北师大版八年级数学上册 第四章 一次函数 测试题1
第四章一次函数 单元测试2024-2025学年北师大版数学八年级上册
O yx O y x x y O O y x 第四章 一次函数单元测试(共120分,100分钟)一、选择题:(每小题3分,共30分)1.一次函数83y x =-+的图象经过的象限是( )A.一、二、三B.二、三、四C.一、二、四D.一、三、四2.若y=(m -2)x+m 2-4是正比例函数,则m 的取值是( )A .2B .-2C .±2D .任意实数3.已知点()14,y -,()22,y 都在直线122y x =-+上,则1y ,2y 大小关系是( ) A.12y y > B.12y y = C.12y y < D.不能比较4.如图,函数y=kx+k 的图象可能是下列图象中( )A B C D5.下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 6.已知3-y 与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为( )A .32+=x yB .32-=x yC .323+=-x yD .33-=x y7.下列各点,在直线y =x +5上的是( )A . (0,4)B .(-1,2)C .(2,6)D . (-5, 0)8.若将直线23y x =-向下平移3个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+说法正确的是( )A.经过第一、二、四象限B.与x 轴交于()2,0-C.与y 轴交于(0,6)D.y 随x 的增大而增大 9.关于x 的函数()3y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点()1,3-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A.①②④B.①③④C.①②③④D.②③④10.如图,点B 在直线2y x =上,过点B 作BA x ⊥轴于点A ,作//BC x 轴与直线()0y kx k =≠交于点C ,若:1:2AB BC =,则k 的值是( )A.27B.23C.13D.25二、填空题:(每小题4分,共28分)11.一次函数图象过(1,2)且y 随x 的增大则减小,请写出一个符合条件的函数解析式 .12.直线y = -3x +6与x 轴交点坐标是 .13.一次函数y=kx+b 的图像位于第一、三、四,则y 随x 的增大而_________.14.直线63+=x y 与两坐标轴围成的三角形的面积是15.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =__________.16.若k x k y )1(-=-7是一次函数,则k = .17.若点A (x ,4),B (0,8)和C (-4,0)在同一直线上,则x = .三、解答下列各题:(共62分)18.(9分)已知一次函数2(2)312y k x k =--+.(1)k 为何值时,图象经过原点;(2)k 为何值时,图象与直线y = -2x +9的交点在y 轴上;(3)k 为何值时,图象平行于2y x =-的图象;19.(9分)如图是某汽车行驶的路程S (km )与时间t (min)的函数关系图.回答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式.20.(10分)直线122y x =-+分别交x 轴,y 轴于A,B 两点,O 是原点,直线y=kx+b 经过AOB △的顶点A 或B,且把AOB △分成面积相等的两部分,求该直线所对应的函数表达式.9 16 30 t /minS /km40 1221.(10分)如图,直线132y x =-+与x,y 轴分别交于A,B 两点.(1)分别求点A 、点B 的坐标.(2)在x 轴上有一点M,线段AB 上有一点N,当OMN △是以ON 为斜边的等腰直角三角形时,求点M 的坐标。
北师大版八年级数学上册 第4章 一次函数 单元基础卷 (含详解)
第4章《一次函数》(单元基础卷)一、单选题(本大题共10小题,每小题3分,共30分)1.若点在函数的图象上,则的值是( )A .1B .-1C.D .2.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .B .C .D .3.已知点(-1,y 1),(4,y 2)在一次函数y=3x-2的图象上,则,,0的大小关系是( )A .B .C .D .4.已知一次函数不经过第三象限,则的取值范围是( )A .B .C .D .5.将一次函数y=kx+2的图象向下平移3个单位长度后经过点(-4,3),则k 的值为( )A .-1B .2C .1D .-26.一次函数与的图象如图,则下列结论:①;②;③当时,,其中正确的结论有( )A .0个B .1个C .2个D .3个7.对于一次函数,下列结论错误的是( )A .函数值随自变量的增大而减小()2,A m -12y x =-m 1414-24y x =+31y x =-31y x =-+24y x =-+1y 2y 120y y <<120y y <<120y y <<210y y <<()2y k x k =-+k 2k ≠2k >02k <<02k ≤<1y kx b =+2y x a =+0k <0a >3x <12y y <24y x =-+B .函数的图象不经过第三象限C .函数的图象与x 轴的交点坐标为(0,4)D .函数的图象向下平移4个单位长度得到的图象8.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b 的解是( )A .x=20B .x=5C .x=25D .x=159.如图,直线y 1=x+3分别与x 轴、y 轴交于点A 和点C ,直线y 2=﹣x+3分别与x 轴、y 轴交于点B 和点C ,点P (m ,2)是△ABC 内部(包括边上)的一点,则m 的最大值与最小值之差为( )A .1B .2C .4D .610.如图,函数的图象分别与x 轴、y 轴交于A ,B 两点,线段绕点A 顺时针旋转得到线段,则点C 的坐标为( )A .B .C .D .二、填空题(本大题共8小题,每小题4分,共32分)2y x =-22y x =-+AB 90︒AC (2,1)(1,2)(3,1)(1,3)11.函数x 的取值范围是________.12.已知点,都在直线上,则______.13.若点在直线上,则代数式的值为______.14.一次函数y=x+m+2的图象不经过第二象限,则m 的取值范围是 _______.15.若一次函数________.16.若一次函数y =kx+2的图象,y 随x 的增大而增大,并与x 轴、y 轴所围成的三角形的面积为2,则k =_____.17.如图,把放在平面直角坐标系内,其中,,点,的坐标分别为,,将沿轴向右平移,当点落在直线上时,线段扫过的面积为______.18.如图,已知点,,直线经过点.试探究:直线与线段有交点时的变化情况,猜想的取值范围是______.三、解答题(本大题共6小题,共58分)19.(8分)已知关于的函数,当,为何值时,它是正比例函数?20.(8分)一次函数(为常数,且).y =()1,A m y ()21,B m y +23y x =-21y y -=(),P a b 21y x =-842a b -+y ax b =+=Rt ABC △90CAB а=5cm =BC A B ()1,0()4,0ABC V x C 26y x =-BC 2cm ()2,3A -()2,1B y kx k =+()1,0P -AB k k x ||1(2)5m y m x n -=++-m n 1=-+y ax a a 0a <(1)若点在一次函数的图象上,求的值;(2)当时,函数有最大值2,求的值.21.(10分)如图,已知正比例函数的表达式为y=﹣x ,过正比例函数在第四象限图象上的一点A 作x 轴的垂线,交x 轴于点H ,AH =2,求线段OA 的长.22.(10分)如图,已知点A(6,4),直线l 1经过点B(0,2)、点C(3,−3),且与x 轴交于点D ,连接AD 、AC ,AC 与x 轴交于点P .()2,3-1=-+y ax a a 12x -≤≤a 12(1) 求直线l1的表达式,并求出点D的坐标;(2) 在线段AD上存在一点Q.使S△PDQ=S△PDC,请求出点Q的坐标;(3) 一次函数y=kx+k+5的图象为l2,若点A,D到l2的图象的距离相等,直接写出k的值.23.(10分)某快递公司为提高快递分拣的速度,决定购买甲、乙两种型号的机器人共20台来代替人工分拣,两种型号机器人的工作效率和价格如下表:型号甲乙每台每小时分拣快递件数/件800600每台价格/万元3 2.5设购买甲种型号的机器人x 台,购买这20台机器人所花的费用为y 万元.(1)求y 与x 之间的函数关系式;(2)若要求这20台机器人每小时分拣快递件数总和不少于12700件,则该公司至少需要购买几台甲种型号的机器人?此时所花费的费用为多少万元?24.(12分)如图,一次函数的图象与轴,轴分别交于,两点,在轴上有一点,动点从点以每秒2个单位长度的速度向左移动,y kx b =+x y (30)A ,(01)B ,y (03)C ,P A(1)求直线的表达式;(2)求的面积与移动时间之间的函数关系式;(3)当为何值时,≌,求出此时点的坐标.参考答案一、单选题1.AAB COP ∆S t t COP ∆AOB ∆P【分析】将x=-2代入一次函数解析式中求出m 值,此题得解.解:当x=-2时,y=-×(-2)=1,∴m=1.故选A .2.D【分析】设一次函数关系式为y=kx+b ,y 随x 增大而减小,则k<0;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.解:设一次函数关系式为y=kx+b ,∵图象经过点(1,2),∴k+b=2;∵y 随x 增大而减小,∴k<0.即k 取负数,满足k+b=2的k 、b 的取值都可以故选:D.3.B【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出、的值,将其与0比较大小后即可得出结论.解:∵点(-1,),(4,)在一次函数y=3x-2的图象上,∴=-5,=10,∵10>0>-5,∴<0<.故选:B .4.D【分析】根据一次函数的图象与k 、b 的关系列不等式组求解即可.解:∵一次函数的图象不经过第三象限,∴,,∴,故选:D .5.A121y 2y 1y 2y 1y 2y 1y 2y ()2y k x k =-+20k -<0k ≥02k ≤<【分析】根据平移的规律得到y=kx+2-3,然后根据待定系数法即可求得k 的值,从而求得正比例函数的表达式.解:将一次函数y=kx+2的图象向下平移3个单位长度后得到y=kx+2-3=kx-1,∵平移后的函数图象经过点(-4,3),∴3=-4k-1,解得k=-1,故选:A .6.B【分析】根据一次函数的增减性可得,再根据一次函数与轴的交点位于轴负半轴可得,然后根据当时,一次函数的图象位于一次函数的图象的上方可得,由此即可得出答案.解:对于一次函数而言,随的增大而减小,,结论①正确;一次函数与轴的交点位于轴负半轴,,结论②错误;由函数图象可知,当时,一次函数的图象位于一次函数的图象的上方,则,结论③错误;综上,正确的结论有1个,故选:B .7.C【分析】根据一次函数的图象和性质,平移的规律以及函数图象与坐标轴的交点的求法即可判断.解:A 、∵k=-2<0,∴函数值随自变量的增大而减小,故选项不符合题意;B 、∵k=-2<0,b=4>0,函数经过第一、二、四象限,不经过第三象限,故选项不符合题意;C 、当y=0时,x=2,则函数图象与x 轴交点坐标是(2,0),故选项符合题意;D 、函数的图象向下平移4个单位长度得y=-2x+4-4=-2x ,故选项不符合题1y kx b =+0k <2y x a =+y y 0a <3x <1y kx b =+2y x a =+12y y > 1y kx b =+1y x 0k ∴< 2y x a =+y y 0a ∴<3x <1y kx b =+2y x a =+12y y >意;故选:C.8.A【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故选:A.9.B【分析】由于P的纵坐标为2,故点P在直线y= 2上,要求符合题意的m 值,则P点为直线y= 2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.解:∵点P (m, 2)是△ABC内部(包括边上)的点.∴点P在直线y= 2上,如图所示,,当P为直线y= 2与直线y2的交点时,m取最大值,当P为直线y= 2与直线y1的交点时,m取最小值,∵y2 =-x+ 3中令y=2,则x= 1,∵y1 =x+ 3中令y=2,则x= -1,∴m的最大值为1, m的最小值为- 1.则m的最大值与最小值之差为:1- (-1)= 2.故选:B.10.C【分析】过C点作CD⊥x轴于D,如图,先利用一次函数图象上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=OA=1,则C点坐标可求.解:过C 点作CD ⊥x 轴于D ,如图.∵y =−2x +2的图象分别与x 轴、y 轴交于A ,B 两点,∴当x =0时,y =2,则B (0,2),当y =0时,−2x +2=0,解得x =1,则A (1,0).∵线段AB 绕A 点顺时针旋转90°,∴AB =AC ,∠BAC =90°,∴∠BAO +∠CAD =90°,而∠BAO +∠ABO =90°,∴∠ABO =∠CAD .在△ABO 和△CAD 中,∴△ABO ≌△CAD ,∴AD =OB =2,CD =OA =1,∴OD =OA +AD =1+2=3,∴C 点坐标为(3,1).故选:C .二、填空题11.且【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.解:由题意可知:,解得:且,故答案为:且.AOB CDA ABO CAD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩0x ≥2x ≠020x x ≥⎧⎨-≠⎩0x ≥2x ≠0x ≥2x ≠【分析】分别把A 、B 的坐标代入,求得、再计算即可.解:把代入得=2m -3,把代入得=2(m +1)-3=2m -1,∴=(2m -1)-(2m -3)=2m -1-2m +3=2故答案为:213.6【分析】把点P 代入一次函数解析式,可得,化简带值可求出结论.解:∵点在直线上,∴,变形得:,代数式;故答案为:6.14.m ≤-2【分析】由一次函数y=x+m+2的图象不经过第二象限,可得k >0,b ≤0,列不等式求解即可.