必修一第三章函数的概念与性质(学案)

合集下载

人教A版高中同步学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的表示法-第2课时分段函数

人教A版高中同步学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的表示法-第2课时分段函数

D.
3.已知函数
() =
1
,
+1

< 1且 ≠ −1,
1 .
则(2)
=
___
− 1, > 1,
[解析]() = − = .
4.[人教B版教材例题]北京市自2014年5月1日起,居民用水实行阶梯水价.其中年用
水量不超过180 m3 的部分,综合用水单价为5元/m3 ;超过180 m3 但不超过260 m3 的
() √
1, ∈ Q,
(4)分段函数() = ቊ
的图象可以画出来.
−1, ∈ ∁ Q
()×
2.函数() = | − 1|的图象是() B
A.
B.
C.
− , ≥ ,
[解析]函数的解析式可化为() = ቊ
− , < ,
所以() = − = ,(−) = − (−) = .故选B.
部分,综合用水单价为7元/m3 .如果北京市一居民年用水量为 m3 ,其要缴纳的水费为
()元.假设0 ≤ ≤ 260,试写出()的解析式,并作出()的图象.
解 如果 ∈ [0,180],则() = 5 ;如果 ∈ (180,260],按照题意有
() = 5 × 180 + 7( − 180) = 7 − 360.
再设抛物线对应的二次函数解析式为 = ( − ) + ( < < , < ).
∵点(, )在抛物线上,∴ + = ,∴ = −,
∴当 < < 时,对应的函数解析式为 = − + − ( < < ).
− + , ≤ ,

高中数学必修一新教材第3章 函数的概念与性质导学案

高中数学必修一新教材第3章  函数的概念与性质导学案

第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.函数的概念对吗?(2)f(x)与f(a)有何区别与联系?提示:(1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念 (1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示. (2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.1.函数y =1x +1的定义域是( ) A .[-1,+∞) B .[-1,0) C .(-1,+∞) D .(-1,0) 2.若f (x )=11-x 2,则f (3)=________. 3.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________;(2){x|x>1}用区间表示为________.函数的概念【例1】(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.1.下列四个图象中,不是函数图象的是()A B C D2.下列各组函数中是相等函数的是()A .y =x +1与y =x 2-1x -1 B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2 求函数值【例2】 设f (x )=2x 2+2,g (x )=1x +2, (1)求f (2),f (a +3),g (a )+g (0)(a ≠-2),g (f (2)). (2)求g (f (x )).[思路点拨] (1)直接把变量的取值代入相应函数解析式,求值即可; (2)把f (x )直接代入g (x )中便可得到g (f (x )).函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则.3.已知f (x )=x 3+2x +3,求f (1),f (t ),f (2a -1)和f (f (-1))的值. 求函数的定义域[探究问题]1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域? 提示:不可以.如f (x )=x +1x 2-1.倘若先化简,则f (x )=1x -1,从而定义域与原函数不等价.2.若函数y =f (x +1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y =f (x )的定义域是什么?提示:[1,2]是自变量x 的取值范围. 函数y =f (x )的定义域是x +1的范围[2,3]. 【例3】 求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.(变结论)在本例求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.1.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合.这也是求某函数定义域的依据.2.函数的定义主要包括定义域和定义域到值域的对应法则,因此,判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.函数符号y=f(x)是学习的难点,它是抽象符号之一.首先明确符号“y=f(x)”为y是x的函数,它仅仅是函数符号,不是表示“y等于f与x的乘积”.1.思考辨析(1)区间表示数集,数集一定能用区间表示.()(2)数集{x|x≥2}可用区间表示为[2,+∞].()(3)函数的定义域和对应关系确定后,函数的值域也就确定了.()(4)函数值域中每一个数在定义域中一定只有一个数与之对应.()(5)函数的定义域和值域一定是无限集合.( ) 2.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =x 2C .y =|x |D .y =3x 3 3.将函数y =31-1-x的定义域用区间表示为________.4.已知函数f (x )=x +1x , (1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.3.1.2 函数的表示法 第1课时 函数的表示法函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗? 提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x )=⎩⎨⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.已知函数f (x )由下表给出,则f (3)等于( )2.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B .y =14x 2-1 C .y =4x 2-16 D .y =-4x 2+16 3.已知函数y =f (x )的图象如图所示,则其定义域是______.函数的三种表示方法【例1】 某商场新进了10台彩电,每台售价3 000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.1.(1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )A B C D(2)由下表给出函数y=f(x),则f(f(1))等于()图象的画法及应用【例2】作出下列函数的图象并求出其值域.(1)y=-x,x∈{0,1,-2,3};(2)y=2x,x∈[2,+∞);(3)y=x2+2x,x∈[-2,2).描点法作函数图象的三个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图.(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象.(3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心圈.提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.2.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).函数解析式的求法[探究问题]已知f(x)的解析式,我们可以用代入法求f(g(x)),反之,若已知f(g(x)),如何求f(x).提示:若已知f(g(x))的解析式,我们可以用换元法或配凑法求f(x).【例3】(1)已知f(x+1)=x-2x,则f(x)=________;(2)已知函数f(x)是一次函数,若f(f(x))=4x+8,则f(x)=________;(3)已知函数f(x)对于任意的x都有f(x)-2f(-x)=1+2x,则f(x)=________.[思路点拨](1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.1.(变条件求函数解析式的四种常用方法(1)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(2)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.(3)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x 代替两边所有的“g(x)”即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性.1.函数有三种常用的表示方法,可以适时的选择,以最佳的方式表示函数.2.作函数图象必须要让作出的图象反映出图象的伸展方向,与x轴、y轴有无交点,图象有无对称性,并标明特殊点.3.求函数解析式的主要方法有:代入法、待定系数法、换元法、解方程组法(消元法),注意有的函数要注明定义域.1.思考辨析(1)任何一个函数都可以用解析法表示.()(2)函数的图象一定是定义区间上一条连续不断的曲线.()2.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x-1B.f(x)=3x+1 C.f(x)=3x+2 D.f(x)=3x+43.已知函数f(x),g(x)分别由下表给出.4.已知函数f(x)=x2-2x(-1≤x≤2).(1)画出f(x)图象的简图;(2)根据图象写出f(x)的值域.第2课时分段函数分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数? 提示:分段函数是一个函数,而不是几个函数.1.下列给出的式子是分段函数的是( )①f (x )=⎩⎨⎧x 2+1,1≤x ≤5,2x ,x <1.②f (x )=⎩⎨⎧ x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎨⎧ 2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎨⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④ 2.函数y =⎩⎨⎧x ,x ≥0,-x ,x <0的值域是________.3.函数f (x )=⎩⎨⎧x +1,x ≤1,-x +3,x >1,则f (f (4))=________.分段函数的求值问题【例1】已知函数f (x )=⎩⎨⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52的值;(2)若f (a )=3,求实数a 的值.1.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.已知函数值求字母取值的步骤: (1)先对字母的取值范围分类讨论. (2)然后代入不同的解析式中. (3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.1.函数f (x )=⎩⎨⎧x -3,x ≥10,f (f (x +5)),x <10,则f (7)=________.分段函数的解析式【例2】 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 关于x 的函数解析式,并画出大致图象.[思路点拨] 可按点E 所在的位置分E 在线段AB ,E 在线段AD 及E 在线段CD 三类分别求解.1.当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.2.通过本例让学生初步尝试用分段函数解决实际问题的意识,培养学生的建模素养.2.某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算). 如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分段函数的图象及应用[探究问题]1.函数f (x )=|x -2|能用分段函数的形式表示吗?能否作出其图象? 提示:能.f (x )=⎩⎨⎧x -2,x ≥2,2-x ,x <2.函数f (x )的图象如图所示.2.结合探究点1,你能说一下画含有绝对值的函数图象的方法吗? 提示:含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.【例3】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示f (x ); (2)画出f (x )的图象; (3)写出函数f (x )的值域.[思路点拨] (1)分-2<x <0和0≤x ≤2两种情况讨论,去掉绝对值可把f (x )写成分段函数的形式;(2)利用(1)的结论可画出图象;(3)由(2)中得到的图象,找到图象最高点和最低点的纵坐标,可得值域.把本例条件改为“分段函数图象的画法作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.1.分段函数是一个函数,而不是几个函数.2.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.3.分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系中,根据分段函数每段的定义区间和表达式依次画出图象,要注意确定每段图象的端点是空心点还是实心点,各段函数图象组合到一起就可得到整个分段函数的图象.1.思考辨析(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎨⎧x +1,x ≤1,-x +3,x >1是分段函数.( )2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )A.15 B .3 C.23 D.1393.函数y =f (x )的图象如图所示,则其解析式为________.4.已知f (x )=⎩⎨⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图象; (2)求f (x )的定义域和值域.3.2 函数的基本性质 3.2.1 单调性与最大(小)值 第1课时 函数的单调性1.增函数与减函数的定义12提示:定义中的x1,x2有以下3个特征:(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.思考2:函数y=1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.1.函数y =f (x )的图象如图所示,其增区间是( ) A .[-4,4] B .[-4,-3]∪[1,4] C .[-3,1] D .[-3,4]2.下列函数中,在区间(0,+∞)上是减函数的是( ) A .y =-1x B .y =x C .y =x 2 D .y =1-x 3.函数f (x )=x 2-2x +3的单调减区间是________. 求函数的单调区间【例1】 求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.(1)f (x )=-1x ;(2)f (x )=⎩⎨⎧2x +1,x ≥1,5-x ,x <1;(3)f (x )=-x 2+2|x |+3.求函数单调区间的方法(1)利用基本初等函数的单调性,如本例(1)和(2),其中分段函数的单调区间要根据函数的自变量的取值范围分段求解;(2)利用函数的图象,如本例(3).提醒:若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开,如本例(3).1.(1)根据如图所示,写出函数在每一单调区间上函数是增函数还是减函数;(2)写出y =|x 2-2x -3|的单调区间. 函数单调性的判定与证明【例2】 证明函数f (x )=x +1x 在(0,1)上是减函数. [思路点拨] 设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2) ――→变形判号:f (x 1)>f (x 2)――→结论减函数利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.2.试用函数单调性的定义证明:f (x )=2x x -1在(1,+∞)上是减函数.函数单调性的应用[探究问题]1.若函数f (x )是其定义域上的增函数,且f (a )>f (b ),则a ,b 满足什么关系.如果函数f (x )是减函数呢?提示:若函数f (x )是其定义域上的增函数,那么当f (a )>f (b )时,a >b ;若函数f (x )是其定义域上的减函数,那么当f (a )>f (b )时,a <b .2.决定二次函数f (x )=ax 2+bx +c 单调性的因素有哪些? 提示:开口方向和对称轴的位置,即字母a 的符号及-b2a 的大小.【例3】 (1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨] (1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→ 求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→ 求x 的范围1.(变条件函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.1.定义单调性时应强调x 1,x 2在其定义域内的任意性,其本质是把区间上无限多个函数值的大小比较转化为两个任意值的大小比较.2.证明函数的单调性(利用定义)一定要严格遵循设元、作差、变形、 定号、结论的步骤,特别在变形上,一定要注意因式分解、配方等技巧的运用,直到符号判定水到渠成才可.3. 已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识, 如f (x )在D 上递增,则f (x 1)<f (x 2)⇔x 1<x 2.二是数形结合意识,如处理一(二)次函数及反比例函数中的含参数的范围问题.1.思考辨析(1)所有的函数在其定义域上都具有单调性.( )(2)若函数y =f (x )在区间[1,3]上是减函数,则函数y =f (x )的单调递减区间是[1,3].( )(3)函数f (x )为R 上的减函数,则f (-3)>f (3).( )(4)若函数y =f (x )在定义域上有f (1)<f (2),则函数y =f (x )是增函数.( ) (5)若函数f (x )在(-∞,0)和(0,+∞)上单调递减,则f (x )在(-∞,0)∪(0,+∞)上单调递减.( )2.如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性 3.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上是增函数,则b 的取值范围为( )A .b =3B .b ≥3C .b ≤3D .b ≠3 4.证明:函数y =x x +1在(-1,+∞)上是增函数.第2课时 函数的最大(小)值函数最大值与最小值提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才是函数的最大值,否则不是.1.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是()A.-1,0B.0,2 C.-1,2 D.12,22.设函数f(x)=2x-1(x<0),则f(x)()A.有最大值B.有最小值C.既有最大值又有最小值D.既无最大值又无最小值3.函数f(x)=1x,x∈[1,2],则f(x)的最大值为________,最小值为________.利用函数的图象求函数的最值(值域)【例1】 已知函数f (x )=⎩⎨⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在直角坐标系内画出f (x )的图象;(2)根据函数的图象写出函数的单调区间和值域.利用图象求函数最值的方法 (1)画出函数y =f (x )的图象;(2)观察图象,找出图象的最高点和最低点;(3)写出最值,最高点的纵坐标是函数的最大值,最低点的纵坐标是函数的最小值.1.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x ,x >1,求f (x )的最大值、最小值.利用函数的单调性求最值(值域)【例2】 已知函数f (x )=2x +1x +1. (1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[2,4]上的最大值和最小值.1.利用单调性求函数的最大(小)值的一般步骤 (1)判断函数的单调性. (2)利用单调性求出最大(小)值. 2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.2.求函数f(x)=x+4x在[1,4]上的最值.函数最值的实际应用【例3】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(年利润=年销售总收入-年总投资)(1)求y(万元)与x(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.3.将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润为多少?二次函数的最值问题[探究问题]1.二次函数f (x )=ax 2+bx +c (a >0)的对称轴与区间[m ,n ]可能存在几种位置关系,试画草图给予说明?提示:2.求二次函数f (x )=ax 2+bx +c 在[m ,n ]上的最值,应考虑哪些因素? 提示:若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.【例4】 已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值. [思路点拨] f (x )=x 2-ax +1――→分类讨论分析x =a 2与[0,1]的关系――→数形结合求f (x )的最大值1.在题设条件不变的情况下,求f (x )在[0,1]上的最小值.2.在本例条件不变的情况下,若a =1,求f (x )在[t ,t +1](t ∈R )上的最小值.二次函数在闭区间上的最值设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:1.函数的最大(小)值,包含两层意义:一是存在,二是在给定区间上所有函数值中最大(小)的,反映在函数图象上,函数的图象有最高点或最低点.2.求函数的最值与求函数的值域类似,常用的方法是:(1)图象法,即画出函数的图象,根据图象的最高点或最低点写出最值;(2)单调性法,一般需要先确定函数的单调性,然后根据单调性的意义求出最值;(3)对于二次函数还可以用配方法研究,同时灵活利用数形结合思想和分类讨论思想解题.3.通过函数最值的学习,渗透数形结合思想,树立以形识数的解题意识.1.思考辨析(1)任何函数都有最大(小)值.()(2)函数f(x)在[a,b]上的最值一定是f(a)(或f(b)).()(3)函数的最大值一定比最小值大.()2.函数y=x2-2x,x∈[0,3]的值域为()A.[0,3]B.[-1,0] C.[-1,+∞)D.[-1,3]3.函数y=ax+1在区间[1,3]上的最大值为4,则a=______.4.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.3.2.2 奇偶性 第1课时 奇偶性的概念函数的奇偶性提示:定义域关于原点对称.1.下列函数是偶函数的是( )A .y =xB .y =2x 2-3 C .y =1xD .y =x 2,x ∈[0,1]2.下列图象表示的函数具有奇偶性的是( )A B C D3.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1 D .无法确定4.若f (x )为R 上的偶函数,且f (2)=3,则f (-2)=________. 函数奇偶性的判断【例1】 判断下列函数的奇偶性: (1)f (x )=x 3+x ;(2)f (x )=1-x 2+x 2-1; (3)f (x )=2x 2+2xx +1;(4)f (x )=⎩⎨⎧x -1,x <0,0,x =0,x +1,x >0.判断函数奇偶性的两种方法 (1)定义法:(2)图象法:1.下列函数中,是偶函数的有________.(填序号) ①f (x )=x 3;②f (x )=|x |+1;③f (x )=1x 2; ④f (x )=x +1x ;⑤f (x )=x 2,x ∈[-1,2]. 奇偶函数的图象问题【例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.2.如图是函数f(x)=1x2+1在区间[0,+∞)上的图象,请据此在该坐标系中补全函数f(x)在定义域内的图象,请说明你的作图依据.利用函数的奇偶性求值[探究问题]1.对于定义域内的任意x,若f(-x)+f(x)=0,则函数f(x)是否具有奇偶性?若f(-x)-f(x)=0呢?提示:由f(-x)+f(x)=0得f(-x)=-f(x),∴f(x)为奇函数.由f(-x)-f(x)=0得f(-x)=f(x),∴f(x)为偶函数.2.若f(x)是奇函数且在x=0处有定义,则f(0)的值可求吗?若f(x)为偶函数呢?提示:若f(x)为奇函数,则f(0)=0;若f(x)为偶函数,无法求出f(0)的值.【例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;(2)已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=________.[思路点拨](1)f(x)是偶函数――→定义域关于原点对称求a的值――→图象关于y轴对称求b的值(2)令g(x)=x7-ax5+bx3+cx―→判断g(x)的奇偶性―→计算g(-3)―→代入求得f(3)利用奇偶性求参数的常见类型及策略(1)定义域含参数:奇、偶函数f(x)的定义域为[a,b],根据定义域关于原点对称,利用a+b=0求参数.(2)解析式含参数:根据f(-x)=-f(x)或f(-x)=f(x)列式,比较系数即可求解.3.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.1.奇偶性是函数“整体”性质,只有对函数f(x)定义域内的每一个值x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇函数(或偶函数).2.函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.1.思考辨析(1)函数f(x)=x2,x∈[0,+∞)是偶函数.()(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.()(3)不存在既是奇函数,又是偶函数的函数.()(4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.()2.函数f(x)=|x|+1是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知函数f (x )=ax 2+2x 是奇函数,则实数a =______.4.已知函数y =f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示.(1)请补出完整函数y =f (x )的图象; (2)根据图象写出函数y =f (x )的增区间; (3)根据图象写出使f (x )<0的x 的取值集合.第2课时 奇偶性的应用用奇偶性求解析式【例1】 (1)函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求f (x )的解析式;(2)设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.[思路点拨] (1)设x <0,则-x >0――→当x >0f (x )=-x +1求f (-x )――→奇函数得x <0时f (x )的解析式――→奇函数的性质f (0)=0――→分段函数f (x )的解析式(2)f (x )+g (x )=1x -1――→用-x 代式中x得f (-x )+g (-x )=1-x -1――→奇偶性得f (x )-g (x )=-1x +1――→解方程组得f (x ),g (x )的解析式把本例(2)利用函数奇偶性求解析式的方法(1)“求谁设谁”,既在哪个区间上求解析式,x 就应在哪个区间上设. (2)要利用已知区间的解析式进行代入.(3)利用f (x )的奇偶性写出-f (x )或f (-x ),从而解出f (x ).提醒:若函数f (x )的定义域内含0且为奇函数,则必有f (0)=0,但若为偶函数,未必有f (0)=0.函数单调性和奇偶性的综合问题[探究问题]1.如果奇函数f (x )在区间(a ,b )上单调递增,那么f (x )在(-b ,-a )上的单调性如何?如果偶函数f (x )在区间(a ,b )上单调递减,那么f (x )在(-b ,-a )上的单调性如何?提示:如果奇函数f (x )在区间(a ,b )上单调递增,那么f (x )在(-b ,-a )上单调递增;如果偶函数f (x )在区间(a ,b )上单调递减,那么f (x )在(-b ,-a )上单调递增.2.你能否把上述问题所得出的结论用一句话概括出来?提示:奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.3.若偶函数f (x )在(-∞,0)上单调递增,那么f (3)和f (-2)的大小关系如何?。

