七年级下第二次月考数学试卷含解析

合集下载

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷(附答案详解)

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷(附答案详解)

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷一、选择题(本大题共10小题,共40.0分)1. 下列方程组中,是二元一次方程组的是( )A. {x +4y =41x +2y =9B. {x +2y =5y +3z =7C. {x =1x −4y =6D. {x −y =4xyx −2y =1 2. 方程组{x +y =102x +y =16的解是( ) A. {x =6y =4 B. {x =5y =6 C. {x =3y =6 D. {x =2y =8 3. 利用加减消元法解方程组{2x +5y =−10 ①5x −3y =6 ②,下列做法正确的是( ) A. 要消去y ,可以将①×5+②×2B. 要消去x ,可以将①×3+②×(−5)C. 要消去y ,可以将①×5+②×3D. 要消去x ,可以将①×(−5)+②×24. 若方程mx +ny =6的两个解是{x =1y =1,{x =2y =−1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. −4,−2 D. −2,−45. 若m >n ,则下列不等式正确的是( )A. m −2<n −2B. m 4>n 4C. 6m <6nD. −8m >−8n6. 若方程组{4x +3y =1ax +(a −1)y =3的解x 与y 相等,则a 的值等于( ) A. 4 B. 10 C. 11 D. 127. x 的2倍减去7的差不大于−1,可列关系式为( )A. 2x −7≤−1B. 2x −7<−1C. 2x −7=−1D. 2x −7≥−18. 购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需( )A. 4.5元B. 5元C. 6元D. 6.5元9. 某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( )A. 1种B. 2种C. 3种D. 4种10. 如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是( )A. 2B. 7C. 8D. 15二、填空题(本大题共6小题,共24.0分)11. 已知{x +2y =2020y +2z =2021z +2x =2022,则x +y +z 的值______.12. 如果4x a+2b−5−2y 3a−b−3=8是二元一次方程,那么a −b =___.13. 已知关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数,则k 的值是______. 14. 若a −3b =2,3a −b =6,则b −a 的值为______.15. 已知a >b ,则−12a +c ______−12b +c(填>、<或=).16. 爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的______倍.三、解答题(本大题共9小题,共86.0分)17. 用不等式表示.(1)m 与3的和是负数;(2)x 减去8的差大于4;(3)a 的2倍大于或等于6;(4)x 与y 的和不大于−2.18. 解方程组{0.2x +0.6y =1.50.15x −0.3y =0.5.19. 已知y =ax 2+bx +c ,当x =1时,y =0;当x =2时,y =5;当x =−3时,y =0,求a ,b ,c 的值.20. 已知{x =3y =−2是方程组{ax +by =3bx +ay =−7的解,求代数式(a +b)(a −b)的值.21. 根据不等式的性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9;(2)6x<5x−3;(3)15x<25;(4)−23x>−1.22.为了提高市民的环保意识,倡导“节能减排、绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A、B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A、B两种款型的单车共100辆,总价值36800元,试问本次投放的A型车与B型车各多少辆?23.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a−b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?24.小亮在匀速行驶的汽车里,注意到公路里程碑上的数如下表所示:那么小亮在12:00时看到的两位数是______,并写出解答过程.25.小明同学四次到某超市购买A,B两种商品,其中有两次是有折扣的,购买数量及消费金额如下表所示:解答下列问题:(1)第______次购买有折扣;(2)求A、B两种商品的原价;(3)若A、B两种商品折扣数不变,求A、B两种商品的折扣数各是多少.答案和解析1.【答案】C【解析】解:A 、1x 与2y 是分式,故该选项错误;B 、有三个未知数,故该选项错误;C 、符合二元一次方程组的定义;D 、第一个方程中的xy 是二次的,故该选项错误.故选:C .组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.本题考查了二元一次方程组的定义.一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.2.【答案】A【解析】解:{x +y =10 ①2x +y =16 ②, ②−①得:x =6,把x =6代入①得:y =4,则方程组的解为{x =6y =4, 故选:A .方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】D【解析】【分析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【解答】解:利用加减消元法解方程组{2x +5y =−10 ①5x −3y =6 ②, 要消去x ,可以将①×(−5)+②×2.故选:D .4.【答案】A【解析】【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 将x 与y 的两对值代入方程计算即可求出m 与n 的值.【解答】解:将{x =1y =1,{x =2y =−1分别代入mx +ny =6中, 得:{m +n =6 ①2m −n =6 ②, ①+②得:3m =12,即m =4,将m =4代入①得:n =2,故选:A .5.【答案】B【解析】【分析】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不改变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.将原不等式两边分别都减2、都除以4、都乘以6、都乘以−8,根据不等式的基本性质逐一判断即可得.【解答】解:A 、将m >n 两边都减2得:m −2>n −2,此选项错误;B 、将m >n 两边都除以4得:m 4>n 4,此选项正确;C 、将m >n 两边都乘以6得:6m >6n ,此选项错误;D 、将m >n 两边都乘以−8,得:−8m <−8n ,此选项错误;故选:B .6.【答案】C【解析】解:根据题意得:{4x +3y =1(1)ax +(a −1)y =3(2)x =y(3),把(3)代入(1)解得:x =y =17,代入(2)得:17a +17(a −1)=3,解得:a =11.故选:C .理解清楚题意,运用三元一次方程组的知识,解出a 的数值.本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【答案】A【解析】解:根据题意,得2x −7≤−1.故选:A .理解:不大于−1,即是小于或等于−1.本题考查把文字语言的不等关系转化为用数学符号表示的不等式.8.【答案】B【解析】解:设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.则由题意得{7x +3y +z =3 ①10x +4y +z =4 ②11x +5y +2z =a ③由②−①得3x +y =1 ④由②+①得17x +7y +2z =7 ⑤由⑤−④×2−③得0=5−a∴a =5故选:B .首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.根据题目说明列出方程组{7x +3y +z =3 ①10x +4y +z =4 ②11x +5y +2z =a ③,解方程组求出a 的值,即为所求结果.解答此题的关键是列出方程组,用加减消元法求出方程组的解.9.【答案】B【解析】解:设安排女生x 人,安排男生y 人,依题意得:4x +5y =56,则x =56−5y 4.当y =4时,x =9.当y =8时,x =4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B .设安排女生x 人,安排男生y 人,由“累计56个小时的工作时间”列出方程求得正整数解.考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.10.【答案】C【解析】【分析】此题主要考查了方程组的应用,注意利用整体思想求出x +z 的值是解题关键.根据题意首先设A 点数为x ,B 点数为y ,则C 点数为7−y ,D 点数为z ,得出x +y =3①,z +7−y =12②,从而得出x +z 的值.【解答】解:设A 点数为x ,B 点数为y ,则C 点数为7−y ,D 点数为z ,根据题意可得:x +y =3①,C 点数为7−y ,故z +7−y =12②,故①+②得:x +y +z +7−y =12+3,故x +z =8,即AD 上的数是:8.故选C .11.【答案】2021【解析】解:{x +2y =2020①y +2z =2021②z +2x =2022③,①+②+③得:3x +3y +3z =6063,则x +y +z =2021.故答案为:2021.方程组三个方程相加求出所求即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.【答案】0【解析】【分析】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.根据二元一次方程的定义即可得到x 、y 的次数都是1,则得到关于a ,b 的方程组求得a ,b 的值,则代数式的值即可求得.【解答】解:根据题意得:{a +2b −5=13a −b −3=1, 解得:{a =2b =2. 则a −b =0.故答案为:0.13.【答案】−1【解析】解:解方程组{2x +3y =k x +2y =−1得:{x =2k +3y =−2−k , 因为关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数, 可得:2k +3−2−k =0,解得:k =−1.故答案为:−1.将方程组用k 表示出x ,y ,根据方程组的解互为相反数,得到关于k 的方程,即可求出k 的值.此题考查方程组的解,关键是用k 表示出x ,y 的值.14.【答案】−2【解析】解:由题意知{a −3b =2①3a −b =6②, ①+②,得:4a −4b =8,则a −b =2,∴b −a =−2,故答案为:−2.本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用.将两方程相加可得4a −4b =8,再两边都除以4得出a −b 的值,继而由等式的性质和相反数定义即可得出答案.15.【答案】<【解析】解:∵a >b ,∴−12a <−12b ,∴−12a +c <−12b +c .不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.【答案】6【解析】解:设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米,根据题意得:{7x −7y =s 5x +5y =s解得:x =6y .故答案为:6.设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x 、y 的二元一次方程组,消去s 即可得出x =6y ,此题得解.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.【答案】解:(1)m +3<0;(2)x −8>4;(3)2a ≥6;(4)x +y ≤−2.【解析】直接利用负数的定义以及结合不等关系得出不等式即可.此题主要考查了由实际问题抽象出一元一次不等式,正确掌握相关定义是解题关键.18.【答案】解:{0.2x +0.6y =1.5①0.15x −0.3y =0.5②, ②×2+①,得0.5x =2.5,解得:x =5,把x =5代入①,得1+0.6y =1.5,解得:y =56,所以原方程组的解为{x =5y =56.【解析】②×2+①得出0.5x =2.5,求出x ,再把x =5代入①求出y 即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.【答案】解:由题意,得{a +b +c =0①4a +2b +c =5②9a −3b +c =0③,②−①得:3a +b =5④,③−①得:8a −4b =0,即2a −b =0⑤,④+⑤得:5a =5,解得:a =1,把a =1代入④得:3+b =5,解得:b =2,把a =1,b =2代入①得:1+2+c =0,解得:c =−3,则方程组的解{a =1b =2c =−3.【解析】把x 与y 的值代入y =ax 2+bx +c 得到方程组,求出方程组的解即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】解:把{x =3y =−2代入方程组得:{3a −2b =3①3b −2a =−7②, ①+②得:a +b =−4,①−②得:5a −5b =10,即a −b =2,则(a +b)(a −b)=(−4)×2=−8.【解析】把x 与y 的值代入方程组求出a 与b 的值,把a +b =−4,a −b =2代入原式计算即可求出值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.【答案】解:(1)∵x +7>9,∴x >2.(2)∵6x <5x −3,∴6x −5x <−3.∴x <−3.(3)∵15x <25, ∴15x ×5<25×5. ∴x <2.(4)∵−23x >−1,∴−2x >−3.∴x <32.【解析】(1)根据不等式的性质(不等式两边减去同一个数,不等号方向不变)解决此题.(2)根据不等式的性质(不等式两边加上同一个数,不等号方向不变;不等式两边同时除以一个不为0的数,不等号方向不变)解决此题.(3)根据不等式的性质(不等式两边同乘一个不为0的数,不等号方向不变)解决此题.(4)根据不等式的性质(不等式两边同时乘或除不为0的正数,不等号方向不变;不等式两边同乘或除不为0的负数,不等号方向不变)解决此题.本题主要考查不等式的非负性,熟练掌握绝对值的非负性是解决本题的关键.22.【答案】解:设本次投放的A 型车为x 辆,B 型车为y 辆,根据题意,得:{x +y =100400x +320y =36800, 解得:{x =60y =40, 答:本次投放A 型车60辆,B 型车40辆.【解析】设本次投放的A 型车为x 辆,B 型车为y 辆,由题意:A 型车单价400元,B 型车单价320元.投放A 、B 两种款型的单车共100辆,总价值36800元,列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.【答案】解:(1)由题意得:{2×2−3=A B =2×3C =3+5,解得:A =1,B =6,C =8,答:接收方收到的密码是1、6、8;(2)由题意得:{2a −b =22b =8b +c =11,解得:a =3,b =4,c =7,答:发送方发出的密码是3、4、7.【解析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.24.【答案】27;解:设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,根据题意得:{10x +y −(10y +x)=v 100y +x −(10y +x)=4v, 解得:x =72y ,∵x ,y 为1~9的自然数,∴x =7,y =2.答:小亮在12:00时看到的两位数是27.【解析】本题考查了三元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数.设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,第一次看到的两位数为10y +x ,行驶一小时后看到的两位数为10x +y ,第三次看到的三位数为100y +x ,由汽车均速行驶可得16时行驶的路程,即可列出两个方程求解得出x =72y ,再根据x 、y 都为1~9的自然数,即可判断出答案.25.【答案】三、四【解析】解:(1)由题意得:第三、四次购买有折扣,故答案为:三、四;(2)设A 商品的原价为x 元,B 商品的原价为y 元,根据题意,得:{4x +5y =3202x +6y =300, 解得:{x =30y =40, 答:A 商品的原价为30元,B 商品的原价为40元;(3)设A 商品折扣数为m 折,B 商品折扣数为n 折,根据题意,得:{5×30×m 10+7×40×n 10=2584×30×m 10+7×40×n 10=240, 解得:{m =6n =6, 答:A 商品折扣数为6折,B 商品折扣数为6折.(1)由表中数据即可得出结论;(2)设A 商品的原价为x 元,B 商品的原价为y 元,由表中数据列出二元一次方程组,解方程组即可;(3)设A 商品折扣数为m 折,B 商品折扣数为n 折,由(2)的结果结合表中数据列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

2020-2021七年级下第二次月考数学试卷含解析

2020-2021七年级下第二次月考数学试卷含解析

一.选择题(本大题共10个小题,每小题2分,共20分.注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在括号里)1.下列计算正确的是()A.2a3+4a3=6a6 B.(a3)2=a5 C.x6÷x2=x4 D.(x+3)2=x2+92.下列事件中,必然事件是()A.打开电视机,正在播巴西世界杯新闻B.下雨后,天空出现彩虹C.随机掷一枚硬币,落地后正面朝上D.3个人分成两组,一定有2个人分在一组3.下列手机屏幕解锁图案中不是轴对称图形的是()A.B.C.D.4.下列各图中,∠1大于∠2的是()A.B.C.D.5.若代数式(x+a)(x﹣)的结果中不含字母x的一次项,那么a的值是()A.0 B. 2 C.D.﹣6.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是,则黄球的个数为()A.16 B.12 C.8 D. 47.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可8.“MH370”马航失联后,我困政府高度重视,迅速派出巡航舰以一定速度快速赶往事发地点,到达目的地后,停留一段时间搜寻,搜寻无果后,巡航舰又据讯息向前开往马六甲海峡,为避免错失搜寻信号,巡航舰缓慢匀速前进,则图中能反映巡航舰行驶路程S与时间t的关系的是()A.B.C.D.9.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°10.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.二.填空题(本大题共8个小题,每小题3分,共计24分)11.空气就是我们周围的气体.我们看不到它,也品尝不到它的味道,但是在刮风的时候,我们就能够感觉到空气的流动.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数0.001293用科学记数法表示为.12.如图,已知:AB∥CD,∠1=120°,则∠C=度.13.已知a2+b2=7,ab=1,则(a+b)2= .14.如图,已知AC=BD,要使△ABC≌△DCB,在图形所给出的字母中,需添加一个条件是(从符合的条件中任选一个即可)15.如图,∠ABC=70°,∠A=50°,AB的垂直平分线交AC 于D,则∠DBC= °.16.如图,已知△ABC中,∠B>∠C,AD是BC边上高,AE是∠BAC平分线,若∠B=70°,∠DAE=10°,则∠C的度数为.17.如图,在△ABC中,E、D分别为AB、CE的中点,且S△ABC=24,则S△BDE= .18.观察等式:①9﹣1=2×4;②25﹣1=4×6;③49﹣1=6×8…按照这种规律写出第n个等式:.三.解答题:(本大题共8小题,计56分,解答题应写出文字说明.说理过程或演算步骤)19.计算:(1);(2)(3a2b+2ab2﹣ab)÷(﹣ab)﹣1.20.先化简,再求值.(a+b)(a﹣b)+b(a+2b)﹣b2,其中a=1,b=﹣2.21.如图,在正方形网格中有一个△ABC,顶点A,B,C 在格点上①在正方形网格中作△A1B1C1,使它与△ABC关于直线MN 成轴对称;②若网格上的最小正方形边长为1,求四边形ACC1A1的面积.22.如图,已知AD∥BC,∠DBC与∠C互余,BD平分∠ABC,∠A=112°,(1)求∠ABC的度数;(2)求∠C的度数.23.现有5根小木棒,长度分别为:2、3、4、5、7(单位:cm),从中任意取出3根,(1)列出所选的3根小木棒的所有可能情况;(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率.24.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.25.如图的曲线表示周末班主任带学生步行去动物园游玩的情况,图象表示学生离校的距离y千米与从出发开始第x小时的关系.根据这个图象,回答下列问题:(1)学校距动物园为千米;(2)回学校时速度为千米/小时;(3)写出学生回学校时y与x的关系式;(4)当x=3小时时,学生离校的距离为千米.26.(10分)(2015春•宁化县校级月考)已知∠MON=40°,OE平分∠MON,点A、B在射线OM、OE上,点C是射线ON上的一个动点,连接AC交射线OE于点D,设∠OAC=x.(1)填空:若AB∥ON,①当∠BAD=∠ABD时,(如图①),则x的度数为;②当∠BAD=∠BDA时,(如图②),则x的度数为;(2)若AB⊥OM于点A(如图③),且△ADB是等腰三角形,求x的度数.参考答案与试题解析一.选择题(本大题共10个小题,每小题2分,共20分.注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在括号里)1.下列计算正确的是()A.2a3+4a3=6a6 B.(a3)2=a5 C.x6÷x2=x4 D.(x+3)2=x2+9考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:结合选项分别进行同底数幂的除法、合并同类项、幂的乘方和积的乘方等运算,然后选择正确选项.解答:解:A、2a3+4a3=6a3,原式计算错误,故本选项错误;B、(a3)2=a6,原式计算错误,故本选项错误;C、x6÷x2=x4,计算正确,故本选项正确;D、(x+3)2=x2+6x+9,原式计算错误,故本选项错误.故选C.点评:本题考查了同底数幂的除法、合并同类项、幂的乘方和积的乘方等知识,解答本题的关键是掌握运算法则.2.下列事件中,必然事件是()A.打开电视机,正在播巴西世界杯新闻B.下雨后,天空出现彩虹C.随机掷一枚硬币,落地后正面朝上D.3个人分成两组,一定有2个人分在一组考点:随机事件.分析:直接利用随机事件和必然事件的定义分析得出即可.解答:解:A、打开电视机,正在播巴西世界杯新闻,是随机事件,故此选项错误;B、下雨后,天空出现彩虹,是随机事件,故此选项错误;C、随机掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;D、3个人分成两组,一定有2个人分在一组,是必然事件.故选:D.点评:此题主要考查了随机事件和必然事件,正确把握定义是解题关键.3.下列手机屏幕解锁图案中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.下列各图中,∠1大于∠2的是()A.B.C.D.考点:三角形的外角性质;对顶角、邻补角;平行线的性质;等腰三角形的性质.分析:根据三角形的内角,对顶角相等,同旁内角,三角形的外角性质逐个判断即可.解答:解:A不能判断∠1和∠2的大小,故本选项错误;B、∠1=∠2,故本选项错误;C、不能判断∠1和∠2的大小,故本选项错误;D、∠1>∠2,故本选项正确;故选D.点评:本题考查了三角形的内角,对顶角相等,同旁内角,三角形的外角性质的应用,主要考查学生的理解能力和判断能力.5.若代数式(x+a)(x﹣)的结果中不含字母x的一次项,那么a的值是()A.0 B. 2 C.D.﹣考点:多项式乘多项式.专题:计算题.分析:原式利用多项式乘多项式法则计算,根据结果不含x 的一次项求出a的值即可.解答:解:(x+a)(x﹣)=x2+(a﹣)x﹣,由结果不含x的一次项,得到a﹣=0,解得:a=.故选C点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是,则黄球的个数为()A.16 B.12 C.8 D. 4考点:概率公式.分析:首先设黄球的个数为x个,根据题意,利用概率公式即可得方程:=,解此方程即可求得答案.解答:解:设黄球的个数为x个,根据题意得:=,解得:x=4.故选:D.点评:此题考查了概率公式的应用.此题难度不大,注意掌握方程思想的应用,注意概率=所求情况数与总情况数之比.7.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可考点:全等三角形的应用.专题:应用题.分析:②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.解答:解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.点评:本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.8.“MH370”马航失联后,我困政府高度重视,迅速派出巡航舰以一定速度快速赶往事发地点,到达目的地后,停留一段时间搜寻,搜寻无果后,巡航舰又据讯息向前开往马六甲海峡,为避免错失搜寻信号,巡航舰缓慢匀速前进,则图中能反映巡航舰行驶路程S与时间t的关系的是()A.B.C.D.考点:函数的图象.分析:开始行驶路程S为0,以一定速度快速赶往事发地点巡航舰行驶路程S与时间t的增加而增加;到达目的地后,停留一段时间,行驶路程S不变;最后缓慢匀速前进,行驶路程S与时间t的增长变慢.解答:解:开始行驶路程S为0,C、D错;以一定速度快速赶往事发地点巡航舰行驶路程S与时间t的增加而增加;到达目的地后,停留一段时间,行驶路程S不变;最后缓慢匀速前进,行驶路程S与时间t的增长变慢,可知B错,故选:A.点评:本题考查了函数的图象,关键是分析出开始行驶路程S为0,先上升再不变最后又缓慢上升.9.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°考点:三角形的外角性质.分析:根据三角形的内角和求出∠2=45°,再根据对顶角相等求出∠3=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和计算即可.解答:解:∵∠2=90°﹣45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°.故选D.点评:本题考查的是三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.10.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.考点:剪纸问题.专题:操作型.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向左对折,向上对折,从直角三角形的一直角边的正中间剪去一个正方形,展开后实际是从正方形的一条对角线上剪去两个小长方形,得到结论.故选B.点评:本题主要考查学生的动手能力及空间想象能力.二.填空题(本大题共8个小题,每小题3分,共计24分)11.空气就是我们周围的气体.我们看不到它,也品尝不到它的味道,但是在刮风的时候,我们就能够感觉到空气的流动.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数0.001293用科学记数法表示为 1.293×10﹣3.考点:科学记数法—表示较小的数.专题:常规题型.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.001293=1.293×10﹣3.故答案为1.293×10﹣3.点评:本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,已知:AB∥CD,∠1=120°,则∠C= 60 度.考点:平行线的性质.分析:根据邻补角的定义求出∠2,再根据两直线平行,内错角相等解答.解答:解:∵∠1=120°,∴∠2=180°﹣∠1=180°﹣120°=60°,∵AB∥CD,∴∠C=∠2=60°.故答案为:60.点评:本题主要考查了平行线的性质,邻补角的定义,是基础题,熟记性质是解题的关键.13.已知a2+b2=7,ab=1,则(a+b)2= 9 .考点:完全平方公式.专题:计算题.分析:原式利用完全平方公式展开,将各自的值代入计算即可求出值.解答:解:∵a2+b2=7,ab=1,∴原式=a2+b2+2ab=7+2=9,故答案为:9点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.14.如图,已知AC=BD,要使△ABC≌△DCB,在图形所给出的字母中,需添加一个条件是∠ACB=∠DBC (从符合的条件中任选一个即可)考点:全等三角形的判定.专题:开放型.分析:添加得条件为∠ACB=∠DBC,利用SAS即可得证.解答:解:添加得条件为∠ACB=∠DBC,证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),故答案为:∠ACB=∠DBC点评:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.15.如图,∠ABC=70°,∠A=50°,AB的垂直平分线交AC 于D,则∠DBC= 20 °.考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质得到AD=BD,则∠ABD=∠A=50°,结合图形易求∠DBC=∠ABC﹣∠ABD=20°.解答:解:如图,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠ABD=∠A.又∠DBC=∠ABC﹣∠ABD,∠ABC=70°,∠A=50°,∴∠DBC=∠ABC﹣∠ABD=70°﹣50°=20°,故答案是:20.点评:本题考查了线段垂直平分线的性质、等腰三角形的性质;此题设计巧妙,将等腰三角形、垂直平分线等知识有机的融合在一起,考查了同学们的分析能力及逻辑推理能力.16.如图,已知△ABC中,∠B>∠C,AD是BC边上高,AE是∠BAC平分线,若∠B=70°,∠DAE=10°,则∠C的度数为50°.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠BAD,再求出∠BAE,然后根据角平分线的定义可得∠BAC=2∠BAE,再利用三角形的内角和等于180°列式计算即可得解.解答:解:∵AD是BC边上高,∠B=70°,∴∠BAD=90°﹣∠B=90°﹣70°=20°,∴∠BAE=∠BAD+∠DAE=20°+10°=30°,∵AE是∠BAC平分线,∴∠BAC=2∠BAE=2×30°=60°,在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣60°﹣70°=50°.故答案为:50°.点评:本题考查了三角形的内角和定理,三角形的角平分线的定义,直角三角形两锐角互余的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.17.如图,在△ABC中,E、D分别为AB、CE的中点,且S△ABC=24,则S△BDE= 6 .考点:三角形的面积.分析:先根据点E是AB的中点可知S△BCE=S△ABC,再根据点D是CE的中点即可得出结论.解答:解:∵点E是AB的中点,S△ABC=24,∴S△BCE=S△ABC=×24=12.∵点D是CE的中点,∴S△BDE=S△BCE=×12=6.故答案为;6.点评:本题考查的是三角形的面积,熟知三角形的中线将三角形分成面积相等的两部分是解答此题的关键.18.观察等式:①9﹣1=2×4;②25﹣1=4×6;③49﹣1=6×8…按照这种规律写出第n个等式:(2n+1)2﹣1=2n (2n+2)(n为大于或等于1的自然数).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:等式的左边是连续奇数的平方与1的差,右边是连续两个偶数的乘积,由此写出规律即可.解答:解:①9﹣1=32﹣1=(2×1+1)2﹣1=2×(2+2)=2×4;②25﹣1=52﹣1=(2×2+1)2﹣1=(2×2)×(2+2×2)=4×6;③49﹣1=72﹣1=(2×3+1)2﹣1=(2×3)×(2+2×3)=6×8,…因此第n个等式为:(2n+1)2﹣1=2n(2n+2)(n为大于或等于1的自然数).点评:此题主要从等式的两边发现的规律为:左边是连续奇数的平方与1的差,右边是连续两个偶数的乘积,进一步解决问题.三.解答题:(本大题共8小题,计56分,解答题应写出文字说明.说理过程或演算步骤)19.计算:(1);(2)(3a2b+2ab2﹣ab)÷(﹣ab)﹣1.考点:整式的混合运算;零指数幂;负整数指数幂.分析:(1)先算0指数幂、负指数幂与乘方,再算加减;(2)先算多项式除以单项式,再进一步合并即可.解答:解:(1)原式=﹣1+1+9﹣8=1;(2)原式=﹣3a﹣2b+1﹣1=﹣3a﹣2b.点评:此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.20.先化简,再求值.(a+b)(a﹣b)+b(a+2b)﹣b2,其中a=1,b=﹣2.考点:整式的混合运算—化简求值.分析:先利用平方差公式和整式的乘法计算,再合并化简,最后代入求得数值即可.解答:解:原式=a2﹣b2+ab+2b2﹣b2=a2+ab,当a=1,b=﹣2时原式=1+(﹣2)=﹣1.点评:此题考查代数式求值,注意先利用整式的乘法化简,再代入求得数值.21.如图,在正方形网格中有一个△ABC,顶点A,B,C 在格点上①在正方形网格中作△A1B1C1,使它与△ABC关于直线MN 成轴对称;②若网格上的最小正方形边长为1,求四边形ACC1A1的面积.考点:作图-轴对称变换.分析:(1)根据网格结构找出点A、B、C关于直线MN 的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据梯形的面积公式列出算式,再计算即可.解答:解:①如图所示,△A1B1C1即为△ABC关于直线MN的对称图形;②四边形ACC1A1的面积=×(4+2)×3=9.点评:此题主要考查轴对称变换,用到的知识点是轴对称、梯形的面积公式,关键是熟练运用轴对称变换作出图形.22.如图,已知AD∥BC,∠DBC与∠C互余,BD平分∠ABC,∠A=112°,(1)求∠ABC的度数;(2)求∠C的度数.考点:平行线的性质.分析:(1)先根据平行线的性质求出∠ABC的度数即可;(2)由角平分线的性质求出∠DBC的度数,再根据∠DBC 与∠C互余即可得出结论.解答:解:(1)∵AD∥BC,∠A=112°,∴∠ABC=180°﹣112°=68°;(2)∵BD平分∠ABC,∠ABC=68°,∴∠DBC=34°.∵∠DBC与∠C互余,∴∠C=90°﹣34°=56°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.23.现有5根小木棒,长度分别为:2、3、4、5、7(单位:cm),从中任意取出3根,(1)列出所选的3根小木棒的所有可能情况;(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率.考点:列表法与树状图法;三角形三边关系.分析:(1)首先根据题意利用列举法,即可求得所选的3根小木棒的所有可能情况;(2)利用三角形的三边关系,可求得它们能搭成三角形的共有5种情况,继而利用概率公式求解即可求得答案.解答:解:(1)根据题意可得:所选的3根小木棒的所有可能情况为:(2、3、4),(2、3、5),(2、3、7),(2、4、5),(2、4、7),(2、5、7),(3、4、5),(3、4、7),(3、5、7),(4、5、7);(2)∵能搭成三角形的结果有:(2、3、4),(2、4、5),(3、4、5),(3、5、7),(4、5、7)共5种,∴P(能搭成三角形)==.点评:此题考查了列举法求概率的知识与三角形三边关系.此题难度不大,注意要不重不漏的列举出所有的结果,注意概率=所求情况数与总情况数之比.24.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.解答:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.25.如图的曲线表示周末班主任带学生步行去动物园游玩的情况,图象表示学生离校的距离y千米与从出发开始第x小时的关系.根据这个图象,回答下列问题:(1)学校距动物园为 6 千米;(2)回学校时速度为 3 千米/小时;(3)写出学生回学校时y与x的关系式y=﹣3x+13.5 ;(4)当x=3小时时,学生离校的距离为 4.5 千米.考点:一次函数的应用.分析:观察函数图象,可得答案,根据待定系数法,可得函数解析式.解答:解:(1)由纵坐标看出学校距动物园为6千米;(2)由纵坐标看出学校距动物园为6千米,由横坐标看出返回时的时间是4.5﹣2.5=2(时),返回时的速度是6÷2=3千米/小时;(3)设学生回学校时y与x的关系式y=kx+b,图象经过(2.5,6)(4.5,0),,解得.故学生回学校时y与x的关系式y=﹣3x+13.5 (2.5≤x≤4.5);(4)当x=3时,y=﹣3×3+13.5,y=4.5,故答案为:6,3,y=﹣3x+13.5,4.5.点评:本题考查了一次函数的应用,观察函数图象是解题关键,利用了待定系数法,题目较简单.26.(10分)(2015春•宁化县校级月考)已知∠MON=40°,OE平分∠MON,点A、B在射线OM、OE上,点C是射线ON上的一个动点,连接AC交射线OE于点D,设∠OAC=x.(1)填空:若AB∥ON,①当∠BAD=∠ABD时,(如图①),则x的度数为120°;②当∠BAD=∠BDA时,(如图②),则x的度数为60°;(2)若AB⊥OM于点A(如图③),且△ADB是等腰三角形,求x的度数.考点:平行线的性质;等腰三角形的性质.分析:(1)①先根据角平分线的性质求出∠2的度数,再由平行线的性质即可得出结论;②先由∠BAD=∠BDA,∠ABO=20°得出∠BAD=80°,再根据三角形内角和定理即可得出∠OAC的度数;(2)分当点D在线段OB上,点D在射线BE上两种情况进行讨论.解答:解:(1)①∵∠MON=40°,OE平分∠MON,∴∠1=∠2=20°.∵AB∥ON,∠BAD=∠ABD,∴∠BAD=20°.∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°②∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°.∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°.故答案为:120°,60°;(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20°;若∠BAD=∠BDA,则x=35°;若∠ADB=∠ABD,则x=50°.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125°.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20°、35°、50°、125°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.。