解:∵一次函数y=x+m+2的图象不经过第二象限,∴m+2≤0,解得m ≤-2,故答案为:m ≤-2.15.【分析】首先根据一次函数的位置确定a 和b 的值,然后化简二次根式求23y x =-1y 2y 21y y -()1,A m y 23y x =-1y ()21,B m y +23y x =-2y 21y y -21b a =-(),P a b 21y x =-21b a =-21a b -=()8428228216a b a b -+=--=-⨯=b-解:∵若一次函数y=ax+b 的图象经过第一、二、四象限,∴a <0,b >0,∴b-a >0,,故答案为-b .16.1【分析】如图,根据题意可求出OA .根据一次函数y =kx+2的图象,y 随x 增大而增大,即可利用k 表示出OB 的长,再根据三角形面积公式,即可求出k 的值.解:如图,令x=0,则y=2,∴A(0,2),∴OA=2.令y=0,则,∴B(,0).∵一次函数y =kx+2的图象,y 随x 增大而增大,∴k >0,∴OB=,∵一次函数y =kx+2的图象与两坐标轴围成的三角形面积为2,∴,即,a a b a b -=--+=-2x k=-2k -2k 122OA OB ⋅=12222k ⨯⨯=解得:.故答案为:1.17.16【分析】先根据勾股定理求出C 点的坐标,得到C 点平移后的对应点C 1的纵坐标为4,与直线 相交,可得C 1坐标,由此推出CC 1距离,再求出四边形BCC 1B 1的面积即可.解:∵A (1,0),B (4,0)∴AB=3∵,∠CAB=90°,∴∴C (1,4),∴C 点平移后对应点C 1的纵坐标为4,∴把代入解得,∴CC 1=4,∴,故答案为:16.18.或【分析】根据题意,画出图象,可得当x=2时,y ≥1,当x=-2时,y ≥3,即可求解.解:如图,1k =26y x =-5BC =4AC ==4y =26y x =-5x =11116BCC B S CC AC =⨯=13k ≥3k ≤-观察图象得:当x=2时,y ≥1,即,解得:,当x=-2时,y ≥3,即,解得:,∴的取值范围是或.故答案为:或三、解答题19.解:是正比例函数,且且,解得,.即当,时,函数是正比例函数.20.解:(1)把(2,-3)代入得,解得;(2)∵a <0时,y 随x 的增大而减小,则当x=-1时,y 有最大值2,把x=-1代入函数关系式得 2=-a-a+1,解得,所以.21.解:∵AH ⊥x 轴,AH =2,点A 在第四象限,∴A 点的纵坐标为﹣2,21k k +≥13k ≥23k k -+≥3k ≤-k 13k ≥3k ≤-13k ≥3k ≤-||1(2)5m y m x n -=++- 20m ∴+≠||11m -=50n -=2m =5n =2m =5n =||1(2)5m y m x n -=++-1=-+y ax a 213a a -+=-4a =-12a =-12a =-代入得,解得x =4,∴A (4,﹣2),∴OH =4,∴OA.22.(1)解:设l 1的表达式为y=kx+b(k≠0),∵l 1经过点B(0,2)、点C(3,−3),∴,解得,∴l 1的函数表达式:y=x+2.∵点D 为l 1与x 轴的交点,故令y=0,x+2=0,解得x=,∴点D 坐标为,0);(2)解:由(1)同理可得AD 所在直线的一次函数表达式为:,∵点Q 在线段上,∴设点Q 坐标为,其中.∵,∴,即,解得,满足题意.∴点Q 坐标为;(3)解:∵y=kx+k+5=(k+1)x+5,∴直线l 2过定点(-1,5),12y x =-122x -=-==233b k b =⎧⎨-=+⎩532k b ⎧=-⎪⎨⎪=⎩53-53-6565516y x =-AD 516m m ⎛⎫- ⎪⎝⎭,665m ≤≤PDQ PDC S S =V V Q C y y =-5136m -=245=m 2435⎛⎫⎪⎝⎭∵点A ,D 到l 2的图像的距离相等,∴当l 2与线段AD 平行或过线段AD 中点,当l 2与线段AD 平行时,k=;当l 2过线段AD 中点(,2)时,∴2=k+k+5,解得:k=;综上,k 的值为或.23.(1)解:y 与x 之间的函数关系式为:y=3x+2.5(20-x ),=3x+50-2.5x=0.5x+50(0≤x ≤20);(2)解:由题可得:800x+600(20-x )≥12700,解得x ≥3.5,∴当x=4时,y 取得最小值,∴y 最小=0.5×4+50=52.∴该公司至少需要购买4台甲种型号的机器人;此时所花费的费用为52万元.24.解:解(1)设直线AB 的表达式为将,两点代入得解得 ∴AB 的表达式为(2) 561851851523-561523-(0)y kx b k =+≠(30)A ,(01)B ,301k b b +=⎧⎨=⎩131k b ⎧=-⎪⎨⎪=⎩113y x =-+3322÷=当时当时(3)若≌时当 时, ,此时P 的坐标为;当 时, ,此时P 的坐标为;302t <≤13(32)22S OP OC t =⋅=-32t >13(23)22S OP OC t =⋅=-COP ∆AOB ∆OP OB=(0,1)B 1OB =∴1OP ∴=321t -=1t =(1,0)231t -=2t =(1,0)-。
北师大版数学八年级上册第四章《一次函数》检测题(解析版)
第四章《一次函数》检测题一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y 表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)3.函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣14.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>05.若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.6.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y 的值是()A.5B.10C.19D.217.若式子+(m﹣1)0有意义,则一次函数y=(m﹣1)x+1﹣m的图象可能()A.B.C.D.8.已知一次函数=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0B.kb<0C.k+b>0D.k+b<09.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.410.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y211.如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.412.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题13.函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有个.14.在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,﹣3)到直线y=﹣x+的距离为.15.已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.16.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为.17.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.18.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.三、解答题19.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k 与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.20.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.21.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.22.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA 和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.23.已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.(3)当一次函数的图象不经过第二象限时,求实数m的取值范围.(4)当y随x的增大而增大时,求m的取值范围.24.如图,直线y=kx+3与x轴、y轴分别相交于E,F.点E的坐标为(﹣6,0),点P是直线EF上的一点.(1)求k的值;(2)若△POE的面积为6,求点P的坐标.答案与解析一.选择题(共24小题)1.分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.2.分析:根据路程=速度×时间,容易知道y与x的函数关系式.解:根据题意得:全程需要的时间为:3÷4=(小时),∴y=3﹣4x(0≤x≤).故选:D.3.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.4.分析:由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.5.分析:利用ab<0,且a>b得到a>0,b<0,然后根据一次函数图象与系数的关系进行判断.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.6.分析:把x=7代入程序中计算,根据y值相等即可求出b的值,再将x=﹣8代入y=﹣2x+3中即可得出结论解:当x=7时,可得,可得:b=3,当x=﹣8时,可得:y=﹣2×(﹣8)+3=19,故选:C.7.分析:根据非负性得出m﹣1≥0,m﹣1≠0,进而利用一次函数的性质解答即可.解:由题意可得m﹣1≥0,m﹣1≠0,解得:m>1,∴m﹣1>0,1﹣m<0,所以一次函数y=(m﹣1)x+1﹣m的图象经过一,三,四象限,故选:A.8.分析:根据一次函数经过一、三、四象限,可知k>0,b<0,即可求得答案;解:=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.9.分析:利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.10.分析:根据两函数图象平行k相同,以及向下平移减即可判断.解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.11.分析:由一次函数解析式分别求出点A和点B的坐标,即可作答.解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.12.分析:根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b代入得,解得∴s=8t+10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.二、填空题:13.分析:三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB 为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为4;14.分析:根据题目中的距离公式即可求解.解:∵y=﹣x+∴2x+3y﹣5=0∴点P(3,﹣3)到直线y=﹣x+的距离为:=,故答案为:.15.分析:根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k﹣3<0即可求解;解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故答案为k<3;16.分析:先由已知得出D1(4,1),D2(4,﹣1),然后分类讨论D点的位置从而依次求出每种情况下点P的坐标.解:∵A,B两点的坐标分别为(4,0),(4,4)∴AB∥y轴∵点D在直线AB上,DA=1∴D1(4,1),D2(4,﹣1)如图:(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1~△P1AD1∴即解得:OP1=2∴P1(2,0)(Ⅱ)当点D在D2处时,∵C(0,4),D 2(4,﹣1)∴CD2的中点E(2,)∵CP⊥DP∴点P为以E为圆心,CE长为半径的圆与x轴的交点设P(x,0),则PE=CE即解得:x=2±2∴P2(2﹣2,0),P3(2+2,0)综上所述:点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).17.分析:根据已知条件得到A(,0),B(0,﹣1),求得OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA=,求得F(,﹣),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.18.分析:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,即可求解.解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三.解答题(共6小题)19.分析:(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式y=kx+1,当x=k+1,y=﹣k+1,则有k2+2k=0,∴k=﹣2;当﹣1≤k<0时,W内没有整数点,∴当k=﹣2或﹣1≤k<0时,W内没有整数点;20.分析:(1)观察图象即可解决问题;(2)运用待定系数法解得即可;(3)把x=3代入(2)的结论即可.解:(1)根据题意可得m=2×2=4,n=280﹣2(280÷3.5)=120;故答案为:4;120;(2)设y关于x的函数解析式为y=kx(0≤x≤2),因为图象经过(2,120),所以2k=120,解得k=60,所以y关于x的函数解析式为y=60x,设y关于x的函数解析式为y=k1x+b(2≤x≤4),因为图象经过(2,120),(4,0)两点,所以,解得,所以y关于x的函数解析式为y=﹣60x+240(2≤x≤4);(3)当x=3.5时,y=﹣60×3.5+240=30.所以当甲车到达B地时,乙车距B地的路程为30km.21.分析:(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.解:(1)车的速度是50千米/小时;轿车的速度是:480÷(7﹣1)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80x+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.22.分析:(1)利用待定系数法即可求得函数的解析式;(2)求利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).23.分析:(1)把(0,0)代入函数解析式求得m的值即可;(2)、(3)由一次函数图象与系数的关系解答;(4)由一次函数图象的增减性解答.解:(1)把原点(0,0)代入,得m﹣5=0解得m=5;(2)由题意,得.解得3<m<5;(3)由题意,得.解得m<3;(4)由题意,得3﹣m>0.解得m<3.24.分析:(1)将点E的坐标代入即可求出k的值,(2)确定直线的关系式,若△POE的面积为6,以OE=6为底,因此高为2,即点P的纵坐标为2或﹣2,然后代入直线的关系式求出点P的坐标.解:(1)把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,答:k的值为.(2)设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2,或y=﹣2,当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2)当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2)答:点P的坐标为(﹣2,2)或(﹣10,﹣2)。