高中数学第三章函数的概念与性质函数的概念学案新人教A版必修第一册

高中数学第三章函数的概念与性质函数的概念学案新人教A版必修第一册

3.1.1 函数的概念课程标准(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(2)了解构成函数的三要素,能求简单函数的定义域.(3)能够正确使用“区间”的符号表示某些集合.(4)理解同一个函数的概念,能判断两个函数是否是同一个函数.新知初探·课前预习——突出基础性教材要点要点一函数的概念要点二同一个函数如果两个函数的________相同,并且________完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数❷.要点三区间及有关概念1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示助学批注批注❶抓住两点:(1)可以“多对一”、“不可一对多”;(2)集合A中的元素无剩余,集合B中的元素可剩余.批注❷只有当两个函数的定义域和对应关系分别相同时,这两个函数才是同一个函数.定义域和值域都分别相同的两个函数,它们不一定是相同的函数,因为函数对应关系不一定相同.批注❸这里的实数a与b都叫做相应区间的端点.区间的左端点一定要小于右端点,即a <b.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)函数的定义域必须是数集,值域可以为其他集合.( )(3)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(4)区间是数集的另一种表示方法,任何数集都能用区间表示.( )2.下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )A B C D3.区间(0,1)等于 ( )A.{0,1}B.{(0,1)}C.{x|0<x<1}D.{x|0≤x≤1}4.若f(x)=x-√x+1,则f(3)=________.题型探究·课堂解透——强化创新性题型 1 函数的概念例1 (1)(多选)下列图形中是函数图象的是( )(2)下列从集合A到集合B的对应关系f是函数的是( ) A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积方法归纳1.根据图形判断对应关系是否为函数的一般步骤2.判断一个对应关系是否为函数的方法巩固训练1 (多选)下列对应关系是集合A到集合B的函数的是( )A.A=R,B={x|x≥0},f:x→y=|x|B.A=Z,B=Z,f:x→y=x2C.A=Z,B=Z,f:x→y=√xD.A={x|-1≤x≤1},B={0},f:x→y=0题型 2 求函数值(x∈R,且x≠-1),g(x)=x2+2(x 例2 [2022·山东青岛高一期中]已知f(x)=11+x∈R).(1)求f(2),g(2)的值;(2)求f(g(3))的值.方法归纳求函数值的2种策略巩固训练2 已知函数f(x)=x+1.x+2(1)求f(2);(2)求f(f(1)).题型 3 求函数的定义域例3 求下列函数的定义域.; (2)y=√x2−2x−3;(1)y=2+3x−2(3)y=√3−x·√x−1; (4)y=(x-1)0+√2.x+1方法归纳求函数定义域的常用策略巩固训练3 (1)函数f (x )=√1+x −1x的定义域是( )A .[-1,0)∪(0,+∞)B .[-1,+∞)C .(-∞,0)∪(0,+∞)D .R(2)函数f (x )=√−x 2+6x −5的定义域为________.题型 4 同一函数的判断例4 下面各组函数中表示同一个函数的是( ) A .f (x )=x ,g (x )=(√x )2B .f (t )=|t |,g (x )=√x 2C .f (x )=x 2−1x−1,g (x )=x +1 D .f (x )=|x |x ,g (x )={1,x ≥0−1,x <0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形; ②与用哪个字母表示无关.巩固训练4 下列函数中与函数y =x 2是同一函数的是( ) A .u =v 2B .y =x ·|x |C .y =x 3x D .y =(√x )43.1.1 函数的概念新知初探·课前预习[教材要点]要点一实数集 任意一个数x 唯一 要点二定义域 对应关系 要点三1.(a ,b ) (a ,b ]2.(-∞,+∞) [a ,+∞) (a ,+∞) (-∞,a ] (-∞,a )[基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:只有D 的函数图象与垂直于x 轴的直线至多有一个交点,故选D. 答案:D 3.答案:C4.解析:f (3)=3-√3+1=3-2=1. 答案:1题型探究·课堂解透例1 解析:(1)A 中至少存在一处如x =0,一个横坐标对应两个纵坐标,这相当于集合A 中至少有一个元素在集合B 中对应的元素不唯一,故A 不是函数图象,其余B ,C ,D 均符合函数定义.(2)对于选项B ,集合A 中的元素1对应集合B 中的元素±1,不符合函数的定义;对于选项C ,集合A 中的元素0取倒数没有意义,在集合B 中没有元素与之对应,不符合函数的定义;对于选项D ,A 集合不是数集,故不符合函数的定义.答案:(1)BCD (2)A巩固训练1 解析:选项A 中,对于A 中的任意一个实数x ,在B 中都有唯一确定的数y 与之对应,故是A 到B 的函数.选项B 中,对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.选项C 中,集合A 中的负整数没有平方根,在集合B 中没有对应的元素,故不是集合A 到集合B 的函数.选项D 中,对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数.答案:ABD例2 解析:(1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11,∴f (g (3))=f (11)=11+11=112.巩固训练2 解析:(1)f (2)=2+12+2=34; (2)∵f (1)=1+11+2=23;∴f (f (1))=f (23)=23+123+2=58.例3 解析:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x−2有意义,所以这个函数的定义域为{x |x ≠2}.(2)要使函数有意义,需x 2-2x -3≥0,即(x -3)(x +1)≥0,所以x ≥3或x ≤-1,即函数的定义域为{x |x ≥3或x ≤-1}.(3)函数有意义,当且仅当{3−x ≥0,x −1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)函数有意义,当且仅当{x −1≠0,2x+1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.巩固训练3 解析:(1)由{1+x ≥0x ≠0,解得:x ≥-1且x ≠0.∴函数f (x )=√1+x −1x 的定义域是[-1,0)∪(0,+∞). (2)由-x 2+6x -5≥0,得x 2-6x +5≤0,(x -1)(x -5)≤0, 解得1≤x ≤5,所以函数的定义域为[1,5]. 答案:(1)A (2)[1,5]例4 解析:对于A ,f (x )=x 的定义域为R ,而g (x )=(√x )2的定义域为[0,+∞),两函数的定义域不相同,所以不是同一个函数;对于B ,两个函数的定义域都为R ,定义域相同,g (x )=√x 2=|x |,这两个函数是同一个函数;对于C ,f (x )=x 2−1x−1的定义域为{x |x ≠1},而g (x )=x +1的定义域是R ,两个函数的定义域不相同,所以不是同一个函数;对于D ,f (x )=|x |x 的定义域为{x |x ≠0},而g (x )={1,x ≥0−1,x <0的定义域是R ,两个函数的定义域不相同,所以不是同一个函数.答案:B巩固训练4 解析:函数y =x 2的定义域为R ,对于A 项,u =v 2的定义域为R ,对应法则与y =x 2一致,则A 正确;对于B 项,y =x ·|x |的对应法则与y =x 2不一致,则B 错误;对于C 项,y =x 3x 的定义域为{x |x ≠0},则C 错误;对于D 项,y =(√x )4的定义域为{x |x ≥0},则D 错误;故选A.答案:A。