2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷(解析版)

2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷(解析版)

2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷一、选择题(本大题共12个小题,每小题5分,共60分>在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.2.的平方根是()A.B.2C.±2D.3.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A.点A B.点B C.点C D.点D4.若x,y为实数,且|x+2|+=0,则的值为()A.2B.﹣2C.1D.﹣15.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.126.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米B.小明到家的时间为17点C.返程的速度为60千米每小时D.10点至14点,汽车匀速行驶7.下列说法错误的个数是()①无理数都是无限小数;②的平方根是±2;③﹣9是81的一个平方根;④=()2;⑤与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个8.△ABC中,∠A:∠B:∠C=3:5:8,则△ABC是()A.锐角三角形B.直角三角形,且∠C=90°C.直角三角形,且∠B=90°D.直角三角形,且∠A=90°9.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.16910.实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b11.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个12.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.二、填空题(每题题5分,满分20,将答案填在答题纸上)13.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.15.实数﹣,0,,,0.1010010001…(两个1之间一次多一个0),,中,无理数有:.16.已知y=﹣24,则=.三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)计算(1)(﹣2)0++(2)(﹣2)×﹣618.(10分)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.19.(12分)在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动,若设CD=x,△ABD的面积为y.(1)写出y与x的关系式;(2)当x取何值时,y有最大值?最大值是多少?此时点D在什么位置?(3)当△ABD的面积是△ABC面积的一半时,点D在什么位置?20.(12分)某商店周年庆,印涮了10000张奖券,其中印有老虎图案的有10张,每张奖金1000元,印有羊图案的有50张,每张奖金100元,印有鸡图案的有100张,每张奖金20元,印有兔子图案的有400张,每张奖金2元,其余印有花朵图案但无奖金.从中任意抽取一张,请解答下列问题:(1)获得1000元奖金的概率是多少?(2)获得奖金的概率是多少?(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?21.(12分)(1)如图1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.(2)如图2,AB∥CD,AB=CD,BF=DE,求证:∠AEF=∠CFB.22.(12分)王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n的代数式表示:a=,b=,c=.(2)猜想以a、b、c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数:32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分>在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.的平方根是()A.B.2C.±2D.【分析】首先根据算术平方根的定义化简,然后根据平方根的定义即可得出结果.【解答】解:∵=4,又∵22=4,(﹣2)2=4,∴的平方根为±2;故选:C.【点评】本题主要考查了平方根和算术平方根的定义.解题注意算术平方根和平方根的区别.平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.3.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A.点A B.点B C.点C D.点D【分析】先估算出≈2.236,所以﹣≈﹣2.236,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈2.236,∴﹣≈﹣2.236,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.若x,y为实数,且|x+2|+=0,则的值为()A.2B.﹣2C.1D.﹣1【分析】根据非负数的性质列方程求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,==﹣1.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.12【分析】设AB=5x,AC=3x,则根据勾股定理可求出BC,再由直角△ABC的周长为24可解得x 的值,这样也就得出了BC的值.【解答】解:设AB=5x,AC=3x,则BC==4x,又∵直角△ABC的周长为24,∴5x+3x+4x=24,解得:x=2,∴BC=8.故选:B.【点评】本题考查勾股定理的应用,属于基础题,解答本题的关键先求出BC含x的表达式,然后列出方程解出x.6.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米B.小明到家的时间为17点C.返程的速度为60千米每小时D.10点至14点,汽车匀速行驶【分析】根据函数图象的纵坐标,可判断A;根据待定系数法,可得返回的函数解析式,根据函数值与自变量的对应关系,可判断B;根据函数图象的纵坐标,可得返回的路程,根据函数图象的横坐标,可得返回的时间,根据路程与时间的关系,可判断C;根据函数图象的纵坐标,可判断D.【解答】解:A、由纵坐标看出景点离小明家180千米,故A正确;B、由纵坐标看出返回时1小时行驶了180﹣120=60千米,180÷60=3,由横坐标看出14+3=17,故B正确;C、由纵坐标看出返回时1小时行驶了180﹣120=60千米,故C正确;D、由纵坐标看出10点至14点,路程不变,汽车没行驶,故D错误;故选:D.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间是解题关键.7.下列说法错误的个数是()①无理数都是无限小数;②的平方根是±2;③﹣9是81的一个平方根;④=()2;⑤与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个【分析】根据无理数、平方根、数轴、二次根式的性质,分别对每一项进行分析即可.【解答】解:①无理数都是无限不循环小数,故本选项错误;②的平方根是±,故本选项错误;③﹣9是81的一个平方根,故本选项正确;④当a≥0时,=()2,故本选项错误;⑤与数轴上的点一一对应的数是实数,故本选项正确;错误的个数是3个,故选:C.【点评】此题考查了实数,用到的知识点是无理数、平方根、数轴、二次根式的性质,关键是熟练掌握有关定义与性质.8.△ABC中,∠A:∠B:∠C=3:5:8,则△ABC是()A.锐角三角形B.直角三角形,且∠C=90°C.直角三角形,且∠B=90°D.直角三角形,且∠A=90°【分析】根据已知条件∠A:∠B:∠C=3:5:8和三角形的内角和即可求得∠C=×180°=90°,于是得到结论.【解答】解:∵∠A:∠B:∠C=3:5:8,∠A+∠B+∠C=180°,∴∠C=×180°=90°∴△ABC是直角三角形,故选:B.【点评】本题考查了三角形的内角和,直角三角形的判定,熟练掌握三角形的内角和定理是解题的关键.9.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选:C.【点评】注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.10.实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用二次根式与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|﹣=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、二次根式与绝对值的性质.此题难度适中,注意=|a|.11.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个【分析】(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.【解答】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.【点评】本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.12.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.【分析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.【解答】解:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.∵DC∥AB,∴=,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD==.故选:B.【点评】本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形,从而求解.二、填空题(每题题5分,满分20,将答案填在答题纸上)13.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为11或13.【分析】分3是腰长与底边两种情况讨论求解.【解答】解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.【分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【点评】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.15.实数﹣,0,,,0.1010010001…(两个1之间一次多一个0),,中,无理数有:0.1010010001…(两个1之间一次多一个0),,.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001…(两个1之间一次多一个0),,是无理数,故答案为:0.1010010001…(两个1之间一次多一个0),,.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.已知y=﹣24,则=6.【分析】根据二次根式有意义的条件列出不等式,求出x、y,根据算术平方根的概念计算即可.【解答】解:由题意得,2x+3≤0,﹣3﹣2x≥0,解得,x=﹣,y=﹣24,=6,故答案为:6.【点评】本题考查的是二次根式有意义的条件、算术平方根的计算,掌握二次根式的被开方数是非负数是解题的关键.三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)计算(1)(﹣2)0++(2)(﹣2)×﹣6【分析】(1)直接利用零指数幂的性质以及二次根式的性质化简得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)(﹣2)0++=1+﹣1+3=4;(2)(﹣2)×﹣6=3﹣6﹣6×=﹣6.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(10分)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【解答】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC,∴AB=DE,又∵小刚共走了100步,其中AD走了40步,∴走完DE用了60步,步大约50厘米,即DE=60×0.5米=30米.答:小刚在点A处时他与电线塔的距离为30米.【点评】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.19.(12分)在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动,若设CD=x,△ABD的面积为y.(1)写出y与x的关系式;(2)当x取何值时,y有最大值?最大值是多少?此时点D在什么位置?(3)当△ABD的面积是△ABC面积的一半时,点D在什么位置?【分析】(1)△ABD的面积=AD×BC,把相关数值代入化简即可;(2)由(1)可得x最小时,y最大,易得此时点D的位置;(3)让(1)中的y为10列式求值即可.【解答】解:(1)∵设CD=x,△ABD的面积为y.∴y=AD×BC=×(8﹣x)×6=﹣3x+24;(2)当x=0时,y有最大值,最大值是24,此时点D与点C重合.=×6×8=24(3)∵S△ABC=12时,即y=﹣3x+24=12时,x=4,∴当y=S△ABC即CD=4=AC,此时点D在AC的中点处.【点评】此题主要考查了三角形的面积和一次函数的应用;判断出所求三角形的底边及底边上的高是解决本题的突破点.20.(12分)某商店周年庆,印涮了10000张奖券,其中印有老虎图案的有10张,每张奖金1000元,印有羊图案的有50张,每张奖金100元,印有鸡图案的有100张,每张奖金20元,印有兔子图案的有400张,每张奖金2元,其余印有花朵图案但无奖金.从中任意抽取一张,请解答下列问题:(1)获得1000元奖金的概率是多少?(2)获得奖金的概率是多少?(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?【分析】(1)根据10000张奖券中有10张印有老虎图案,每张奖金1000元,再根据概率公式即可得出答案;(2)先求出能获得奖金的奖票张数,再根据概率公式即可得出答案;(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据概率公式列出算式,求出x 的值即可得出答案.【解答】解:(1)获得1000元奖金的概率是=;(2)由题意知:能获得奖金的奖票有10+50+100+400=560张获得奖金的概率是=;(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据题意得:=,解得:x=600,答:需要将600张印有花朵图案的奖券换为印有兔子图案的奖券.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.(12分)(1)如图1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.(2)如图2,AB∥CD,AB=CD,BF=DE,求证:∠AEF=∠CFB.【分析】(1)推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.(2)根据平行线的性质、线段间的和差关系证得∠B=∠D、BE=DF;然后由全等三角形的判定定理SAS推知△ABE≌△CDF;最后由全等三角形的对应角相等证得结论;【解答】解:(1)∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.(2)∵AB∥CD(已知),∴∠B=∠D,又∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF,∴在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴∠A=∠C,∴∠BEA=∠DFC,∴:∠AEF=∠CFB.【点评】本题考查了平行线的性质和判定,平行公理及推论,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n的代数式表示:a=n2﹣1,b=2n,c=n2+1.(2)猜想以a、b、c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数:32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.【分析】(1)探究规律后,利用规律即可解决问题;(2)根据勾股定理的逆定理证明即可;(3)观察发现第一个数的奇数,另外两个数的底数的和是这个奇数的平方,由此即可解决问题;【解答】解:(1)由题意:a=n2﹣1,b=2n,c=n2+1,故答案为:n2﹣1,2n,n2+1;(2)猜想:以a、b、c为边的三角形是直角三角形.理由:∵a=n2﹣1,b=2n,c=n2+1,∴a2+b2=(n2﹣1)2+4n2=n4+2n2+1=(n2+1)2=c2,∴以a、b、c为边的三角形是直角三角形.(3)观察可知:第五组勾股数为:112+602=612.【点评】本题考查勾股数、规律型问题,解题的关键是学会观察,学会寻找规律,利用规律解决问题.。

2022-2023学年新人教版七年级下数学月考试卷(含解析)

2022-2023学年新人教版七年级下数学月考试卷(含解析)