北师大八年级数学上册《第四章一次函数》单元测试题(含答案)
第四章一次函数第Ⅰ卷 (选择题 共30分)一、选择题(每题3分,共30分)1.下列图象中,变量y 不是变量x 的函数的是( )图12.下列函数:①y =πx ;②y =2x -1;③y =1x;④y =2-1-3x ;⑤y =x 2-1.其中是一次函数的有( )A .4个B .3个C .2个D .1个3.下列函数中,y 随x 的增大而减小的是( )A .y =2x +8B .y =-2+4xC .y =-2x +8D .y =4x4.要得到函数y =-32x -4的图象,可以把函数y =-32x 的图象( )A .向上移动4个单位长度B .向下移动4个单位长度C .向左移动4个单位长度D.向右移动4个单位长度5.在弹性限度内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表,下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是x的函数B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为23.5 cm6.如图2,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式为( )图2A.y=2x+3B.y=x-3C.y=2x-3D.y=-x+37.在函数y=kx(k>0)的图象上有三点A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1<x2<0<x3,则下列各式中正确的是( )A.y1<y2<0<y3 B.y3<0<y1<y2C.y2<y1<y3<0 D.y3<y1<0<y28.已知两个一次函数y1=mx+n和y2=nx+m,则它们在同一坐标系中的图象可能是( )图39.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12:00到12:30时,y与t之间的函数图象是图4中的( )图410.小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离s(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图5所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20 km;(2)小陆全程共用了1.5 h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5 h.其中正确的有( )图5A.4个 B.3个 C.2个 D.1个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11.已知一次函数y=kx+b(k,b为常数且k≠0)的图象经过点A(0,-2)和点B(1,0),则k=________,b=________.12.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1-y2________0.(填“>”或“<”)13.一次函数y=kx+b的图象如图6所示,则当y<5时,x的取值范围是________.图614.如图7,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),有以下说法:①y 随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的是________.(填序号)图715.如图8,在平面直角坐标系中,若A(0,3),B(-2,1),在x轴上存在点P,使P 到A,B两点的距离之和最小,则点P的坐标为________.图816.如图9①所示,在长方形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A 停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②所示,那么连接AC,△ABC的面积是________.图9三、解答题(共52分)17.(6分)作出函数y =12x -3的图象并回答以下问题:(1)当x 的值增大时,y 的值如何变化?(2)图象与x 轴、y 轴的交点坐标分别是多少?(3)求出该图象与x 轴、y 轴所围成的三角形的面积.18.(6分)已知一次函数y =(k -2)x -3k +12.(1)当k 为何值时,图象与直线y =-2x +9的交点在y 轴上;(2)当k为何值时,图象平行于y=-2x的图象;(3)当k为何值时,y随x的增大而减小.19.(6分)如图10,已知直线y=-2x+6与x轴交于点A,与y轴交于点B.(1)点A的坐标为________,点B的坐标为________.(2)求△AOB的面积.(3)直线AB上是否存在一点C(点C与点B不重合),使△AOC的面积等于△AOB的面积?若存在,求出点C的坐标;若不存在,请说明理由.图1020.(6分)某公司市场营销部的营销员的个人月收入y(元)与该营销员每月的销售量x(万件)成一次函数关系,其图象如图11所示.根据图象提供的信息,解答下列问题:(1)求出营销员的个人月收入y(元)与该营销员每月的销售量x(万件)(x ≥0)之间的函数关系式;(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.图1121.(6分)在平面直角坐标系中画出直线y =13x +1的图象,并根据图象回答下列问题:(1)写出直线与x 轴、y 轴的交点坐标;(2)求出直线与坐标轴围成的三角形的面积;(3)若直线y =kx +b 与直线y =13x +1关于y 轴对称,求k ,b 的值.22.(6分)如图12,已知函数y =-12x +b 的图象与x 轴、y 轴分别交于点A ,B ,与函数y =x 的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P(a ,0)(其中a >2),过点P 作x 轴的垂线,与函数y =-12x +b 和y =x 的图象分别交于点C ,D.(1)求点A 的坐标;(2)若OB =CD ,求a 的值.图1223.(8分)如图13,直角坐标系xOy 中,点A 的坐标为(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB.(1)求点C ,E 的坐标及直线AB 的函数表达式;(2)设S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 的值便转化为直接求△AOC 的面积,这样不是更快捷吗?”但大家经反复验证,发现S △AOC ≠S ,请通过计算解释嘉琪的想法错在哪里.图1324.(8分)某人从A 城出发,前往距离A 城30千米的B 城.现在有三种方案供他选择:①骑自行车,其速度为15千米/时;②蹬三轮车,其速度为10千米/时;③骑摩托车,其速度为40千米/时.(1)选择哪种方式能使他从A城到达B城的时间不超过2小时?请说明理由;(2)设此人在行进途中离B城的距离为s(千米),行进时间为t(时),就(1)所选定的方案,试写出s与t之间的函数关系式(注明自变量t的取值范围),并在如图14所示的平面直角坐标系中画出函数的图象.图141.A 2.B 3.C 4.B 5.B 6.D 7.A 8.B 9.A 10.A11.2 -212.>13.x >014.①②③15.(-32,0)16.10 17.解:作图略.(1)y 随x 的增大而增大. (2)图象与x 轴的交点坐标为(6,0),与y 轴的交点坐标为(0,-3).(3)该图象与x 轴、y 轴所围成的三角形的面积为12×6×3=9. 18.解:(1)因为直线y =-2x +9与y 轴的交点坐标为(0,9),所以-3k +12=9,所以k =1.(2)因为一次函数的图象平行于y =-2x 的图象,所以k -2=-2且-3k +12≠0,所以k =0.(3)因为y 随x 的增大而减小,所以k -2<0,所以k <2.19.解:(1)当y =0时,-2x +6=0,解得x =3,则点A 的坐标为(3,0).当x =0时,y =-2x +6=6,则点B 的坐标为(0,6).(2)S △AOB =12×3×6=9. (3)存在.设点C 的坐标为(t ,-2t +6),因为△AOC 的面积等于△AOB 的面积,且点C 与点B 不重合,所以-2t +6=-6,解得t =6,所以点C 的坐标为(6,-6).20.解:(1)依已知条件可设所求的函数关系式为y =kx +b ,因为函数图象过(0,800)和(2,2800)两点,所以b =800,2k +b =2800,解得k =1000,所以所求的函数关系式为y =1000x +800(x ≥0).(2)由(1)知当x =1.2时,y =1000×1.2+800=2000,即李平5月份的收入为2000元.21.解:画出图象如图:(1)令y =0,得x =-3,令x =0,得y =1.所以直线y =13x +1与x 轴的交点坐标为(-3,0),与y 轴的交点坐标为(0,1).(2)由三角形面积公式可知直线与坐标轴围成的三角形的面积=12×3×1=32. (3)因为直线y =13x +1与x 轴的交点坐标为(-3,0),与y 轴的交点坐标为(0,1), 所以点(-3,0)关于y 轴的对称点为(3,0),点(0,1)关于y 轴的对称点为(0,1), 把(0,1)代入y =kx +b ,得b =1.把(3,0)代入y =kx +b ,得0=3k +b ,又因为b =1,所以k =-13. 解得k =-13,b =1. 22.解:(1)因为点M 在函数y =x 的图象上,且横坐标为2,所以点M 的纵坐标为2.因为点M (2,2)在一次函数y =-12x +b 的图象上, 所以-12×2+b =2,所以b =3, 所以一次函数的关系式为y =-12x +3. 令y =0,得x =6,所以点A 的坐标为(6,0).(2)由题意得C ⎝ ⎛⎭⎪⎫a ,-12a +3,D (a ,a ). 因为OB =CD ,所以a -⎝ ⎛⎭⎪⎫-12a +3=3, 所以a =4.23.解:(1)把y =0代入y =-38x -398,解得x =-13,所以C (-13,0). 把x =-5代入y =-38x -398,解得y =-3,所以E (-5,-3). 因为点B ,E 关于x 轴对称,所以B (-5,3).设直线AB 的函数表达式为y =kx +b ,把点A (0,5)的坐标代入,得b =5,把点B (-5,3)的坐标代入,得k =25,所以直线AB 的函数表达式为y =25x +5. (2)因为CD =8,DE =DB =3,OA =OD =5,所以S △CDE =12×8×3=12,S 四边形ABDO =12×()3+5×5=20,即S =32. (3)当x =-13时,y =25x +5=-0.2≠0, 所以点C 不在直线AB 上,即A ,B ,C 三点不共线,所以嘉琪的想法错在将△CDB 与四边形ABDO 拼接后看成了△AOC .24.解:(1)因为30÷15=2(时),30÷10=3(时),30÷40=34(时),所以此人骑自行车或摩托车从A 城到B 城的时间都不超过2小时.(2)若骑自行车,则s =-15t +30(0≤t ≤2);①若骑摩托车,则s =-40t +30(0≤t ≤34).② 图象如图所示:。