人教A版高中同步学案数学必修第一册精品课件 第三章 函数的概念与性质 第2课时 函数的最大(小)值

人教A版高中同步学案数学必修第一册精品课件 第三章 函数的概念与性质 第2课时 函数的最大(小)值

(5)若函数有最值,则最值一定是其值域中的一个元素.
( √ )
(6)若函数的值域是确定的,则它一定有最值.
(× )
[−1, +∞)
2.() = 2 2 + 4 + 1的值域为__________.
2
3.函数() = −3 2 + 2在区间[−1,2]上的最大值为___.
[解析]函数() = − + 图象的对称轴为直线 = ,开口向下,又 ∈ [−, ],
2 − 400 + 37 500 = 0,解得 = 250或 = 150,
所以商场要获取最大利润的75%,每件标价应为250元或150元.
1.知识清单:
(1)利用图象法、单调性求函数的最值.
(2)与最值有关的恒成立问题.
(3)与最值有关的实际应用问题.
(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
解 设购买人数为( ∈ ∗ ),羊毛衫的标价为每件元,利润为元,则 ∈
(100,300], = + ( < 0),∵ 0 = 300 + ,即 = −300 ,∴ = ( − 300),
∴利润 = ( − 100)( − 300) = ( − 200)2 − 10 000 ( ∈ (100,300]).
4
1 − 2 +
1
4

2
= (1 − 2 )(1
4

)
1 2
=
(1 −2 )(1 2 −4)
.
1 2
∵ 1 < 2 ,∴ 1 − 2 < 0,当1 ≤ 1 < 2 ≤ 2时,1 2 > 0,1 2 − 4 < 0,

新教材高中数学第三章函数的概念与性质 第一课时函数的单调性学案湘教版必修第一册

新教材高中数学第三章函数的概念与性质 第一课时函数的单调性学案湘教版必修第一册

函数的单调性与最值新课程标准解读核心素养1.借助函数图象,会用符号语言表达函数的单调性数学抽象2.理解单调性的作用和实际意义逻辑推理、数学运算3.借助函数图象,会用符号语言表达函数的最大值、最数学抽象、数学运算小值,理解它们的作用和意义第一课时函数的单调性德国著名的心理学家艾宾浩斯对人类的记忆牢固程度进行了有关研究.他经过测试,得到了有趣的数据.数据表明,记忆量y是时间间隔t的函数.艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯记忆遗忘曲线”,如图:[问题] (1)当时间间隔t逐渐增大时,你能看出对应的函数值y有什么变化趋势吗?(2)“艾宾浩斯记忆遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学的观点进行解释?知识点函数的单调性1.增函数、减函数前提设函数f(x)的定义域为D,I是D的一个非空的子集条件如果对于I上任意两个值x1,x2,当x1<x2时条件都有f(x1)<f(x2)都有f(x1)>f(x2) 图示结论f (x )是区间I 上的增函数,也称f (x )在区间I 上单调递增f (x )是区间I 上的减函数,也称f (x )在区间I 上单调递减2.如果函数y =f (x )在区间I 上是增函数或减函数,那么就说函数y =f (x )在这一区间上具有(严格的)单调性,区间I 叫作y =f (x )的单调区间.1.对区间I 的要求函数的单调性是函数在某个区间上的性质,这个区间可以是整个定义域,也可以是定义域的一部分.2.x 1,x 2的三个特征 (1)同区间性,即x 1,x 2∈I ;(2)任意性,即不可用区间I 上的两个特殊值代替x 1,x 2; (3)有序性,即需要区分大小,通常规定x 1<x 2.1.判断正误.(正确的画“√”,错误的画“×”) (1)所有函数在定义域上都具有单调性.( )(2)因为f (-1)<f (2),所以函数f (x )在[-1,2]上单调递增.( )(3)定义在(a ,b )上的函数f (x ),如果∃x 1,x 2∈(a ,b ),当x 1<x 2时,有f (x 1)<f (x 2),那么f (x )在(a ,b )上单调递增.( )(4)如果函数f (x )在区间I 1上单调递减,在区间I 2上也单调递减,那么f (x )在区间I 1和I 2上就一定是减函数.( )答案:(1)× (2)× (3)× (4)×2.下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是________(填序号).①f (x )=x 2;②f (x )=1x;③f (x )=|x |;④f (x )=2x +1. 答案:②3.函数y =f (x )的图象如图所示,其增区间是________.答案:[-3,1]4.函数f (x )=-x 2-2x 的单调递增区间是________. 答案:(-∞,-1]函数单调性的判定与证明[例1] (链接教科书第80页例1)已知函数f (x )=1x 2-1. (1)求f (x )的定义域;(2)判断函数f (x )在(1,+∞)上单调性,并用定义加以证明. [解] (1)由x 2-1≠0,得x ≠±1, 所以函数f (x )=1x 2-1的定义域为{x |x ∈R ,且x ≠±1}. (2)函数f (x )=1x 2-1在(1,+∞)上单调递减. 证明:设x 1和x 2是区间(1,+∞)上任意两个实数,且x 1<x 2, 则f (x 2)-f (x 1)=1x 22-1-1x 21-1=(x 1-x 2)(x 1+x 2)(x 21-1)(x 22-1). 由x 1,x 2∈(1,+∞),得x 1>1,x 2>1, 所以x 21-1>0,x 22-1>0,x 1+x 2>0. 又x 1<x 2,所以x 1-x 2<0,于是(x 1-x 2)(x 1+x 2)(x 21-1)(x 22-1)<0,即f (x 1)>f (x 2), 所以,函数f (x )=1x 2-1在(1,+∞)上单调递减.利用定义证明函数单调性的4步骤[跟踪训练]1.(多选)下列函数在(-∞,0)上为增函数的是( ) A .y =|x |+1B .y =|x |xC .y =-x 2|x |D .y =x +x|x |解析:选CD y =|x |+1=-x +1(x <0)在(-∞,0)上为减函数;y =|x |x=-1(x <0)在(-∞,0)上既不是增函数也不是减函数;y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;y =x+x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C 、D. 2.证明函数f (x )=x +1x在(0,1)上单调递减.证明:设x 1,x 2是区间(0,1)上任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+1x 1-⎝⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝⎛⎭⎪⎫1x 1-1x2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫1-1x 1x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2. ∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0, ∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x在(0,1)上单调递减.求函数的单调区间[例2] 画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间.[解] y =-x 2+2|x |+3=⎩⎪⎨⎪⎧-(x -1)2+4,x ≥0,-(x +1)2+4,x <0.函数图象如图所示.函数在(-∞,-1],[0,1]上单调递增,函数在[-1,0],[1,+∞)上单调递减.所以函数的单调增区间是(-∞,-1]和[0,1],单调减区间是(-1,0)和(1,+∞).[母题探究](变条件)将本例中“y =-x 2+2|x |+3”变为“y =|-x 2+2x +3|”,如何求解? 解:函数y =|-x 2+2x +3|的图象如图所示.由图象可知其单调递增区间为[-1,1],[3,+∞);单调递减区间为(-∞,-1),(1,3).求函数单调区间的2种方法法一:定义法:即先求出定义域,再利用定义法进行判断求解; 法二:图象法:即先画出图象,根据图象求单调区间.[注意] (1)如果函数f (x )在其定义域内的两个区间A ,B 上单调性相同,则两个区间用“,”或“和”连接,不能用“∪”连接;(2)书写单调区间时,若函数在区间的端点处有定义,则写成闭区间、开区间均可,但若函数在区间的端点处无定义,则必须写成开区间.[跟踪训练]1.(多选)如图所示的是定义在区间[-5,5]上的函数y =f (x )的图象,则下列关于函数f (x )的说法正确的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性解析:选ABD 若一个函数出现两个或两个以上的单调性相同的区间,不能用“∪”连接.故选A 、B 、D.2.求函数f (x )=1x -1的单调减区间. 解:函数f (x )=1x -1的定义域为(-∞,1)∪(1,+∞), 设x 1和x 2是区间(-∞,1)上任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1).因为x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以函数f (x )在(-∞,1)上单调递减,同理函数f (x )在(1,+∞)上单调递减. 综上,函数f (x )的单调递减区间是(-∞,1),(1,+∞).函数单调性的应用[例3] ((-∞,3]上单调递增,则实数a 的取值范围是________;(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[解析] (1)∵f (x )=-x 2-2(a +1)x +3的开口向下,要使f (x )在(-∞,3]上单调递增,只需-(a +1)≥3,即a ≤-4.∴实数a 的取值范围为(-∞,-4].(2)∵f (x )在(-∞,+∞)上是增函数,且f (2x -3)>f (5x -6), ∴2x -3>5x -6,即x <1.∴实数x 的取值范围为(-∞,1). [答案] (1)(-∞,-4] (2)(-∞,1)[母题探究]1.(变条件)若本例(1)的函数f (x )在(1,2)上是单调函数,求a 的取值范围. 解:由题意可知-(a +1)≤1或-(a +1)≥2,即a ≤-3或a ≥-2. 所以a 的取值范围为(-∞,-3]∪[-2,+∞).2.(变条件)若本例(2)的函数f (x )是定义在(0,+∞)上的减函数,求x 的范围. 解:由题意可知,⎩⎪⎨⎪⎧2x -3>0,5x -6>0,2x -3<5x -6,解得x >32.∴x 的取值范围为⎝ ⎛⎭⎪⎫32,+∞.1.利用单调性比较大小或解不等式的方法(1)利用函数的单调性可以比较函数值或自变量的大小.在解决比较函数值的问题时,要注意将对应的自变量转化到同一个单调区间上;(2)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.2.已知函数的单调性求参数的取值范围的一般方法(1)将参数看成已知数,求函数的单调区间,再与已知的单调区间比较,求出参数的取值范围;(2)运用函数单调性的定义建立关于参数的不等式(组),解不等式(组)求出参数的取值范围.[跟踪训练]1.若函数f (x )在(-∞,-1]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-32<f (-1)<f (-2)B .f (-1)<f ⎝ ⎛⎭⎪⎫-32<f (-2)C .f (-2)<f (-1)<f ⎝ ⎛⎭⎪⎫-32D .f (-2)<f ⎝ ⎛⎭⎪⎫-32<f (-1) 解析:选D ∵f (x )在(-∞,-1]上是增函数,且-2<-32<-1,∴f (-2)<f ⎝ ⎛⎭⎪⎫-32<f (-1).故选D. 2.若f (x )是定义在[0,+∞)上的减函数,则不等式f (x )<f (-2x +8)的解集是________.解析:依题意,得不等式组⎩⎪⎨⎪⎧x ≥0,-2x +8≥0,x >-2x +8,解得83<x ≤4.答案:⎝ ⎛⎦⎥⎤83,4复合函数y =f (g (x ))的单调性[典例] 已知函数f (x )=2x -1,x ∈[2,6]. (1)判断此函数在x ∈[2,6]上的单调性; (2)根据(1)的判断过程,归纳出解题步骤. 提示:(1)函数f (x )=2x -1可分解为函数y =2u和函数u =x -1. 因为x ∈[2,6],所以u ∈[1,5],显然函数u =x -1在x ∈[2,6]上单调递增,函数y =2u在u ∈[1,5]上单调递减,由复合函数的单调性,知f (x )=2x -1在x ∈[2,6]上单调递减. (2)解题步骤为:先求函数的定义域,接着分解复合函数,再判断每一层函数的单调性,最后根据复合函数的单调性确定函数的单调性.[结论] 复合函数的单调性:一般地,对于复合函数y =f (g (x )),单调性如表所示,简记为“同增异减”.g (x )f (x )f (g (x ))增 增 增 增 减 减 减 增 减 减减增判断函数f (x )=x +2x -1,x ∈[3,8]上的单调性.解:∵函数f (x )=(x -1)+3x -1=1+3x -1,可分解为函数f (x )=1+3u 和函数u =x -1.因为x ∈[3,8],所以u ∈[2,7],显然函数u =x -1在x ∈[3,8]上单调递增,函数f (u )=1+3u 在u ∈[2,7]上单调递减,由复合函数的单调性,知f (x )=x +2x -1在x ∈[3,8]上单调递减.1.如图是函数y =f (x )的图象,则此函数的单调递减区间的个数是( )A .1B .2C .3D .4解析:选B 由题图,可知函数y =f (x )的单调递减区间有2个.故选B. 2.函数f (x )在R 上是减函数,则有( ) A .f (3)<f (5) B .f (3)≤f (5) C .f (3)>f (5)D .f (3)≥f (5)解析:选C 因为函数f (x )在R 上是减函数,3<5,所以f (3)>f (5). 3.(多选)下列四个函数中在(-∞,0]上单调递减的是( ) A .f (x )=x 2-2x B .f (x )=-x 2C .f (x )=x +1D .f (x )=1x -1解析:选AD 通过观察各函数的图象(图略),易知f (x )=-x 2,f (x )=x +1在(-∞,0]上单调递增,f (x )=x 2-2x ,f (x )=1x -1在(-∞,0]上单调递减. 4.已知函数f (x )=xx -1.(1)求f (f (3))的值;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义法证明. 解:(1)因为f (3)=33-1=32, 所以f (f (3))=f ⎝ ⎛⎭⎪⎫32=3232-1=3. (2)函数f (x )在(1,+∞)上单调递减.证明:设x 1和x 2是区间(1,+∞)上任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-1-x 2x 2-1=x1(x2-1)-x2(x1-1)(x1-1)(x2-1)=x2-x1(x1-1)(x2-1),由x1,x2∈(1,+∞),得(x1-1)(x2-1)>0, 由x1<x2,得x2-x1>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2).由单调性的定义可知,f(x)=xx-1在(1,+∞)上单调递减.。