2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 下列各数中,比小的数是( )A.B.C.D.2. 下列调查中,适合普查(全面调查)方法的是( )A.了解一批灯泡的使用寿命B.了解中央电视台《最强大脑》栏目的收视率C.了解全国中学生体重情况D.了解松桃全县居民是精准扶贫户的具体人数3. 已知点到轴的距离为( )A.B.C.D.4. 若成立,则下列不等式一定成立的是( )A.B.C.−1−2π−13A(4,−3)y 4−43−3x <y −3x <−3y3x >3y<x 2y2D.5. 在平面直角坐标系中,点在 A.第一象限B.第四象限C.第一或第四象限D.以上说法都不对6. 不等式组的解集在数轴上表示为( ) A. B. C. D.7. 下列命题正确的是( )A.对角线互相平分且相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形8.如图,给出了过直线外一点,作已知直线的平行线的方法,其依据是A.同位角相等,两直线平行B.内错角相等,两直线平行−x −2<−y −2P (2,)x 2(){x >3,x ≤1AB P AB ()C.同旁内角互补,两直线平行D.过直线外一点有且只有一条直线与这条直线平行9. 如图,两个较大正方形的面积分别为,,且中间夹的三角形是直角三角形,则字母所代表的正方形的面积为 A.B.C.D.10. 邵东市是全国重要的打火机生产基地.质检部门对市内某企业生产的型打火机的质量进行抽样检测,随机抽查盒(每盒个打火机),盒中合格打火机(单位:个)分别为,,,,个,则估计某企业该型号的打火机的合格率为( )A.B.C.D.11. 已知关于的不等式组仅有三个整数解,则的取值范围是( )A.B.C.D.12. 如图,已知平分,,若,则等于( )225289A ()481664A 5305262929302792%94%96%98%x {x >2a −3,2x ≥3(x −2)+5a ≤a <112≤a ≤112<a ≤112a <1OC ∠AOB CD//OB OD =3cm CDA.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13. 的算术平方根是________.14. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为_________.15. 某校组织了一次初三科技小制作比赛,有,,,四个班共提供了件参赛作品.班提供的参赛作品的获奖率为,其它几个班的参赛作品情况及获奖情况绘制在下列图和图两幅尚不完整的统计图中.则获奖率最高的班级是________.16. 小明共有元零花钱,其中只有元,元和元的人民币,三种人民币共张,则小明有_________张元的人民币.17. 如图,将一长方形纸条按如图所示折叠,若,则________.3cm4cm1.5cm2cm16−−√30∘∠2=44∘∠1A B C D 100C 50%12401051105(AB//CD)∠1=40∘∠2=∘18. 不等式组的最小整数解是________.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19. 计算: .20. 解方程组: 21. 某校为调查学生对“心理健康”知识的了解情况,从全校学生中随机抽取名学生进行测试,将测试成绩收集整理后,绘制成如下的扇形统计图和频数直方图(不完整).请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“”这组的百分比________;(3)若成绩达到分以上(含分)为优秀,请你估计全校名学生对“心理健康”知识了解情况为优秀的学生人数. 22. 在平面直角坐标系中,,,轴,与轴相交于点,轴,与轴相交于点.{x +5>2,4−x ≥3−|1−|+−8−−−√33–√(−3)2−−−−−√ x −y =−5,12322(x −1)+y =6.a 70∼80m =80801000A (−4,0)B (2,4)BC//y x C BD//x y D如图,写出点与点坐标;在图中,平移三角形,使点的对应点为原点,点,的对应点分别为点,,①请画出平移后的图形;②写出与的关系;③求三角形平移到三角形的过程中,三角形扫过的面积. 23. 某电器商场销售,两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元求,两种型号的电风扇的销售单价;若商场准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?在的条件下商场销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 24. 在平面直角坐标系中,已知点若点在轴上,求点的坐标;若点在第二、四象限的角平分线上,求的值.(1)C D (2)ABD D O A B A ′B ′AB A ′B ′ABD O A ′B ′ABD A B 160120A B 341200561900(1)A B (2)750050A (3)(2)501850M (m +2,2m −3).(1)M y M (2)M m参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】A【考点】实数大小比较【解析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:,故选项正确;,故选项错误;,故选项错误;,故选项错误.故选.2.【答案】D【考点】全面调查与抽样调查【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】、了解一批灯泡的使用寿命适合抽样调查;、了解中央电视台《最强大脑》栏目的收视率适合抽样调查;、了解全国中学生体重情况适合抽样调查;、了解松桃全县居民是精准扶贫户的具体人数适合全面调查;3.−2<−1A 0>−1B π>−1C −>−113D A A B C DA【考点】点的坐标【解析】根据点到轴的距离等于横坐标的长度解答.【解答】解:点到轴的距离为.故选.4.【答案】C【考点】不等式的性质【解析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:、两边都乘以,不等号的方向改变,故错误;、两边都乘以,不等号的方向不变,故错误;、两边都除以,不等号的方向不变,故正确;、两边都乘以,不等号的方向改变,故错误;故选:.5.【答案】D【考点】点的坐标【解析】本题考查点的坐标.分两种情况:当时,点,在第一象限,当时,点,在轴正半轴上.即可判定,,错误.y A(4,−3)y |4|=4A A −3A B 3B C 2C D −1D C >0x 2P(2,)x 2=0x 2P(2,)x 2x A B C解:,当时,点在第一象限;当时,点在轴正半轴上,点在第一象限或在轴正半轴上.故选.6.【答案】A【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:由题意知不等式组的解集在数轴上表示为.故选.7.【答案】A【考点】命题与定理【解析】根据矩形的判定方法对、进行判断;根据菱形的判定对进行判断;根据正方形的判定对进行判断.【解答】解:、对角线互相平分且相等的四边形是矩形,所以选项为真命题;、对角线垂直的平行四边形是菱形,所以选项为假命题;、对角线相等的平行四边形是矩形,所以选项为假命题;、对角线互相垂直平分且相等的四边形是正方形,所以选项为假命题.故选.8.∵≥0x 2∴>0x 2P(2,)x 2=0x 2P(2,)x 2x ∴P(2,)x 2x D A A C B D A A B B C C D D AA【考点】平行线的判定与性质【解析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选.9.【答案】D【考点】勾股定理正方形的性质【解析】根据正方形的面积等于边长的平方,由正方形的面积和正方形的面积分别表示出的平方及的平方,又三角形为直角三角形,根据勾股定理求出的平方,即为所求正方形的面积.【解答】解:如图所示,∵正方形的面积等于,∴,∵正方形的面积为,∴,又为直角三角形,根据勾股定理得,∴,∴正方形的面积为,A PQED PRQF PR PQ PQR QR PQED 225P =Q 2225PRGF 289P =R 2289△PQR P =R 2P +Q Q 2R 2Q =R 2P −P R 2Q 2=289−225=64QMNR 64A即字母所代表的正方形的面积为.故选.10.【答案】B【考点】用样本估计总体【解析】用合格打火机的数量除以打火机的总数量即可.【解答】估计某企业该型号的打火机的合格率为=,11.【答案】A【考点】解一元一次不等式组【解析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:解不等式,得:,∵不等式组有且仅有三个整数解,∴此不等式组的整数解为,,.又,∴,解得:.故选.12.【答案】A【考点】角平分线的性质A 64D ×100%94%2x ≥3(x −2)+5x ≤110−1x >2a −3−2≤2a −3<−1≤a <112A平行线的性质【解析】此题暂无解析【解答】解:平分,.,,,.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13.【答案】【考点】算术平方根【解析】分别利用平方根、算术平方根的定义计算即可.平方根的定义:一个数的平方等于,这个数叫的平方根;算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.【解答】解:∵,∴的算术平方根是,即的算术平方根是.故答案为:.14.【答案】【考点】∵OC ∠AOC ∴∠AOC =∠BOC ∵CD//OB ∴∠DCO =∠COB ∴∠DOC =∠DCO ∴OD =CD =3cm A 2x a x a =416−−√4216−−√2214∘三角形的外角性质平行线的性质【解析】依据平行线的性质,即可得到,再根据三角形外角性质,可得,进而得出.【解答】解:如图,∵矩形的对边平行,∴等于所在三角形的一个外角,可得,∴.故答案为:.15.【答案】【考点】扇形统计图条形统计图【解析】直接利用扇形统计图中百分数,进而求出班参赛作品数量;利用班提供的参赛作品的获奖率为 ,结合班参赛数量得出获奖数量;分别求出各班的获奖百分率,进而求出答案.【解答】解:组参赛作品数是: (件);班提供的参赛作品的获奖率为,∴班的参赛作品的获奖数量为:(件),如图所示:班的获奖率为:,班的获奖率为:,班的获奖率为:,∠2=∠3=44∘∠3=∠1+30∘∠1=−=44∘30∘14∘∠2∠1∠2=∠1+30∘∠1=−=44∘30∘14∘14∘CB C 50%C B 100×(1−35%−20%−20%)=25C 50%C 100×20%×50%=10A ×100%=40%14100×3.5%B ×100%=44%1125C 50%100%=40%8班的获奖率为:,故班的获奖率高.故答案为:.16.【答案】【考点】二元一次方程组的应用——其他问题【解析】根据题意设元的人民币为张,元的人民币张,元的人民币张,然后列方程组,根据未知数的取值范围讨论即可得到答案.【解答】解:设元的人民币张,元的人民币张,元的人民币张,根据题意得:得,,,,都是不大于的正整数,当时,,故答案为:.17.【答案】【考点】平行线的性质翻折变换(折叠问题)【解析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:如图,D ×100%=40%8100×20%C C 35x 10y 1z 5x 10y 1z {5x +10y +z =40①x +y +z =10②①−②4x +9y =30∵x y z 10∴y =2x =33110由折叠得:,,,,,.故答案为:.18.【答案】【考点】一元一次不等式组的整数解【解析】本题主要考察不等式组的解法,只要掌握方法即可.【解答】解:由得,最小整数解为.故答案为:.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19.【答案】解:.【考点】算术平方根∠GEF =∠DEF ∵∠1=40∘∴∠GEF =∠DEF ==−∠1180∘270∘∵AB//CD ∴∠2+∠DEF =180∘∴∠2=−=180∘70∘110∘110−2{x +5>2,4−x ≥3{x >−3,x ≤1,∴−3<x ≤1∴−2−2−|1−|+−8−−−√33–√(−3)2−−−−−√=−2−(−1)+33–√=−2−+1+33–√=2−3–√立方根的性质绝对值【解析】利用绝对值,立方根,算术平方根的运算法则计算,然后根据运算顺序解答即可.【解答】解:.20.【答案】解:原方程组为:得:,整理得:,得: ,解得.把代入得:,解得.原方程组的解为【考点】加减消元法解二元一次方程组【解析】此题暂无解析【解答】解:原方程组为:得:,整理得:,得: ,解得.把代入得:,解得.原方程组的解为21.−|1−|+−8−−−√33–√(−3)2−−−−−√=−2−(−1)+33–√=−2−+1+33–√=2−3–√ x −y =−5,①12322(x −1)+y =6,②①×2x −3y =−10③②2x +y =8④③+④×37x =14x =2x =2④2×2+y =8y =4∴{x =2,y =4.x −y =−5,①12322(x −1)+y =6,②①×2x −3y =−10③②2x +y =8④③+④×37x =14x =2x =2④2×2+y =8y =4∴{x =2,y =4.【答案】(1)答案见解析;(2);(3)人.【考点】频数(率)分布直方图【解析】(1)可先根据成绩在之间的人数求出总人数的值,从而求出的人数,补全直方图即可;(2)从直方图中读出的人数,再除以总人数即可得到百分比;(3)用成绩达到分以上(含分)的学生人数除以总人数即为优秀率,再乘以即可得出结论【解答】(1)由直方图可知,成绩在之间的人数为人,…被调查的总人数为:人,∴成绩在之间的人数为:人,则补全直方图如图所示:测试成绩频数直方图(2)从直方图中可得,成绩在之间的人数为人,∴故答案为:(3)(人).答:了解情况为优秀的学生人数为人.22.【答案】解:点的坐标为,点的坐标为.①平移后的图形如图所示:20%56080∼90a 90∼10070∼808080100080−9012a =12÷24%=5090∼10050−4−8−10−12=1670−8010m =×100%=20%105020%1000×=56012+1650560(1)C (2,0)D (0,4)(2)②因为是由平移得来,每条对应边都平行,故与的关系为平行且相等.③扫过的面积为.【考点】点的坐标三角形的面积作图-平移变换平移的性质【解析】观察图像可知,点的坐标为,点的坐标为.【解答】解:点的坐标为,点的坐标为.①平移后的图形如图所示:②因为是由平移得来,每条对应边都平行,故与的关系为平行且相等.③扫过的面积为.23.【答案】△O A ′B ′△ABD AB A ′B ′++S △AOD S 长方形OCBD S △ACA ′=×4×4+2×4+×4×61212=8+8+12=28(1)C 2,0D (0,4)(1)C (2,0)D (0,4)(2)△O A ′B ′△ABD AB A ′B ′++S △AOD S 长方形OCBD S △ACA ′=×4×4+2×4+×4×61212=8+8+12=28(1)A解:设种型号电风扇单价为元,种型号电风扇单价为元,依题意得:解得:答:种型号电风扇单价为元,种型号电风扇单价为元.设采购种型号电风扇台,则采购种型号电风扇台.依题意得:,解得:,∵为正整数,∴,答:种型号的电风扇最多能采购台.根据题意得:,解得:,则,∵是正整数,∴或,∴采购方案有两种:方案一:采购种型号的电风扇台,种型号的电风扇台;方案二:采购种型号的电风扇台,种型号的电风扇台.【考点】二元一次方程组的应用——销售问题一元一次不等式的实际应用【解析】(1)设、两种型号电风扇的销售单价分别为元、元,根据台型号台型号的电扇收入元,台型号台型号的电扇收入元,列方程组求解;(2)设采购种型号电风扇台,则采购种型号电风扇台,根据金额不多余元,列不等式求解;(3)根据种型号电风扇的进价和售价、种型号电风扇的进价和售价以及总利润一台的利润总台数,列出不等式,求出的值,再根据为整数,即可得出答案.【解答】解:设种型号电风扇单价为元,种型号电风扇单价为元,依题意得:解得:答:种型号电风扇单价为元,种型号电风扇单价为元.设采购种型号电风扇台,则采购种型号电风扇台.依题意得:,解得:,∵为正整数,∴,答:种型号的电风扇最多能采购台.(1)A x B y {3x +4y =1200,5x +6y =1900,{x =200,y =150.A 200B 150(2)A a B (50−a)160a +120(50−a)≤7500a ≤3712a a =37A 37(3)(200−160)a +(150−120)(50−a)>1850a >3535<a ≤3712a a =3637A 36B 14A 37B 13A B x y 3A 4B 12005A 6B 1900A a B (50−a)7500A B =×a a (1)A x B y {3x +4y =1200,5x +6y =1900,{x =200,y =150.A 200B 150(2)A a B (50−a)160a +120(50−a)≤7500a ≤3712a a =37A 37(3)根据题意得:,解得:,则,∵是正整数,∴或,∴采购方案有两种:方案一:采购种型号的电风扇台,种型号的电风扇台;方案二:采购种型号的电风扇台,种型号的电风扇台.24.【答案】解:由题意可知,,所以,此时所以点坐标为(,).由题意可知,,解得【考点】象限中点的坐标坐标与图形性质点的坐标【解析】【解答】解:由题意可知,,所以,此时所以点坐标为(,).由题意可知,,解得(3)(200−160)a +(150−120)(50−a)>1850a >3535<a ≤3712a a =3637A 36B 14A 37B 13(1)m +2=0m =−22m −3=−7,M 0−7(2)m +2+2m −3=0m =.13(1)m +2=0m =−22m −3=−7,M 0−7(2)m +2+2m −3=0m =.13。

扬州市七年级(下)第二次月考数学试卷(5月份)含答案

扬州市七年级(下)第二次月考数学试卷(5月份)含答案

月考试卷一、选择题(本大题共8小题,共24.0分)1.下列运算中,正确的是()A. a3+a3=a6B. a2•a3=a6C. (a2)3=a6D. (2a3)2=2a62.某种细菌用肉眼是根本看不到的,用显微镜测其直径大约是0.000005米,将0.000005用科学记数法表示为()A. 50×10-7B. 50×10-5C. 50×10-3D. 5×10-63.下列式子由左到右的变形中,属于因式分解的是()A. (x+2y)2=x2+4xy+4y2B. x2-2y+4=(x-1)2+3C. 3x2-2x-1=(3x+1)(x-1)D. m(a+b+c)=ma+mb+mc4.下列多项式中是完全平方式的是()A. 2x2+4x-4B. 16x2-8y2+1C. 9a2-12a+4D. x2y2+2xy+y25.如图,∠1=∠B,∠2=20°,则∠D=()A. 20°B. 22°C. 30°D. 45°6.如果3a7x b y+7和-7a2-4y b2x是同类项,则x,y的值是()A. x=-3,y=2B. x=2,y=-3C. x=-2,y=3D. x=3,y=-27.下列命题是真命题的是()A. 内错角相等B. 如果a2=b2,那么a3=b3C. 三角形的一个外角大于任何一个内角D. 平行于同一直线的两条直线平行8.不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0二、填空题(本大题共10小题,共30.0分)9.若a m=2,a n=3,则a3m+n=______.10.关于x的方程3x+2a=0的根是2,则a等于______.11.计算:已知:a+b=3,ab=1,则a2+b2=______.12.分解因式:x2-25=______.13.若(x2-mx+1)(x-1)的积中x的二次项系数为零,则m的值是______.14.若代数式x2+(a-1)x+16是一个完全平方式,则a=______.15.由3x-2y=5,得到用x表示y有式子为y=______.16.不等式组的正整数解的个数有______.17.多项式ax2-4a与多项式x2-4x+4的公因式是______.18.若不等式2x<1-3a的解集中所含的最大整数为4,则a的范围为______.三、计算题(本大题共1小题,共8.0分)19.计算:(1)(-2a2)(-3ab)2;(2)(2x-y)2-4(x-y)(x+2y).四、解答题(本大题共9小题,共88.0分)20.因式分解:(1)x2-4y2;(2)9x2+18xy+9y2.21.解方程组:(1);(2).22.解下列不等式组:(1);(2).23.已知关于x,y的方程组和有相同解,求(-a)b值.24.解不等式组,并写出它的所有非负整数解.25.已知:如图,AB∥CD,MG、NH分别是∠BME、∠DNE的角平分线.求证:MG∥NH.26.已知关于x,y的方程组(实数m是常数).(1)若-1≤x-y≤5,求m的取值范围;(2)在(1)的条件下,化简:|m+2|+|m-3|27.2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:()求该网店购进甲、乙两种口罩各多少袋?(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?28.某学校为了改善办学条件,计划购置一批A型电脑和B型电脑.经投标发现,购买1台A型电脑比购买1台B型电脑贵500元;购买2台A型电脑和3台B型电脑共需13500元.(1)购买1台A型电脑和1台B型电脑各需多少元?(2)根据学校实际情况,需购买A、B型电脑的总数为50台,购买A、B型电脑的总费用不超过145250元.①请问A型电脑最多购买多少台?②从学校教师的实际需要出发,其中A型电脑购买的台数不少于B型电脑台数的3倍,该校共有几种购买方案?试写出所有的购买方案.答案和解析1.【答案】C【解析】解:A、a3+a3=2a3,故A错误;B、a2•a3=a5,故B错误;C、(a2)3=a6,故C正确;D、(2a3)2=4a6,故D错误.故选:C.依据合并同类项法则、同底数幂的乘法法则、幂的乘方法则、积的乘方法则进行计算即可.本题主要考查的是合并同类项法则、同底数幂的乘法法则、幂的乘方法则、积的乘方法则,熟练掌握相关法则是解题的关键.2.【答案】D【解析】解:将0.000005用科学记数法表示为5×10-6.故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、是整式的乘法,故A错误;B、没把多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、是整式乘法,故D错误;故选:C.根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.【答案】C【解析】解:符合完全平方公式的只有9a2-12a+4.故选:C.完全平方公式:(a±b)2=a2±2ab+b2,形如a2±2ab+b2的式子要符合完全平方公式的形式a2±2ab+b2=(a±b)2才成立.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.要求熟练掌握完全平方公式.5.【答案】A【解析】解:∵∠1=∠B,∴AD∥BC,∴∠D=∠2=20°.故选:A.根据平行线的判定和性质即可得到结论.本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.6.【答案】B【解析】解:由同类项的定义,得,解这个方程组,得.故选:B.本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.根据同类项的定义列出方程组,是解本题的关键.7.【答案】D【解析】解:A、两直线平行,内错角相等,所以A选项错误;B、如果a2=b2,那么a3=b3或a3=-b3,所以B选项错误;C、三角形的一个外角大于任何一个不相邻的一个内角,所以C选项错误;D、平行于同一直线的两条直线平行,所以D选项正确.故选:D.根据平行线的性质对A、D进行判断;根据平方根的定义对B进行判断;根据三角形外角性质对C进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.【答案】D【解析】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选:D.表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.9.【答案】24【解析】解:∵a m=2,a n=3,∴a3m+n=(a m)3•a n=8×3=24.故答案为:24.根据幂的乘方与积的乘方和同底数幂的乘法法则求解.本题考查了幂的乘方和积的乘方以及同底数幂的乘法,掌握各知识点的运算法则是解答本题的关键.10.【答案】-3【解析】解:把x=2代入3x+2a=0得:3×2+2a=0解得:a=-3.故填-3.虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.11.【答案】7【解析】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2-2ab=32-2=9-2=7.故答案为:7将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.12.【答案】(x+5)(x-5)【解析】解:x2-25=(x+5)(x-5).故答案为:(x+5)(x-5).直接利用平方差公式分解即可.本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.13.【答案】-1【解析】解:∵(x2-mx+1)(x-1)的积中x的二次项系数为零,∴x3-x2-mx2+mx+x-1=x3-(1+m)x2+(1+m)x-1,则1+m=0,解得:m=-1.故答案为:-1.直接利用多项式乘法运算法则去括号,进而得出二次项的系数为零,求出答案.此题主要考查了多项式乘以多项式,正确掌握多项式乘法运算法则是解题关键.14.【答案】9或-7【解析】解:∵x2+(a-1)x+16是一个完全平方式,∴a-1=±8,解得:a=9或-7,故答案为:9或-7利用完全平方公式的结构特征判断即可得到a的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.【答案】【解析】解:3x-2y=5,移项得:-2y=5-3x,解得:y=.故答案为:.将x看作已知数,y看作未知数,求出y即可.此题考查了解二元一次方程,其中将x看作已知数,y看作未知数是解本题的关键.16.【答案】3【解析】解:解①得:x≤4;解②得:x>1;不等式组的解集为:1<x≤4,不等式组的正整数解为:2,3,4,有3个,故答案为3.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其正整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【答案】x-2【解析】解:∵ax2-4a=a(x2-4)=a(x+2)(x-2),x2-4x+4=(x-2)2,∴多项式ax2-4a与多项式x2-4x+4的公因式是x-2.分别将多项式ax2-4a与多项式x2-4x+4进行因式分解,再寻找他们的公因式.本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.18.【答案】-3≤a<-【解析】解:2x<1-3a,x<,∵不等式2x<1-3a的解集中所含的最大整数为4,∴4<≤5,解得:-3≤a<-,故答案为:-3≤a<-.先求出不等式的解集,根据最大整数为4得出关于a的不等式组,求出不等式组的解集即可.本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式的整数解的应用,解此题的关键是能求出关于a的不等式组,难度适中.19.【答案】解:(1)原式=(-2a2)(9a2b2)=-18a4b2;(2)原式=4x2-4xy+y2-4x2-4xy+8y2=9y2-8xy.【解析】(1)原式先计算乘方运算,再计算乘法运算即可求出值;(2)原式利用完全平方公式,以及多项式乘多项式法则计算,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)x2-4y2;=(x+2y)(x-2y);(2)9x2+18xy+9y2=9(x2+2xy+y2)=9(x+y)2.【解析】(1)原式利用平方差公式分解即可;(2)原式提公因式后,利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.【答案】解:(1)①+②得:3x =6,解得:x =2.x =2代入①中,解得:x =3. 所以这个方程组的解是; (2)①×2-②×3②得:x =1, 把x =1代入①中,解得:y =-1. 所以这个方程组的解是.【解析】(1)利用加减法解答即可;(2)利用加减法解答即可.本题考查了二元一次方程组,此题难度不大,计算时认真审题、选择适当的方法是关键. 22.【答案】解:(1),由不等式①,得x ≥3,由不等式②,得x ≤5,故原不等式组的解集是3≤x ≤5;(2), 由不等式①,得x ≥-2,由不等式②,得x <4,故原不等式组的解集是-2≤x <4.【解析】(1)根据解一元一次不等式组的方法可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法. 23.【答案】解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得, 代入(2)得. 所以(-a )b =(-2)3=-8.【解析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b的方程组即可得出a,b的值.此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.24.【答案】解:,解①得x>-2,解②得x≤.则不等式组的解集是:-2<x≤.则非负整数解是:0,1、2.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.25.【答案】证明:∵AB∥CD,∴∠BME=∠DNE.∵MG、NH分别是∠BME、∠DNE的角平分线,∴∠EMG=∠BME,∠ENH=∠DNE,∴∠EMG=∠ENH,∴MG∥NH.【解析】由AB∥CD,利用“两直线平行,同位角相等”可得出∠BME=∠DNE,结合角平分线的定义可得出∠EMG=∠ENH,再利用“同位角相等,两直线平行”可证出MG∥NH.本题考查了平行线的判定与性质以及角平分线,利用平行线的性质结合角平分线的定义,找出∠EMG=∠ENH是解题的关键.26.【答案】解:(1),①-②,得x-y=2m-1,∵-1≤x-y≤5,-1≤2m-1≤5,解得,0≤m≤3,即m的取值范围是0≤m≤3;(2)∵0≤m≤3,∴|m+2|+|m-3|=m+2+3-m=5.【解析】(1)将题目方程组中的两个方程做差,即可得到x-y与m的关系,然后根据x-y的不等式,从而可以求得m的取值范围;(2)根据(1)中m的取值范围,可以化简题目中的式子.本题考查二元一次方程组的解,解不等式组,解题的关键是明确题意,找出所求问题需要的条件.27.【答案】解;(1)设网店购进甲种口罩x袋,乙种口罩y袋,根据题意得出:,解得:,答:甲种口罩200袋,乙种口罩160袋;(2)设乙种口罩每袋售价z元,根据题意得出:160(z-25)+2×200×(26-20)≥3680,解得:z≥33,答:乙种口罩每袋售价为每袋33元.【解析】(1)分别根据旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,得出等式组成方程求出即可;(2)根据甲种口罩袋数是第一次的2倍,要使第二次销售活动获利不少于3680元,得出不等式求出即可.本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.28.【答案】解:(1)设购买1台A型电脑需要x元,购买1台B型电脑需要y元,根据题意得:,解得:.答:购买1台A型电脑需要3000元,购买1台B型电脑需要2500元.(2)①设购买A型电脑m台,则购买B型电脑(50-m)台,根据题意得:3000m+2500(50-m)≤145250,解得:m≤40.5,∵m为整数,∴m≤40.答:A型电脑最多购买40台.②设购买A型电脑m台,则购买B型电脑(50-m)台,根据题意得:m≥3(50-m),解得:m≥37.5,∵m为整数,∴m≥38.∴有3种购买方案,方案一:购买A型电脑38台,B型电脑12台;方案二:购买A型电脑39台,B型电脑11台;方案三:购买A型电脑40台,B型电脑10台.【解析】(1)设购买1台A型电脑需要x元,购买1台B型电脑需要y元,根据“购买1台A型电脑比购买1台B型电脑贵500元;购买2台A型电脑和3台B型电脑共需13500元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)①设购买A型电脑m台,则购买B型电脑(50-m)台,根据总价=单价×数量结合购买A、B型电脑的总费用不超过145250元,即可得出关于m的一元一次不等式,解之取其中的最大整数即可得出结论;②设购买A型电脑m台,则购买B型电脑(50-m)台,根据A型电脑购买的台数不少于B型电脑台数的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合①的结论即可找出各购买方案.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.。