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)一、单选题1.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-2.下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x =D .5x y = 3.在函数23y x =-中,当自变量5x =时,函数值等于( )A .1B .4C .7D .134.如图,在平面直角坐标系中,线段AC 所在直线的解析式为4y x =-+,E 是AB 的中点,P 是AC 上一动点,则PB PE +的最小值是( )A .42B .22C .25D .55.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,关于x 的方程x +5=ax +b 的解是( )A .x =20B .x =25C .x =20或25D .x =﹣20 6.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( )A .-15B .15C .35D .53- 7.已知某汽车耗油量为0.1L/km ,油箱中现有汽油50L .如果不再加油,记此后汽车行驶的路程为x km ,油箱中的油量为y L .则此问题中的常量和变量是( )A .常量50;变量x .B .常量0.1;变量y .C .常量0.1,50;变量x ,y .D .常量x ,y ;变量0.1,50.8.一次函数y =(a +1)x +a +2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣19.已知,甲、乙两地相距720米,甲从A 地去B 地,乙从B 地去A 地,图中分别表示甲、乙两人离B 地的距离y (单位:米),下列说法正确的是( )A .乙先走5分钟B .甲的速度比乙的速度快C .12分钟时,甲乙相距160米D .甲比乙先到2分钟 10.函数13y x =+中自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x <- D .3x ≠-11.汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .12060s t =-B .12060s t =+C .60s t =D .120s t =12.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定二、填空题(共0分)13.一次函数(21)y m x m =-+的函数值y 随x 值的增大而增大,则m 的取值范围是____ ____.14.从﹣1,2,3这三个数中随机抽取两个数分别记为x ,y ,把点M 的坐标记为(x ,y ),若点N 为(﹣4,0),则在平面直角坐标系内直线MN 经过第一象限的概率为___ .15.一个正方形的边长为3cm ,它的边长减少cm x 后,得到的新的正方形周长(cm)y 与(cm)x 之间的函数关系式为124y x =-,自变量x 的取值范围是________ __.16.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是____ __cm .17.方程328x +=的解是x =______,则函数32y x =+在自变量x 等于_______时的函数值是818.如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP 的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.19.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .20.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______x x千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额(10)的函数解析式为______.三、解答题21.某天小刚骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续前行,按时赶到学校,如图是小刚从家到学校这段所走的路程s(米)与时间t(分)之间的关系.(1)小刚从家到学校的路程是________米,从家出发到学校,小刚共用了________分;(2)小刚修车用了多长时间;(3)小刚修车前的平均速度是多少?22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当△ABC的面积是17.5时,求点C的坐标.23.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.24.如图1,在长方形ABCD 中,点P 从点B 出发,沿B →C →D →A 运动到点A 停止.设点P 的运动路程为x ,△P AB 的面积为y ,y 与x 的关系图象如图2所示.(1)AB 的长度为______,BC 的长度为______.(2)求图象中a 和b 的值.(3)在图象中,当m =15时,求n 的值.25.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?26.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA 表示小明与甲地的距离y 1(米)与行走的时间x (分钟)之间的函数关系:折线BCDA 表示小亮与甲地的距离y 2(米)与行走的时间x (分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;(2)线段OA 与BC 相交于点E ,求点E 坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x 的值.27.如图1,在Rt △ABC 中,AC =BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以每秒1cm 的速度沿F →E →D →A →B 的路径运动,连接BP 、CP ,△BCP 的面积y (2cm )与运动时间x (秒)之间的图象关系如图2所示.(1)求EF 的长度和a 的值;(2)当x =6时,连接AF ,判断BP 与AF 的数量关系,说明理由.28.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过320m 时,按2.5元/ 3m 计费;月用水量超过320m 时,其中320m 仍按2.5元/3m 收费,超过部分按3.2元/ 3m 计费,设每户家庭月用水量为3xm 时,应交水费y 元.(1)分别写出020x ≤≤和20x >时,y 与x 的函数表达式.(2)小明家第二季度缴纳水费的情况 如下:月份四月份 五月份 六月份 交费金额 40元 45元 56.4元小明家第二季度共用水多少立方米?29.一慢车和一快车沿相同路线从A 地到B 地,两车所行的路程s (千米)与慢车行驶的时间x (时)关系如图所示.根据图像解决下列问题:(1)快车比慢车晚 小时出发,快车比慢车早到 小时.快车追上慢车时,快车行驶了 千米.(2)求A 、B 两地相距多少千米?30.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人) 500 10001500 2000 2500 3000 … y (元)3000- 2000- 1000- 01000 2000 … (1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润参考答案1.C2.D3.C4.C5.A6.D7.C8.D9.D10.A11.A12.C13.12m > 14.2315.03x ≤<16.1517. 2 218.519.37.220. 3 42y x =+##24y x =+21.(1)由图象可得,小刚从家到学校的路程共2000米,从家出发到学校,小明共用了20分钟;故答案为:2000,20;(2)小刚修车用了:15-10=5(分钟),答:小刚修车用了5分钟;(3)由图象可得,小刚修车前的速度为:1000÷10=100米/分钟.答:小刚修车前的平均速度是100米/分钟.22.解:(1)设正比例函数的解析式为y kx =,将点(3,7)A 代入得:37k =,解得73k =, 则正比例函数的解析式为73y x =; (2)如图,过点A 作AD x ⊥轴于点D ,(3,7)A ,7AD ∴=,设点C 的坐标为(,0)a ,则1BC a =-,ABC 的面积是175., 117.52BC AD ∴⋅=,即17117.52a ⨯-=, 解得6a =或4a =-,故点C 的坐标为(6,0)或(4,0)-.23.解:(1)∵一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1,∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C 代入一次函数得:53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+, ∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∵13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∵点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.24.解:由图2知,当x =5时,点P 与C 重合, ∴BC =5,当x =13时,点P 与D 重合,∴BC +CD =13,∴CD =8=AB ,故答案为:8,5;(2)当P 与C 点重合时,b =185202⨯⨯=,当点P 与A 重合时,a =5+8+5=18; (3)∵15m =58>+,∴此时点P 在AD 边上,且AP =3. ∴183122n =⨯⨯=. 25.由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=(h),到达乙地一共:3+3=6(h ),6-4.8=1.2(h),∴轿车比货车早1.2h 时间到达乙地.26.(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500÷10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.27.解:当点P在边EF上运动时,y=S△BCP12=BC•PF12=BC×1×x12=BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP12=BC×332=BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x331+==6(秒),∴b=6,当点P在DA上运动时,y=S△PBC12=BC•PC,∴y随PC的增大而增大,当点P与点A重合时,即x=8时,y最大,此时AD=8×1﹣3﹣3=2,∴AC=BC=3+2=5(cm),∴a12=BC×EF12=⨯5×3152=;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .28.(1)当020x ≤≤时,1 2.5y x =;当20x >时,()2 2.520 3.220 3.214y x x =⨯+-=-;()2当20x 时,150y =4050,4550,56.450<<>∴四、五月份的月用水量比320m 少,六月份的月用水量比320m 多令140y =,得16x =令145y ,得18x =令256.4y =,得22x =16182256++=(立方米)∴第二季度共用水56立方米29.解:由图像可得,慢车比快车晚2小时出发,快车比慢车早到18﹣14=4(小时),快车追上慢车时,快行驶了276千米,故答案为:2,4,276;(2)解:由图像可得,慢车的速度为:276÷6=46(千米/时),46×18=828(千米),答:A 、B 两地相距828千米.30.解:(1)在这个变化过程中,每月的乘车人数x 是自变量,每月的利润y 是因变量; 故答案为每月的乘车人数x ,每月的利润y ;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;故答案为3000;(4)设y 与x 的表达式为y=kx+b ,则依题意得:500300020000x b x b +=-⎧⎨+=⎩解得:24000k b =⎧⎨=-⎩ ∴y 与x 的表达式为24000y x =-;当5000y =时,500024000x =-.解得4500x =.答:5月乘车人数为4500人时,可获得利润5000元。
(常考题)北师大版初中数学八年级数学上册第四单元《一次函数》检测卷(含答案解析)
一、选择题1.A,B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF分别表示甲乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF交于点M,下列说法:①y乙=-2x+12;②线段OP 对应的y甲与x的函数关系式为y甲=18x;③两人相遇地点与A地的距离是9km;④经过3 8小时或58小时时,甲乙两个相距3km.其中正确的个数是()A.1个B.2个C.3个D.4个2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t 或154其中正确的结论有()A.1个B.2个C.3个D.4个3.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A.B.C.D.4.如图①,正方形ABCD中,点P以恒定的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,△APQ的面积为()A.6cm2B.4cm2C.262cm D.42cm25.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A .1个B .2个C .3个D .4个6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y (升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min8.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )A .22B .22.5C .23D .259.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④10.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( ) A .y=x+2B .22y x =+ C .y=4x-12D .33y x =-11.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .12.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .二、填空题13.如图,点A (6,0),B (0,2),点P 在直线y =-x -1上,且∠ABP =45°,则点P 的坐标为_____________14.如图,直线2y x a =-,3y x b =-(a ,b 是整数)分别交x 轴于点A ,B .若线段AB 上只有三个点的横坐标是整数(分别为4,5,6),则有序数对(,)a b 一共有__________对.15.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边).(1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.16.小亮拿15元钱去文具店买签字笔,每支1.5元,小亮买签字笔后所剩钱数y (元)与买签字笔的支数x (支)之间的关系式为____________.17.将直线2y x =向下平移1个单位长度后得到的图像的函数解析式是______. 18.将直线2y x =向下平移1个单位,得到直线___________.19.