的作图.2.教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论. 作业课本习题2.2 A 组6、7、8.设计感想1.向量減法的几何意义主要是结合平行四边形法则和三角形法则进行讲解的,两种作图方法各有千秋.第一种作法结合向量减法的定义,第二种作法结合向量的平行四边形法则,直接作出从同一点出发的两个向量a 、b 的差,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,第二种作图方法比较简捷.2.鉴于上述情况,教学中引导学生结合向量减法的几何意义,注意差向量的方向,也就是箭头的方向不要搞错了,a -b 的箭头方向要指向a ,如果指向b 则表示b -a ,在几何证明题目中,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.备课资料一、向量减法法则的理解向量减法的三角形法则的式子内容是:两个向量相减,则表示两个向量起点的字母必须相同(否则无法相减),这样两个向量的差向量是以减向量的终点的字母为起点,以被减向量的终点的字母为终点的向量.只要学生理解法则内容,那么解决起向量加减法的题来就会更加得心应手,尤其遇到向量的式子运算题时,一般不用画图就可迅速求解,如下面例题:例1化简:AB →-AC →+BD →-CD →.解:原式=CB →+BD →-CD →=CD →-CD →=0.例2化简OA →+OC →+BO →+CO →.解:原式=(OA →+BO →)+(OC →+CO →)=(OA →-OB →)+0=BA →. 二、备用习题1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b -a ③0-a =-a ④-(-a )=a ⑤a +(-a )=0 A .5 B .4 C .3 D .2 答案:B2.如图7,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF →-DB →等于( )图7A.FD →B.FC →C.FE →D.BE → 答案:D3.下列式子中不能化简为AD →的是( )A .(AB →+CD →)+BC →B .(AD →+MB →)+(BC →+CM →) C.MB →+AD →-BM → D.OC →-OA →+CD → 答案:C4.已知A 、B 、C 三点不共线,O 是△ABC 内一点,若OA →+OB →+OC →=0,则O 是△ABC 的( )A .重心B .垂心C .内心D .外心 答案:A。

《平面向量基本定理》说课稿

《平面向量基本定理》说课稿

《平面向量基本定理》说课稿《平面向量基本定理》说课稿1尊敬的各位专家、评委:上午好!今天我说课的课题是人教A版必修4第二章第三节《平面向量的基本定理及其坐标表示》。

我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析教材的地位和作用1、向量在数学中的地位向量在近代数学中重要和基本的数学概念,是沟通代数,几何与三角函数的一种工具,它有着极其丰富的实际背景,又有着广泛的实际应用,具有很高的教育价值。

2、本节在全章的地位平面向量基本定理揭示了平面向量的基本关系和基本结构,足以进一步研究向量问题的基础,是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段。

3、平面向量基本定理具有十分广阔的应用空间平面向量基本定理蕴含一种十分重要的数学思想——转化思想。

二、目标分析(一)、教学目标1、知识与技能目标了解平面向量基本定理的条件和结论,会用它来表示平面上的任意向量,为向量坐标化打下基础。

2、过程与方法目标通过对平面向量基本定理的学习过程。

让学生体验数学定理的产生,形成过程,体验定理所蕴含的数学思想方法。

3、情感,态度和价值观目标通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生进一步体会向量是处理几何问题有力的工具之一。

(二)、教学的重点和难点1、重点:对平面向量定理夫人探究2、难点:对平面向量基本定理的理解及运用三、教法、学法分析(一)、教法在教法上采取三主教学法:教师主导,学生主体,思维主线1、教学手段使用多媒体辅助教学,使书本的图形动起来,加强了教学的主观性2、学情分析前几节课已经学习了向量的基本概念和基本运算,学生对向量的物理背景有了初步的了解,都为学习这节课做了充分的准备。

(二)学法教师通过启发,激励来体现教师的主导作用,引导学生全员,全过程参与。

2018-2019学年高中数学(人教A版+必修4)课件:2.2 平面向量的线性运算2

2018-2019学年高中数学(人教A版+必修4)课件:2.2 平面向量的线性运算2

(7)������������ − ������������ − ������������ − ������������ = ������������. (
)
(8)若a-c=b-d,则a+d=b+c. ( ) (9)若|a|=|b|,则a=b或a=-b. ( ) 答案(1)× (2)× (3)√ (4)√ (5)× (9)×
探究一
探究二
探究三
核心素养提升
思维辨析
向量减法运算的几何意义
【例 2】 如图,ABCD 是平行四边形,设������������=a,������������=b. (1)试用 a,b 表示������������ , ������������;
(2)当向量a,b满足什么条件时,ABCD是矩形? (3)当向量a,b满足什么条件时,ABCD是菱形?