北师大版七年级数学(下)第二次月考试卷(含解析)

北师大版七年级数学(下)第二次月考试卷(含解析)

北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。

2022-2023学年新人教版七年级下数学月考试卷(含解析)

2022-2023学年新人教版七年级下数学月考试卷(含解析)

2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:150 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 4 分 ,共计40分 )1. 下列现象中不属于平移的是( )A.滑雪运动员在平坦的雪地上滑雪B.彩票打转盘在旋转C.高楼的电梯在上上下下D.火车在一段笔直的铁轨上行驶2. 下列所给方程是二元一次方程的是( )A.B.C.D.3. 用代入法解方程组时,将方程①代入②中,所得的方程正确的是( )A.B.C.D.4. 设“■●▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“■● ▲”中质量最大的是( )x −y +22x −=32yx −y =2−y =2x 2{y =2x −3,①3x −2y =8②3x +4y −3=83x +4x −6=83x −4x +6=83x +2x −6=8A.▲B. ■C.●D.无法判断5. 如果是任意实数,则点一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限6. 李老师用长为的铁丝做了一个长方形教具,其中一边长为,则其邻边长为( )A.B.C.D.7. 方程组的解是( )A.B.C.D.8. 下列命题是假命题的是( )A.平方根等于本身的实数只有B.两直线平行,内错角相等C.点到轴的距离为D.数轴上没有点表示这个无理数m P(m −4,m +1)6a b −a 7a −b2a −b4a −b8a −2b{x =2y,x +y =3{x =1y =2{x =1y =1{x =2y =−1{x =2y =1P (2,−5)x 5π9. 如图,,,过点的直线与平行,若,则的大小为( )A.B.C.D.10. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?如果设木条长尺,绳子长尺,那么可列方程组为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 若,则的值是________.12. 如图,与构成同位角的是________,与构成内错角的是________.AB =AC CD =CE C FG DE ∠1=55∘∠A 55∘50∘45∘40∘4.51x y {y =x +4.50.5y =x −1{y =x +4.5y =2x −1{y =x +4.50.5y =x +1{y =x −4.5y =2x −1+(b −2=a +3−−−−√)20a b ∠1∠213. 中国古代的数学专著《九章算术》有方程问题:“五只雀、六只燕,共重斤(等于两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为两,两,可得方程组是________.14. 足球比赛中,胜一场可以积分,平一场可以积分,负一场得分,某足球队最后的积分是分,这个足球队获胜的场次最多是________场.三、 解答题 (本题共计 9 小题 ,每题 10 分 ,共计90分 )15. 解下列方程(组):, 16. 解不等式,并把它的解集在数轴上表示出来..17. 某商场正在热销年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?18. 已知在平面直角坐标系中有三点,,.请回答如下问题:如图,在坐标系内描出点,,的位置,求出以,,三点为顶点的三角形的面积;在轴上是否存在点,使以,,三点为顶点的三角形的面积为,若存在,请直接写出点的坐标;若不存在,请说明理由.19. 用三张同样大小的长方形硬纸片拼接成一个面积为 的正方形,如图所示,按要求完成下列各小题116x y 31020(1)−=1x −322x +16(2){x +1=2y ,2(x +1)−y =8.−>−3x −25x +422008A(−2,1)B(3,1)C(2,3)(1)A B C A B C (2)y P A B P 10P 3600cm 2.求长方形硬纸片的长和宽;王涵想沿着该正方形硬纸片的边的方向裁出一块面积为 的长方形纸片,使得长方形的长、宽之比为 ,他的想法是否能实现?请说明理由;李鹏想通过裁剪该正方形硬纸片拼一个体积为 的正方体的无盖笔筒,请你判断该硬纸片是否够用?若够用,求剩余的硬纸片的面积;若不够用,求缺少的硬纸片的面积20. 甲、乙两人同时解方程组 时,甲看错了方程①中的,解得 乙看错了②中的,解得 求原方程组的正确解. 21. 在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有、 两组卡片,每组各张,组卡片上分别写有,,;组卡片上分别写有,,.每张卡片除正面写有不同数字外,其余均相同.甲从组中随机抽取一张记为,乙从组中随机抽取一张记为.(1)若甲抽出的数字是,乙抽出的数是,它们恰好是=的解,求的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程=的解的概率.(请用树形图或列表法求解) 22.如图,已知.求证:;若,,,分别平分,,求的度数. 23. 年“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,张阿姨购进,两种恤到夜市出售.已知件种恤和件种恤进价共元,件种恤和件种恤进价共元.问种恤、种恤进货的单价各是多少元?若张阿姨购进,两种恤各件,准备将两种恤混在一起销售,售价均定为每件元,销售一半后,将售价下降促销.要使所有恤销售完后盈利元,求的值.(1)(2)2250cm 25:2(3)729cm 3.{ax +by =15,①4x =by −2,②a {x =−3,y =−1,b {x =5,y =4,A B 3A 023B −5−11A x B y 2−1ax −y 5a ax −y 5∠MBA +∠BAC +∠NCA =360∘(1)MD//NE (2)∠ABD =77∘∠ACE =33∘BP CP ∠ABD ∠ACE ∠BPC 2020A B T 2A T 5B T 1503A T 2B T 104(1)A T B T (2)A B T 150T 30a%T 1800a参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 4 分 ,共计40分 )1.【答案】B【考点】生活中的平移现象【解析】根据平移不改变图形的形状、大小和方向,结合图形对选项进行一一分析,选出正确答案.【解答】解:、滑雪运动员在平坦的雪地上滑雪,属于平移得到,故本选项错误;、彩票打转盘在旋转,不属于平移得到,故本选项正确;、高楼的电梯在上上下下,属于平移得到,故本选项错误;、火车在一段笔直的铁轨上行驶,属于平移得到,故本选项错误.故选:.2.【答案】C【考点】二元一次方程的定义【解析】依据二元一次方程的定义求解即可.【解答】解:、不是等式,故不是方程,故错误;、分母中含有未知数,不是二元一次方程,故错误;、是二元一次方程,故正确;、未知数的次数是,不是二元一次方程,故错误.故选.3.【答案】A B C D B A A B B C x −y =2C D x 2D CC【考点】代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:将方程①代入②中得:,即,故选.4.【答案】A【考点】不等式的性质【解析】根据第一个不等式,可得■与▲的关系,根据第二个不等式,可得●与■的关系,根据不等式的传递性,可得答案.【解答】解:由第一个天平得,■▲,由第二个天平得,●■.由不等式的传递性可得, ▲质量最大.故选5.【答案】D【考点】象限中点的坐标【解析】此题暂无解析【解答】解:∵,3x −2(2x −3)=83x −4x +6=8C <<A.(m +1)−(m −4)=m +1−m +4=5∴点的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点一定不在第四象限.故选6.【答案】C【考点】整式的加减【解析】求出邻边之和,即可解决问题;【解答】解:另一边长.故选.7.【答案】D【考点】二元一次方程组的解代入消元法解二元一次方程组【解析】运用代入消元法解二元一次方程组,即可求解.【解答】解:将①代入②得:,,,将代入①得:,故方程组的解为故选.8.【答案】P P D.=3a −(b −a)=3a −b +a =4a −b C {x =2y,①x +y =3,②2y +y =33y =3y =1y =1x =2{x =2,y =1.DD【考点】命题与定理平方根平行线的性质点的坐标在数轴上表示无理数【解析】根据平方根的定义对进行判断;根据平行线的性质对进行判断;根据坐标的意义和点到直线的距离的定义对进行判断;根据在数轴上表示无理数对进行判断.【解答】解:,平方根等于本身的实数只有,是真命题,故不符合题意;,两直线平行,内错角相等,是真命题,故不符合题意;,点到轴的距离为,是真命题,故不符合题意;,数轴上有点表示这个无理数,是假命题,故符合题意.故选.9.【答案】D【考点】平行线的性质三角形内角和定理【解析】根据平行线的性质和等腰三角形的性质可以求出的度数,然后根据三角形内角和定理和等腰三角形的性质即可求出的度数.【解答】解:∵,∴,.∵,∴.∵,∴.∵,∴.∵,A B C D A 0A B B C P (2,−5)x 5C D πD D ∠C ∠A FG//DE ∠CED =∠1=55∘∠FCD =∠CDE CD =CE ∠FCD =∠CDE =∠CED =55∘∠FCD +∠ACB +∠1=180∘∠ACB =−∠FCD −∠1=−−=180∘180∘55∘55∘70∘AB =AC ∠B =∠ACB =70∘∠A +∠B +∠ACB =180∘∠A =−∠B −∠ACB =−−=180∘180∘70∘70∘40∘∴.故选.10.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设木条长尺,绳子长尺,根据绳子和木条长度间的关系,可得出关于的二元一次方程组,此题得解.【解答】解:设木条长尺,绳子长尺,依题意,由用一根绳子去量一根木条,绳子还剩余尺,可得;由将绳子对折再量木条,木条剩余尺,可得.故方程组为: 故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】【考点】非负数的性质:算术平方根非负数的性质:偶次方【解析】先根据二次根式与平方的非负性列出关于,的方程组,求得,的值后即可求得的值.【解答】解:由题意可知,,∴,,∴,,∴故答案为:∠A =−∠B −∠ACB =−−=180∘180∘70∘70∘40∘D x y x ,y x y 4.5y =x +4.51x −1=0.5y {y =x +4.5,0.5y =x −1.A 9a b a b ab =0a +3−−−−√=0(b −2)2a +3=0b −2=0a =−3b =2==9.a b (−3)29.12.【答案】,【考点】同位角、内错角、同旁内角【解析】两个角分别在被截线的同一方,并且都在截线的同侧,具有这种位置关系的两个角叫做同位角,与构成同位角的是;两个角都在被截线之间,并且都在截线的两侧,具有这种位置关系的两个角,叫做内错角,与构成内错角的是.【解答】解;根据同位角、内错角的定义,与构成同位角的是,与构成内错角的是.故答案为:.13.【答案】【考点】由实际问题抽象出二元一次方程组【解析】根据题意可得等量关系:①只雀的重量只燕的重量=两,②只雀的重量只燕的重量=只雀的重量只燕的重量,根据等量关系列出方程组即可.【解答】设每只雀、燕的重量各为两,两,由题意得:,14.【答案】【考点】一元一次不等式的运用【解析】∠B ∠BDE∠1∠B ∠2∠BDE ∠1∠B ∠2∠BDE ∠B ;∠BDE { 5x +6y =164x +y =5y +x5+6165+11+5x y {5x +6y =164x +y =5y +x6设获胜的场次是,平场,负场,根据最后的积分是分,可列方程求解.【解答】解:设获胜的场次是,平场,负场.由题意,∴,整数解为或或或或或或,∴最大可取到.故答案为:.三、 解答题 (本题共计 9 小题 ,每题 10 分 ,共计90分 )15.【答案】解:去分母得:,去括号得:,解得:.方程组整理得 得:,②-③得:,即 ,将代入①得:,则原方程组的解为【考点】加减消元法解二元一次方程组解一元一次方程【解析】此题暂无解析【解答】解:去分母得:,去括号得:,解得:.方程组整理得 得:,②-③得:,即 ,x y z 20x y z 3x +y +0⋅z =203x +y =20{x =0y =20{x =1y =17{x =2y =14{x =3y =11{x =4y =8{x =5y =5{x =6y =2x 66(1)3(x −3)−(2x +1)=63x −9−2x −1=6x =16(2){x −2y =−1①,2x −y =6②,①×22x −4y =−2③3y =8y =83y =83x =133x =,133y =.83(1)3(x −3)−(2x +1)=63x −9−2x −1=6x =16(2){x −2y =−1①,2x −y =6②,①×22x −4y =−2③3y =8y =83=8=13将代入①得:,则原方程组的解为16.【答案】解:去分母,得,去括号,得 ,移项,得,合并同类项,得,系数化为,得.这个不等式的解集在数轴上的表示如图所示.【考点】在数轴上表示不等式的解集解一元一次不等式【解析】【解答】解:去分母,得,去括号,得 ,移项,得,合并同类项,得,系数化为,得.这个不等式的解集在数轴上的表示如图所示.17.【答案】解:设一盒“福娃”玩具和一枚徽章的价格分别为元和元.依题意得 解这个方程组得答:一盒“福娃”玩具和一枚徽章的价格分别为元和元.【考点】y =83x =133 x =,133y =.832(x −2)−5(x +4)>−302x −4−5x −20>−302x −5x >−30+4+20−3x >−61x <22(x −2)−5(x +4)>−302x −4−5x −20>−302x −5x >−30+4+20−3x >−61x <2x y {x +2y =145,2x +3y =280,{x =125,y =10.12510二元一次方程组的应用——销售问题【解析】由图片的信息可知:一盒玩具的价钱两枚徽章的价钱元,两盒玩具的价钱三枚徽章的价钱元.据此可列出方程组求解.【解答】解:设一盒“福娃”玩具和一枚徽章的价格分别为元和元.依题意得 解这个方程组得答:一盒“福娃”玩具和一枚徽章的价格分别为元和元.18.【答案】解:描点如图:依题意,得轴,且,∴.存在.∵,,∴点到的距离为.又点在轴上,∴点的坐标为或.【考点】象限中点的坐标+=145+=280x y {x +2y =145,2x +3y =280,{x =125,y =10.12510(1)AB //x AB=3−(−2)=5=×5×(3−1)=5S △ABC 12(2)AB=5=10S △ABP P AB 4P y P (0,5)(0,−3)三角形的面积坐标与图形性质【解析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,轴,且==,点到线段的距离=,根据三角形面积公式求解;(3)因为=,要求的面积为,只要点到的距离为即可,又点在轴上,满足题意的点有两个.【解答】解:描点如图:依题意,得轴,且,∴.存在.∵,,∴点到的距离为.又点在轴上,∴点的坐标为或.19.【答案】解:由题可得正方形边长,由题易得正方形边长即为长方形的长,且正方形由三张同样大小的长方形硬纸片拼接成,AB //x AB 3−(−2)5C AB 3−12AB 5△ABP 10P AB 4P y P (1)AB //x AB=3−(−2)=5=×5×(3−1)=5S △ABC 12(2)AB=5=10S △ABP P AB 4P y P (0,5)(0,−3)(1)==60(cm)3600−−−−√=60÷3=20(cm)则长方形的宽.答:长方形的长为,宽为.不能实现,设裁出的长方形的长为,宽为,则有,解得,∴,.∵,∴不能实现.够用.笔筒长为,正方体一个面面积为,正方形所需总面积为,则剩下的面积为.【考点】算术平方根在实际问题中的应用立方根的应用【解析】此题暂无解析【解答】解:由题可得正方形边长,由题易得正方形边长即为长方形的长,且正方形由三张同样大小的长方形硬纸片拼接成,则长方形的宽.答:长方形的长为,宽为.不能实现,设裁出的长方形的长为,宽为,则有,解得,∴,.∵,∴不能实现.够用.笔筒长为,正方体一个面面积为,正方形所需总面积为,则剩下的面积为.20.【答案】解:根据题意,可得 解得=60÷3=20(cm)60cm 20cm (2)5x 2x 5x ⋅2x =2250x =155x =15×5=752x =15×2=3075>60(3)=9(cm)729−−−√39×9=81(c )m 281×5=405(c )m 23600−405=3195(c )m 2(1)==60(cm)3600−−−−√=60÷3=20(cm)60cm 20cm (2)5x 2x 5x ⋅2x =2250x =155x =15×5=752x =15×2=3075>60(3)=9(cm)729−−−√39×9=81(c )m 281×5=405(c )m 23600−405=3195(c )m 2{5a +4b =15,−12=−b −2,{a =−5,b =10,−5x +10y =15,①∴ ①②得:,解得,③将③代入①,可得:,解得,∴原方程组的正确解是【考点】二元一次方程组的解【解析】此题暂无解析【解答】解:根据题意,可得 解得∴ ①②得:,解得,③将③代入①,可得:,解得,∴原方程组的正确解是21.【答案】将=,=代入方程得:=,即=;列表得:所有等可能的情况有种,其中恰好为方程=的解的情况有,,,共种情况,则.【考点】二元一次方程的解列表法与树状图法【解析】{−5x +10y =15,①4x =10y −2,②+−x =13x =−13−5×(−13)+10y =15y =−5{x =−13,y =−5.{5a +4b =15,−12=−b −2,{a =−5,b =10,{−5x +10y =15,①4x =10y −2,②+−x =13x =−13−5×(−13)+10y =15y =−5{x =−13,y =−5.x 2y −12a +15a 2023−5(0,−5)(2,−5)(3,−5)−1(0,−1)(2,−1)(3,−1)1(0,1)(2,1)(3,1)9(x,y)2x −y 5(0,−5)(2,−1)(3,1)3P ==3913(1)将=,=代入方程计算即可求出的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程=的解的情况数,即可求出所求的概率.【解答】将=,=代入方程得:=,即=;列表得:所有等可能的情况有种,其中恰好为方程=的解的情况有,,,共种情况,则.22.【答案】证明:过作,如图,∴,又∵,即,∴,∴,∴.解:过作,∵,分别平分 ,,x 2y −1a ax −y 5x 2y −12a +15a 2023−5(0,−5)(2,−5)(3,−5)−1(0,−1)(2,−1)(3,−1)1(0,1)(2,1)(3,1)9(x,y)2x −y 5(0,−5)(2,−1)(3,1)3P ==3913(1)A AF//MD ∠MBA +∠BAF =180∘∠MBA +∠BAC +∠NCA =360∘∠MBA +∠BAF +∠FAC +∠NCA =360∘∠FAC +∠NCA =180∘AF//NE MD//NE (2)P PQ//MD BP CP ∠ABD ∠ACE ∴∠DBP =∠ABD =×=11∘∘,,∵,∴,∵,,∴,∴,∴.【考点】平行线的性质平行线的判定角平分线的定义【解析】(),过点作,则由平行线的性质可得,结合以及角的和差关系,可推出,接下来结合“同旁内角互补,两直线平行”可得,至此再结合平行线的传递性即可证明结论;(),过点作,进而可推出,那么结合平行线的性质以及角的和差关系可得.【解答】证明:过作,如图,∴,又∵,即,∴,∴,∴.解:过作,∴∠DBP =∠ABD =×=121277∘38.5∘∠ECP =∠ACE =×=121233∘16.5∘PQ//MD ∠BPQ =∠DBP =38.5∘MD//NE PQ//MD PQ//NE ∠QPC =∠PCE =16.5∘∠BPC =∠BPQ +∠QPC =+=38.5∘16.5∘55∘1A AQ//MD MBA +∠BAQ =180∘∠MBA +∠BAC +∠NCA =360∘∠QAC +∠NCA =180∘AQ//NE 2A AQ//MD PF//NE ∠BPC =∠DBP +∠PCE (1)A AF//MD ∠MBA +∠BAF =180∘∠MBA +∠BAC +∠NCA =360∘∠MBA +∠BAF +∠FAC +∠NCA =360∘∠FAC +∠NCA =180∘AF//NE MD//NE (2)P PQ//MD∵,分别平分 ,,,,∵,∴,∵,,∴,∴,∴.23.【答案】解:设种恤进货的单价是元,种恤进货的单价是元.依题意,得解得答:种恤进货的单价是元,种恤进货的单价是元.由题意得,整理得,解得.故的值为.【考点】二元一次方程组的应用——销售问题一元一次方程的应用——打折销售问题【解析】无无【解答】解:设种恤进货的单价是元,种恤进货的单价是元.依题意,得解得答:种恤进货的单价是元,种恤进货的单价是元.由题意得,BP CP ∠ABD ∠ACE ∴∠DBP =∠ABD =×=121277∘38.5∘∠ECP =∠ACE =×=121233∘16.5∘PQ//MD ∠BPQ =∠DBP =38.5∘MD//NE PQ//MD PQ//NE ∠QPC =∠PCE =16.5∘∠BPC =∠BPQ +∠QPC =+=38.5∘16.5∘55∘(1)A T x B T y {2x +5y =150,3x +2y =104,{x =20,y =22.A T 20B T 22(2)30×150+30(1−a%)×150−150×22−150×20=18001−a%=45a =20a 20(1)A T x B T y {2x +5y =150,3x +2y =104,{x =20,y =22.A T 20B T 22(2)30×150+30(1−a%)×150−150×22−150×20=1800−a%=4整理得,解得.故的值为.1−a%=45a =20a 20。