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______. 20.已知,函数y =3x +b 的图象经过点A (﹣1,y 1),点B (﹣2,y 2),则y 1_____y 2(填“>”“<”或“=”)三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C . (1)求点C 的坐标; (2)求△OBC 的面积.22.如图1,O 的直径4cm AB =,C 为线段AB 上一动点,过点C 作AB 的垂线交O 于点D ,E ,连接AD ,AE .设AC 的长为cm x ,ADE 的面积为2cm y .小华根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究.下面是小华的探究过程,请帮助小华完成下面的问题.(1)通过对图1的研究、分析与计算,得到了y与x的几组对应值,如下表:x00.51 1.52 2.53 3.54 /cm2y00.7 1.7 2.9a 4.8 5.2 4.60 /cma(2)如图2,建立平面直角坐标系xOy,描出表中各对应点,画出该函数的大致图像;(3)结合画出的函数图像,直接写出当ADE的面积为24cm时AC的长约为多少(结果保留一位小数).23.已知一次函数y=kx+b.当x=-3时,y=-8;当x=0时,y=-4.(1)求该一次函数的表达式;(2)求该函数的图像与坐标轴围成的图形的面积.24.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为 km/h;乙车速度为 km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图像;②从两车同时从C地出发到两车同时到达B地的,整个过程中,两车之间的距离何时为80km?25.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.26.已知某大酒店有三人间和双人间两种客房,凡团体入住,三人间每人每天100元、双人间每人每天150元.现有一个50人的旅游团到该酒店住宿.(1)如果每个客房正好住满,并且一天一共花去住宿费6300元.求入住的三人间、双人间客房各多少间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式;(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】①根据函数图像中的数据可以求得y 乙与x 的函数关系式;②根据函数图像中的数据可以求得线段OP 对应的y 甲与x 的函数关系式,进而可求得两人相遇时距离A地的距离;③根据①和②中的函数关系式,可求得两人相距3km 时所用的时间. 【详解】(1)设y 乙与x 的函数关系式为:y 乙=ax +b , 把(0,12)和(2,0)代入得:1220b a b =⎧⎨+=⎩解得:612a b =-⎧⎨=⎩,可得y 乙=-6x +12,故①错误;(2)设线段OP 对应的y 甲与x 的函数关系式为:y kx =甲, 把x =0.5代入y =-6x +12中得:y =9, ∴M (0.5,9), ∴9=0.5k , 解得:k =18, ∴18y x =甲,∴当x =0.5时,y =9,即两人相遇时距离A地的距离为9,故②③正确; (3)令|18x -(-6x +12)|=3,解得x =38或58,故④正确;故选:C . 【点睛】本题考查一次函数的应用,解题本题的关键是明确题意,利用一次函数的性质解答.2.C解析:C 【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案. 【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确; 设甲车离开A 城的距离y 与t 的关系式为y kt =甲, 把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =, 即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=, 当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确;综上可知正确的有①②③共三个, 故选:C . 【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.3.D解析:D 【分析】由图2可得,行车速度在途中迅速减小并稳定了100多米然后又迅速提升,说明应该是进行一次性的拐弯,再对4个选项进行排除选择. 【详解】解:.A 行车路线为直线,则速度一直不变,排除; B .进入辅路后向右转弯,速度减小应该不大,排除;C .向前行驶然后拐了两次弯再掉头行驶,中间速度应该有两次变大变小的波动呢,排除;D .向前行驶拐了个较大的弯再进入直路行驶,满足图2的速度变化情况. 故选D . 【点睛】本题考查了函数图象的应用,正确理解函数图象的自变量和函数关系并对照实际问题进行分析是解题关键.4.A解析:A【分析】先由图象得出BD的长及点P从点A运动到点B的时间,再由正方形的性质得出其边长,然后由速度恒定及图象可得当点P运动3秒时所处的位置,根据AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,列式计算即可.【详解】解:由图象可知:①当PQ运动到BD时,PQ的值最大,即y最大,故BD=42;②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2=(42)2,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=12BC=12CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4-12×4×2-12×2×2-12×4×2=6(cm2).故选:A.【点睛】本题考查了动点问题的函数图象,读懂图象中的信息并对照几何图形来分析是解题的关键.5.C解析:C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x分钟,就可以求出小华家到学校的距离;③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x分钟,由题意,得250x=50(20+x),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=kt+b,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.C解析:C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min ,故A 选项说法正确;B. 小明家离食堂0.6km ,食堂离图书馆0.8-0.6=0.2(km ),故B 选项说法正确;C. 小明吃早餐用了25-8=17(min ),读报用了58-28=30(min ),故C 选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min ),故D 选项正确. 故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 8.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.9.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 10.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= 不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且是-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.11.D解析:D【分析】逐一分析各个选项的k 、b 的符号,结合已知条件即可做出判断【详解】解:A 、由图可知k >0,b >0,且当x=-1时,-k+b <0, k >b ,则|k|=k ,|b|=b ,可得|k|>|b|与题意||||k b <不符;B 、由图可知k >0,b <0,且当x=1时,k+b >0, k >-b ,则|k|=k ,|b|=-b ,可得|k|>|b|与题意||||k b <不符;C 、由图可知当x=-1时,-k+b=0, k=b ,则 |k|=|b|与题意||||k b <不符;D 、由图可知k <0,b >0,且当x=1时,k+b >0, -k <b ,则|k|=-k ,|b|=b ,可得|k|<|b|与题意||||k b <相符;故选:D【点睛】此题考查了一次函数图象与k 和b 符号的关系,关键是掌握当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.12.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.二、填空题13.(3-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD 求出点D 坐标证得AD 的中点K 求出其坐标求出直线BK 的解析式直线BK 与直线的交点即为点P 利用方程组即可求得P 坐标【详解】设直线AB 解析式为y =解析:(3,-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD ,求出点D 坐标,证得AD 的中点K ,求出其坐标,求出直线BK 的解析式,直线BK 与直线1y x =--的交点即为点P ,利用方程组即可求得P 坐标.【详解】设直线AB 解析式为y =kx +b ,将点A (6,0),B (0,2)代入上式得:0=62k b b +⎧⎨=⎩解得:1=32k b ⎧-⎪⎨⎪=⎩,∴直线AB 解析式:123y x =-+ 将线段BA 绕点B 顺时针旋转90°得到BD ,设直线BD 解析式为3y x n =+∵点B (0,2)在直线BD 上,∴直线BD 解析式为32y x =+,∵BD =AB==设点D (x ,32x +BD ==整理得:24x =解得:12x =-或22x =(舍去)∴2324y =-⨯+=-则点D (﹣2,﹣4)设AD 与BP 交于点K ,∵AB =BD ,∠ABP =45°,∠ABD =90°∴BK 是△ABD 的中线,又A (6,0)∴K 是AD 的中点,坐标为(2,﹣2)直线BK 与直线1y x =--的交点即为点P ,设直线BK 的解析式为y kx b =+,将点B 和点K 代入得:222b k b =⎧⎨-=+⎩解得:22b k =⎧⎨=-⎩∴直线BK 的解析式为22y x =-+,由221y x y x =-+⎧⎨=--⎩解得:34x y =⎧⎨=-⎩∴P 点坐标为(3,-4)故答案为:(3,-4).【点睛】本题考查一次函数图象上点的坐标的特征,等腰三角形的性质,待定系数法求解析式,解题的关键是学会作辅助线解决问题.14.12【分析】分A 在B 左边时和A 在B 右边时两种情况分别列出不等式组解之再合并即可【详解】解:令y=2x-a=0则2x=ax=∴A (0)令y=3x-6=0则3x=bx=∴B (0)∵AB 线段上只有3个点横解析:12【分析】分A 在B 左边时和A 在B 右边时,两种情况分别列出不等式组,解之,再合并即可.【详解】解:令y=2x-a=0,则2x=a ,x=2a , ∴A (2a ,0), 令y=3x-6=0,则3x=b ,x=3b , ∴B (3b ,0), ∵AB 线段上只有3个点横坐标都是整数,为4,5,6,∴A 在B 左边时, 则34273a b b ⎧<≤⎪⎪⎨⎪≤<⎪⎩,解得:681821a b <≤⎧⎨≤<⎩, ∵a ,b 为整数,∴a=7或8,b=18或19或20,∴(a ,b )有2×3=6种可能;A 在B 右边时, 则72343a b b ⎧≤<⎪⎪⎨⎪<≤⎪⎩,解得:1214912a b ≤<⎧⎨<≤⎩, ∵a ,b 为整数,∴a=12或13,b=10或11或12,∴(a ,b )有2×3=6种可能,综上:共有12种可能,故答案为:12.【点睛】本题考查了一次函数的性质,解题的关键是分类讨论,根据坐标为整数得到不等式组. 15.();6【分析】(1)分别求解如下两个方程组再根据已知条件即可得答案;(2)当OA′B′三点共线时|OA ﹣OB|取最大值即直线平移后过原点即可平移的距离为m 平移后的直线为把原点坐标代入计算即可【详解解析:(95-44,); 6.【分析】 (1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】 (1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,),故答案为:(95-44,);(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.16.【分析】所剩钱数y (元)就是原来的钱数与买x 支签字笔钱数的差据此即可求解【详解】解:买签字笔的支数x (支)花的钱数是15x 元则剩余的钱数是(15-15x )元则签字笔后所剩钱数(元)与买签字笔的支数(解析:15 1.5y x =-【分析】所剩钱数y (元)就是原来的钱数与买x 支签字笔钱数的差,据此即可求解.【详解】解:买签字笔的支数x (支)花的钱数是1.5x 元,则剩余的钱数是(15-1.5x )元,则签字笔后所剩钱数y (元)与买签字笔的支数x (支)之间的关系式为15 1.5y x =-. 故答案为:15 1.5y x =-.【点睛】此题考查函数关系式,根据题意,找到所求量的等量关系是解决问题的关键.17.y=2x-1【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1考点:一次函数的图象与几何变换 解析:y=2x-1.【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1.考点:一次函数的图象与几何变换18.【分析】平移时k 的值不变只有b 的值发生变化而b 值变化的规律是上加下减【详解】解:由上加下减的原则可知直线y=2x 向下平移1个单位得到直线是:y=2x-1故答案为y=2x-1【点睛】本题考查了一次函数解析:21y x =-【分析】平移时k 的值不变,只有b 的值发生变化,而b 值变化的规律是“上加下减”.【详解】解:由“上加下减”的原则可知,直线y=2x 向下平移1个单位,得到直线是:y=2x-1. 故答案为y=2x-1.【点睛】本题考查了一次函数的图象与几何变换,掌握“上加下减”的原则是解题的关键. 19.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.20.