人教A版高中同步学案数学必修第一册精品课件 第三章 函数的概念与性质 第1课时 函数的单调性

人教A版高中同步学案数学必修第一册精品课件 第三章 函数的概念与性质 第1课时 函数的单调性
变式训练2已知函数,且.
(1)求函数的定义域;
解,且,,解得.故函数的定义域为.
(2)判断这个函数在上的单调性并证明.
解在上单调递增.证明如下:由(1)知,,设任意的,则.,,,,即,故函数在上单调递增.
探究点三 函数单调性的应用
角度1.根据函数单调性比较大小
【例3】已知函数在区间上单调递减,试比较与的大小.
的符号
单调性
在,上单调递增,在,上单调递减
在,上单调递减,在,上单调递增
(3)反比例函数的单调性如下表所示.
的符号
单调性
在,上单调递减
在,上单调递增
2.对于含绝对值的函数可以去掉绝对值号转化为分段函数或作出函数图象判断函数单调性.
变式训练1已知,函数,试画出的图象,并结合图象写出函数的单调区间.
变式训练3已知的定义域是,且在区间上单调递增,,求的取值范围.
解的定义域是,且在区间上单调递增,,即解得,的取值范围为.
角度2.根据函数单调区间或单调性求参数取值范围
【例4】函数在区间上是单调函数,则实数的取值范围是()
A
A.,,B.,,C.,D.,
[解析]根据题意,函数为二次函数,其图象的对称轴为直线,若在区间上是单调函数,则有或,解得或,即实数的取值范围为,,,故选A.
变式训练5若函数是上的单调函数,则实数的取值范围为______.
,
[解析]因为在上单调递减,所以整个函数在上单调递减,则解得,则实数的取值范围为,.
1.知识清单: (1)函数单调性的概念. (2)求函数的单调区间. (3)证明函数的单调性. (4)函数单调性中的含参数类综合问题. 2.方法归纳:定义法、数形结合法、配方法. 3.常见误区:(1)函数的单调区间误用并集;(2)忽视单调区间的开闭问题.

人教统编部编版高中数学必修一A版第三章《函数概念与性质》全章节教案教学设计(含章末综合复习)

人教统编部编版高中数学必修一A版第三章《函数概念与性质》全章节教案教学设计(含章末综合复习)

⼈教统编部编版⾼中数学必修⼀A版第三章《函数概念与性质》全章节教案教学设计(含章末综合复习)【新教材】⼈教统编版⾼中数学必修⼀A版第三章教案教学设计3.1《函数的概念及其表⽰》教材分析:课本从引进函数概念开始就⽐较注重函数的不同表⽰⽅法:解析法,图象法,列表法.函数的不同表⽰⽅法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两⽅⾯的结合得到更充分的表现,使学⽣通过函数的学习更好地体会数形结合这种重要的数学思想⽅法.因此,在研究函数时,要充分发挥图象的直观作⽤.在研究图象时,⼜要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的⼀种推⼴,这与传统的处理⽅式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学⽣将更多的精⼒集中理解函数的概念,同时,也体现了从特殊到⼀般的思维过程.教学⽬标与核⼼素养:课程⽬标1、明确函数的三种表⽰⽅法;2、在实际情境中,会根据不同的需要选择恰当的⽅法表⽰函数;3、通过具体实例,了解简单的分段函数,并能简单应⽤.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利⽤图像表⽰函数;5.数学建模:由实际问题构建合理的函数模型。

教学重难点:重点:函数的三种表⽰⽅法,分段函数的概念.难点:根据不同的需要选择恰当的⽅法表⽰函数,什么才算“恰当”?分段函数的表⽰及其图象.课前准备:多媒体教学⽅法:以学⽣为主体,采⽤诱思探究式教学,精讲多练。

教学⼯具:多媒体。

教学过程:⼀、情景导⼊初中已经学过函数的三种表⽰法:列表法、图像法、解析法,那么这三种表⽰法定义是?优缺点是?要求:让学⽣⾃由发⾔,教师不做判断。

⽽是引导学⽣进⼀步观察.研探. ⼆、预习课本,引⼊新课阅读课本67-68页,思考并完成以下问题1.表⽰两个变量之间函数关系的⽅法有⼏种?分别是什么?2.函数的各种表⽰法各有什么特点?3.什么是分段函数?分段函数是⼀个还是⼏个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学⽣独⽴完成,以⼩组为单位,组内可商量,最终选出代表回答问题。

高一数学教案学习函数的概念与性质

高一数学教案学习函数的概念与性质

高一数学教案学习函数的概念与性质高一数学教案:学习函数的概念与性质1. 引言函数是数学中的重要概念之一,对于高中数学的学习具有重要意义。

本教案将帮助学生全面了解函数的概念和性质,提高他们的数学认识和分析问题的能力。

2. 函数的概念函数是数学中用于描述两个集合之间对应关系的一种工具。

学生需要明确函数的定义:对于集合A和B,如果每个元素a∈A都有唯一对应的元素b∈B,则称这种对应关系为函数。

学生可以通过举例子来加深对函数的理解,比如学生的身高与年龄之间的关系,家庭开销与收入之间的关系等。

3. 函数的性质3.1 定义域与值域函数的定义域是指所有可以作为自变量输入的值的集合,而值域是指所有函数的输出值形成的集合。

学生需要学会如何计算函数的定义域和值域,并理解其在实际问题中的意义。

3.2 单调性函数的单调性是指函数在定义域上的增减趋势。

函数可以是递增的、递减的或者保持不变的。

通过绘制函数图像的变化趋势,学生可以更好地理解函数单调性的概念。

3.3 奇偶性奇函数是指满足f(-x)=-f(x)的函数,而偶函数是指满足f(-x)=f(x)的函数。

学生需要学会根据函数的表达式判断其奇偶性,并了解奇偶函数的性质。

3.4 对称性函数的对称性包括关于x轴、y轴和原点的对称性。

学生需要学会判断函数的对称轴,并通过绘制函数图像来观察函数的对称性。

4. 函数的图像与性质通过观察函数的图像,学生可以更加直观地了解函数的性质。

4.1 函数的增减区间学生可以通过观察函数图像的上升与下降来确定函数的增减区间。

在数学实践中,函数的增减区间对于解决最优化问题具有重要作用。

4.2 函数的极值点函数的极值点是指函数在定义域内取得最大值或最小值的点。

学生需要理解极大值点和极小值点的概念,并学会通过观察函数图像来确定这些点的位置。

4.3 函数的零点函数的零点是指函数取值为零的点。

学生需要学会通过观察函数图像来确定函数的零点,并了解零点在实际问题中的应用。

高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.2第1课时函数的表示法学案含解析第一册

高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.2第1课时函数的表示法学案含解析第一册

3。

1。

2 函数的表示法第1课时函数的表示法学习目标核心素养1。

掌握函数的三种表示法:解析法、图象法、列表法.(重点) 2.会根据不同的需要选择恰当的方法表示函数.(难点)1.通过函数表示的图象法培养直观想象素养.2.通过函数解析式的求法培养运算素养。

(1)已建成的京沪高速铁路总长约1 318千米,设计速度目标值380千米/时,若京沪高速铁路时速按300千米/时计算,火车行驶x小时后,路程为y千米,则y是x的函数,可以用y=300x来表示,其中y=300x叫做该函数的解析式.(2)如图是我国人口出生率变化曲线:(3)下表是大气中氰化物浓度与污染源距离的关系表污染源距离50100200300500氰化物浓度0.6780。

3980.1210.050。

01问题:根据初中所学知识,请判断问题(1)、(2)、(3)分别是用什么法表示函数的?提示:解析法、图象法和列表法.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D(x)=错误!列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.思考辨析(正确的画“√”,错误的画“×”)(1)任何一个函数都可以用解析法表示.()(2)函数的图象一定是定义区间上一条连续不断的曲线.()[答案](1)×(2)×2.已知函数f(x)由下表给出,则f(3)等于()x1≤x<222<x≤4f(x)123A。

1B.2C.3D.不存在C[∵当2〈x≤4时,f(x)=3,∴f(3)=3。

]3.已知函数y=f(x)的图象如图所示,则其定义域是______.[-2,3][由图象可知f(x)的定义域为[-2,3].]4.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(-1)=________。

人教A版高中同步学案数学必修第一册精品课件 第3章 函数的概念与性质 3.1.1 函数的概念

人教A版高中同步学案数学必修第一册精品课件 第3章 函数的概念与性质 3.1.1 函数的概念

1
f(x)= 和

解 函数

g(x)= 2 是同一个函数吗?为什么?

1
f(x)= 和


g(x)= 2 是同一个函数,

因为它们的定义域都是{x|x≠0},对应关系都可化为
1
f(x)= .
重难探究·能力素养全提升
探究点一
函数关系的判断
【例1】 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能
同,譬如f(x)=x+1,x∈R与函数f(t)=t+1,t∈R表示同一个函数.
过关自诊
[北师大版教材习题](1)函数 f(x)=x 和
解 函数 f(x)=x 和
2
g(x)= 是同一个函数吗?为什么?

2
g(x)= 不是同一个函数,
因为它们的定义域不同,前者为 R,后者为{x|x≠0}.
(2)函数
规律方法
判断两个函数是否表示同一个函数的两个步骤
变式训练3 下列各组函数是同一函数的是
②③
(填序号).
①f(x)= -2 3 与 g(x)=x -2;
②f(x)=x 与
0
1
g(x)= 0 ;
③f(x)=x2-2x-1 与 g(t)=t2-2t-1.
解析 ①f(x)=-x -2,g(x)=x -2,二者对应关系不同,
故 f(x)与 g(x)不是同一函数;
②f(x)=x
1
=1(x≠0),g(x)= 0 =1(x≠0),对应关系与定义域均相同,故是同一函数;
0
③f(x)=x2-2x-1(x∈R)与g(t)=t2-2t-1(t∈R),对应关系和定义域均相同,故是

高中数学人教A版(2019)必修第一册第三章 函数的概念与性质 导学案

高中数学人教A版(2019)必修第一册第三章 函数的概念与性质 导学案

必修1 第三章函数的概念与性质幂函数重点幂函数的概念、性质,从五个具体幂函数中认识幂函数的一些性质难点幂函数性质及应用,画五个幂函数的图象并由图象概括其性质考试要求考试➢题型选择题、填空题和解答题。

➢难度中等核心知识点一:1. 幂函数的概念函数y=xα叫做幂函数,其中x是自变量,α是常数。

2. 幂函数的图象与性质(1)五种常见幂函数的图象。

(2)五类幂函数的性质,幂函数y=x y=x2y=x321xy y=x-1定义域R R R[0,+∞)(-∞,0)∪(0,+∞)值域R[0,+∞)R[0,+∞){y|y∈R且y≠0}奇偶性奇偶奇非奇非偶奇单调性增x∈[0,+∞),增x∈(-∞,0],减增增x∈(0,+∞),减x∈(-∞,0),减公共点都经过点(1,1)幂函数的性质归纳(1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1)。

(2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数。

特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸。

(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数。

在第一象限内,当x从右趋向原点时,图象在y轴右方无限地逼近y轴正半轴;当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴。

典例一:幂函数的概念理解【基础训练】下列函数为幂函数的是()①y =-x 2;②y =2x ;③y =x π;④y =(x -1)3;⑤21x y =;⑥y =x 2+x1。

A. ①③⑤B. ①②⑤C. ③⑤D. 只有⑤解析:选C 。

①y =-x 2的系数是-1而不是1,故不是幂函数;②y =2x 是指数函数;④y =(x -1)3的底数是x -1而不是x ,故不是幂函数;⑥y =x 2+x1是两个幂函数和的形式,也不是幂函数。

很明显③⑤是幂函数。

【能力提升】已知幂函数y =f (x )的图象经过点(3,3),求这个函数的解析式。

解析:设所求幂函数的解析式为y x α=因为点(3,3)在函数图像上,所以代入解析式得a33= ∴21=a ∴21x y =∴幂函数的解析式为21x y =。

人教A版高中同步学案数学必修第一册素养单元 第三章 函数的概念与性质 第1课时 函数的单调性

人教A版高中同步学案数学必修第一册素养单元 第三章 函数的概念与性质 第1课时 函数的单调性

上,通过代数运算和图象直观揭示函数的性质;构建从具体到抽象、从特殊
到一般的过程,归纳概括单调性的方法,培养数形结合思想,提升数学运算、
直观想象等素养.