山东省滨州市某校2023-2024学年七年级下学期第二次月考数学试题

山东省滨州市某校2023-2024学年七年级下学期第二次月考数学试题

山东省滨州市某校2023-2024学年七年级下学期第二次月考数学试题一、单选题1.若m n >,则下列不等式一定成立的是( ) A .2121m n -+>-+ B .1144m n ++> C .m a n b +>+D .am an -<-2.为了解我校八年级2100名学生对“创建全国文明校园”知识的了解情况,学校组织了相关知识测试,并从中随机抽取了100名学生的成绩进行统计分析( ) A .2100名学生是总体B .我校八年级每名学生的测试成绩是个体C .样本容量是2100D .被抽取的100名学生是样本3.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为( )A .55︒B .65︒C .70︒D .75︒4.已知点(26,4)P x x +-在第四象限,则实数x 的取值范围在数轴上表示正确的为( ) A . B . C .D .5.下列命题中,是真命题的是( )A 0.1414B .过一点有且只有一条直线与已知直线垂直C .点P 在第四象限,且点P 到x 轴的距离为2,点P 到y 轴的距离为3,则点P 的坐标为(3,-2)D .立方根等于它本身的数为1±6.如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按左图方式放置,再按右图方式放置,测量的数据如图,则长方体物品的高度是( )A .73cmB .74cmC .75cmD .76cm7.如果关于y 的方程()123a y y --=-有非负整数解,且关于x 的不等式组()22432x ax x -⎧≥⎪⎨⎪-≤-⎩的解集为1x ≥,则所有符合条件的整数a 的和为( ) A .5-B .8-C .9-D .12-8.在平面直角坐标系中,对于点(),P x y ,把点11,1P y x ⎛⎫ ⎪-⎝⎭叫做点P 的友好点.已知点1A 的友好点为点2A ,点2A 的友好点为点3A ⋅⋅⋅这样依次得到点1A ,2A ,3A ,4A ⋅⋅⋅x A ,若点1A 的坐标为1,22⎛⎫⎪⎝⎭,则根据友好点的定义,点2024A 的坐标为( )A .1,22⎛⎫ ⎪⎝⎭B .()2,2C .()1,1--D .11,2⎛⎫- ⎪⎝⎭二、填空题9.在π21.010010001-⋅⋅⋅,2276个实数中,无理数有个.10.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共只11.把2个面积为3的正方形纸片沿着对角线剪开,拼成如图所示的一个大正方形纸片,那么大正方形纸片的边长在 和 两个整数之间.12.如图是一款长臂折叠LED 护眼灯示意图,EF 与桌面MN 垂直,当发光的灯管AB 恰好与桌面MN 平行时,120DEF ∠=︒,110BCD ∠=︒,则CDE ∠的度数为︒.13.如图,线段AB 两端点的坐标分别为A (﹣1,0),B (1,1),把线段AB 平移到CD 位置,若线段CD 两端点的坐标分别为C (1,a ),D (b ,4),则a +b 的值为14.若不等式组11322x xx m+⎧-⎪⎨⎪⎩<<无解,则m 的取值范围为.15.已知方程组222x y kx y +=⎧⎨+=⎩的解满足2x y +=,则k 的算术平方根为.16.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为.三、解答题17()202231-18.解方程组或解不等式组: (1)43143222x y x y +=⎧⎨+=⎩(2)()1322111x y x y +⎧=⎪⎨⎪+-=⎩(3)()()3286121123x x x x ⎧-≤-+⎪⎨+-<+⎪⎩,并把解集在数轴上表示出来.19.完成下面证明过程如图,点P 在CD 上,已知180BAP APD ∠+∠=︒,12∠=∠.求证:E F ∠=∠.证明:180BAP APD ∠+∠=︒Q (已知), ∴ ∥ ,( ),BAP ∴∠= ,( ).又12∠=∠Q (已知),BAP ∴∠- = 2-∠,即34(∠=∠ ), (AE PF ∴∥ ),(E F ∴∠=∠ ).20.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:请结合上述信息完成下列问题: (1)a = ,b = ; (2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是 ;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.21.已知关于x 、y 的方程组24233x y m x y m +=-⎧⎨-=+⎩的解满足0x <,0y ≤.(1)求m 的取值范围;(2)是否存在整数m ,使不等式326mt m t -<-的解集为2t >.若不存在,请说明理由;若存在,请求出整数m 的值. 22.阅读材料,回答以下问题:我们知道,二元一次方程有无数个解,在平面直角坐标系中,我们标出以这个方程的解为坐标的点,就会发现这些点在同一条直线上.例如13x y =⎧⎨=⎩是方程2x y -=-的一个解,对应点(1,3)P ,如图所示,我们在平面直角坐标系中将其标出,另外方程的解还有对应点(2,4),(3,5),(4,6),⋯,将这些点连起来正是一条直线,反过来,在这条直线上任取一点,这个点的坐标也是方程2x y -=-的解.所以,我们就把这条直线就叫做方程2x y -=-的图象.一般的,以任意二元一次方程解为坐标的对应点连成的直线就叫这个方程的图象.请问:(1)已知(1,1)A -、(2,1)B -、(2,1)C --,则点 (填“A 或B 或C ”)在方程23x y +=-的图象上.(2)求方程231x y +=和方程328x y -=图象的交点坐标.(3)已知以关于x 、y 的方程组459x y k x y k +=⎧⎨-=-⎩的解为坐标的点M 在方程23x y +=的图象上,求k 的值.23.我县在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求购买A ,B 两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗要多于B 种树苗,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案? (3)在(2)的条件下,哪种方案最省钱?最少费用是多少?24.如图,在平面直角坐标系中,点A ,B 的坐标分别为()3,5,()3,0.将线段AB 向下平移2个单位长度再向左平移4个单位长度,得到线段CD ,连接AC ,BD .(1)直接写出坐标:点C (______),点D (______);(2)M ,N 分别是线段AB ,CD 上的动点,点M 从点A 出发向点B 运动,速度为每秒1个单位长度,点N 从点D 出发向点C 运动,速度为每秒0.5个单位长度,点N 的运动时间为t 秒.①若两点同时出发,当t 取何值时,MN x ∥轴?②连接NO NB ,,当t 取何值时,三角形NOB 的面积为32?(3)点P 是直线BD 上一个动点,连接PC PA 、,当点P 在直线BD 上运动时,请直接写出CPA ∠与PCD ∠,∠PAB 的数量关系.。

2022-2023学年新人教版七年级下数学月考试卷(含解析)

2022-2023学年新人教版七年级下数学月考试卷(含解析)

2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列是二元一次方程组的是( )A.B.C.D.2. 不等式的解集在数轴上表示正确的是 A.B.C.D.3. 实数,在数轴上的对应点如图所示,则下列不等式中错误的是( )A.B.C.{x =1y +z =3{xy =7y −x =6+y =61x2x −3y =−5{x =4y =53x −5<1()a b a +b <0a −b <0|a |<|b |−a >−b4. 点 到轴的距离为( )A.B.C.D.5. 若,则的算术平方根为( )A.B.C.D.6. 对于解方程组①②下面是四位同学的解法,所用的解法比较简便的是( )小红:均用代入法. 小华:均用加减法.小丽:①用代入法,②用加减法. 小虎:①用加减法,②用代入法.A.小红B.小华C.小丽D.小虎7. 如果方程组的解为那么被“”“”遮住的两个数分别是( )A.,B.,C.,D.,8. 以方程组的解为坐标的点在( )A.第一象限(−1,−2)y 12−1−2|a −17|+=0(b −1)2a −b−−−−√42±4±2{y =2x +1,6x +5y =−11,{2x +3y =10,2x −3y =−6,{x +y =★,2x +y =16{x =6,y =■,★■104410310103{y =−x +2,y =x −1(x,y)C.第三象限D.第四象限9. 用加减法解方程组 下列解法正确的是( )A.,消去B.,消去C.,消去D.,消去10. 元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯等.若购买个宫灯和个纱灯共需元,小田用元购买了个同样的宫灯和个纱灯.若根据题意可得二元一次方程组则方程组中、分别表示为( )A.每个宫灯的价格,每个纱灯的价格B.每个纱灯的价格,每个宫灯的价格C.宫灯的数量,纱灯的数量D.纱灯的数量,宫灯的数量卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 如果,,那么________.12. 已知=,用含的代数式表示,则________.13. 如图,是的角平分线,,如果,那么________度.{3x −2y =4,①2x +3y =3,②①×2−②×3y①×3+②×2y①×3+②×2x①×3−②×2x1175690610{x +y =75,6x +10y =690,x y +2a +b =0a 2−a +4b =0a 2−=a 2b 26x −2y 3y x AF ∠BAC EF//AC ∠BAC =50∘∠1=14. 若是方程的解,则的值是________.15. 用一组的值,说明命题“若,则”是错误的,这组值可以是________;_________;________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 计算 .17. 已知抛物线经过点求抛物线的解析式;点关于轴对称的点为点,抛物线上是否存在点,使得的面积是 面积的?若存在,直接写出点的坐标;若不存在,请说明理由.18. 已知关于,的方程组和的解相同,求的值.19. 已知,,点为射线上一点.如图,若,,求的度数;如图,当点在的延长线上时,此时与交于点,则,,之间满足怎样的关系,请说明你的结论. 20. 某工程队承包了某标段全长米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进米,经过天施工,两组共掘进了米.(1)求甲、乙两班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进米,乙组平均每天能比原来多掘进米.按此施工进度,能够比原来少用多少天完成任务? 21. 为了打造区域中心城市,建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:{x =2,y =1{2x +(m −1)y =2,nx +y =1(m +n)2016a,b,c a <b ac <bc a =b =c =−2cos +−|1−|18−−√(π−1)045∘()14−18–√y =ax 2A (1,3)(1)(2)A y B C △ABC △OAB 12C x y {2x −3y =3,mx +ny =−1{2mx +3ny =3,3x +2y =11(3m +n)2021AB//CD E FG (1)1∠EAF =42∘∠EDG =46∘∠AED (2)2E FG CD AE H ∠AED ∠EAF ∠EDG 1800256021540m 3/3租金(单位:元/台时)挖掘土石方量(单位:台时)甲型挖掘机乙型挖掘机若租用甲、乙两种型号的挖掘机共台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?如果每小时支付的租金不超过元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案? 22. 观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:请写出第六个等式:________________;用含的代数式表示第个等式:________________;________(得出最简结果);计算:.23. 已知方程组与方程组的解相同,求,的值.⋅/m 3⋅1006012080(1)8(2)850==−a 121+3×2+2×2212+11+122==−a 2221+3×+2×(2222)21+1221+123==−a 3231+3×+2×(2323)21+1231+124==−a 4241+3×+2×(2424)21+1241+125(1)=a 6=(2)n n =a n =(3)+++++=a 1a 2a 3a 4a 5a 6(4)++...+a 1a 2a n {ax −by =4,ax +by =6{3x −y =5,4x −7y =1a b参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】二元一次方程组的定义【解析】根据未知数的个数对选项进行判断;根据方程的次数对进行判断;根据整式方程对进行判断;根据二元一次方程组的概念对进行判断.【解答】解:、含有三个未知数,所以选项错误;、的次数为,所以选项错误;、为分式方程,所以选项错误;、是二元一次方程组,所以选项正确.故选.2.【答案】D【考点】在数轴上表示不等式的解集解一元一次不等式【解析】求出已知不等式的解集,表示在数轴上即可.【解答】解:,,,A B C D A A B xy 2B C +y =61x C D {x =4y =5D D 3x −5<13x <6x <2在数轴上表示为:故选.3.【答案】C【考点】在数轴上表示实数【解析】由数轴可知,再根据实数的加减运算、绝对值、不等式的性质即可得答案.【解答】解:由数轴可知,则,正确;,正确;,错误;,正确;故选:.4.【答案】A【考点】坐标与图形性质点的坐标【解析】根据点到轴的距离等于纵坐标的长度,到轴的距离等于横坐标的长度解答.【解答】解:点到轴的距离为.故选.5.【答案】B【考点】D a <b <0a <b <0a +b <0A a −b <0B |a |>|b |C −a >−b D C x y (−1,−2)y 1A非负数的性质:偶次方非负数的性质:绝对值算术平方根【解析】根据非负数的和为,则每个式子均为,列出关于,的等式,计算出,即可得解.【解答】解: ,,,,.∵的算术平方根为,∴的算术平方根为 .故选.6.【答案】C【考点】加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:方程组①有的形式,用代入法比较简单;方程组②中未知数的系数绝对值相等,用加减法比较简单.故选.7.【答案】A【考点】二元一次方程组的解【解析】00a b a b ∵|a −17|+=0(b −1)2∴a =17b =1∴a −b =17−1=16∴==4a −b −−−−√16−−√42a −b−−−−√2B y =2x +1C把代入方程组中第二个方程求出的值,确定出所求两个数即可.【解答】解:把代入,得,解得,再把代入,得.故选.8.【答案】A【考点】加减消元法解二元一次方程组象限中点的坐标【解析】求出二元一次方程组的解即可得出答案.【解答】解: ①②,得,解得,将代入①,得,解得,∴∴该点在第一象限.故选.9.【答案】B【考点】{x =6,y =■y {x =6,y =■2x +y =1612+■=16■=4{x =6,y =4x +y =★★=6+4=10A {y =−x +2①,y =x −1②,+2y =1y =12y =12=−x +212x =32 x =,32y =,12A加减消元法解二元一次方程组【解析】利用加减消元法判断即可.【解答】解:用加减消元法解方程组 时,,消去或,消去.故选.10.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设每个宫灯元,每个纱灯元,根据“购买个宫灯和个纱灯共需元,购买个言灯和个纱灯共需元”,即可得出关于,的二元一次方程组,此题得解.【解答】解:设每个宫灯元,每个纱灯元,依题意,得:故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】列代数式求值【解析】此题暂无解析【解答】{3x −2y =4,①2x +3y =3,②①×3+②×2y ①×2−②×3x B x y 1175610690x y x y {x +y =75,6x +10y =690.A 0+2a +b =02−a +4b =02解:∵,,∴将两式相减后可得,,解得,∴.故答案为:.12.【答案】【考点】二元一次方程的解【解析】把看做已知数求出即可.【解答】方程=,解得:,13.【答案】【考点】平行线的性质角平分线的定义【解析】先根据角平分线的定义求出的度数,再由两直线平行,内错角相等求出出的度数,再根据对顶角的定义得出的读数.【解答】解:是的平分线,,.,.与为对顶角,.故答案为:.14.+2a +b =0a 2−a +4b =0a 23a −3b =0a =b −=0a 2b 20x =3+2y 6y x 6x −2y 3x =3+2y 625∘∠FAC ∠EFA ∠1∵AF ∠BAC ∠BAC =50∘∴∠FAC =∠BAC =1225∘∵EF//AC ∴∠EFA =∠FAC =25∘∵∠1∠EFA ∴∠1=∠EFA =25∘25∘【考点】二元一次方程组的解有理数的乘方【解析】将,代入方程组求出与的值,即可确定出所求式子的值.【解答】解:将,代入方程组得:解得:,,则.故答案为:.15.【答案】,,【考点】不等式的性质【解析】此题暂无解析【解答】解:举例说明:当时,可以满足题意.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:.1x =2y =1m n x =2y =1{4+m −1=2,2n +1=1,m =−1n =0==1(m +n)2016(−1)20161−12−3a =−1;b =2;c =−3−1;2;−3−2cos +−|1−|18−−√(π−1)045∘()14−18–√=3×1−2×+4−(−1)2–√2–√28–√=3−+4−2+12–√2–√2–√=5负整数指数幂特殊角的三角函数值绝对值零指数幂实数的运算【解析】直接利用绝对值的性质以及负整数指数幂的性质、零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:.17.【答案】解:∵抛物线过点,∴,∴抛物线的解析式为:.∵点,∴点关于轴的对称点的坐标为;∵点,,∴,;假设存在点,且点到的距离为,则,∵的面积等于面积的一半,∴,解得,①当点在下面时,点的纵坐标为,此时,,解得,,点的坐标为或,−2cos +−|1−|18−−√(π−1)045∘()14−18–√=3×1−2×+4−(−1)2–√2–√28–√=3−+4−2+12–√2–√2–√=5(1)y =ax 2A(1,3)a =3y =3x 2(2)A(1,3)A y B (−1,3)A(1,3)B(−1,3)AB =1−(−1)=1+1=2=×2×3=3S △OAB 12C C AB h =⋅AB ⋅h =×2h S △ABC 1212△ABC △OAB ×2h =×31212h =32C AB C 3−=32323=x 232=x 12–√2=−x 22–√2C (,)2–√232(−,)2–√232+=39②点在的上面时,点的纵坐标为,此时,解得,,点的坐标为或,综上所述,存在点或或或或,使的面积等于面积的一半.【考点】三角形的面积坐标与图形性质点的坐标【解析】此题暂无解析【解答】解:∵抛物线过点,∴,∴抛物线的解析式为:.∵点,∴点关于轴的对称点的坐标为;∵点,,∴,;假设存在点,且点到的距离为,则,∵的面积等于面积的一半,∴,解得,①当点在下面时,点的纵坐标为,此时,,解得,,点的坐标为或,②点在的上面时,点的纵坐标为,此时,C AB C 3+=32923=x 292=x 16–√2=−x 26–√2C (,)6–√292(−,)6–√292C (,)2–√232C (−,)2–√232C (,)6–√292C (−,)6–√292C (−,)6–√292△ABC △OAB (1)y =ax 2A(1,3)a =3y =3x 2(2)A(1,3)A y B (−1,3)A(1,3)B(−1,3)AB =1−(−1)=1+1=2=×2×3=3S △OAB 12C C AB h=⋅AB ⋅h =×2h S △ABC 1212△ABC △OAB ×2h =×31212h =32C AB C 3−=32323=x 232=x 12–√2=−x 22–√2C (,)2–√232(−,)2–√232C AB C 3+=32923=x 292–√−–√解得,,点的坐标为或,综上所述,存在点或或或或,使的面积等于面积的一半.18.【答案】解:根据题意得:解得:把代入得解得∴.【考点】同解方程组有理数的乘方二元一次方程组的解【解析】无【解答】解:根据题意得:解得:把代入得解得∴.19.【答案】解:如图,过点作,=x 16–√2=−x 26–√2C (,)6–√292(−,)6–√292C (,)2–√232C (−,)2–√232C (,)6–√292C (−,)6–√292C (−,)6–√292△ABC △OAB {2x −3y =3,3x +2y =11,{x =3,y =1,{x =3,y =1,{2mx +3ny =3,mx +ny =−1,{2m +n =1,3m +n =−1,{m =−2,n =5,(3m +n)2021=[3×(−2)+5]2021==−1(−1)2021{2x −3y =3,3x +2y =11,{x =3,y =1,{x =3,y =1,{2mx +3ny =3,mx +ny =−1,{2m +n =1,3m +n =−1,{m =−2,n =5,(3m +n)2021=[3×(−2)+5]2021==−1(−1)2021(1)1E EH//CD∴ .∵,∴,∴,∴..理由:如图,过点作,∴,∵,∴,∴,∵,∴.【考点】平行线的判定与性质【解析】暂无暂无【解答】解:如图,过点作,∠EDG =∠DEH =46∘AB//CD EH//AB ∠EAF =∠AEH =42∘∠AED =∠AEH +∠DEH =+=42∘46∘88∘(2)∠EAF =∠AED +∠EDG 2E EM//CD ∠EDG =∠DEM AB//CD EM//AB ∠EAF =∠AEM ∠MEA =∠AED +∠DEM ∠EAF =∠AED +∠EDG (1)1E EH//CD∴ .∵,∴,∴,∴..理由:如图,过点作,∴,∵,∴,∴,∵,∴.20.【答案】解:(1)设甲班组平均每天掘进米,乙班组平均每天掘进米,根据题意得:,解得:.答:甲班组平均每天掘进米,乙班组平均每天掘进米.(2)按原来的施工进程需要的时间为=(天),改进施工技术后还需要的时间为=(天),节省时间为=(天).答:改进施工技术后,能够比原来少用天完成任务.【考点】∠EDG =∠DEH =46∘AB//CD EH//AB ∠EAF =∠AEH =42∘∠AED =∠AEH +∠DEH =+=42∘46∘88∘(2)∠EAF =∠AED +∠EDG 2E EM//CD ∠EDG =∠DEM AB//CD EM//AB ∠EAF =∠AEM ∠MEA =∠AED +∠DEM ∠EAF =∠AED +∠EDG x y {x −y =25(x +y)=60{ x =7y =575(1800−60)÷(7+5)145(1800−60)÷(7+2+5+1)116145−1162929二元一次方程组的应用——工程问题【解析】本题考查了二元一次方程组的应用.(1)设甲班组平均每天掘进米,乙班组平均每天掘进米,根据“甲组比乙组平均每天多掘进米,经过天施工,两组共掘进了米”,即可得出关于、的二元一次方程组,解之即可得出结论;(2)根据工作时间=工作总量工作效率,分别求出按原来施工进程及改进施工技术后完成剩余工程所需时间,做差后即可得出结论.【解答】解:(1)设甲班组平均每天掘进米,乙班组平均每天掘进米,根据题意得:,解得:.答:甲班组平均每天掘进米,乙班组平均每天掘进米.(2)按原来的施工进程需要的时间为=(天),改进施工技术后还需要的时间为=(天),节省时间为=(天).答:改进施工技术后,能够比原来少用天完成任务.21.【答案】解:设甲、乙两种型号的挖掘机各需台,台.依题意得:解得 答:甲、乙两种型号的挖掘机各需台,台;设租用辆甲型挖掘机,辆乙型挖掘机.依题意得:,化简得:.∴,∴方程的解为或当,时,支付租金:元元,超出限额;当,时,支付租金:元元,符合要求.答:有一种租车方案,即租用辆甲型挖掘机和辆乙型挖掘机.【考点】二元一次方程组的应用——工程问题【解析】(1)设甲、乙两种型号的挖掘机各需台、台.等量关系:甲、乙两种型号的挖掘机共台;每小时挖掘土石方;(2)设租用辆甲型挖掘机,辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然x y 2560x y ÷x y {x −y =25(x +y)=60{ x =7y =575(1800−60)÷(7+5)145(1800−60)÷(7+2+5+1)116145−1162929(1)x y {x +y =8,60x +80y =540,{x =5,y =3.53(2)m n 60m +80n =5403m +4n =27m =9−n 43{m =5,n =3{m =1,n =6.m =5n =3100×5+120×3=860>850m =1n =6100×1+120×6=820<85016x y 8540m 3m n后分别计算支付租金,选择符合要求的租用方案.【解答】解:设甲、乙两种型号的挖掘机各需台,台.依题意得:解得 答:甲、乙两种型号的挖掘机各需台,台;设租用辆甲型挖掘机,辆乙型挖掘机.依题意得:,化简得:.∴,∴方程的解为或当,时,支付租金:元元,超出限额;当,时,支付租金:元元,符合要求.答:有一种租车方案,即租用辆甲型挖掘机和辆乙型挖掘机.22.【答案】,,原式.【考点】规律型:数字的变化类【解析】(1)根据已知个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,裂项相消求解可得.【解答】解:由题意知,,(1)x y {x +y =8,60x +80y =540,{x =5,y =3.53(2)m n 60m +80n =5403m +4n =27m =9−n 43{m =5,n =3{m =1,n =6.m =5n =3100×5+120×3=860>850m =1n =6100×1+120×6=820<85016261+3×+2×(2626)2−1+1261+1272n 1+3×+2×(2n 2n )2−1+12n 1+12n+11443(4)=−+−12+11+1221+122+...+−1+1231+12n 1+12n+1=−12+11+12n+1=−22n+13(+1)2n+14(1)=a 6261+3×+2×(2626)2=−1+1261+1276故答案为:;.,故答案为:;.原式,故答案为:.原式.23.【答案】解:解方程组得 把代入方程组得解这个方程组,得【考点】二元一次方程组的解【解析】 261+3×+2×(2626)2−1+1261+127(2)==−a n 2n 1+3×+2×(2n 2n )21+12n 1+12n+12n 1+3×+2×(2n 2n )2−1+12n 1+12n+1(3)=−+−12+11+1221+122+−+1+1231+1231+124−+−1+1241+1251+125+−1+1261+1261+127=−12+11+127=14431443(4)=−+−12+11+1221+122+...+−1+1231+12n 1+12n+1=−12+11+12n+1=−22n+13(+1)2n+1{3x −y =5,4x −7y =1,{x =2,y =1.{x =2,y =1{ax −by =4,ax +by =6,{2a −b =4,2a +b =6.{a =2.5,b =1.【解答】解:解方程组得 把代入方程组得解这个方程组,得{3x −y =5,4x −7y =1,{x =2,y =1.{x =2,y =1{ax −by =4,ax +by =6,{2a −b =4,2a +b =6.{a =2.5,b =1.。

2020-2021学年陕西省西安市碑林区铁一中学七年级(下)第二次月考数学试卷(解析版)

2020-2021学年陕西省西安市碑林区铁一中学七年级(下)第二次月考数学试卷(解析版)