>【分析】根据k =3>0一次函数的函数值y 随x 的增大而增大解答【详解】解:∵k =3>0∴函数值y 随x 的增大而增大∵﹣1>﹣2∴y1>y2故答案为:>【点睛】此题考查一次函数的性质:当k>0时函数值y解析:>【分析】根据k =3>0,一次函数的函数值y 随x 的增大而增大解答.【详解】解:∵k =3>0,∴函数值y 随x 的增大而增大,∵﹣1>﹣2,∴y 1>y 2.故答案为:>.【点睛】此题考查一次函数的性质:当k>0时,函数值y 随x 的增大而增大;当k<0时,函数值y 随x 的增大而减小.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)4;(2)见解析;(3)2.0cm 或3.7cm【分析】(1)当x =2时,点C 与点O 重合,此时DE 是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y =4时x 的值即可;【详解】解:(1)当x =2时,点C 与点O 重合,此时DE 是直径,y=12×4×2=4.即a 的值是4,故答案是:4;(2)函数图象如图所示.(3)观察图象可知:当△ADE 的面积为4cm 2时,AC 的长度约为2.0cm 或3.7cm .【点睛】本题考查圆的性质,三角形的面积,函数图象等知识,解题的关键是理解题意,利用庙殿发画出函数图像,难度一般.23.(1)443y x =-;(2)6 【分析】(1)用待定系数法求解析式即可;(2)求出函数图象与坐标轴的交点,根据交点坐标求面积即可.【详解】解:(1)由当x =-3时,y =-8;当x =0时,y =-4可得, -8=-34k b b +⎧⎨-=⎩解得,4=34k b ⎧⎪⎨⎪=-⎩,∴该一次函数的表达式为443y x =-; (2)如图,设函数图象与x 轴、y 轴分别交于点A 、B ,当y =0时,x =3;即A 点坐标为(3,0)当x =0时,y =-4;即B 点坐标为(0,-4)∴S △AOB =12×3×4=6.【点睛】本题考查了待定系数法求一次函数解析式和求一次函数图象与坐标轴交点坐标及三角形面积公式,解题关键是熟练运用待定系数法求解析式和准确扎实的计算.24.(1)40,80;(2)①-40x 160S =+, (1.5x 4)≤≤,图见解析;②12t 1t 2.==,【分析】(1)根据乙车在A 地用1h 配货可知0.5到1.5小时的距离变化为甲车的变化,利用速度=路程÷时间计算即可;再根据前0.5小时甲乙两车相背而行列式求解乙车的速度;(2)①设从乙车掉头到乙车到达B 地的过程中,两车所用的时间为t 小时,然后根据追及问题求出相遇的时间,然后列出S 关于x 的函数解析式,再补全函数图象即可; ②分两种情况,当乙车没有调头,,两车之间的距离为80km 时,当乙车调头到乙车到达B 地的过程中,两车之间的距离为80km 时,分别求出t 的值,即可.【详解】解:(1)∵乙在A 地用1h 配货,∴0.5小时~1.5小时为甲独自行驶,∴甲的速度=(100-60)÷(1.5-0.5)=40(km/h ),乙的速度为:60÷0.5-40=80(km/h ),故答案是:40,80;(2)①设从乙车调头到乙车到达B 地的过程中,两车所用的时间为t 小时,由题意得,80t-40t =100,解得:t =2.5,1.5+2.5=4,此过程中,S =40(x-1.5)+100-80(x-1.5)=-40x +160(1.5≤x≤4),即:-40x 160S =+, 1.5x 4≤≤(), 补全图像如下:②当乙车没有调头,,两车之间的距离为80km 时,t=0.5+(80-60)÷40=1;当乙车调头到乙车到达B 地的过程中,两车之间的距离为80km 时,-40t +160=80,解得:t=2.综上所述:t 1=或t 2=.【点睛】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,相遇问题,追及问题的等量关系,读懂题目信息并找出等量关系列出方程是解题的关键.25.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|, ∵12•|t ﹣2|×3=2,解得t =103或t =23,。
北师大版八年级上册数学第四章 一次函数 含答案
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、如图, 甲乙两城市相距千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为(千米),客车出发的时间为(小时),它们之间的关系如图所示,则下列结论:①货车的速度是千米/小时;②离开出发地后,两车第一次相遇时,距离出发地千米;③货车从出发地到终点共用时小时;④客车到达终点时,两车相距千米.正确有()A. B. C. D.2、如图,已知矩形ABCD中,R是边CD的中点,P是边BC上一动点,E、F分别是AP、RP的中点,设BP的长为x,EF的长为y,当P在BC上从B向C移动时,y与x的大致图象是()A. B. C. D.3、如图,火车匀速通过隧道(隧道长大于火车长)时,火车在隧道内的长度随着火车进入隧道的时间的变化而变化的大致图象是()A. B. C. D.4、对于函数y=﹣3x+1,下列结论正确的是( )A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限 C.当x>1时,y<0 D.y的值随x值的增大而增大5、函数y= 中,自变量x的取值范围()A.x>﹣4B.x>1C.x≥﹣4D.x≥16、若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定7、一次函数的图象如图所示,则下列结论正确的是()A. B. C. 随的增大而减小 D.当时,8、已知点和点都在正比例函数图象上,则的值为()A. B. C. D.9、如图,中,,正方形的顶点别在边上,设的长度为,与正方形重叠部分的面积为,则下列图象中能表示与之间的函数关系的是()A. B. C. D.10、骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是()A.沙漠B.体温C.时间D.骆驼11、某超市在晚间优惠销售橘子,购买2kg以下按原价,购买2kg以上按优惠价.购买橘子的总价钱y(元)与购买橘子的总质量x(kg)之间的函数关系的图象如图所示,则一次性购买5kg橘子比分五次购买1kg橘子可节省()A.12元B.10元C.8元D.6元12、下列四个点中,在函数的图象上的是()A. B. C. D.13、关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1)B.y随x的增大而减小C..函数图象经过第一、三象限D.不论x取何值,总有y<014、下列函数:① y = -2x + 1;②;③;④ y =6x+2;⑤y = 2x2 + 1,其中y是x的一次函数有()A.4个B.3个C.2个D.1个15、若一个正比例函数的图像经过P(4,-8),Q(m,n)两点,则n 的值为()A.1B.8C.-2D.4二、填空题(共10题,共计30分)16、如图所示,直线 y=x+2 与两坐标轴分别交于 A、B 两点,点 C 是 OB 的中点,D、E 分别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.17、直线与坐标轴围成的图形的面积为________.18、若函数y=4x+b的图象与两坐标轴围成的三角形面积为2,则b=________19、若反比例函数的图象位于第一、三象限内,正比例函数的图象过第二、四象限,则的整数值是________.20、将一次函数y=-2x+4的图象向左平移 ________个单位长度,所得图象的函数关系式为y=-2x.21、设0<a<1,关于x的一次函数y=ax+(1-x),当1≤x≤2时的最大值是________.(用含a的代数式表示)22、正比例函数的图象是________,当k>0时,直线y=kx过第________象限,y随x的增大而________.23、已知函数,当x=________时,函数的值为0.24、如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y= 在第一象限经过点D.则k=________.25、已知等腰三角形的周长为20,写出底边长关于腰长的函数解析式为________(写出自变量的取值范围)三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、某苹果生产基地组织20辆汽车装运A,B,C三种苹果42吨到外地销售.按规定每辆车只装一种苹果,且必须装满,每种苹果不少于2车.苹果品种 A B C每辆汽车的装载重量(吨)2.2 2.1 2每吨苹果获利(百元) 6 8 5(1)设用x辆车装运A种苹果,用y辆车装运B种苹果.根据上表提供的信息,求y与x之间的函数关系式,并求出x的取值范围;(2)设此次外销活动的利润为W(百元),求W与x之间的函数关系式及最大利润,并制定相应的车辆分配方案.28、已知一次函数y=kx+b的自变量的取值范围是﹣3≤x≤6,相应的函数值的取值范围是﹣5≤y≤﹣2,求这个一次函数的解析式.29、一次函数的图像经过(1,2),求反比例函数的解析式。
北师大版八年级上册数学第四章 一次函数含答案(综合知识)
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.全体实数2、成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B.C. D.3、下列各式中,自变量x的取值范围是x≥2的是( )A.y=x-2B.y=C.y=·D.y=x 2-44、下列函数的图象不经过第一象限,且y随x的增大而减小的是( )A. B. C. D.5、同一坐标系中有四条直线::,:,:,:,其中与轴交于点的直线是()A.直线B.直线C.直线D.直线6、某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A. B. C.D.7、如图,反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨B.等于5吨C.小于5吨D.大于5吨8、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的()A. B. C.D.9、若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<310、下列各图中,是函数图象的是().A. B. C. D.11、对于0≤x≤100,用[x]表示不超过x的最大整数,则[x]+[ x]的不同取值的个数为( )A.267B.266C.234D.23312、一次函数y=-2x+5的图象性质错误的是().A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)13、如图,已知点A 的坐标为(-1,0 ),点B在直线y=x上运动,当线段AB 最短时,点B的坐标为()A.(0,0)B.(, - )C.(-,-)D.(-,-)14、若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)15、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y (元)与销售量(x)的函数关系如图所示,则降价后每件商品的销售价格为()A.5元B.10元C.12.5元D.15元二、填空题(共10题,共计30分)16、若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.17、如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________ ℃.18、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1, y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有________(请写出所有正确判断的序号)19、如图,A(4,3),B(2,1),在x轴上取两点P、Q,使PA+PB值最小,|QA-QB|值最大,则PQ=________.20、表示变量之间关系的常用方法有________ ,________ ,________ .21、某函数满足当自变量x=-1时,函数的值y=2,且函数y的值始终随自变量x的增大而减小,写出一个满足条件的函数表达式________.22、若一次函数y=(m﹣3)x+1中,y值随x值的增大而减小,则m的取值需满足________.23、已知正比例函数的图像经过点M( )、、,如果,那么________ .(填“>”、“=”、“<”)24、写出一个正比例函数,使其图象经过第二、四象限:________.25、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分 1 2 3 4 5 …电话费/元 0.36 0.72 1.08 1.44 1.8 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?28、如图,已知一次函数的图象与轴,轴分别交于A,B两点,点在该函数的图象上,连接OC.求点A,B的坐标和的面积.29、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M 点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?30、如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)求m的值。
北师大版八年级上册数学第四章一次函数单元测试卷(Word版,含答案)