01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
学习目标
1.理解增函数和减函数的定义.(数学抽象)
2.理解函数单调性的含义,掌握利用定义证明函数的单调性的方法.(逻辑推
理)
3.能够利用定义或图象求函数的单调区间,能够利用函数的单调性解决有
关问题.(数学运算)
基础落实•必备知识全过关
知识点:函数单调性的概念
1.
函数
增函数
减函数
图示
图象 函数f(x)在区间D上的图象是
上升 的
特征
函数f(x)在区间D上的图象是
下降 的
函数
增函数
减函数
一般地,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时,
(2)对于含绝对值的函数可以去掉绝对值号转化为分段函数或作出函数图
象判断函数单调性.
延伸探究
已知x∈R,函数f(x)=x|x-2|,试画出y=f(x)的图象,并结合图象写出函数的单
调区间.
(-2), ≥ 2,
解 f(x)=x|x-2|=
图象如图所示.
(2-), < 2,
由图象可知,函数的单调递增区间为(-∞,1],[2,+∞);单调递减区间为[1,2].
1
故函数f(x)=x+

在区间(0,1)上单调递减.
规律方法
1.利用定义法证明或判断函数的单调性的步骤

新教材高中数学第三章函数的概念与性质 单调性与最大小值第2课时函数的最大小值学案新人教A版必修第一册

新教材高中数学第三章函数的概念与性质 单调性与最大小值第2课时函数的最大小值学案新人教A版必修第一册

第2课时函数的最大(小)值课程标准(1)理解函数的最大值和最小值的概念及其几何意义.(2)能借助函数的图象和单调性,求一些简单函数的最值.(3)能利用函数的最值解决有关的实际应用问题.新知初探·课前预习——突出基础性教材要点要点函数的最大值与最小值助学批注批注❶函数的最值与值域的关系:(1)函数的值域一定存在,函数的最值不一定存在.(2)若函数的最值存在,则最值一定是值域中的元素.(3)若函数的值域是开区间,则函数无最值;若函数的值域是闭区间,则闭区间的端点值就是函数的最值.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何函数都有最大(小)值.( )(2)如果一个函数有最大值,那么最大值是唯一的.( )(3)函数f(x)取最大值时,对应的x可能有无限多个.( )(4)如果f(x)的最大值、最小值分别为M,m,则f(x)的值域为[m,M].( )2.函数f(x)=1x在[1,+∞)上( )A.有最大值无最小值B.有最小值无最大值C.有最大值也有最小值D.无最大值也无最小值3.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5B.-3,5C.1,5D.-5,34.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是________.题型探究·课堂解透——强化创新性题型 1 利用函数的图象求函数的最值例1 已知函数f(x)={x2−x,0≤x≤22x−1,x>2,求函数f(x)的最大值、最小值.方法归纳图象法求最值的一般步骤巩固训练1 若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为( )A.2B.1C.-1D.无最大值题型 2 利用函数的单调性求最值.例2 已知函数f(x)=2x+1x+1(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.方法归纳函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.在区间[2,6]上的最大值和最小值.巩固训练2 求函数y=2x−1题型 3 求二次函数的最值例3 (1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值.(2)求函数f(x)=x2-2x+2在区间[t,t+1]上的最小值g(t).(3)已知函数f(x)=x2-ax+1,求f(x)在[0,1]上的最大值.方法归纳求二次函数最值问题的解题策略一般都是讨论函数的定义域与对称轴的位置关系,往往分三种情况:(1)定义域在对称轴左侧;(2)对称轴在定义域内;(3)定义域在对称轴右侧.在讨论时可结合函数图象,便于分析、理解.巩固训练3 已知二次函数f(x)=-x2+2ax-a在区间[0,1]上有最大值2,求实数a的值.第2课时 函数的最大(小)值新知初探·课前预习[教材要点]要点≤ ≥ f (x 0)=M 纵坐标 纵坐标[基础自测]1.答案:(1)× (2)√ (3)√ (4)×2.解析:函数f (x )=1x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )单调递减,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.答案:A3.解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.答案:B4.解析:由图象知点(1,2)是最高点,点(-2,-1)是最低点, ∴y max =2,y min =-1. 答案:-1,2题型探究·课堂解透例1 解析:作出f (x )的图象如图:由图象可知,当x =2时,f (x )取最大值2;当x =12时,f (x )取最小值-14.所以f (x )的最大值为2,最小值为-14.巩固训练1 解析:在同一坐标系中,作出函数的图象(如图中的实线部分), 则f (x )max =f (1)=1. 答案:B例2 解析:(1)f (x )在(-1,+∞)上单调递增,证明如下:任取-1<x 1<x 2, 则f (x 1)-f (x 2)=2x 1+1x 1+1−2x 2+1x 2+1=x 1−x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2), 所以f (x )在(-1,+∞)上单调递增. (2)由(1)知f (x )在[2,4]上单调递增, 所以f (x )的最小值为f (2)=2×2+12+1=53,最大值f (4)=2×4+14+1=95.巩固训练2 解析:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x1−1−2x 2−1=2(x 2−x 1)(x1−1)(x 2−1)由于2<x 1<x 2<6, 得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,f (x 1)>f (x 2) 所以,函数y =2x−1在区间[2,6]上单调递减.x =2时取最大值,最大值是2,在x =6时取最小值,最小值为25.例3 解析:(1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2).图1∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)当t +1<1,即t <0时,函数图象如图1所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1; 当t >1时,函数图象如图2所示,图2图3函数f (x )在区间[t ,t +1]上为增函数,所以最小值为g (t )=f (t )=t 2-2t +2.当t ≤1≤t +1,即0≤t ≤1时, 函数图象如图3所示,最小值为g (t )=f (1)=1,综上所述,g (t )={t 2+1,t <01,0≤t ≤1t 2−2t +2,t >1.(3)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2>12,即a >1时,f (x )的最大值为f (0)=1. 综上f (x )max ={2−a ,a ≤11,a >1.巩固训练3 解析:f(x)=-(x-a)2+a2-a,对称轴为x=a.(1)当a<0时,f(x)在[0,1]上单调递减,∴f(0)=2,即a=-2.(2)当a>1时,f(x)在[0,1]上单调递增,∴f(1)=2,即a=3.(3)当0≤a≤1时,f(x)在[0,a]上单调递增,在[a,1]上单调递减, ∴f(a)=2,即a2-a=2,解得a=2或a=-1,与0≤a≤1矛盾.综上a=-2或a=3.。

人教A版高中学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的概念-第2课时函数概念的应用

人教A版高中学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的概念-第2课时函数概念的应用
− > ,
[解析]由ቊ
得 > ,且 ≠ .故选C.
− ≠ ,
2.函数() =
1
(
2 +1
∈ )的值域是() B
A.(−∞, 1]B.(0,1]C.[0,1)D.[0,1]
[解析]因为
(, ].故选B.
+ ≥ ,所以 <

+
≤ ,故函数() =
为函数 = − 2 + 4 + 1的图象开口向下,对称轴方程为 = 2 ∈ [0, +∞),所以当 = 2时,
函数 = − 2 + 4 + 1取到最大值,max = 5,所以原函数的值域为(−∞, 5].
1.知识清单:(1)求函数的定义域.
(2)求简单函数的值域.
2.方法归纳:配方法、换元法、基本不等式法、数形结合、转化与化归.
=
=2+
,
−3
−3
−3
7
7
2 +1

≠ 0,∴ 2 +
≠ 2,∴ =
的值域为(−∞, 2)
−3
−3
−3
∪ (2, +∞).
(4) = 2 − − 1.
1
4
解 令 − 1 = ,则 ≥ 0且 = 2 + 1,∴ = 2( 2 + 1) − = 2 2 − + 2 = 2( − )2 +
1
4
则当 = 时,min =
15
,∴
8
15
, +∞).
8
= 2 − − 1的值域为[
15
,

人教A版高中同步学案数学必修第一册精品课件 第三章 函数的概念与性质 本章 总结提升

人教A版高中同步学案数学必修第一册精品课件 第三章 函数的概念与性质 本章 总结提升
∴y=2(t +1)-t=2t
2
∵t≥0,∴y≥

1
t=4,即
1 2 15
-t+2=2(t- ) + .
4
8
2
15
.
8
17
x=16时,等号成立,
∴函数 y=2x-
15
-1的值域是[ 8 ,+∞).
规律方法
求函数值域的方法
(1)形如 y=ax+b± + 的函数,可用换元法,即设 t= + ,转化成二次函
解(1)∵x -x+1=
2
1
∴0< 2
-+1
2 -
∴y= 2
-+1
1
−2
3
+4
2

2 -4+3
(3)y= 2
.
2 --1
3
,
4

4
,
3
=
2 -+1-1
1
=1- 2
,故函数
2
-+1
-+1
2 -
1
y= 2
的值域为[- ,1).
3
-+1
(2)令 2-=t,则 t≥0.
2
若 a≤
1
,则函数
2
f(a)=a2+1.
1
−2
3
+a+4.
2
f(x)在(-∞,a]上单调递减,从而,函数 f(x)在(-∞,a]上的最小值为