2020-2021学年陕西省西安市碑林区铁一中学七年级(下)第二次月考数学试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(每题3分,共30分).1.下面四个图形分别是绿色食品、低碳、节能和节水标志,是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.3a+2b=5ab B.﹣8a2÷(4a)=2aC.(﹣2a2)3=﹣8a6D.4a3•3a2=12a33.KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m 的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6B.3×10﹣7C.0.3×10﹣6D.0.3×10﹣74.若一个三角形的三边长分别为5,8,a,则a的值可能是()A.6B.3C.2D.145.如图,已知AC=DB,AO=DO,CD=70m,则A,B两点间的距离为()A.60m B.70m C.100m D.130m6.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上,若∠1=40°,则∠2的度数为()A.30°B.40°C.45°D.50°7.如图(1),从边长为a的大正方形的四个角中挖去四个边长为b的小正方形后,将剩余的部分剪拼成一个长方形,如图(2),通过计算阴影部分的面积可以得到()A.(a﹣2b)2=a2﹣4ab+b2B.(a+2b)2=a2+4ab+b2C.(a﹣2b)(a+2b)=a2﹣4b2D.(a+b)2=a2+2ab+b28.如图,已知∠BAD=∠CAE,AC=AE,下列添加的条件中不能证明△ABC≌△ADE的是()A.DE=BC B.AB=AD C.∠C=∠E D.∠B=∠D9.一个生产、装箱流水线,生产前没有积压产品,开始的3小时只生产,3小时后安排装箱(生产没有停止),8小时后生产停止只安排装箱,第13小时时生产流水线刚好没有积压产品,已知流水线的生产、装箱的速度保持不变,流水线上积压产品(没有装箱产品)y(吨)与流水线工作时间x(小时)之间的函数关系如图所示,则在整个过程中,积压产品最多为()A.9.5吨B.10吨C.11吨D.12吨10.如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延长线于F,且垂足为E,则下列结论:①AD=BF;②BF=AF;③AC+CD=AB;④连接DF,则∠FDC=45°;⑤AD=2BE,其中正确的结论有()个.A.1B.2C.3D.4二、填空题(每题3分,共18分)11.已知(x+a)(x+3)=x2+5x+b,则a+b=.12.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是(用字母表示).13.等腰三角形的一个内角为50°,则这个等腰三角形的顶角为.14.“折叠”是数学上常见构造新图形的重要方法,如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿图中标示的DE折叠,点A恰好落在边BC的点G处,若∠CDG=50°,则∠DEG=.15.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=.16.如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC =24°,∠EBC=32°,则∠ACB=.三、解答题(本题满分52分)17.计算题:(1)(π﹣2)0﹣|﹣8|﹣(﹣1)2019+()﹣2;(2)2xy2•(﹣3x2y3)2;(3)(m+2n)2(m﹣2n)2;(4)(12m2n﹣6m2n2﹣4m2)÷(﹣2m)2.18.先化简,再求值:[(2a+b)2+(2a+b)•(b﹣2a)﹣6b]÷2b,其中a=﹣,b=3.19.作图题:小明书上的三角形被墨迹污染了一部分,他想在作业本上用尺规作出一个与书上完全一样的三角形,你能帮他画出来吗?(保留作图痕迹,不写作法)20.如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.21.小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值.012345所挂物体质量x/kg303234363840弹簧长度y/cm(1)上表所反映的变化过程中的两个变量,是自变量,是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式;(3)当弹簧长度为100cm(在弹簧承受范围内)时,求所挂重物的质量.22.如图,已知AD∥BC,点E为CD上一点,且AE,BE分别平分∠DAB,∠CBA.(1)求证:AE⊥BE;(2)求证:DE=CE.23.如图所示,BD、CE是△ABC高,点P在BD的延长线上,CA=BP,点Q在CE上,QC=AB.(1)判断:∠1 ∠2(用“>”、“<”、“=”填空);(2)探究:PA与AQ之间的关系;(3)若把(1)中的△ABC改为钝角三角形,AC>AB,∠A是钝角,其他条件不变,试探究PA与AQ之间的关系,请画出图形并直接写出结论.参考答案一、选择题(每题3分,共30分)1.下面四个图形分别是绿色食品、低碳、节能和节水标志,是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行分析即可.解:A、是轴对称图案,故此选项符合题意;B、不是轴对称图案,故此选项不合题意;C、不是轴对称图案,故此选项不合题意;D、不是轴对称图案,故此选项不合题意;故选:A.2.下列运算正确的是()A.3a+2b=5ab B.﹣8a2÷(4a)=2aC.(﹣2a2)3=﹣8a6D.4a3•3a2=12a3【分析】利用合并同类项、单项式除法、积的乘方、单项式乘法的运算法则逐项判定即可.解:A、3a与2b不是同类项,不能合并,故A选项错误;B、﹣8a2÷4a=﹣2a,故B选项错误;C、(﹣2a2)3=﹣8a6,故C选项正确;D、4a3•3a2=12a5,故D选项错误.故选:C.3.KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m 的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6B.3×10﹣7C.0.3×10﹣6D.0.3×10﹣7【分析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000003用科学记数法表示为:3×10﹣7.故选:B.4.若一个三角形的三边长分别为5,8,a,则a的值可能是()A.6B.3C.2D.14【分析】根据三角形的三边关系求得第三边的取值范围,再看哪个选项内的数在这个范围内即可.解:根据三角形的三边关系,得3<a<13.6在第三边长的取值范围内.故选:A.5.如图,已知AC=DB,AO=DO,CD=70m,则A,B两点间的距离为()A.60m B.70m C.100m D.130m【分析】首先证明△AOB和△DOC全等,再根据全等三角形对应边相等可得答案.解:∵AC=DB,AO=DO,∴AC﹣AO=BD﹣OD,即OB=OC,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD=70m,故选:B.6.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上,若∠1=40°,则∠2的度数为()A.30°B.40°C.45°D.50°【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.解:∵∠1=40°,∴∠3=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故选:D.7.如图(1),从边长为a的大正方形的四个角中挖去四个边长为b的小正方形后,将剩余的部分剪拼成一个长方形,如图(2),通过计算阴影部分的面积可以得到()A.(a﹣2b)2=a2﹣4ab+b2B.(a+2b)2=a2+4ab+b2C.(a﹣2b)(a+2b)=a2﹣4b2D.(a+b)2=a2+2ab+b2【分析】利用大正方形面积减去4个小正方形面积即可得出图(1)中阴影部分的面积;根据矩形的面积公式可得图(2)的面积,据此可得结果.解:图(1)中阴影部分的面积为:a2﹣4b2;图(2)中长方形的长是a+2b,宽是a﹣2b,面积是(a+2b)(a﹣2b)=a2﹣4b2,∴(a﹣2b)(a+2b)=a2﹣4b2.故选:C.8.如图,已知∠BAD=∠CAE,AC=AE,下列添加的条件中不能证明△ABC≌△ADE的是()A.DE=BC B.AB=AD C.∠C=∠E D.∠B=∠D【分析】根据全等三角形的判定定理即可得到结论.解:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),在△ABC与△ADE中,,∴△ABC≌△ADE(ASA),在△ABC与△ADE中,,∴△ABC≌△ADE(AAS),故B、C、D选项正确符合题意,A选项不符合题意,故选:A.9.一个生产、装箱流水线,生产前没有积压产品,开始的3小时只生产,3小时后安排装箱(生产没有停止),8小时后生产停止只安排装箱,第13小时时生产流水线刚好没有积压产品,已知流水线的生产、装箱的速度保持不变,流水线上积压产品(没有装箱产品)y(吨)与流水线工作时间x(小时)之间的函数关系如图所示,则在整个过程中,积压产品最多为()A.9.5吨B.10吨C.11吨D.12吨【分析】根据图象可以得出流水线上3小时生产产品9吨,就可以求出流水线上每小时生产的产品数量,进一步求得8小时生产的数量;根据图象进一步得出流水线上产品装箱的时间,由此得出流水线上产品装箱的速度,从而得出在整个过程中,积压产品最多的数量.解:由图可知流水线上产品装箱的速度:9÷3×8÷(13﹣3)=2.4(吨/小时),所以在整个过程中,积压产品最多为:9÷3×8﹣2.4×(8﹣3)=12(吨),故选:D.10.如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延长线于F,且垂足为E,则下列结论:①AD=BF;②BF=AF;③AC+CD=AB;④连接DF,则∠FDC=45°;⑤AD=2BE,其中正确的结论有()个.A.1B.2C.3D.4【分析】根据∠ACB=90°,BF⊥AE,得出∠ACB=∠BED=∠BCF=90°,推出∠BFC =∠ADC,证△BCF≌△ACD,根据全等三角形的性质即可判断①②;假如AC+CD=AB,求出∠BFC+∠FBC=90°,即可判断③④,证根据全等三角形的判定ASA得出△BEA≌△FEA,推出BE=EF,即可判断⑤.解:∵∠ACB=90°,BF⊥AE,∴∠ACB=∠BED=∠BCF=90°,∴∠BFC+∠FBC=90°,∠BDE+∠FBC=90°,∴∠BFC=∠BDE,∵∠BDE=∠ADC,∴∠BFC=∠ADC,∵AC=BC,∴△BCF≌△ACD(AAS),∴AD=BF,∴①正确;∵AF=AB>AE>AD=BF,∴BF≠AF②错误;∵△BCF≌△ACD,∴CD=CF,∴AC+CD=AF,又∵AB=AF,∴AC+CD=AB.∴③正确;∵CD=CF,∠FCD=90°,∴△CDF是等腰直角三角形,∴∠FDC=45°,∴④正确;由△BCF≌△ACD,∴AD=BF,∵AE平分∠BAF,AE⊥BF,∴∠BEA=∠FEA=90°,∠BAE=∠FAE,∵AE=AE,∴△BEA≌△FEA(ASA),∴BE=EF,∴⑤正确;故选:D.二、填空题(每题3分,共18分)11.已知(x+a)(x+3)=x2+5x+b,则a+b=8.【分析】根据多项式乘多项式的法则先求出(x+a)(x+3)=x2+(3+a)x+3a,再根据(x+a)(x+3)=x2+5x+b,得出3+a=5,3a=b,然后求出a,b的值,再代入要求的式子进行计算即可得出答案.解:∵(x+a)(x+3)=x2+3x+ax+3a=x2+(3+a)x+3a=x2+5x+b,∴3+a=5,3a=b,∴a=2,b=6,∴a+b=2+6=8.故答案为:8.12.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM(用字母表示).【分析】根据垂线段最短的性质填写即可.解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为:PM.13.等腰三角形的一个内角为50°,则这个等腰三角形的顶角为50°或80°.【分析】有两种情况(顶角是50°和底角是50°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°或80°.故答案为:50°或80°.14.“折叠”是数学上常见构造新图形的重要方法,如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿图中标示的DE折叠,点A恰好落在边BC的点G处,若∠CDG=50°,则∠DEG=70°.【分析】由矩形的性质可知∠CDG=50°,则可得出∠ADE的度数,根据折叠的性质,折叠后的图形与原图形全等,即可得出答案.解:∵四边形ABCD是矩形,∴∠ADC=90°,∵∠CDG=50°,∴∠ADG=90°﹣∠CDG=90°﹣50°=40°,又∵∠ADE=∠GDE=∠ADG=×40°=20°,∠DAE=∠DGE=90°,∴∠DEG=90°﹣∠GDE=90°﹣20°=70°.故答案为:70°.15.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=50.【分析】求出∠F=∠AGB=∠EAB=90°,∠FEA=∠BAG,根据AAS证△FEA≌△GAB,推出AG=EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,求出FH=14,根据实线所围成的图形=S梯形EFHD﹣S△EFA﹣S△ABC﹣S△DHC和面积公式代入求出即可.解:∵AE⊥AB,EF⊥AF,BG⊥AG,∴∠F=∠AGB=∠EAB=90°,∴∠FEA+∠EAF=90°,∠EAF+∠BAG=90°,∴∠FEA=∠BAG,在△FEA和△GAB中∵,∴△FEA≌△GAB(AAS),∴AG=EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,∴FH=2+6+4+2=14,∴梯形EFHD的面积是×(EF+DH)×FH=×(6+4)×14=70,∴实线所围成的图形是S梯形EFHD﹣S△EFA﹣S△ABC﹣S△DHC=70﹣×6×2﹣×(6+4)×2﹣×4×2=50.故答案为50.16.如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC =24°,∠EBC=32°,则∠ACB=100°.【分析】延长AD到M,使得DM=AD,连接BM,证△BDM≌△CDA(SAS),得BM =AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再证△BFM是等腰三角形,求出∠MBF的度数,即可解决问题.解:如图,延长AD到M,使得DM=AD,连接BM,如图所示:在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案为:100°.三、解答题(本题满分52分)17.计算题:(1)(π﹣2)0﹣|﹣8|﹣(﹣1)2019+()﹣2;(2)2xy2•(﹣3x2y3)2;(3)(m+2n)2(m﹣2n)2;(4)(12m2n﹣6m2n2﹣4m2)÷(﹣2m)2.【分析】(1)根据零指数幂的运算法则、绝对值的定义、有理数乘方的运算法则、负整数指数幂的运算法则即可求出答案;(2)根据积的乘方和幂的乘方的运算法则以及单项式乘单项式的运算法则即可求出答案.(3)根据平方差公式以及完全平方公式即可求出答案.(4)根据积的乘方、多项式除以单项式的运算法则即可求出答案.解:(1)原式=1﹣8+1+9=3;(2)原式=2xy2•9x4y6=18x5y8;(3)原式=[(m+2n)(m﹣2n)]2=(m2﹣4n2)2=m4﹣8m2n2﹣16n4;(4)原式=(12m2n﹣6m2n2﹣4m2)÷(4m2)=3n﹣n2﹣1.18.先化简,再求值:[(2a+b)2+(2a+b)•(b﹣2a)﹣6b]÷2b,其中a=﹣,b=3.【分析】先利用完全平方公式,平方差公式去括号,合并同类项,将整式化为最简式,然后把a、b的值代入即可.解:[(2a+b)2+(2a+b)•(b﹣2a)﹣6b]÷2b,=(4a2+4ab+b2+b2﹣4a2﹣6b)÷2b,=(4ab+2b2﹣6b)÷2b,=2a+b﹣3,当a=﹣,b=3时,原式=2×(﹣)+3﹣3=﹣1.19.作图题:小明书上的三角形被墨迹污染了一部分,他想在作业本上用尺规作出一个与书上完全一样的三角形,你能帮他画出来吗?(保留作图痕迹,不写作法)【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.如图△ABC即为所求.20.如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.【分析】由AB=AC,BD=CE知AD=AE,再利用“SAS”证明即可得.【解答】证明:∵AB=AC,BD=CE,∴AB﹣BD=AC﹣CE,即AD=AE,在△ACD和△ABE中,∵∴△ACD≌△ABE(SAS).∴∠B=∠C.21.小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值.012345所挂物体质量x/kg303234363840弹簧长度y/cm(1)上表所反映的变化过程中的两个变量,所挂物体的质量是自变量,弹簧长度是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式;(3)当弹簧长度为100cm(在弹簧承受范围内)时,求所挂重物的质量.【分析】(1)由表格直接可求解;(2)通过观察可知弹簧不挂物体的长度为30cm,每增加1千克物体,弹簧伸长2cm,即可求解;(3)由(2)的结论,当y=100时,求出x即为所求.解:(1)所挂物体的质量是自变量,弹簧长度是因变量,故答案为:所挂物体的质量,弹簧长度;(2)由表格可知,弹簧不挂物体的长度为30cm,每增加1千克物体,弹簧伸长2cm,∴y=2x+30;(3)当y=100时,2x+30=100,解得x=35,∴所挂物重35kg.22.如图,已知AD∥BC,点E为CD上一点,且AE,BE分别平分∠DAB,∠CBA.(1)求证:AE⊥BE;(2)求证:DE=CE.【分析】(1)延长AE、BC交于F,利用平行线的性质和角平分线的定义可证AB=BF,又BE平分∠ABF,则AE⊥BE;(2)由等腰三角形的性质知AE=FE,再证明△ADE≌△FCE即可.【解答】证明:(1)延长AE、BC交于F,∵AD∥BC,∴∠DAE=∠F,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠BAE=∠F,∴AB=BF,∵BE平分∠ABF,∴AE⊥BE;(2)∵AB=BF,BE平分∠ABF,∴AE=EF,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA),∴DE=CE.23.如图所示,BD、CE是△ABC高,点P在BD的延长线上,CA=BP,点Q在CE上,QC=AB.(1)判断:∠1 =∠2(用“>”、“<”、“=”填空);(2)探究:PA与AQ之间的关系;(3)若把(1)中的△ABC改为钝角三角形,AC>AB,∠A是钝角,其他条件不变,试探究PA与AQ之间的关系,请画出图形并直接写出结论.【分析】(1)根据垂直的定义和三角形的内角和定理即可得到答案;(2)由条件可得出∠1=∠2,可证得△APB≌△QAC,可得结论;(3)根据题意画出图形,结合(1)可证得△APB≌△QAC,可得结论.解:(1)设CE、BD交于F,∵BD、CE是△ABC高,∴∠BEF=∠CDF=90°,∵∠BFE=∠CFD,∴∠1=180°﹣∠BEF﹣∠BFE=90°﹣∠BFE,∠2=180°﹣∠CDF﹣∠CFD=90°﹣∠CDF,∴∠1=∠2;故答案为:=;(2)结论:AP=AQ,AP⊥AQ,证明:∵BD、CE是△ABC的高,∴BD⊥AC,CE⊥AB,∴∠1+∠CAB=90°,∠2+∠CAB=90°,∴∠1=∠2,在△QAC和△APB中,,∴△QAC≌△APB(SAS),∴AQ=AP,∠QAC=∠P,而∠DAP+∠P=90°,∴∠DAP+∠QAC=90°,即∠QAP=90°,∴AQ⊥AP;即AP=AQ,AP⊥AQ;(3)上述结论成立,理由如下:如图所示:∵BD、CE是△ABC的高,∴BD⊥AC,CE⊥AB,∴∠1+∠CAE=90°,∠2+∠DAB=90°,∵∠CAE=∠DAB,∴∠1=∠2,在△QAC和△APB中,,∴△QAC≌△APB(SAS),∴AQ=AP,∠QAC=∠P,∵∠PDA=90°,∴∠P+∠PAD=90°,∴∠QAC+∠PAD=90°,∴∠QAP=90°,∴AQ⊥AP,即AP=AQ,AP⊥AQ.。

七年级数学月考试卷含解析试题(共25页)

七年级数学月考试卷含解析试题(共25页)

漳浦县2021-2021学年(xuénián)七年数学下学期月考试卷一、单项选择题〔一共14题;一共56分〕1.以下图案中,不是轴对称图形的是〔〕A. B.C.D.2.三角形两边的长分别是4和10,那么此三角形第三边的长可能是〔〕A. 5B. 6C. 11 D. 163小明不慎将一块三角形的玻璃碎成如下图的四块〔图中所标1、2、3、4〕,你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理〔〕A. 2;SAS B. 4;ASA C. 2;AAS D. 4;SAS4如图,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,GA⊥AC于A,那么△ABC 中,AC边上的高为〔〕A. ADB. GAC. BED. CF 5如图,有一池塘,要测池塘两端A,B的间隔,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的间隔.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么断定(duàndìng)△ABC和△DEC全等的根据是〔〕A. SSSB. SASC. ASAD. AAS6李教师用直尺和圆规作角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于 DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,那么OC就是∠AOB的平分线.李教师用尺规作角平分线时,用到的三角形全等的断定方法是〔〕A. SSSB. SASC. ASAD. AAS7如图,△ABC中,AB的垂直平分线DE交AB于E,交BC于D,假设AC=6,BC=10,那么(nà me)△ACD的周长为〔〕A. 16B. 14C. 12D. 108如图,△ABC和△A′B′C′关于直线对称,以下结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有〔〕A. 4个 B. 3个 C. 2个 D. 1个9如图,在△ABC中,∠ABC=50°,AD,CD分别(fēnbié)平分∠BAC,∠ACB,那么∠ADC等于〔〕A. 125°B. 105°C. 115°D. 100°10如图,∠CAB=∠DB A,添加一个条件使△CAB≌△DBA,以下错误的选项是〔〕A. ∠CBA=∠DABB. ∠C=∠DC. AC=BDD. C B=DA11有以下命题说法:其中正确的有〔〕①锐角三角形中任何两个角的和大于90°;②等腰三角形的高、中线、角平分线互相重合③角的对称轴是角平分线;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个(yī ɡè)三角形中至少有一个角不小于60度.6〕等腰三角形一定是锐角三角形;7〕三角形的内角平分线、中线、高都是线段;8〕三角形的三条高一定都在三角形的内部12如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,那么∠B的大小为〔〕A. 40°B. 36°C. 30°D. 25°13,如图,点P关于OA、OB的对称点分别是P1, P2,分别交OA、OB于C,D,P1P2=6cm,那么△PCD的周长为〔〕 1314A. 3cmB. 6cmC. 12cmD. 无法确定14.如图为6个边长相等的正方形的组合图形,那么∠1+∠2+∠3=〔〕A. 90°B. 120°C. 135°D. 150°二、填空题〔一共(yīgòng)6题;一共24分〕15一个等腰三角形的边长分别是和,那么它的周长是_______cm.16如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的________。