第 1 页 共 9 页北师大版八年级上册数学第四章一次函数单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随着温度的升高而增大B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等2.举世瞩目的2022北京冬季奥运会由北京市和河北省张家口市联合举办,以下表述能够准确表示张家口市地理位置的是( ).A .位于东经114.8°,北纬40.8°B .位于中国境内河北省C .西边和西南边与山西省接壤D .距离北京市180千米3.如图,点、、A B C 都在方格纸的格点上,若点A 的坐标为(0,2),点B 的坐标为(2,0),则点C 的坐标是( )第 2 页 共 9 页 A .(2,2) B .(1,2) C .(1,1) D .(2,1)4.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定5.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1 C .yx =0 D .yx >﹣7 6.下列变化过程中,y 是x 的正比例函数是( )A .某村共有5210m 耕地,该村人均占有耕地y (单位:2m )随该村人数x (单位:人)的变化而变化B .一天内,温岭市气温y (单位:℃)随时间x (单位:时)的变化而变化C .汽车油箱内的存油y (单位:升)随行驶时间x (单位:时)的变化而变化D .某人一年总收入y (单位:元)随年内平均月收入x (单位:元)的变化而变化 7.若2x =是关于x 的方程()00,0mx n m n +=≠>的解,则一次函数()1y m x n =---的图象与x 轴的交点坐标是( ) A .()2,0 B .()3,0 C .()0,2 D .()0,38.某个函数的图象由线段AB 和线段BC 组成,如图,其中()0,2A ,()2,1B ,()5,3C ,点()11,M x y ,()22,N x y 是这两条线段上的点,则正确的结论是( )。
北师大版八年级上册数学第四章 一次函数含答案
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h2、某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C.y=-2x D.y=2x3、出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(g)与月龄x(月)间的关系可以用y=a+700x来表示,其中a是婴儿出生时的体重,一个婴儿出生时的体重是3000g,这个婴儿第4个月的体重为( )A.6000gB.5800gC.5000gD.5100g4、如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B. C. D.5、一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 LB.25 LC.27LD.30 L6、已知一次函数的图象,如图所示,当时,的取值范围是()A. B. C. D.7、正比例函数如图所示,则这个函数的解析式为( )A.y=xB.y=-xC.y=-2xD.y=8、弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm9、如图,点、、、是正方形四条边(不含端点)上的点,设线段的长为,四边形的面积为,则能够反映与之间函数关系的图象大致是()A. B. C. D.10、已知点都在直线上,则大小关系是()A. B. C. D.不能比较11、若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0B.1C.±1D.-112、如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t (月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产 D.1月至3月每月产量不变, 4、5两月均停止生产13、某种出租车收费标准是:起步价7元(即行驶距离不超过3千米需付7元车费),超过了3千米以后,每增加1千米加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是A.11B.8C.7D.514、如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A. B. C. D.15、直线y=﹣x+1不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、已知是一次函数,则________.17、如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点A1(1,)作x轴的垂线交于点A2,过点A2作y轴的垂线交于点A3,过点A3作x轴的垂线交于点A4…,一次进行下去,则点的横坐标为________ .18、某水果店五一期间开展促销活动,卖出苹果数量x(kg)与售价y(kg/元)的关系如下表:数量x(kg) 1 2 3 4 5 …售价y(kg/元)9 15 21 27 33 …则售价y(kg/元)与数量x(kg)之间的关系式是________.19、正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是________.20、在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为________ .(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是________ .21、若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=________.22、如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为________.23、已知一次函数的图象经过点和,那么的值为________.24、直线y=-3x+m经过点A(-1,a)、B(4,b),则a________b(填“>”或“<”)25、已知一次函数的图像经过点,则________.三、解答题(共5题,共计25分)26、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.27、将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.28、某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.29、某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4kg,乙种材料1kg;生产一件B产品需甲、乙两种材料各3kg.经测算,购买甲、乙两种材料各1kg共需资金60元;购买甲种材料2kg 和乙种材料3kg共需资金155元.(1)甲、乙两种材料每kg分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.30、某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12kg,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2kg,但耗水量是甲车间的一半.已知A产品售价为30元/kg,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、B6、7、B8、B9、A10、C11、B12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。
北师大版八年级上册数学第四章 一次函数 含答案
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B. C.D.2、如图,直线l1的解析式是y=x,直线l2的解析式是y=x,点A1在l 1上,A1的横坐标为,作A1B1⊥l1交l2于点B1,点B2在l2上,以B1A1、B1B2为邻边在直线l1、l2间作菱形A1B1B2C1,延长B2C1交l1于点A2,点B3在l2上,以B2A2、B2B3为邻边在l1、l2间作菱形A2B2B3C2,………按照此规律继续作下去,则线段A2020B2020长为( )A. B. C. D.3、下列说法中正确的是()A.8的立方根是±2B. 是一个最简二次根式C.函数y= 的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q (﹣2,3)关于y轴对称4、设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车原地返回.设x秒后两车间的距离为y米,关于y关于x的函数关系如图所示,则甲车的速度是()米/秒.A.25B.20C.45D.155、你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为Y,下面能大致表示上面故事情节的图象是()A. B. C. D.6、函数中自变量x的取值范围是()A.x≥B.x≠3C.x≥且x≠3D.7、函数自变量x的取值范围为()A.x≠1B.x>﹣1C.x≥﹣1D.x≥﹣1且x≠08、正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0B.k<0C.k>1D.k<19、已知关于的正比例函数的图象经过点、,则,的大小关系为()A. B. C. D.无法确定10、已知甲、乙两物体沿同一条直线同时、同向匀速运动,它们所经过的路程s与所需时间t之间的解析式分别为s=v1t+a1和s=v2t+a2,图像如图所示.有下列说法:①开始时,甲在乙的前面;②乙的运动速度比甲的运动速度大;③2秒以后甲在前面;④2秒时,甲、乙两物体都运动了3米.其中正确的说法是()A.①②B.①②③C.①③④D.①②③④11、1﹣7月份,某种蔬菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份12、若点A(-3,y1),B(2,y2),C(3,y3)是函数y=-x+2图像上的点,则()A.y1<y2<y3B.y1>y2>y3C.y2<y3<y2D.y2>y3>y113、已知反比例函数的图象过一、三象限,则一次函数y=kx+k的图象经过()A.一、二、三象限B.二、三、四象限C.一、二、四象限D.一、三、四象限14、若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则当x=1时,y的值为()A.5B.-3C.-13D.-2715、下列四个函数中,y的值随着x值的增大而减小的是()A.y=2xB.y=x+1C.y= (x>0)D.y=x 2(x>0)二、填空题(共10题,共计30分)16、已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________.17、函数y= 中,自变量x的取值范围是________.18、已知正比例函数的图像经过点M( )、、,如果,那么 ________ .(填“>”、“=”、“<”)19、如图,折线ABC是某市在乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费________元.20、已知直线与轴交于,与轴交于,若点是坐标轴上的一点,且,则点的坐标为________.21、声音在空气中的传播速度v(m/s)与温度t(℃)的关系如下表:温度(℃)0 5 10 15 20速度v(m/s)331 336 341 346 351则速度v与温度t之间的关系式为________;当t=30℃时,声音的传播速度为________m/s.22、如图,已知一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),则关于不等式x+b≥mx﹣n的解集为________.23、请写出一个图形经过一、三象限的正比例函数的解析式________.24、如图,在△ABC中,AC=6,BC=10,,点D是AC边上的动点(不与点C重合),过点D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为________.25、要使y=(m﹣2)x|m﹣1|+3是关于x的一次函数,则m=________ .三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、已知函数f(x)= ,求函数的定义域及f(4).28、已知一次函数y1=-2x+1,y2=x-2.⑴当x分别满足什么条件时,y1=y2, y1<y2, y1>y2?⑵在同一直角坐标系中作出这两个函数的图象,并用自己的话归纳出⑴中的答案与函数图象之间的关系.29、若直线y=x+2分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.30、当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、B5、B6、C7、D8、9、C10、A11、A12、13、A14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
北师大版八年级上册数学第四章 一次函数含答案【参考答案】
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、如图,过点A的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的关系式是()A.y=2x+3B.y=2x-3C.y=x-3D.y= -x+32、下列平面直角坐标系中的曲线,不能表示y是x的函数的是()A. B. C.D.3、若函数y=(k﹣2)﹣5是关于x的一次函数,则K的值为()A.K=﹣2B.K=2C.K=2或﹣2D.不确定4、已知正比例函数的图像上有两点且,,且x>x2,则y1与y2的大小关系是()1A. B. C. D.不能确定.5、已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q (L)与行驶路程s(km)之间的函数表达式是()A.Q=40+B.Q=40﹣C.Q=40﹣D.Q=40+6、已知一次函数y=(m+3)x-2中,y的值随x的增大而增大,则m的取值范围是()A.m>0B.m<0C.m>-3D.m<-37、如图1,在同一直在线,甲自A点开始追赶等速度前进的乙,图2表示两人距离与所经时间的线型关系。