1
a> ,则函数
2
f(x)在(-∞,a]上的最小值为 f

人教A版高中数学第一册(必修1)学案1:3.1.1 函数的概念

人教A版高中数学第一册(必修1)学案1:3.1.1 函数的概念

第三章函数的概念与性质3.1 函数的概念及其表示3.1.1函数的概念课前自主学习知识点1函数的定义及相关概念(1)函数的定义:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个实数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)相关概念:x叫做,x的取值范围A叫做函数的;与x的值相对应的y值叫做,函数值的集合{f(x)| x∈A }叫做函数的. 显然,值域是集合B的.(3)同一个函数:如果两个函数的相同,并且完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数.『微思考』(1)任何两个集合之间都可以建立函数关系吗?(2)什么样的对应可以构成函数关系?知识点2区间及相关概念(1)一般区间的表示设a,b是两个实数,而且,我们规定:定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半闭半开区间{x|a<x≤b}半开半闭区间(2)实数集R可以用区间表示为,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)特殊区间的表示定义区间数轴表示{x|x≥a}{x|x>a}{x|x≤b}{x|x<b}『微体验』1.下列区间与集合{x|x<-2或x≥0}相对应的是()A.(-2,0)B.(-∞,-2』∪『0,+∞)C.(-∞,-2)∪『0,+∞)D.(-∞,-2』∪(0,+∞)2.下列集合不能用区间的形式表示的个数为()①A={0,1,5,10};②{x|2<x≤10,x∈N};③∅;④{x|x是等边三角形};⑤{x|x≤0或x≥3};⑥{x|x>1,x∈Q}.A.2B.3 C.4D.53.{x|x>1且x≠2}用区间表示为________.课堂互动探究探究一函数关系的判断例1 下列对应中是A 到B 的函数的个数为( ) (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =『-1,1』,B ={0},f :x →y =0;(4)A ={1,2,3},B ={a ,b },对应关系如下图所示:(5)A ={1,2,3},B ={4,5,6},对应关系如下图所示:A .1B .2C .3D .4『方法总结』判断对应关系是否为函数,主要从以下三个方面去判断 (1)A ,B 必须是非空数集;(2)A 中任何一个元素在B 中必须有元素与其对应; (3)A 中任何一个元素在B 中的对应元素必须唯一. 跟踪训练1 对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x 值,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来. A .1个B .2个C .3个D .4个探究二 求函数定义域问题 例2 求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3;(3)y =ax -3(a 为常数).变式探究 将本例(1)改为y =(x +1)2x +1-1-x 2,其定义域如何?『方法总结』求函数定义域的常用依据(1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使指数幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义; (5)若f (x )是实际问题的『解 析』式,则应符合实际问题,使实际问题有意义. 跟踪训练2 (1)设全集为R ,函数f (x )=2-x 的定义域为M ,则∁R M 为( ) A .(2,+∞)B .(-∞,2)C .(-∞,2』D .『2,+∞)(2)函数f (x )=xx -1的定义域为________.探究三 求函数值和函数值域问题例3 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (2))的值; (3)求f (x ),g (x )的值域.『方法总结』求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算确定其值域.(2)常用方法:①逐个求法:当定义域为有限集时,常用此法;②观察法:如y=x2,可观察出y≥0;③配方法:对于求二次函数值域的问题常用此法;④换元法:对于形如y=ax+b+cx+d的函数,求值域时常用换元法,令t=cx+d,将原函数转化为关于t的二次函数;⑤分离常数法:对于形如y=cx+dax+b的函数,常用分离常数法求值域;⑥图象法:对于易作图象的函数,可用此法,如y=1x-1.跟踪训练3求下列函数的值域:(1)y=3x-1,x∈{1,3,5,7};(2)y=-x2+2x+1,x∈R;(3)y=x+1-2x.探究四同一个函数的判定例4 下列各组函数是同一个函数的是________.(填序号)①f(x)=-2x3与g(x)=x-2x;②f(x)=x0与g(x)=1x0;③f(x)=x2-2x-1与g(t)=t2-2t-1.『方法总结』判断同一个函数的三个步骤和两个注意点(1)判断函数是否相等的三个步骤.(2)两个注意点.①在化简『解析』式时,必须是等价变形;②与用哪个字母表示变量无关.跟踪训练4下列各组中的两个函数是否为同一个函数?(1)y1=(x+3)(x-5)x+3,y2=x-5;(2)y1=x+1·x-1,y2=(x+1)(x-1).随堂本课小结1.对函数概念的五点说明(1)对数集的要求:集合A,B为非空数集.(2)任意性和唯一性:集合A中的数具有任意性,集合B中的数具有唯一性.(3)对符号“f”的认识:它表示对应关系,在不同的函数中f的具体含义不一样.(4)一个区别:f(x)是一个符号,不表示f与x的乘积,而f(a)表示函数f(x)当自变量x取a时的一个函数值.(5)函数三要素:定义域、对应关系和值域是函数的三要素,三者缺一不可.2.求函数的定义域就是求使函数『解析』式有意义的自变量的取值范围,列不等式(组)是求函数定义域的基本方法.3.求函数的值域常用的方法有:观察法、配方法、换元法、分离常数法、图象法等.——★参*考*答*案★——课前自主学习知识点1函数的定义及相关概念(2)自变量定义域函数值值域子集(3)定义域对应关系『微思考』(1)提示:不一定,两个集合必须是非空的数集.(2)提示:两个非空数集之间是一一对应关系或多对一可构成函数关系.知识点2区间及相关概念(1)a<b『a,b』(a,b) 『a,b) (a,b』(2) (-∞,+∞)(3) 『a,+∞)(a,+∞)(-∞,b』(-∞,b)『微体验』1.C『『解析』』集合{ x|x<-2或x≥0}可表示为(-∞,-2)∪『0,+∞).2.D『『解析』』用区间表示的集合必须是连续的实数构成的集合,只有⑤是连续实数构成的集合,因此只有⑤可以用区间表示.3.(1,2)∪(2,+∞)『『解析』』{x|x>1且x≠2}用区间表示为(1,2)∪(2,+∞).课堂互动探究探究一函数关系的判断例1 B『『解析』』(1)A中的元素0在B中没有对应元素,故不是A到B的函数;(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一确定的整数x2与其对应,故是集合A到集合B的函数;(3)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一确定的数0和它对应,故是集合A到集合B的函数;(4)集合B 不是确定的数集,故不是A 到B 的函数;(5)集合A 中的元素3在B 中没有对应元素,且A 中元素2在B 中有两个元素5和6与之对应,故不是A 到B 的函数. 跟踪训练1 B『『解 析』』①③正确,②是错误的,对于不同的x 值,y 的值可以相同,这符合函数的定义,④是错误的,f (x )表示的是函数,而函数并不是都能用具体的式子表示出来. 探究二 求函数定义域问题例2 解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数的定义域为{x |x ≤5,且x ≠±3}.(3)要使函数有意义,必须使ax -3≥0.当a >0时,原函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≥3a ; 当a <0时,原函数的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≤3a; 当a =0时,ax -3≥0的解集为∅,不符合函数的定义,故此时不是函数.变式探究 解 由⎩⎪⎨⎪⎧x +1≠0,1-x 2≥0,解得{x |-1<x ≤1}.跟踪训练2 (1)A『『解 析』』由2-x ≥0,解得x ≤2,所以M =(-∞,2』,所以∁R M =(2,+∞). (2){x |x ≥0,且x ≠1}『『解 析』』要使xx -1有意义,需满足⎩⎪⎨⎪⎧x ≥0,x -1≠0,解得x ≥0,且x ≠1,故函数f (x )的定义域为{x |x ≥0,且x ≠1}.探究三 求函数值和函数值域问题例3 解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)f (g (2))=f (6)=11+6=17. (3)f (x )=11+x 的定义域为{x |x ≠-1},∴值域是{y |y ≠0}.g (x )=x 2+2的定义域为R ,最小值为2,∴值域是{y |y ≥2}.跟踪训练3 解 (1)(逐个求法)将x =1,3,5,7依次代入『解 析』式,得y =2,8,14,20.∴函数的值域是{2,8,14,20}.(2)(配方法)∵y =-x 2+2x +1=-(x -1)2+2≤2, ∴函数的值域是(-∞,2』.(3)(换元法或配方法)令1-2x =t ,则x =1-t 22,且t ≥0,∴原函数化为y =1-t 22+t =-12t 2+t +12=-12(t -1)2+1≤1.∴所求函数的值域是(-∞,1』. 探究四 同一个函数的判定 例4 ②③『『解 析』』①f (x )=-x -2x ,g (x )=x -2x ,对应关系不同,故f (x )与g (x )不是同一个函数;②f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一个函数;③f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一个函数. 跟踪训练4 解 (1)两函数定义域不同,所以不是同一个函数.(2)y 1=x +1·x -1的定义域为{x |x ≥1},而y 2=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},定义域不同,所以不是同一个函数.。

高中数学第三章函数的概念与性质3.1函数的概念及其表示3.1.1第1课时函数的概念一学案含解析第一册

高中数学第三章函数的概念与性质3.1函数的概念及其表示3.1.1第1课时函数的概念一学案含解析第一册

第三章函数的概念与性质3.1函数的概念及其表示3。

1.1函数的概念【素养目标】1.通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(数学抽象)2.了解构成函数的三要素.(数学抽象)3.能够正确使用“区间”的符号表示某些集合.(直观想象)4.理解同一个函数的概念.(数学抽象)5.能判断两个函数是否是同一个函数.(逻辑推理)【学法解读】1.函数概念的引入,学生以熟悉的例子为背景进行抽象,从变量之间的依赖关系、实数集合之间的对应关系、函数图象的几何直观等角度整体认识函数的概念.例如,学生可以从已知的、基于变量关系的函数定义入手,通过生活或数学中的问题,构建函数的一般概念,体会用对应关系定义函数的必要性,感悟数学抽象的层次.2.本节重点是理解函数的定义,会求简单函数的定义域,难点是理解y=f(x)的含义,学生要加深理解.第1课时函数的概念(一)必备知识·探新知基础知识知识点1函数的概念定义设A、B是非空的__实数集__,如果对于集合A中的__任意一个数x__,按照某种确定的对应关系f,在集合B中都有__唯一确定__的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y=f(x),x ∈A三要素对应关系y=f(x),x∈A定义域__x__的取值集合值域与x的值相对应的y的值的集合{f(x)|x∈A}.思考1:(1)对应关系f一定是解析式吗?(2)f(x)与f(a)有何区别与联系?提示:(1)不一定.对应关系f可以是解析式、图象、表格,或文字描述等形式.(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值.知识点2区间及有关概念(1)一般区间的表示.设a,b∈R,且a〈b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间__[a,b]__{x|a<x <b}开区间__(a,b)__{x|a≤x <b}半开半闭区间__[a,b)__{x|a<x≤b}半开半闭区间__(a,b]__(2)特殊区间的表示.定义R{x|x≥a}{x|x〉a}{x|x≤a}{x|x<a}符号__(-∞,+∞)____[a,+∞)____(a,+∞)____(-∞,a]____(-∞,a)__思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?以“-∞"或“+∞”作为区间一端时这一端可以是中括号吗?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞"读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.基础自测1.区间[5,8)表示的集合是(C)A.{x|x≤5或x>8}B.{x|5<x≤8}C.{x|5≤x〈8}D.{x|5≤x≤8}[解析]区间[5,8)表示的集合是{x|5≤x〈8},故选C.2.已知f(x)=2x+1,则f(5)=(C)A.3 B.7C.11 D.25[解析]f(5)=2×5+1=11,故选C.3.(2019·江苏,4)函数y=7+6x-x2的定义域是__[-1,7]__.[解析]要使函数y=错误!有意义,应满足7+6x-x2≥0,∴x2-6x-7≤0,∴(x-7)(x+1)≤0,∴-1≤x≤7,∴函数y=错误!的定义域是[-1,7].4.已知f(x)=错误!,g(x)=-x2+2。

311函数的概念学案-河北省献县第一中学人教A版【2019新教材】高一数学必修第一册

311函数的概念学案-河北省献县第一中学人教A版【2019新教材】高一数学必修第一册

高中数学第一册[新教材]人教A版(2019)必修一第三章函数的概念和性质3.1函数的概念及其表示3.1.1函数的概念【学习目标】1.在初中的基础之上,进一步体会函数描述的是变量之间的依赖关系,会用集合与对应的语言来刻画函数,2.了解构成函数的要素,会求一些简单函数的定义域和值域3.理解函数的三要素及函数符号的深刻含义【核心素养】1,通过学习函数的概念,培养数学抽象素养2,借助函数定义域的求解,培养数学运算素养.3.借助f(x)与f(a)的关系,培养逻辑推理素养【知识导学】知识点一函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.【名师点拨】(1)对应中的两个集合A,B是非空的实数集,(2)函数概念中明确要求对于非空实数集A中的任意一个(任意性)元素x,在非空实数集B中都有(存在性)唯一(唯一性)的元素y与之对应.注意其中的(任意性)、(存在性)、(唯一性)(3)集合A是函数的定义域,因为给定A中每一个x值都有唯一的y值与之对应;集合B不一定是函数的值域,因为B中的元素可以在A中没有与之对应的x,也就是说,B中的某些元素可以不是函数值,即{f(x)|x∈A}⊆B.(4)在函数定义中,我们用符号y=f(x)表示函数,其中f(x)表示“x对应的函数值”,而不是“f乘x”,也就是说:对应关系f是函数的本质特征,好比计算机的某种程序(或解决某问题的方法),当我们在f( )中括号里面放入某个x,就会按照这个程序得到一个结果即y值(5)函数的三要素,从函数的定义可以看出,函数有三个要素:定义域、对应关系、值域,判定函数和函数相等的依据知识点二区间的概念(1)设a,b是两个实数,而且a<b.我们规定:定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半开半闭区间{x|a<x≤b}半开半闭区间(2)特殊区间的表示定R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}义符(-∞,+∞) [a,+∞)(a,+∞)(-∞,a](-∞,a)号注意:(1)无穷大“∞”只是一个符号,而不是一个数,因而它不具备数的一些性质和运算法则.(2)以“-∞”或“+∞”为区间一端时,这一端必须用小括号.【初试身手】1.(2020·浙江高一开学考试)下列各曲线中,不能表示y是x的函数的是()A.B.C.D.【答案】C。

人教A版高中学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的表示法-第1课时函数的表示法

人教A版高中学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的表示法-第1课时函数的表示法
故所求函数的解析式为() = 2 − 1, ∈ [1, +∞).
(方法2)令 + 1 = ,则 = ( − 1)2 ,且 ≥ 1,
则函数( + 1) = + 2 可化为() = ( − 1)2 + 2( − 1) = 2 − 1,故所求函数的
解析式为() = 2 − 1, ∈ [1, +∞).
图①
(2) = 2 2 − 4 − 3(0 ≤ < 3).
解 因为 ∈ [0,3),所以函数图象是抛物线的一段(如图②),由图象知, ∈ [−5,3).
图②
规律方法函数图象的作法及注意点
(1)作函数图象最基本的方法是描点法:主要有三个步骤——列表、描点、连线.
作图象时一般先确定函数的定义域,再在定义域内化简函数解析式,最后列表画出图象.
1