七年级数学下学期第二次月考(4月)试卷(含解析)华东师大版

七年级数学下学期第二次月考(4月)试卷(含解析)华东师大版

七年级(下)第二次月考数学卷一、选择题(共10小题,每小题3分,满分30分)1.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A.10 B.12 C.14 D.162.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.在如图中,正确画出AC边上高的是()A.B.C.D.4.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个5.如图,已知AB=AD,∠1=∠2=50°,∠D=100°,那么∠ACB的度数为()A.30 B.40 C.50 D.606.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°7.下面说法错误的是()A.三角形的三条角平分线交于一点B.三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点8.能将一个三角形分成面积相等的两个三角形的一条线段是()A.三角形的角平分线B.一个内角的平分线C.三角形的高线D.三角形的中线9.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°10.若一个三角形的三边长是三个连续的自然数,其周长m满足10<m<22,则这样的三角形有()A.2个B.3个C.4个D.5个二、填空题(每小题3分,共24分)11.等腰三角形的两边的长分别为2cm和7cm,则三角形的周长是______.12.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如“王、中、田”,请你再举出三个可以看成是轴对称图形的汉字______.(2010秋张家港市校级期末)裁剪师傅将一块长方形布料ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠DAE=______度.14.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是______.(将你认为正确的结论的序号都填上)15.(3分)(2014春海淀区期末)已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|=______.16.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是______.17.如图,△ABC≌△AED,∠C=40°,∠EAC=30°,∠B=30°,则∠D=______度,∠EAD=______度.18.如图:已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是______(填一个即可).三、作图题:(12分,每小题6分)19.如图,在方格纸上画出了一棵树的一半,请你以树干l为对称轴画出树的另一半.20.尺规作图(不写作法,保留作图痕迹)已知:∠α、∠β和线段a求作:△ABC使∠CAB=∠α,∠ABC=∠β,AB=a.四、解答题(共54分)21.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?22.如图,已知OA=OC,OB=OD,∠1=∠2,求证:∠B=∠D.23.某汽车探险队要从A城穿越沙漠去B城,途中需要到河流L边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.24.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离,你能说说其中的道理吗?25.如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他又没有带量角器,只带了一副三角板,于是他想了这样一个办法;首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.以下是他的想法,请你补充完整;∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中∴△COB≌△FOE(______)∴BC=EF(______)∠BCO=∠F(______)∴______∥______(______)∴∠ACE和∠DEC互补(______)26.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E,CE平分∠ACB,如果△ABC的周长为20,BD=4,∠B=36°.(1)求△ACE的周长.(2)求∠A的度数.2015-2016学年甘肃省白银八中七年级(下)第二次月考数学卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A.10 B.12 C.14 D.16【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.则该三角形的周长是14.故选:C.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.3.在如图中,正确画出AC边上高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解答】解:画出AC边上高就是过B作AC的垂线,故选:C.4.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选C.5.如图,已知AB=AD,∠1=∠2=50°,∠D=100°,那么∠ACB的度数为()A.30 B.40 C.50 D.60【考点】全等三角形的判定与性质.【分析】利用SAS得到三角形ADC与三角形ABC全等,利用全等三角形对应角相等即可求出所求角度数.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SAS),∴∠D=∠B=100°,∵∠1=∠2=50°,∴∠ACD=∠ACB=30°,故选A6.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形的性质得到AB=BE=EC,∠ABC=∠DBE=∠C,根据直角三角形的判定得到∠A=90°,计算即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴AB=BE=EC,∠ABD=∠DBE=∠C,∴∠A=90°,∴∠C=30°,故选:D.7.下面说法错误的是()A.三角形的三条角平分线交于一点B.三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点【考点】三角形的角平分线、中线和高.【分析】根据三角形的角的平分线、中线、高线的性质即可确定.【解答】解:A、三角形的三条角平分线交于一点,是三角形的内心,故命题正确;B、三角形的三条中线交于一点,是三角形的重心,故命题正确;三角形的三条高所在的直线交于一点,三条高不一定相交,故C错误,D正确.故选C.8.能将一个三角形分成面积相等的两个三角形的一条线段是()A.三角形的角平分线B.一个内角的平分线C.三角形的高线D.三角形的中线【考点】三角形的面积.【分析】根据三角形的中线将三角形分成面积相等的两部分可直接得到答案.【解答】解:三角形的中线平分三角形的面积,故选:D.9.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°【考点】多边形内角与外角;三角形内角和定理.【分析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.【解答】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.10.若一个三角形的三边长是三个连续的自然数,其周长m满足10<m<22,则这样的三角形有()A.2个B.3个C.4个D.5个【考点】三角形三边关系.【分析】首先根据连续自然数的关系可设中间的数为x,则前面一个为x﹣1,后面一个为x+1,根据题意可得10<x﹣1+x+x+1<22,再解不等式即可.【解答】解:设中间的数为x,则前面一个为x﹣1,后面一个为x+1,由题意得:10<x﹣1+x+x+1<22,解得:3<x<7,∵x为自然数:∴x=4,5,6,7.故选:C.二、填空题(每小题3分,共24分)11.等腰三角形的两边的长分别为2cm和7cm,则三角形的周长是16cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2cm和7cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰长是2cm时,因为2+2<7,不符合三角形的三边关系,应排除;当腰长是7cm时,7,7,2符合三角形三边关系,此时周长是16cm.故答案为16cm.12.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如“王、中、田”,请你再举出三个可以看成是轴对称图形的汉字本,幸,苦等答案不唯一.(2010秋张家港市校级期末)裁剪师傅将一块长方形布料ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠DAE= 20 度.【考点】翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质来解决.【解答】解:∵∠BAF=50°,∠BAD=90°,∴∠FAD=40°,由折叠的性质知,∠DAE=∠EAF=∠FAD=20°.14.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.15.(3分)(2014春海淀区期末)已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|= 2c .【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,得到a﹣b+c>0,a﹣b﹣c<0,再根据绝对值的性质进行化简计算.【解答】解:根据三角形的三边关系,得a+c>b,a﹣b<c.∴a﹣b+c>0,a﹣b﹣c<0.∴原式=a﹣b+c﹣(a﹣b﹣c)=2c.16.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.17.如图,△ABC≌△AED,∠C=40°,∠EAC=30°,∠B=30°,则∠D= 40 度,∠EAD= 110 度.【考点】全等三角形的性质.【分析】先运用三角形全等的性质求出∠D和∠E的度数,再运用三角形内角和即可求∠EAD.【解答】解:△ABC中,∠C=40°,∠B=30°∵△ABC≌△AED∴∠D=∠C=40°,∠E=∠B=30°∴∠EAD=180°﹣∠D﹣∠E=110°.18.如图:已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是AD=BC (填一个即可).【考点】全等三角形的判定.【分析】由于已知条件有两个,分别是∠1=∠2,AB=BA,那么再增加一个条件AD=BC,利用SAS可证两个三角形全等.【解答】证明:所填条件为:AD=BC,∵AB=BA,∠1=∠2,AD=BC,∴△ABC≌△BAD.故填AD=BC.三、作图题:(12分,每小题6分)19.如图,在方格纸上画出了一棵树的一半,请你以树干l为对称轴画出树的另一半.【考点】作图-轴对称变换.【分析】根据轴对称的性质画出图形即可.【解答】解:如图所示.20.尺规作图(不写作法,保留作图痕迹)已知:∠α、∠β和线段a求作:△ABC使∠CAB=∠α,∠ABC=∠β,AB=a.【考点】作图—复杂作图.【分析】先作∠CAB=∠α,再作AB=a,再作∠ABC=∠β.【解答】解:四、解答题(共54分)21.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?【考点】全等三角形的判定与性质.【分析】由平行线的性质可得∠A=∠C,已知AD=BC,根据等式的性质得AF=CE,从而可根据SAS判定△DAF ≌△BCE,根据全等三角形的对应角相等即可求证.【解答】解:∠B=∠D.原因如下:∵AD∥BC,∴∠A=∠C.∵AE=CF,∴AF=CE.∵AD=BC,∴△DAF≌△BCE.∴∠B=∠D.22.如图,已知OA=OC,OB=OD,∠1=∠2,求证:∠B=∠D.【考点】全等三角形的判定与性质.【分析】可以先证△AOB≌△COD,再利用全等三角形的性质,可得∠B=∠D.【解答】证明:∵∠1=∠2,∴∠1+∠AOD=∠2+∠AOD,∴∠AOB=∠COD,在△AOB和△COD中,,∴△AOB≌△COD,(SAS)∴∠B=∠D.23.某汽车探险队要从A城穿越沙漠去B城,途中需要到河流L边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.【考点】作图—应用与设计作图.【分析】作出点A的关于L的对称点C,连接CB,交于L于点P,连接AP,则点P是所求的加水点.【解答】解:如图所示:由对称的性质可得AP=CP,则AP+PB=CP+PB=BC,根据两点之间线段最短,可得汽车在河边P点加水,能使行驶的总路程最短.24.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离,你能说说其中的道理吗?【考点】全等三角形的应用.【分析】仔细读题,认真理解题意,通过三角形全等求得AB间距离与DE的长时相同的.【解答】解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD(对顶角),EC=BC,∴△ABC≌△DEC,∴AB=ED,即量出DE的长,就是A、B的距离25.如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他又没有带量角器,只带了一副三角板,于是他想了这样一个办法;首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.以下是他的想法,请你补充完整;∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中∴△COB≌△FOE(SAS )∴BC=EF(对应边相等)∠BCO=∠F(对应角相等)∴AB ∥CF (内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补)【考点】全等三角形的判定与性质.【分析】通过全等三角形得到内错角相等,得到两直线平行,进而得到同旁内角互补.【解答】解:∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中,∴△COB≌△FOE(SAS)∴BC=EF(对应边相等)∠BCO=∠F(对应角相等)∴AB∥DF(内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补),故答案为:已知,已知,EO,BO,SAS,对应边相等,对应角相等,内错角相等,两直线平行,两直线平行,同旁内角互补.26.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E,CE平分∠ACB,如果△ABC的周长为20,BD=4,∠B=36°.(1)求△ACE的周长.(2)求∠A的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线性质得出BE=CE,BC=2BD=8,求出AB+AC=12,即可求出答案;(2)求出∠ECB的度数和∠ACB的度数,根据三角形内角和定理求出即可.【解答】解:(1)∵BC边的中垂线交BC于D,交AB于E,BD=4,∴BE=CE,BC=2BD=8,∵△ABC的周长为20,∴AB+AC=20﹣8=12,∴△ACE的周长为AE+CE+AC=AE+BE+AC=AB+AC=12;(2)∵BE=CE,∠B=36°,∴∠ECB=∠B=36°,∵CE平分∠ACB,∴∠ACB=2∠ECB=72°,∴∠A=180°﹣∠B﹣∠ACB=72°.。

2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份) 解析版

2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)  解析版

2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.32.(3分)下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查3.(3分)下列计算正确的是()A .=±4B .C .D .4.(3分)如图,关于x的不等式x ≥的解集表示在数轴上,则a的值为()A.﹣1B.2C.1D.35.(3分)解方程组①,②,比较简便的方法是()A.都用代入法B.都用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法6.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C.求证:AB∥CD.证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB7.(3分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为()A.(1,﹣3)B.(﹣5,3)C.(1,﹣1)D.(﹣5,﹣1)8.(3分)如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm29.(3分)关于x的不等式组的解集中所有整数之和最大,则a的取值范围是()A.﹣3≤a≤0B.﹣1≤a<1C.﹣3<a≤1D.﹣3≤a<1 10.(3分)如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为()A.100°B.120°C.140°D.160°二.填空题(每小题3分,共15分)11.(3分)一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是.12.(3分)一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,41.在列频数分布表时,如果取组距为3,那么应分成组.13.(3分)如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE 射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=.14.(3分)已知方程组的解是,则方程组的解是.15.(3分)在平面直角坐标系中,A(﹣2,0),B(﹣1,2),C(1,0),连接AB,点D 为AB的中点,连接OB交CD于点E,则四边形DAOE的面积为.三.解答题(本大题共8小题,共75分)16.(8分)计算:(1)++|1﹣|+2;(2)++|1﹣|.17.(8分)解不等式组,把解集表示在数轴上,并求出不等式组的整数解.18.(8分)若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.19.(10分)如图,点A、B、C的坐标分别为(﹣1,1)(3,﹣3)(1.﹣2)三角形A1B1C1是由三角形ABC向上平移2个单位长度,再向右平移2个单位长度后得到的,其中点A1、B1、C1分别是点A、B、C的对应点.(1)画出三角形A1B1C1,并写出点A1、B1、C1的坐标:(2)连接AA1和CC1,若x轴上有一点P(x,0),使得三角形P A1C1的面积等于四边形ACC1A1的面积,求x的值.20.(10分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.21.(10分)对于不等式:a x>a y(a>0且a≠1),当a>1时,x>y;当0<a<1时,x<y,请根据以上信息,解答以下问题:(1)解关于x的不等式:25x﹣1>23x+1;(2)若关于x的不等式:a x﹣k<a5x﹣2(a>0且a≠1),在﹣2≤x≤﹣1上存在x的值使其成立,求k的取值范围.22.(11分)已知点D在∠ABC内,E为射线BC上一点,连接DE,CD.(1)如图1,点E在线段BC上,连接AE,∠AED=∠A+∠D.①求证AB∥CD;②过点A作AM∥ED交直线BC于点M,请猜想∠BAM与∠CDE的数量关系,并加以证明;(2)如图2,点E在BC的延长线上,∠AED=∠A﹣∠D.若M平面内一动点,MA∥ED,请直接写出∠MAB与∠CDE的数量关系.23.(10分)已知某水果行租赁甲、乙两种货车同时装运香蕉和荔枝,调查了两种车满载时的装运能力,数据如表所示.甲车(辆)乙车(辆)荔枝共计(吨)香蕉共计(吨)1163241610(1)请分析表中数据,分别求出甲、乙货车每辆可以装运荔枝和香蕉各多少吨;(2)现计划将荔枝30吨,香蕉13吨运往外地,若租用甲、乙两种货车共10辆,求安排甲、乙两种货车有几种方案.2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)参考答案与试题解析一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

吉林省长春市九台区九郊中学2021-2022学年七年级下学期第二次月考数学试题(含答案)

吉林省长春市九台区九郊中学2021-2022学年七年级下学期第二次月考数学试题(含答案)

吉林省长春市九台区九郊中学2021-2022学年七年级下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,不是无理数的是( )A B .0.5 C .2π D2.计算63a a ÷,正确的结果是( ) A .3B .3aC .2aD .3a 【答案】B【分析】根据同底数幂的除法运算法则求解即可.【详解】解:63633a a a a -÷==.故选B .【点睛】本题考查了同底数幂的除法.解题的关键在于正确的计算.3.下列各数中,比3-小的数是( )A .π-B C . D .83-故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.4.若a b ,且a 与b 为连续整数,则a 与b 的值分别为( )A .1;2B .2;3C .3;4D .4;55,0,2270.1010010001⋯(每相邻两个1之间依次多1个0),2π中无理数有( ) A .0个B .1个C .2个D .3个 【详解】解:342,=0,227,30.125中无理数有:0.1010010001(每相邻两个【点睛】本题考查的是无理数的定义与识别,掌握6.下列计算正确的是( )A .236x x x ⋅=B .633x x x ÷=C .3362x x x +=D .()3326x x -= 【答案】B【分析】根据同底数幂的乘除法,积的乘方运算法则,合并同类项逐项分析判断即可求解.【详解】解:A 、235x x x ,则此项错误,不符题意;B、633÷=,则此项正确,符合题意;x x xC、333+=,则此项错误,不符题意;x x x2D、()33-=-,则此项错误,不符题意.x x28故选:B.【点睛】本题考查了同底数幂的乘除法、合并同类项、积的乘方,熟练掌握各运算法则是解题关键.7.若(-2x+a)(x-1)的展开式中不含x的一次项,则a的值是()A.-2B.2C.-1D.任意数【答案】A【分析】原式利用多项式乘多项式法则计算,再根据结果中不含x的一次项即可确定出a的值.【详解】(-2x+a)(x-1)=-2x2+(a+2)x-a,由结果中不含x的一次项,得到a+2=0,即a=-2.故选A.【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.x2+mx+16是一个完全平方式,则m的值为()A.4B.8C.4或﹣4D.8或﹣89.已知y(y-16)+a=(y-8)2,则a的值是()A.8B.16C.32D.64【答案】D【分析】根据完全平方公式,即可解答.【详解】解:∵ y(y−16)+a=(y−8)2,∵y2−16y+a=y2−16y+64∵a=64,故选D .【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.10.已知x ,y 满足3135x y x y +=-⎧⎨-=⎩,则229x y -的值为( ) A .—5B .4C .5D .25 【答案】A【分析】根据题意利用平方差公式将229x y -变形,进而整体代入条件即可求得答案.【详解】解:2222(59(3)(3))315x x y y x y x y ==+-=---⨯=-.故选:A.【点睛】本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.11.计算20212020(2)(2)-+-的值是( )A .2-B .20202-C .20202D .2 【答案】B【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:()20212020202202200200(2)(2212)(2)(2)=⨯-+=-=--+---. 故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 12.若定义表示3xyz ,表示2b d a c -,则运算的结果为( )A .3412m n -B .256m n -C .4312m nD .3412m n【答案】A 【分析】根据新定义列出算式进行计算,即可得出答案.【详解】解:根据定义得:=3×m ×n ×2×(-2)×m 2×n 3=-12m 3n 4,故选:A .【点睛】本题考查了整式的混合运算,根据新定义列出算式是解决问题的关键. 13.x 为正整数,且满足11632326x x x x ++⋅-=,则x =( )A .2B .3C .6D .12 【答案】C【分析】先逆用同底数幂的乘法法则,将原式变形,再提取公因式,然后逆用积的乘方,即可得到x 的值.【详解】原式可化为63323226x x x x ⋅⋅-⋅=,提取公因式,得632(32)6x x ⋅-=,∵6(32)6x ⨯=,∵x =6.故选:C .【点睛】本题考查了幂的运算:同底数幂的法则的逆用、积的乘方的逆用,解题的关键是掌握幂的运算的法则.14.有一个数值转换器,原理如下,当输入的x 为81时,输出的y 是( )AB .9C .3D .15.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a 、b 的恒等式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()()224a b a b ab -=+-D .()2a ab a a b +=+ 【答案】C【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a 、b 的恒等式.【详解】解:方法一:阴影部分的面积为:()2a b -,方法二:阴影部分的面积为:()24a b ab +-,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a 、b 的恒等式为()()224a b a b ab -=+-. 故选:C .【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是用两种方法正确的表示出阴影部分的面积.16.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和()na b +的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”计算()9a b +的展开式中第三项的系数为( )A .22B .28C .36D .56【答案】C【分析】根据图形中的规律不难发现()n a b +的第三项系数为()()12321n n +++⋯+-+-,据此即可求出()9a b +的展开式中第三项的系数.【详解】解:找规律发现()3a b +的第三项系数为312=+;()4a b +的第三项系数为6123=++; ()5a b +的第三项系数为101234=+++;…… ∵不难发现()na b +的第三项系数为()()12321n n +++⋯+-+-, ∵()9a b +第三项系数为1234567836+++++++=,故选:C .【点睛】本题主要考查了多项式乘多项式的规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题是解题的关键.二、填空题17.81的平方根是_____.【答案】±9【分析】直接根据平方根的定义填空即可.【详解】解:∵(±9)2=81,∵81的平方根是±9.故答案为:±9.【点睛】本题考查了平方根,理解平方根的定义是解题的关键.183______.0(填“>”、“=”或“<”).193=,则x =______.20.已知二次三项式223(25)()x x k x x a +-=-+,则=a _____,k =_____. 【答案】 4 20【分析】先将等式右边进行化解,再根据多项式的项、项数或次数的定义建立二元一次方程组,解方程组即可得到答案.【详解】解:由223(25)()x x k x x a +-=-+得22232(25)5x x k x a x a +-=+--,∵2535a a k -=⎧⎨-=⎩, 解得:420a k ==,,故答案为:4,20.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意建立正确的方程组. 21.若2412x x k -+是完全平方式,则k 的值为______________.【答案】9【分析】根据完全平方公式求出k =32,再求出即可.【详解】解:∵多项式4x 2-12x +k 是一个完全平方式,∵(2x )2-2•2x •3+k 是一个完全平方式,∵k =32=9,故答案为:9.【点睛】本题考查了完全平方式,能熟记完全平方式是解此题的关键,完全平方式有a 2+2ab +b 2和a 2-2ab +b 2.22.现有甲、乙、丙三种不同的矩形纸片(边长如图).小亮要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片____块.【答案】4【分析】根据222(2)44a b a ab b +=++,即可得.【详解】解:∵222(2)44a b a ab b +=++∵甲纸片1块,再取乙纸片4块,取丙纸片4块,可以拼成一个边长为a+2b 的正方形, 故答案为:4.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.三、解答题23.已知一个正数a 的两个平方根分别是x +3和2x -15,求x 和a 的值.【答案】x =4,a =49【分析】根据正数的平方根互为相反数列方程求解即可.【详解】解:由题意得,x +3=-(2x -15),解得x =4,a =(4+3)2=49,∵x =4,a =49.【点睛】本题主要考查平方根的知识,熟练根据正数的平方根互为相反数列方程求解是解题的关键.24.(1)已知2139273m m ⨯⨯=,求()()3232m m m -÷⋅的值. (2)已知1124273,x y y x ,求x y -的值. 【答案】(1)4-;(2)3【分析】(1)先将已知等式化为同底数幂乘积的形式,利用同底数幂相乘求出m ,再代入计算即可;(2)根据幂的乘方逆运算,将已知等式化为22312233x y y x +-==,,求出x ,y ,代入计算即可.【详解】解:(1)2139273m m ⨯⨯=,23213333m m ⨯⨯=()(),23213333m m ⨯⨯=,1232133m m ++=,12321m m ,解得:4m =,()()3232m m m -÷⋅65m mm =-, 当4m =时,原式4=-;(2)∵1124273,x y y x ,∵21312233x y y x +-==(),(),∵22312233x y y x +-==,,∵22,31x y y x =+=-,解得:4,1x y ==,∵413x y -=-=.【点睛】此题考查了幂的性质,熟记同底数幂乘法计算法则,幂的乘方计算法则是解题的关键.25.先化简,再求值:(1)()()()232x y x y x y ---+,其中12x =,1y =-. (2)()23325466x y x y x x -+÷,其中2x =-,2y =.26.(1)已知3x m =,5x n =,用含有m ,n 的代数式表示14x ;(2)定义新运算⊗:对于任意实数m ,n ,都有()m n m m n n ⊗=-+,若()()319x -⊗-=,求x 的值.【答案】(1)143x m n =;(2)x 的值为1【分析】(1)根据n m n m a a a +⨯=,把14x 化简为:95x x ⨯,即可;(2)根据定义新运算:()m n m m n n ⊗=-+的运算法则,即可求出x .【详解】(1)∵3x m =,5x n =,∵()31495353x x x x x m n =⨯=⨯=; (2)∵()m n m m n n ⊗=-+,∵()()31x -⊗-()()()()3311x x =----+-⎡⎤⎣⎦()()()3311x x =---++-()()()321x x =---+-631x x =++-54x =+,∵549x +=,∵1x =.【点睛】本题考查幂的运算,一元一次方程的知识,解题的关键掌握幂的运算法则,理解定义新运算的运算.27.小华和小明同时计算一道整式乘法题(2)(3)x a x b ++.小华抄错了第一个多项式中a 的符号,即把a +抄成了a -,得到结果为261110x x +-;小明把第二个多项式中的3x 抄成了x ,得到结果为22910x x -+.(1)你知道式子中a ,b 的值各是多少吗?(2)请你计算出这道题的正确结果. 【答案】(1)5a =-,2b =-(2)61910xx -+【分析】(1)根据题意可得(2)(3)x a x b -+261110x x =+-;(2)()x a x b ++22910x x =-+,从而得出231129b a a b -=⎧⎨+=-⎩,解二元一次方程组即可; (2)将,a b 的值代入,然后根据多项式乘以多项式运算法则进行计算即可.【详解】(1)解:根据题意得:(2)(3)x a x b -+26(23)x b a x ab =+--261110x x =+-;(2)()x a x b ++22(2)x a b x ab =+++22910x x =-+,∵231129b a a b -=⎧⎨+=-⎩, 解得:5a =-,2b =-;(2)正确的算式为2(25)(32)61910x x x x --=-+.【点睛】本题考查了多项式乘以多项式的运算法则以及解二元一次方程组,读懂题意,根据题意列出二元一次方程组求出,a b 的值是解本题的关键.28.如图,将长方形ABCD 与长方形CEFG 拼在一起,B C E ,,三点在同一直线上,且11=22AB BC a EF CE b ==,=连接BD BF ,.(1)请用a b ,表示图中阴影部分的面积;(2)若8,10a b ab +==求阴影部分的面积. BCD BEF CEFG S S S -长方形+即可列式求解;)根据完全平方公式变形代入即可求解.12a EF CEb ==,= BCD BEF CEFG S S S +-长方形()12222a b b b a b +⋅-+ 2ab b --。

人教版七年级下学期第二次月考数学试卷(含答案解析)

人教版七年级下学期第二次月考数学试卷(含答案解析)