若乙的速率为每秒1.5公尺,则经过40秒,甲自A点移动多少公尺?()A.60B.61.8C.67.2D.698、已知两个变量x和y,它们之间的3组对应值如表所示,则y与x之间的函数关系式可能是()x ﹣1 1 3y ﹣3 3 1A.y=x﹣2B.y=2x+1C.y=x 2+x﹣6D.y=9、已知正比例函数y=(3k﹣1)x,若y随x的增大而增大,则k的取值范围是()A.k<0B.k>0C.k<D.k>10、反比例函数与正比例函数y=2x在同一坐标系内的大致图象为()A. B. C.D.11、如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米12、在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数13、关于函数y=x ,下列结论正确的是()A.函数图像必经过点(1,2)B.函数图像经过二、四象限C.y随x 的增大而减小D.y随x的增大而增大14、下列图象中,表示y是x的函数的是( )A. B. C. D.15、结合函数y=﹣2x的图象回答,当x<﹣1时,y的取值范围()A.y<2B.y>2C.y≥D.y≤二、填空题(共10题,共计30分)16、在平面直角坐标系中,画一次函数y=-3x+3的图像时,通常过点________和________画一条直线.17、如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l 2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A 4,…依次进行下去,则点A2017的坐标为________.18、已知一次函数,随的增大而增大,则________0.(填“>”,“<”或“=”)19、如图,点A的坐标为(﹣5,0),直线y= x+t与坐标轴交于点B,C,连结AC,如果∠ACD=90°,则t=________.20、无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于________.21、一次函数y=3x-1中,y随x的增大而________.22、若正比例函数y=(m﹣2)x的图象经过一、三象限,则m的取值范围是________.23、若点、都在函数的图象上,则和的大小关系是________.24、如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了________秒(结果保留根号).25、正比例函数y=kx的图象与直线对y=-x+1线交于的点P(a,2),则k的值是________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、如图①,在等腰梯形ABCD中,AD∥BC,AB=CD,上底AD=2,梯形的高也等于2。
初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)
第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。
北师大版八年级上册数学第四章 一次函数含答案
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、一次函数的图象经过点,且与轴、轴分别交于点、,则的面积是( )A. B. C.4 D.82、下面四条直线中,直线上每个点的坐标都是方程x-2y=2的解的是()A. B. C.D.3、下列说法中不正确的是()A.函数y=2x的图象经过原点B.函数y= 的图象位于第一、三象限 C.函数y=3x﹣1的图象不经过第二象限 D.函数y=﹣的值随x 的值的增大而增大4、小李和小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中的信息,有下列说法:(1)他们都行驶了20 km;(2)小陆全程共用了1.5h;(3)小李和小陆相遇后,小李的速度小于小陆的速度(4)小李在途中停留了0.5h。
其中正确的有A.4个B.3个C.2个D.1个5、函数y=,自变量x的取值范围是()A.x>2B.x<2C.x≥2D.x≤26、当圆的半径发生变化时,圆的面积也发生变化,圆的面积S与半径的关系为S= 下列说法正确的是().A. , , 都是变量B.只有是变量C. , 是变量,是常量D. , , 都是常量7、若一次函数的图象经过两点和,则下列说法正确的是()A. B. C. D.8、函数的自变量x的取值范围是()A.x≥2B.x≥3C.x≠3D.x≥2且x≠39、函数y= 的自变量x的取值范围是()A.x≥0且x≠2B.x≥0C.x≠2D.x>210、下列四个点中,在函数的图象上的是()A. B. C. D.11、若y=(m﹣3)x+1是一次函数,则()A.m=3B.m=﹣3C.m≠3D.m≠﹣312、正比例函数y=3x的大致图象是()A. B. C.D.13、在直线y=-2x+b(b为常数)上有两点A(x1,y1)和B(x2,y2),若x1<x2,则y 1与y2的大小关系是()A.y1>y2B.y1<y2C.y1y2D.无法确定14、在平面直角坐标系中,若函数图象上任意两点,均满足.下列四个函数图象中,所有正确的函数图象的序号是()A.①②B.③④C.①③D.②④15、如图,的圆心的坐标为,半径为1,直线的表达式为,是直线上的动点,是上的动点,则的最小值是()A. B. C. D.二、填空题(共10题,共计30分)16、在函数y=中,自变量x的取值范围是________ .17、函数y= 中,自变量x的取值范围是________.18、将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为________。
北师大版八年级上册数学第四章 一次函数 含答案
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、已知正比例函数的图象与反比例函数图象相交于点,下列说法正确的是()A.反比例函数的解析式是B.两个函数图象的另一交点坐标为C.当或时,D.正比例函数与反比例函数都随的增大而增大2、已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1, y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较3、一次函数与轴交点的坐标是()。
A.(0,-3)B.(-3,0)C.(0,3)D.(3,0)4、下列说法中不正确的是()A.函数y=2x的图象经过原点B.函数y= 的图象位于第一、三象限 C.函数y=3x﹣1的图象不经过第二象限 D.函数y=﹣的值随x 的值的增大而增大5、对于函数,下列说法正确的是A.它与y轴的交点是B.y值随着x值增大而减小C.它的图象经过第二象限D.当时,6、下列函数中,自变量的取值范围是x≥2的是()A.y=x﹣2B.C.D.7、“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A. B. C. D.8、点A(x1, y1)、B(x2, y2)都在直线y=kx+2(k<0)上,且x1<x2则y 1、y2的大小关系是()A.y1 =y2B.y1<y2C.y1>y2D.y1≥y29、已知函数与函数,下列说法错误的是()A.函数的图象过点B.两个函数都满足随的增大而增大C.函数的图象经过坐标原点D.函数的图象向下平移1个单位得到函数的图象10、如图,点G是BC的中点,点H在AF上,动点P以每秒2㎝的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列六个结论中正确的个数有()①图1中的BC长是8cm;②图2中的M点表示第4秒时y的值为24cm2;③图1中的CD长是4cm;④图1中的DE长是3cm;⑤图2中的Q点表示第8秒时y的值为33;⑥图2中的N点表示第12秒时y的值为18cm2.A.3个B.4个C.5个D.6个11、下列函数的图象不经过第一象限,且y随x的增大而减小的是( )A. B. C. D.12、当圆的半径发生变化时,圆的面积也发生变化,圆的面积S与半径的关系为S= 下列说法正确的是().A. , , 都是变量B.只有是变量C. , 是变量,是常量D. , , 都是常量13、对于0≤x≤100,用[x]表示不超过x的最大整数,则[x]+[ x]的不同取值的个数为( )A.267B.266C.234D.23314、已知是一次函数的图象上的两个点,则的大小关系是()A. B. C. D.不能确定15、能表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数且mn≠0)的图象的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是________.17、函数y=-3x+2的图像上存在一点P,点P到x轴的距离等于3,则点P 的坐标为________.18、正比例函数图象经过,则这个正比例函数的解析式是________.19、如图,直线与轴、轴分别相交于、两点,是该直线上的任一点,过点向以为圆心,为半径为作两条切线,切点分别为、,则四边形面积的最小值为________.20、在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P1(x1, y1)、P 2(x2, y2)两点,若x1>x2,则y1________y2(填“>”或“<”).21、如果直线与两坐标轴所围成的面积是9,则k的值为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级上册第四章一次函数单元测试题
一.选择题(共10小题)
1.函数y=(a+1)x a﹣1是正比例函数,则a的值是()
A.2 B.﹣1 C.2或﹣1 D.﹣2
2.下列函数中,y是x的一次函数的是()
①y=x﹣6;②y=;③y=;④y=7﹣x.
A.①②③ B.①③④ C.①②③④D.②③④
3.已知y与x+1成正比,当x=2时,y=9;那么当y=﹣15时,x的值为()
A.4 B.﹣4 C.6 D.﹣6
4.一次函数的图象经过点(2,1)和(﹣1,﹣3),则它的解析式为()
A.B.C. D.
5.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解集为()
A.x=B.x=3 C.x=﹣D.x=﹣3
6.同一平面直角坐标系中,一次函数y=k1x+b的图象与一次函数y=k2x的图象如图所示,则关于x的方程k1x+b=k2x的解为()
A.x=0 B.x=﹣1 C.x=﹣2 D.x=1
7.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q (L)与行驶路程s(km)之间的函数表达式是()
A.Q=40﹣B.Q=40+C.Q=40﹣D.Q=40+
8.若等腰三角形的周长为20cm,底边长为xcm,一腰长为ycm,则y与x的函数表达式正确的是()
A.y=20﹣2x(0<x<20) B.y=20﹣2x(0<x<10)
C.y=(20﹣x)(0<x<20)D.y=(20﹣x)(0<x<10)
9.正比例函数y=2kx的图象如图所示,则y=(k﹣2)x+1﹣k图象大致是()
A.B.C.D.
10.甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50
千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()
A.1个B.2个C.3个D.4个
二.填空题(共10小题)
11.已知函数y=(m﹣2)x|m﹣1|+2是关于x的一次函数,则m=
12.对于正比例函数y=m,y的值随x的值增大而减小,则m的值为.13.如图,直线L是一次函数y=kx+b的图象,b=,k=,当x>时,y>0.
14.若一次函数y=﹣x+b﹣的图象不过第三象限,则b的取值范围是.
15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=.16.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第象限.
17.已知点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2
﹣4b2﹣1=.
18.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离y(千米)与慢车行驶的时间x(小时)之间的函数关系如图所示,则快车的速度为.
19.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号).20.把直线y=﹣2x﹣1沿x轴向右平移2个单位,所得直线的函数表达式为.三.解答题(共10小题)
21.一次函数y=kx+b经过点(﹣1,1)和点(2,7).
(1)求这个一次函数的解析表达式.
(2)将所得函数图象平移,使它经过点(2,﹣1),求平移后直线的解析式.
22.如图,直线y=﹣2x+1与x轴、y轴分别交于A,B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.
(1)填空:点A的坐标是(,),点B的坐标是(,).(2)设直线CD与AB交于点M,求S△BCM的值.
23.一次函数y=kx+b的图象经过点(2,﹣1)和(0,3),求这个一次函数的解析式.
24.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:
(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量
25.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,直线AB上有一点Q在第一象限且到y轴的距离为2.
(1)求点A、B、Q的坐标,
(2)若点P在坐x轴上,且PO=24,求△APQ的面积.
26.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5.
(1)求y与x函数关系式;
(2)求当x=﹣2时的函数值.
27.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;
(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?
28.如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:
(1)汽车行驶h后加油,中途加油L;
(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;
(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?
29.A、B两地之间路程是350km,甲、乙两车从A地以各自的速度匀速行驶到B地,甲车先出发半小时,乙车到达B地后原地休息等待甲车到达.如图是甲、乙两车之间的路程S (km)与乙车出发时间t(h)之间的函数关系的图象.
(1)求甲、乙两车的速度;
(2)求图中a、b的值.
30.某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.
(1)求y关于x的函数解析式,并写出x的取值范围.
(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?。