+ 2 () = , ②

1 2
3
② × 2 − ①,得() = ( − ).故() =

2
3

3
− ( ≠ 0).
探究点三 利用函数的图象求函数的值域
【例3】 作出下列函数的图象,并求其值域:
(1) = 1 − ( ∈ );
解 因为 ∈ ,所以函数图象为一条直线上的孤立点(如图①),由图象知, ∈ .
41
8
17
4
29
8
13
4
25
8
13
4
29
8
17
4
41
8
③图象法:
探究点二 求函数的解析式
【例2】(1)已知( + 1) = 2 − 3 + 2,求();
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念第1课时函数的概念(一)知识点1函数的概念定义设A 、B 是非空的,如果对于集合A 中的____,按照某种确定的对应关系f ,在集合B 中都有____的数y和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A三要素对应关系y =f (x ),x ∈A 定义域的取值集合值域与x 的值相对应的y 的值的集合{f (x )|x ∈A}.思考1:(1)对应关系f 一定是解析式吗?(2)f (x )与f (a )有何区别与联系?知识点2区间及有关概念(1)一般区间的表示.设a ,b ∈R ,且a <b ,规定如下:定义名称符号数轴表示{x |a ≤x ≤b }闭区间{x |a <x <b }开区间{x |a ≤x <b }半开半闭区间{x |a <x ≤b }半开半闭区间(2)特殊区间的表示.定义R {x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }符号思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?以“-∞”或“+∞”作为区间一端时这一端可以是中括号吗?基础自测1.区间[5,8)表示的集合是()A .{x |x ≤5或x >8}B .{x |5<x ≤8}C .{x |5≤x <8}D .{x |5≤x ≤8}2.已知f (x )=2x +1,则f (5)=()A .3B .7C .11D .253.函数y =7+6x -x 2的定义域是.4.已知f (x )=12-x,g (x )=-x 2+2.(1)求f (3),g (3)的值;(2)求f [g (2)]的值;(3)求f [g (x )]的解析式.题型探究题型一函数概念的理解例1(1)下列对应或关系式中是A 到B 的函数的是()A .A ∈R ,B ∈R ,x 2+y 2=1B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1(2)设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数y =f (x )的定义域为M ,值域为N ,对于下列四个图象,不可作为函数y =f (x )的图象的是()[归纳提升]例1(1)例1(2)1.判断一个对应关系是否是函数,要从以下三个方面去判断,即A ,B 必须是非空数集;A 中任何一个元素在B 中必须有元素与其对应;A 中任一元素在B 中必有唯一元素与其对应.2.函数的定义中“任一x ”与“有唯一确定的y ”说明函数中两变量x ,y 的对应关系是“一对一”或者是“多对一”而不能是“一对多”.【对点练习】❶下列对应是否为A 到B 的函数:(1)A =R ,B ={x |x >0},f :x →y =|x |;(2)A =Z ,B =Z ,f :x →y =x 2;(3)A =Z ,B =Z ,f :x →y =x ;(4)A =[-1,1],B ={0},f :x →y =0.题型二求函数的定义域例2求下列函数的定义域:(1)y =x +2|x |-x ;(2)f (x )=x 2-1x -1-4-x .[归纳提升]求函数的定义域:(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0.(2)函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义公共部分集合.(3)定义域是集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.【对点练习】❷函数y =1x +1的定义域是()A .[-1,+∞)B .[-1,0]C .(-1,+∞)D .(-1,0)题型三求函数值例3已知f (x )=x1+x,x ∈R .(1)求f (2),f (12),f (3),f (13)的值;(2)求f (2)+f (3)+…+f (2018)+f (12)+f (13+…+f (12018)的值.[归纳提升]解题时要注意审题,观察分析、发现规律.【对点练习】❸已知函数f (x )=x 2-1x 2+1,则f (1)+f 2f12+…+f10f110=.课堂检测1.下列图形中,不能确定y 是x 的函数的是()2.设函数f (x )=ax +b ,若f (1)=-2,f (-1)=0,则()A .a =1,b =-1B .a =-1,b =-1C .a =-1,b =1D .a =1,b =13.用区间表示数集{x |x ≤2或x >3}为.4.若f (x )=5xx 2+1,且f (a )=2,则a =.课后自测一、选择题1.下列图形中,可以作为y 关于x 的函数图象的是()2.下列四组中的f (x )与g (x )表示相等函数的是()A .f (x )=x ,g (x )=x xB .f (x )=x ,g (t )=tC .f (x )=12,g (x )=x2xD .f (x )=x ,g (x )=|x |3.函数f (x )=x +1+12-x()A .[-1,2)∪(2,+∞)B .(-1,+∞)C .[-1,2)D .[-1,+∞)4.函数y =-x 2+2x 的定义域为{-1,0,1,2,3},那么其值域为()A .{-3,0,1}B .{-3,0,1,3}C .{y |-3≤y ≤0}D .{y |-3≤y ≤1}5.函数f (x )=1x -1+2-x 的定义域为()A .{x |1≤x ≤2}B .{x |1<x ≤2}C .{x |1≤x <2}D .{x |1<x <2}6.已知函数f (x )=3x ,则f (1a)=()A .1aB .3aC .aD .3a二、填空题7.若[a,3a -1]为一确定区间,则a 的取值范围是___.8.若函数f (x )满足f (2x -1)=x +1,则f (3)=.9.已知函数y =f (x )的图象如图所示,则y =f (x )的定义域是.(9题)三、解答题10.已知函数f (x )=6x -1-x +5.(1)求函数f (x )的定义域;(2)求f (-1),f (12)的值.11.已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值;(2)求f [g (3)]的值;(3)求g (a +1).第2课时函数的概念(二)知识点1同一个函数前提条件相同完全一致结论这两个函数是同一个函数思考1:函数有定义域、对应关系和值域三要素,为什么判断两个函数是否是同一个函数,只看定义域和对应关系?知识点2常见函数的定义域和值域函数一次函数反比例函数二次函数__a >0____a <0__对应关系y =ax +b (a ≠0)y =k x(k ≠0)y =ax 2+bx +c (a ≠0)y =ax 2+bx +c (a ≠0)定义域R {x |x ≠0}R R值域R {y |y ≠0}{y |y ≥4ac -b 24a }{y |y ≤4ac -b 24a}思考2:求二次函数y =ax 2+bx +c (a ≠0)的值域时为什么分a >0和a <0两种情况?基础自测1.判断正误(对的打“√”,错的打“×”)(1)f (x )=x 2x与g (x )=x 是同一个函数.()(2)若两个函数的定义域与值域都相同,则这两个函数是同一个函数.()(3)函数f (x )=x 2-x 与g (t )=t 2-t 是同一个函数.()2.下图中,能表示函数y =f (x )的图象的是()3.若函数y =x 2-3x 的定义域为{-1,0,2,3},则其值域为()A .{-2,0,4}B .{-2,0,2,4}C .{y |y ≤-94}D .{y |0≤y ≤3}4.下表表示y 是x 的函数,则函数的值域是()x x <22≤x ≤3x >3y-101A .{y |-1≤y ≤1}B .RC .{y |2≤y ≤3}D .{-1,0,1}题型探究题型一函数的值域例1函数y=-x2+1,-1≤x<2的值域是()A.(-3,0]B.(-3,1]C.[0,1]D.[1,5)[归纳提升]二次函数y=ax2+bx+c(a>0)的值域(1)对称轴在限定区间的左边,则函数在限定区间左端点取最小值,右端点取最大值;(2)对称轴在限定区间的右边,则函数在限定区间左端点取最大值,右端点取最小值;(3)对称轴在限定区间内,则函数在对称轴处取最小值,限定区间中距离对称轴较远的端点取最大值.【对点练习】❶下列函数中,值域为(0,+∞)的是()A.y=x B.y=1x C.y=1xD.y=x2+1题型二同一函数例2判断下列各组函数是否是同一个函数,为什么?(1)y=xx与y=1;(2)y=x2与y=x;(3)y=x+1·1-x与y=1-x2.[归纳提升]判断两个函数f(x)和g(x)是不是同一函数的方法与步骤(1)先看定义域,若定义域不同,则两函数不同.(2)再看对应关系,若对应关系不同,则不是同一函数.(3)若对应关系相同,且定义域也相同,则是同一函数.【对点练习】❷f(x)与g(x)表示同一函数的是()A.f(x)=x2,g(x)=x2B.f(x)=1,g(x)=(x-1)0C.f(x)=x2-9x+3,g(x)=x-3D.f(x)=x2x,g(x)=xx2题型三复合函数、抽象函数的定义域例3(1)若函数f(x)的定义域为(-1,2),则函数f(2x+1)的定义域为____.(2)若函数f(2x+1)的定义域为(-1,2),则函数f(x)的定义域为.(3)若函数f(2x+1)的定义域为(-1,2),则函数f(x-1)的定义域为.[归纳提升]函数y=f[g(x)]的定义域由y=f(t)与t=g(x)的定义域共同决定:(1)若已知函数f(x)的定义域为数集A,则函数f[g(x)]的定义域由g(x)∈A解出.(2)若已知函数f[g(x)]的定义域为数集A,则函数f(x)的定义域为g(x)在A中的值域.【对点练习】❸(1)已知函数f(x)的定义域为[-1,5],求函数f(x-5)的定义域;(2)已知函数f(x-1)的定义域是[0,3],求函数f(x)的定义域.误区警示函数概念理解有误例4设集合M={x|0≤x≤2},集合N={y|0≤y≤2},给出下列四个图形(如图所示),其中能表示集合M到N的函数关系的个数是()A.0B.1C.2D.3[方法点拨]函数的定义中,从数的角度描述了函数的对应关系,首先它是两个非空数集之间的对应,它可以一对一,也可以多对一,除此之外,还要弄清定义域与数集A、值域与数集B之间的关系.学科素养:求函数值域的方法——转化与化归思想及数形结合思想的应用1.分离常数法例5求函数y=3x+2x-2的值域.[归纳提升]求y=ax+cx+b 这种类型的函数的值域,应采用分离常数法,将函数化为y=a+c-abx+b的形式.2.配方法例6求函数y=-x2-2x+3(-5≤x≤-2)的值域.[归纳提升]遇到求解一般二次函数y=ax2+bx+c(a≠0)的值域时,应采用配方法,将函数化为y=a(x+b2a)2+4ac-b24a的形式,从而求得函数的值域.3.换元法例7求函数y=x+2x-1的值域.[归纳提升]求解带根号且被开方式为一次式的函数的值域,直接求解很困难,既费时又费力,所以遇到这样的问题,我们要想到用一个字母代换掉带根号的式子.值得注意的是,在代换过程中,要注意新变量的取值范围.课堂检测1.下列表格中的x与y能构成函数的是()2.下列各组函数中,表示同一函数的是()A.y=x与y=3x3B.y=x2与y=x3xC.y=1与y=(x+1)0D.y=|x|与y=(x)2 3.已知函数f(x)的定义域[-2,3],则函数f(x+1)的定义域为.4.若函数f(x)=12x2-x+a的定义域和值域均为[1,b](b>1),则a+b的值为____.课后自测一、选择题1.函数f(x)=x+2-x的定义域是()A.[2,+∞)B.(2,+∞)C.(-∞,2]D.(-∞,2)2.函数y=x+10|x|-x()A.{x|x>0}B.{x|x<0}C.{x|x<0,且x≠-1}D.{x|x≠0,且x≠-1}3.函数f(x)=x+1,x∈{-1,1,2}的值域是()A.{0,2,3}B.[0,3]C.[0,3)D.[1,3) 4.下列函数中,值域为(0,+∞)的是()A.y=x B.y=100x+2C.y=16xD.y=x2+x+15.已知函数y=f(x)与函数y=x+3+1-x是相等的函数,则函数y=f(x)的定义域是() A.[-3,1]B.(-3,1)C.(-3,+∞)D.(-∞,1] 6.若函数f(x)=(x)2与g(x)=x(x∈D)是相等函数,则D是()A.(-∞,0)B.(0,+∞)C.[0,+∞)D.(-∞,0]二、填空题7.函数y=6-x|x|-4的定义域用区间表示为.8.函数f(x)=2+1x2-2x+3的值域是.9.若函数y=f(x)的定义域为[-1,1),则f(2x-1)的定义域为____.三、解答题10.求下列函数的值域.(1)y=2x+1,x∈[1,5];(2)y=x-1;(3)y=5x-14x+2.11.已知函数y=x2+2x-3,分别求它在下列区间上的值域.(1)x∈R;(2)x∈[0,+∞);(3)x∈[-2,2];(4)x∈[1,2].3.1.2函数的表示法第1课时函数的表示法知识点函数的表示法表示法定义解析法用数学表达式表示两个变量之间的对应关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式图象法以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数y=f(x)的图象,这种用__图象__表示两个变量之间对应关系的方法叫做图象法列表法列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种列出__表格__来表示两个变量之间对应关系的方法叫做列表法思考:三种表示法的优缺点分别是什么?表示法优点缺点解析法简明、全面地概括了变量之间的关系,且利用解析式可求任一自变量对应的函数值不够形象直观,而且并不是所有函数都有解析式图象法能形象直观地表示变量的变化情况只能近似地求出自变量所对应的函数值列表法不需计算可以直接看出与自变量对应的函数值只能表示有限个数的自变量所对应的函数值基础自测1.已知f (x )=π(x ∈R ),则f (π2)等于()A .π2B .πC .πD .不确定2.已知函数y =f (x )的图象如图,则f (x )的定义域是()A .(-∞,1)∪(1,+∞)B .RC .(-∞,0)∪(0,+∞)D .(-1,0)3.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [f (3)]的值等于_.4.已知函数f (x ),g (x )分别由下表给出:则f [g (1)]的值为;当g [f (x )]=2时,x =.