思维辨析
3.做一做:如图,ABCD是平行四边形,AC与BD相交于点O,下列互 为相反向量的是 ( )
A.������������与������������ C.������������与������������
答案C
B.������������与������������ D.������������与������������
探究一
探究二
探究三
核心素养提升
思维辨析
要熟练掌握在三角形、平行四边形等常见图形中,各边对应向量 以及对角线对应向量之间的关系,能够运用向量的加法与减法进行 正确的表示,同时还要熟悉常见平面图形的几何性质,能够从向量 的角度,运用向量语言进行表示.
探究一
探究二
探究三
核心素养提升
思维辨析
延伸探究结合本例图形分析,若a,b都是非零向量,则a+b与a-b有 可能是相等向量吗? 解(1)当a,b不是共线向量时,由本例图形可知,a+b与a-b是平行四 边形的两条对角线对应的向量,二者不可能相等; (2)当a,b是共线向量时,同样可以按照平行四边形法则或三角形 法则,作出a+b,a-b,发现它们不可能相等. 综上,若a,b都是非零向量,则a+b与a-b不可能是相等向量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题: 2.2.2向量的减法及其几何意义
教学目的:
⑴了解相反向量的概念; ⑵掌握向量的减法,会作两个向量的减向量
教学重点:向量减法的概念和向量减法的作图.
教学难点:对向量减法定义的理解
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.向量的加法:求两个向量和的运算,叫做向量的加法
几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)
2.向量加法的交换律:a +b =b +a
3.向量加法的结合律:(a +b ) +c =a + (b +c )
二、讲解新课:向量的减法
1.用“相反向量”定义向量的减法: 1︒“相反向量”的定义:与a 长度相同、方向相反的向量记作 -a 2︒规定:零向量的相反向量仍是零向量-(-a ) = a 任一向量与它的相反向量的和是零向量 + (-a ) =0
如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0
3︒向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差
即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法
2.用加法的逆运算定义向量的减法:若b + x = a ,则x 叫做a 与b 的差,记作a - b
3.求作差向量:已知向量a 、b ,求作向量
∵(a -b ) + b = a + (-b ) + b = a +0 = a
减法的三角形法则作法:在平面内取一点O ,
作OA = a , OB = b , 则BA = a - b
即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量
注意:1︒AB 表示a - b 强调:差向量“箭头”指向被减数
2︒用“相反向量”定义法作差向量,a - b = a + (-b )
显然,此法作图较繁,但最后作图可统一
三、讲解范例:
例1已知向量a 、b 、c 、d ,求作向量a -b 、c -d
解:在平面上取一点O ,作OA = a , OB = b , OC = c , OD =d ,
作BA , DC , 则BA = a -b , DC = c -d
例2平行四边形ABCD 中,AB a = ,AD b = ,用a ,b 表示向量AC 、
解:由平行四边形法则得:
AC = a + b , DB = AB AD - = a -b
变式一:当a , b 满足什么条件时,a +b 与a -b 垂直?(|a | = |b |)
变式二:当a , b 满足什么条件时,|a +b | = |a -b |?(a , b 互相垂直)
变式三:a +b 与a -b
,3,,,ABCD AB a DA b OC c b c a OA
===+-= 如图平行四边形证明:例 b c DA OC OC CB OB b c a OB AB OB BA OA
+=+=+=∴+-=-=+= 证明:
四、课堂练习:
五、小结 向量减法的定义、作图法
六、课后作业:
七、板书设计(略)
八、课后记:。

相关文档
最新文档