题型探究题型一列表法表示函数例1某商场新进了10台彩电,每台售价3000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.[归纳提升]列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在应用三种方法表示函数时要注意:(1)解析法:必须注明函数的定义域.(2)列表法:选取的自变量要有代表性,应能反映定义域的特征.(3)图象法:是否连线.【对点练习】❶某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元.试用函数的三种表示法表示函数y =f (x ).题型二与函数图象有关的问题例2作出下列函数的图象并求出其值域.(1)y =2x +1,x ∈[0,2];(2)y =2x,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].[归纳提升](1)常见函数图象的特征:①一次函数y =kx +b (k ≠0)是一条直线;②y =kxk ≠0)是与坐标轴无限接近的双曲线;③y =ax 2+bx +c (a ≠0)是顶点为(-b 2a ,4ac -b 24a ),对称轴为x =-b2a 的抛物线.(2)作函数图象时应注意以下几点:①在定义域内作图;②图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;③要标出某些关键点,例如图象的顶点、端点与坐标轴的交点等.要分清这些关键点是实心点还是空心点.【对点练习】❷作出下列函数的图象,并指出其值域.(1)y =x 2+x (-1≤x ≤1);(2)y =2x(-2≤x ≤1,且x ≠0).题型三求函数解析式角度1待定系数法求解析式例3(1)已知一次函数f (x )满足f [f (x )]=4x +6,则f (x )的解析式为.(2)已知二次函数f (x )满足f (0)=1,f (1)=2,f (2)=5,则该二次函数的解析式为.角度2换元法(或配凑法)求解析式例4(1)已知f (x +1)=x +2x ,则f (x )的解析式为.(2)已知函数f (x +1)=x 2-2x ,则f (x )的解析式为.角度3方程组法求函数解析式例5(1)已知函数f (x )满足f (x )+2f (1x)=x ,则函数f (x )的解析式为.(2)已知af (x )+f (-x )=bx ,其中a ≠±1,则函数f (x )的解析式为.[归纳提升]函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)解方程组法:已知f (x )与f (1x )或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).【对点练习】❸(1)已知f (x )是一个正比例函数和一个反比例函数的和,且f (2)=3,f (1)=3,则f (x )=.(2)①已知函数y =f (x )满足f (1x-2)=x +1.求f (x )的解析式;②已知函数f (x )的定义域为(0,+∞),且f (x )=2·f (1x)·x -1,求f (x )的解析式.课堂检测1.如图,函数f(x)的图象是折线段,其中点A,B,C的坐标分别是(0,4),(2,0),(6,4),则f[f(2)]=() A.0B.2C.4D.62.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为()A.{-1,0,3}B.{0,1,2,3}C.{y|-1≤y≤3}D.{y|0≤y≤3}3.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()4.一个面积为100cm2的等腰梯形,上底长为x cm,下底长为上底长的3倍,则它的高y与x的函数关系为.5.已知函数f(x)=ax+b,且f(-1)=-4,f(2)=5.求:(1)a,b的值;(2)f(0)的值.课后自测一、选择题1.已知一次函数的图象过点(1,0)和(0,1),则该一次函数的解析式为()A.f(x)=-x B.f(x)=x-1C.f(x)=x+1D.f(x)=-x+12.已知函数f(x)由下表给出,则f(3)等于()x1≤x<222<x≤4f(x)123A.1B.2C.3D.不存在3.函数f(x)=x|x|的图象是()4.某人开车去某地旅行,先沿直线匀速前进了a km,到达目的地后游玩了一段时间,又原路返回匀速行驶了b km(b<a),再折回匀速前进c km,则此人距起点的距离s与时间t的关系示意图正确的是()5.若f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式为()A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3D.g(x)=2x+76.若f(x)对于任意实数x恒有3f(x)-2f(-x)=5x+1,则f(x)=()A.x+1B.x-1C.2x+1D.3x+3二、填空题7.已知函数f (x )的图象如图所示,其中点O ,A ,B ,C 的坐标分别为(0,0)5(0,4),(2,0),则f (-5)=,f [f (2)]=.8.若3f (x )-f (1x)=2x (x ≠0),则f (x )=.9.设函数f (x )-1,x ≥0,x <0,若f (m )>m ,则m 的取值范围是.三、解答题10.作出函数的图象.(1)y =x2+1,x ∈{1,2,3,4,5};(2)y =2x 2-4x -3(0≤x <3).11.设f (x )是R 上的函数,且f (0)=1,并且对任意实数x ,y 都有f (x -y )=f (x )-y (2x -y +1).(1)求f (x )的解析式;(2)求函数的值域.第2课时分段函数知识点分段函数【分类讨论思想、数形结合思想】如果函数在定义域的不同的范围内,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数对于自变量x 的不同取值区间对应关系不同,那么分段函数是一个函数还是几个函数?基础自测1.函数f (x )=x +1x -1的定义域为()A .[-1,1)∪(1,+∞)B .(1,+∞)C .(-1,+∞)D .(-1,1)∪(1,+∞)2.若f (x )2x ≥0,xx <0.则f [f (-2)]=()A .2B .3C .4D.53.函数y =|x |的图象是()4.已知f(x )+4x <0-4x >0,则f [f (-3)]的值为.题型探究题型一分段函数的求值问题例1已知函数f(x)+2x≤-12-1<x<2x x≥2.(1)求f(-4),f(3),f[f(-2)];(2)若f(a)=10,求a的值.[归纳提升]求分段函数函数值的方法(1)先确定要求值的自变量属于哪一段区间.(2)然后代入该段的解析式求值,直到求出值为止.当出现f[f(x0)]的形式时,应从内到外依次求值.【对点练习】❶已知f(x)+3x>10f x+5]x≤10,则f(5)的值是()A.24B.21C.18D.16题型二分段函数的图象及应用例2已知函数f(x)=1+|x|-x2(-2<x≤2).(1)用分段函数的形式表示函数f(x);(2)画出函数f(x)的图象;(3)写出函数f(x)的值域.[归纳提升]1.由分段函数的图象确定函数解析式的步骤:(1)定类型:根据自变量在不同范围内图象的特点,先确定函数的类型.(2)设函数式:设出函数的解析式.(3)列方程(组):根据图象中的已知点,列出方程或方程组,求出该段内的解析式.(4)下结论:最后用“{”表示出各段解析式,注意自变量的取值范围.2.作分段函数图象的注意点:作分段函数的图象时,定义域分界点处的函数取值情况决定着图象在分界点处的断开或连接,特别注意端点处是实心点还是空心点.【对点练习】❷已知函数f(x)2x+1x<12-2x x≥1.(1)画出函数的图象;(2)若f(x)=1,求x的值.题型三分段函数的应用问题例3如图,在边长为4的正方形ABCD的边上有一点P,沿折线BCDA由点B(起点)向点A(终点)运动,设点P 运动的路程为x,△APB的面积为y.(1)求y关于x的函数关系式y=f(x);(2)画出y=f(x)的图象;(3)若△APB的面积不小于2,求x的取值范围.[归纳提升]利用分段函数求解实际应用题的策略(1)首要条件:把文字语言转换为数学语言.(2)解题关键:建立恰当的分段函数模型.(3)思想方法:解题过程中运用分类讨论的思想方法.【对点练习】❸某市有A,B两家羽毛球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内(含20小时)每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时.(1)设在A俱乐部租一块场地开展活动x小时的收费为f(x)元(12≤x≤30),在B俱乐部租一块场地开展活动x小时的收费为g(x)元(12≤x≤30),试求f(x)与g(x)的解析式;(2)问该企业选择哪家俱乐部比较合算,为什么?误区警示分段函数概念的理解错误例4求函数f(x)2-1x≥0x<0的定义域.学科素养:建模应用能力数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题,提出问题,分析问题,构建模型,求解结论,验证结果并改进模型,最终解决实际问题.数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式.数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力.在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验.学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识.例5某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中h(x)x-12x2,0<x≤400,000,x>400,x是新样式单车的月产量(单位:件),利润=总收益-总成本.(1)试将自行车厂的利润y表示为月产量x的函数;(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?[归纳提升]求分段函数的最值,应分别计算各段函数的最值,然后再比较它们的大小,确定最后的最值.课堂检测1.已知函数f (x )中,f (1)=0,且对任意n ∈N *,都有f (n +1)=f (n )+3,则f (3)=()A .0B .3C .6D .92.函数f (x )+2x ≤-12-1<x <2xx ≥2,若f (x )=3,则x 的值为()A .1B .1或3C .32D .33.函数f (x )x0≤x ≤11<x <2x ≥2的值域是()A .RB .[0,+∞)C .[0,3]D .[0,2]∪{3}4.已知函数f (x )x -3x >0x =0x +3x <0.求f [f (12)]的值.课后自测一、选择题1.下列函数中,与函数y =x -1相等的是()A .y =x 2-2x +1B .y =x 2-1x +1C .y =t -1D .y =-x -122.设函数f (x )x -b ,x <1,x ,x ≥1.若f [f (56)]=4,则b =()A .1B .78C .34D .123.函数y =-1x -1+1的图象是下列图象中的()4.已知函数f (x )2-4x +6,x ≥0+6,x <0,则不等式f (x )>f (1)的解集是()A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)5.函数f (x )x 2,0≤x ≤1,1<x <2+1,x ≥2的值域是()A .RB .(0,2)∪(2,+∞)C .(0,+∞)D .[0,2]∪[3,+∞)6.某市出租车起步价为5元(起步价内行驶里程为3km),以后每1km 价为1.8元(不足1km 按1km 计价),则乘坐出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为下列图中的()二、填空题7.已知函数f (x )x +2,x <12-ax ,x ≥1,若f [f (0)]=a ,则实数a =.8.函数y =x -1-x (x ≥2)的值域为.9.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=.三、解答题10.若方程x 2-4|x |+5=m 有4个互不相等的实数根,求m 的取值范围.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题:(1)比较f (0),f (1),f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小;(3)求函数f (x )的值域.3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性知识点1函数的单调性前提条件设函数f (x )的定义域为I ,区间D ⊆I条件__∀x 1,x 2∈D __,x 1<x 2都有f (x 1)<f (x 2)都有f (x 1)>f (x 2)图示结论f (x )在区间D 上单调____f (x )在区间D 上单调特殊情况当函数f (x )在它的定义域上单调递增时,我们就称它是当函数f (x )在它的定义域上单调递减时,我们就称它是思考1:在函数单调性的定义中,能否去掉“任意”?知识点2函数的单调性与单调区间函数y=f(x)在__区间D__上是单调递增或单调递减,则函数在区间D上具有(严格的)单调性,区间D叫做函数的单调区间.思考2:区间D一定是函数的定义域吗?基础自测1.函数y=f(x)在区间(a,b)上是减函数,x1,x2∈(a,b),且x1<x2,则有()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.以上都有可能2.下列函数中,在区间(0,2)上为增函数的是()A.y=3-x B.y=x2+1C.y=1D.y=-x2x3.若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有f a-f b>0成立,则必有()a-bA.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)是先增后减D.函数f(x)是先减后增)的大小关系为.4.已知函数f(x)是区间(0,+∞)上的减函数,那么f(a2-a+1)与f(34题型探究题型一求函数的单调区间例1如图为函数y=f(x),x∈[-4,7]的图象,指出它的单调区间.[归纳提升]函数单调区间的求法及表示方法(1)由函数图象确定函数的单调区间是一种直观简单的方法,对于较复杂的函数的单调区间,可利用一些基本函数的单调性或根据函数单调性的定义来求.(2)单调区间必须是一个区间,不能是两个区间的并,如不能写成函数y=1x在(-∞,0)∪(0,+∞)上是减函数,而只能写成在(-∞,0)和(0,+∞)上是减函数.(3)区间端点写法:对于单独的一点,由于它的函数值是唯一确定的常数,没有增减变化,所以不存在单调问题,因此写单调区间时,可以包括端点,也可以不包括端点,但对于某些点无意义时,单调区间就不包括这些点.【对点练习】❶据下列函数图象,指出函数的单调增区间和单调减区间.题型二用定义法证明函数的单调性。

相关文档
最新文档