人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点。

最新2022-2022年七年级下第二次月考数学试卷含答案

最新2022-2022年七年级下第二次月考数学试卷含答案

七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。

七年级下第二次月考数学试题及答案

七年级下第二次月考数学试题及答案

七年级第二次月水平测试数学试卷时间100分钟 满分120分一、选择题(每题3分,共30分)1.有下列长度的三条线段,能组成三角形的是( )A 、3cm 4cm 8cm 、、 B 、4cm 4cm 8cm 、、 C 、5cm 6cm 10cm 、、 D 、2cm 5cm 10cm 、、 2.已知有长为1、2、3的线段若干条,任取其中三条构造三角形,则最多能构成形状或大小不同的三角形个数是( )A 、5B 、6C 、7D 、83.下列说法①任意一个三角形的三条高至少有一条在此三角形内部;②一个多边形从一个顶点共引出三条对角线,此多边形一定是五边形;③一个三角形中,至少有一个角不小于060;④以a 为底的等腰三角形其腰长一定大于2a ;⑤以cb a ,,为边,且c b a >+能构成一个三角形 ;⑥一个多边形增加一条边,那么它的外角均增加0180.其中正确的是( )A 、①②③④B 、①③④⑤C 、③④⑤⑥D 、①②③⑥4.如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )5.下列结论错误的是( )A 、等边三角形是轴对称图形B 、轴对称图形的对应边相等,对应角相等C 、成轴对称的两条线段必在对称轴同侧D 、成轴对称的两个图形的对应点的连线被对称轴垂直平分6.两个图形关于某直线对称,对称点一定是( )A 、这条直线的两旁B 、这条直线的同旁C 、这条直线上D 、这条直线两旁或这条直线上7.甲、乙、丙、丁四名同学在讨论数学问题时作了如下发言:甲:因为三角形中最多有一个钝角,因此三角形的外角之中最多只有一个锐角;乙:在求n 个角都相等的n 边形的一个内角的度数时,可用结论: 180°-n 1×360°; 丙:多边形的内角和总比外角和大;丁:n 边形的边数每增加一条,对角线就增加n 条.四位同学的说法正确的是( ).A 、甲、丙B 、乙、丁C 、甲、乙D 、乙、丙8.如果三角形的一个外角与它不相邻的两内角的和为180º,那么与这个外角相邻的内角等于( )A 、30ºB 、60ºC 、90ºD 、120º9.一个多边形的内角和比它的外角和的3倍少0180,这个多边形的边数是( )A 、5条B 、6条C 、 7条D 、8条10.下列正多边形的组合中,能够铺满地面的是( )A 、正八边形和正方形B 、正五边形和正八边形C 、正六边形和正三角形D 、正五边形和正六边形二、填空题(每题3分,共30分)11.把一张正方形纸沿两对角线对折两次,形成了四个同样大小的三角形.12.工人师傅在做完门框后.为防小变形常常像图1中所示的那样上两条斜拉的木条(即图1中的AB ,CD ),这样做根据的数学道理是 .13.如图2 ,⊿ABC 中,AD 是∠BAC 的平分线,AE 是BC 边上的高,已知∠B=47º∠C=73º,则∠DAE= .14.如图3,AD 是△ABC 的外角平分线,∠B=30º,∠DA E=55º,则∠ACD= .15.等腰三角形的周长为12,则腰长a 的取值范围是 .16.一个多边形减少一条边,它的内角和减少 度,如果一个多边形减少一条边后,内角和为1260度,那么原来的多边形的边数为 .17.n边形的内角和等于t边形的外角和的2倍,则n= .18.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是,内角和是.19.一个多边形的每一个内角都相等,并且它的一个外角与一个内角之比为2:3,则这个多边形是边形.20.如图4三、解答题(7个小题,共60分)21.(10分)如图,四边形ABCD中,∠A=∠C=90°,B E平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?22.(10分)如图,∠ACD是△ABC的一个外角,∠ABC和∠ACD的平分线BE、CE交于一点E,试说明∠A=2∠E.23.(9分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求n( 的值.pm)24.(8分)已知等腰三角形的周长为28厘米,①底边长和腰长之比为3:2,求各边长;②底边比腰小2厘米,求各边长.25、(6分)请用1个等腰三角形,2个长方形,3个圆设计一个轴对称图形,并用简炼的文字说明你的创意。

七年级(下)学期 第二次月考数学试卷含解析

七年级(下)学期 第二次月考数学试卷含解析

七年级(下)学期 第二次月考数学试卷含解析一、选择题1.表面积为12dm 2的正方体的棱长为( )A .2dmB .22dmC .1dmD .2dm 2.计算:122019(1)(1)(1)-+-++-的值是( ) A .1-B .1C .2019D .2019- 3.下列数中π、227,﹣3,3343,3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个B .2个C .3个D .4个 4.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④5.若定义f (x )=3x ﹣2,如f (﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f (x )=1时,x =1;②对于正数x ,f (x )>f (﹣x )均成立;③f (x ﹣1)+f (1﹣x )=0;④当a =2时,f (a ﹣x )=a ﹣f (x ).其中正确的是( )A .①②B .①③C .①②④D .①③④6.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±97.21是a 的相反数,那么a 的值是( )A .12B .12C .2-D 2 8.下列命题是假命题的是( ) A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣1 94的平方根是( )A 2B .2±C .±2D .2 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 二、填空题11.已知M 是满足不等式36a <<N 是满足不等式x ≤3722的最大整数,则M +N 的平方根为________.12.观察下列各式:123415⨯⨯⨯+=;(2)2345111⨯⨯⨯+=;(3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.13.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 15.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 16.已知:103<157464<1003;43=64;53<157<63,则315746454=,请根据上面的359319=_________.17.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______. 19.202044.9444≈⋯20214.21267≈⋯20.2(精确到0.01)≈__________.20.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.22.观察下列各式: 111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; … (1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭ 23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = . (2)直接写出下列各式的计算结果:①1111 (12233420152016)++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 24.化简求值: ()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.25.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题: (1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B、C两点),其对应的数为m,则化简|m+12|=________.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB−AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.26.已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若M点在此数轴上运动,请求出M点到AB两点距离之和的最小值;(3)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q能追上点P?(4)在数轴上找一点N,使点M到A、B、C三点的距离之和等于10,请直接写出所有的N对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方体的表面积公式:S=6a2,解答即可.【详解】解:根据正方体的表面积公式:S=6a2,可得:6a2=12,解得:a2.2dm.故选:A.【点睛】此题主要考查正方体的表面积公式的灵活运用,解题的关键是根据公式进行计算.2.A解析:A【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案.【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1,∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+- =2019(1)-=1-;故选:A.【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.3.C解析:C【解析】【分析】根据无理数的概念解答即可.【详解】解:在π、227 3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数是: π 3.2121121112…(每两个2之间多一个1),共3个, 故选C.【点睛】本题考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.是有理数中的整数.4.D解析:D【分析】根据实数、无理数,算术平方根的意义和实数的大小比较方法逐一进行判断即可得到答案.【详解】是无理数,正确;是实数,正确;是2的算术平方根,正确;④12,正确.故选:D【点睛】本题考查了实数、无理数,算术平方根的意义和实数的大小比较方法等知识点,是常考题型.5.C解析:C【分析】首先理解新定义运算的算法,再根据新定义运算方法列出所求式子,计算得到结果【详解】∵f (x )=1,∴3x ﹣2=1,∴x =1,故①正确,f (x )﹣f (﹣x )=3x ﹣2﹣(﹣3x ﹣2)=6x ,∵x >0,∴f (x )>f (﹣x ),故②正确,f (x ﹣1)+f (1﹣x )=3(x ﹣1)﹣2+3(1﹣x )﹣2=﹣4,故③错误,∵f (a ﹣x )=3(a ﹣x )﹣2=3a ﹣3x ﹣2,a ﹣f (x )=a ﹣(3x ﹣2),∵a =2,∴f (a ﹣x )=a ﹣f (x ),故④正确.故选:C .【点睛】本题考查新定义运算,理解运算方法是重点,并且注意带入数据6.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 7.A解析:A【详解】只有符号不同的两个数,我们称这两个数互为相反数,则1)1=-=-a考点:相反数的定义8.B解析:B【分析】分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A、0的平方根为0,所以A选项为真命题;B、无限不循环小数是无理数,所以B选项为假命题;C、算术平方根最小的数是0,所以C选项为真命题;D、最大的负整数是﹣1,所以D选项为真命题.故选:B.【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.9.B解析:B【分析】【详解】2,.故选:B.【点睛】10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】<<a的和,解:∵M a∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将1212151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1、的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:,解得:,故答案解析:2-【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:=12,解得:,故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.14.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立, ∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:221 3n n -+. 16.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339. 故答案为:39本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.17.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令则∴∴故答案为:.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解 解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.18.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.三、解答题21.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+=∴5410x y -=∵x 、y 为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.22.(1)111111n n n n -⨯=-+++;(2)20172018- 【分析】 (1)由已知的等式得出第n 个式子为111111n n n n -⨯=-+++; (2)根据规律将原式中的积拆成和的形式,运算即可. 【详解】(1)∵第1个式子为111122-⨯=-+ 第2个式子为11112323-⨯=-+ 第3个式子为11113434-⨯=-+ ……∴第n 个式子为111111n n n n -⨯=-+++ 故答案为:111111n n n n -⨯=-+++ (2)由(1)知:原式1111111(1)()()()2233420172018=-++-++-++⋅⋅⋅+-+ 112018=-+ 20172018=- 【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.23.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】 (1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008 =10074032. 【点睛】本题考查了有理数的运算,根据题意找出规律是解决问题的关键.24.(1)±3;(2)2a +b ﹣1.【解析】分析:(1)由于34a =3,根据算术平方根的定义可求b(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a =3.=3,∴b=993;(2)由数轴可得:﹣1<a<0<1<b,则a+1>0,b﹣1>0,a﹣b<0,则+|a﹣b|=a+1+2(b﹣1)+(a﹣b)=a+1+2b﹣2+a﹣b=2a+b﹣1.点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.25.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12 )=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.26.(1)a=﹣1,b=5,c=﹣2,数轴详见解析;(2)6;(3)运动4秒后,点Q可以追上点P;(4)M对应的数为2或﹣223.【解析】【分析】(1)根据题意易得a,b,c的值,然后在数轴上表示出来即可;(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为AB的长;(3)用AB的长度除以点Q与点P的速度差即可得解;(4)分析M点在不同的位置时,所得到的M的值即可.【详解】(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5﹣(﹣1)=6;(3)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣12,∴6÷(2﹣12)=4,答:运动4秒后,点Q可以追上点P;(4)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:﹣22 3 .综上所述,M对应的数为2或﹣223.【点睛】本题主要考查实数与数轴,数轴上两点之间的距离.解此题的关键在于根据题意准确画出数轴上各点所表示的数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下第二次月考数学试卷含解析一、选择题(共10小题,每小题3分,满分30分)1.下列方程中,二元一次方程是()A.xy=1 B.y=3x﹣1 C.x+=2 D.x2+x﹣3=02.下列式子由左到右的变形中,属于因式分解的是()A.(x+2y)2=x2+4xy+4y2B.x2﹣2y+4=(x﹣1)2+3C.3x2﹣2x﹣1=(3x+1)(x﹣1)D.m(a+b+c)=ma+mb+mc3.下列多项式中是完全平方式的是()A.2x2+4x﹣4 B.16x2﹣8y2+1 C.9a2﹣12a+4 D.x2y2+2xy+y24.下列多项式中,在有理数范围内不能用平方差公式分解的是()A.﹣x2+y2B.4a2﹣(a+b)2 C.a2﹣8b2D.x2y2﹣15.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣26.若方程组的解x与y相等.则a的值等于()A.4 B.10 C.11 D.127.(x2﹣mx+1)(x﹣1)的积中x的二次项系数为零,则m的值是()A.﹣2 B.﹣1 C.1 D.28.已知,则()A.B.C.D.9.64﹣(3a﹣2b)2分解因式的结果是()A.(8+3a﹣2b)(8﹣3a﹣2b)B.(8+3a+2b)(8﹣3a﹣2b)C.(8+3a+2b)(8﹣3a+2b)D.(8+3a﹣2b)(8﹣3a+2b)10.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C. D.二、填空题(共10小题,每小题3分,满分30分)11.计算:﹣x(2x﹣3y+1)=.12.关于x的方程3x+2a=0的根是2,则a等于.13.利用乘法公式计算:1232﹣124×122=.14.由3x﹣2y=5,得到用x表示y有式子为y=.15.如果多项式x2+kx+4能分解为一个二项式的平方的形式,那么k的值为.16.二元一次方程组的解是.17.是方程3x+ay=1的一个解,则a的值是.18.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为.19.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是.20.对于有理数x、y,定义一种新的运算“*”:x*y=ax+by+7,其中a、b是常数,等式右边为通常的加法和乘法运算.已知3*5=15,4*7=18,则1*(﹣3)=.三、解答题(共8小题,满分60分)21.计算(1)(﹣2a2)(﹣3ab)2(2)(2x﹣1)(x﹣3)(3)(2a+b)2(2a﹣b)2(4)(2x﹣y)2﹣4(x﹣y)(x+2y)22.分解因式(1)m2﹣16n2(2)9x2+18xy+9y2(3)(4a﹣3b)2﹣25b2(4)4x2+3x﹣10.23.解方程组(1)(2).24.已知代数式x2+px+q.(1)当x=1时,代数式的值为2;当x=﹣2时,代数式的值为11,求p、q;(2)当x=时,求代数式的值.25.已知x+y=4,xy=3,求:(1)x2+y2的值;(2)(x﹣y)2的值;(3)x3+y3的值.26.已知关于x,y的方程组和有相同解,求(﹣a)b值.27.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.2015-2016学年江苏省苏州市昆山市七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列方程中,二元一次方程是()A.xy=1 B.y=3x﹣1 C.x+=2 D.x2+x﹣3=0【考点】二元一次方程的定义.【分析】解题关键是掌握二元一次方程的定义,根据定义来判断方程是否符合条件.【解答】解:A、xy=1不是二元一次方程,因为其未知数的最高次数为2;B、y=3x﹣1是二元一次方程;C、x+=2不是二元一次方程,因为不是整式方程;D、x2+x﹣3=0不是二元一次方程,因为其最高次数为2且只含一个未知数.故选B.2.下列式子由左到右的变形中,属于因式分解的是()A.(x+2y)2=x2+4xy+4y2B.x2﹣2y+4=(x﹣1)2+3C.3x2﹣2x﹣1=(3x+1)(x﹣1)D.m(a+b+c)=ma+mb+mc【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、是整式乘法,故D错误;故选:C.3.下列多项式中是完全平方式的是()A.2x2+4x﹣4 B.16x2﹣8y2+1 C.9a2﹣12a+4 D.x2y2+2xy+y2【考点】完全平方式.(a±b)2=a2±2ab+b2,形如a2±2ab+b2的式子要符合完全平方公式的形式a2±2ab+b2=【分析】完全平方公式:(a±b)2才成立.【解答】解:符合完全平方公式的只有9a2﹣12a+4.故选C.4.下列多项式中,在有理数范围内不能用平方差公式分解的是()A.﹣x2+y2B.4a2﹣(a+b)2 C.a2﹣8b2D.x2y2﹣1【考点】因式分解-运用公式法.【分析】利用平方差公式的结果特征判断即可.【解答】解:下列多项式中,在有理数范围内不能用平方差公式分解的是a2﹣8b2,故选C5.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.6.若方程组的解x与y相等.则a的值等于()A.4 B.10 C.11 D.12【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选C.7.(x2﹣mx+1)(x﹣1)的积中x的二次项系数为零,则m的值是()A.﹣2 B.﹣1 C.1 D.2【考点】多项式乘多项式.【分析】直接利用多项式乘法运算法则去括号,进而得出二次项的系数为零,求出答案.【解答】解:∵(x2﹣mx+1)(x﹣1)的积中x的二次项系数为零,∴x3﹣x2﹣mx2+mx+x﹣1=x3﹣(1+m)x2+(1+m)x﹣1,则1+m=0,解得:m=﹣1.故选:B.8.已知,则()A.B.C.D.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】先根据非负数的性质列出关于x、y的方程组,求出x、y的值即可.【解答】解:∵,∴,解得.故选C.9.64﹣(3a﹣2b)2分解因式的结果是()A.(8+3a﹣2b)(8﹣3a﹣2b)B.(8+3a+2b)(8﹣3a﹣2b)C.(8+3a+2b)(8﹣3a+2b)D.(8+3a﹣2b)(8﹣3a+2b)【考点】因式分解-运用公式法.【分析】直接利用平方差公式进行分解即可.【解答】解:64﹣(3a﹣2b)2=82﹣(3a﹣2b)2=(8+3a﹣2b)(8﹣3a+2b),故选:D.10.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.二、填空题(共10小题,每小题3分,满分30分)11.计算:﹣x(2x﹣3y+1)=﹣2x2+3xy﹣x.【考点】单项式乘多项式.【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.【解答】解:﹣x(2x﹣3y+1)=﹣2x2+3xy﹣x.故答案为:﹣2x2+3xy﹣x.12.关于x的方程3x+2a=0的根是2,则a等于﹣3.【考点】一元一次方程的解.【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.【解答】解:把x=2代入3x+2a=0得:3×2+2a=0解得:a=﹣3.故填﹣3.13.利用乘法公式计算:1232﹣124×122=1.【考点】平方差公式.【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式=1232﹣×=1232﹣=1232﹣1232+1=1,故答案为:114.由3x﹣2y=5,得到用x表示y有式子为y=.【考点】解二元一次方程.【分析】将x看作已知数,y看作未知数,求出y即可.【解答】解:3x﹣2y=5,移项得:﹣2y=5﹣3x,解得:y=.故答案为:.15.如果多项式x2+kx+4能分解为一个二项式的平方的形式,那么k的值为±4.【考点】完全平方式.【分析】根据完全平方公式得出kx=±2•x•2,求出即可.【解答】解:∵x2+kx+4能分解为一个二项式的平方的形式,∴kx=±2•x•2,解得:k=±4,故答案为:±4.16.二元一次方程组的解是.【考点】解二元一次方程组.【分析】运用加减消元法和代入消元法解方程组.【解答】解:①﹣②得:y=2.把y=2代入①得:x=3.即.17.是方程3x+ay=1的一个解,则a的值是2.【考点】二元一次方程的解.【分析】根据方程的解的定义,将方程的解代入,然后解关于a的一元一次方程即可.【解答】解:∵是方程3x+ay=1的一个解,∴3×3﹣4a=1,解得a=2.故答案为:2.18.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为a+3b.【考点】完全平方公式的几何背景.【分析】1张边长为a的正方形卡片的面积为a2,6张边长分别为a、b的矩形卡片的面积为6ab,9张边长为b的正方形卡片面积为9b2,∴16张卡片拼成一个正方形的总面积=a2+6ab+9b2=(a+3b)2,∴大正方形的边长为:a+3b.【解答】解:由题可知,16张卡片总面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴新正方形边长为a+3b.19.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.【考点】公因式.【分析】分别将多项式ax2﹣4a与多项式x2﹣4x+4进行因式分解,再寻找他们的公因式.【解答】解:∵ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2),x2﹣4x+4=(x﹣2)2,∴多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.20.对于有理数x、y,定义一种新的运算“*”:x*y=ax+by+7,其中a、b是常数,等式右边为通常的加法和乘法运算.已知3*5=15,4*7=18,则1*(﹣3)=5.【考点】解二元一次方程组;有理数的混合运算.【分析】根据新定义型运算公式,将条件中的数字代入即可求出a与b的值,然后再将1与﹣3代入公式即可求出答案.【解答】解:由题意可知:3*5=15,4*7=18,∴,∴解得:,∴x*y=x+y+71*(﹣3)=1+(﹣3)+7=5,故答案为5三、解答题(共8小题,满分60分)21.计算(1)(﹣2a2)(﹣3ab)2(2)(2x﹣1)(x﹣3)(3)(2a+b)2(2a﹣b)2(4)(2x﹣y)2﹣4(x﹣y)(x+2y)【考点】整式的混合运算.【分析】(1)原式利用积的乘方运算法则计算,再利用单项式乘单项式法则计算即可得到结果;(2)原式利用多项式乘多项式法则计算即可得到结果;(3)原式利用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果;(4)原式利用完全平方公式,多项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣2a2(9a2b2)=﹣18a4b2;(2)原式=2x2﹣6x﹣x+3=2x2﹣7x+3;(3)原式=(4a2﹣b2)2=16a4﹣8a2b2+b4;(4)原式=4x2﹣4xy+y2﹣4x2﹣4xy+8y2=﹣8xy+9y2.22.分解因式(1)m2﹣16n2(2)9x2+18xy+9y2(3)(4a﹣3b)2﹣25b2(4)4x2+3x﹣10.【考点】提公因式法与公式法的综合运用.【分析】(1)直接利用平方差公式分解因式得出答案;(2)首先提取公因式9,进而利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式进而合并同类项即可;(4)直接利用十字相乘法分解因式得出答案.【解答】解:(1)m2﹣16n2=(m+4n)(m﹣4n);(2)9x2+18xy+9y2=9(x2+2xy+y2)=9(x+y)2;(3)(4a﹣3b)2﹣25b2=(4a﹣3b﹣5b)(4a﹣3b+5b)=(4a﹣8b)(4a+2b)=8(a+2b)(2a+b);(4)4x2+3x﹣10=(x+2)(4x﹣5).23.解方程组(1)(2).【考点】解三元一次方程组;解二元一次方程组.【分析】(1)根据解二元一次方程组的方法先将二元一次方程组转化为一元一次方程,即可解答本题;(2)先将三元一次方程组转化为二元一次方程组,再转化为一元一次方程,本题得以解决.【解答】解:(1)①+②,得3x=6,解得,x=2,将x=2代入①,得y=3,故原方程组的解是;(2)①×3+②,得4x+5y=22④③﹣①,得x﹣2y=﹣1⑤④﹣⑤×4,得13y=26,解得,y=2,将y=2代入⑤,得x=3,将x=3,y=2代入①,得z=1,故原方程组的解是.24.已知代数式x2+px+q.(1)当x=1时,代数式的值为2;当x=﹣2时,代数式的值为11,求p、q;(2)当x=时,求代数式的值.【考点】解二元一次方程组.【分析】(1)将x与y的两对值代入代数式x2+px+q列出p和q的二元一次方程组,求出p与q的值;(2)由p与q的值确定出解析式,把x=代入计算求出y的值即可.【解答】解:(1)当x=1时,代数式的值为2;当x=﹣2时,代数式的值为11,即,解得:p=﹣2,q=3;(2)由(1)得:代数式x2﹣2x+3,将x=代入得:代数式的值为.25.已知x+y=4,xy=3,求:(1)x2+y2的值;(2)(x﹣y)2的值;(3)x3+y3的值.【考点】完全平方公式.【分析】根据完全平方公式(x±y)2=x2±2xy+y2,x3+y3=(x+y)(x2﹣xy+y2)把原式变形后求值.【解答】解:(1)x2+y2=(x+y)2﹣2xy=16﹣6=10;(2)(x﹣y)2=(x+y)2﹣4xy=16﹣12=4;(3)x3+y3═(x+y)(x2﹣xy+y2)=4×7=28.26.已知关于x ,y 的方程组和有相同解,求(﹣a )b 值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.【解答】解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得, 代入(2)得. 所以(﹣a )b =(﹣2)3=﹣8.27.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.【考点】二元一次方程组的应用.【分析】(1)根据题意可知,本题有两个未知数:平均每分钟一道正门和一道侧门各通过多少名学生.等量关系有两个:当同时开启一道正门和两道侧门时,2min 内可以通过560名学生.当同时开启一道正门和一道侧门时,4min 内可以通过800名学生.根据以上条件可以列出方程组求解;(2)根据(1)的数据,可以求出拥挤时5min 四道门可通过的学生人数,教学大楼最多的学生人数,还可以求出全大楼学生通过这4道门所有的时间,再比较.【解答】解:(1)设平均每分钟一道正门可通过x 名学生,一道侧门可以通过y 名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)解法一:这栋楼最多有学生4×8×45=1440(名),拥挤时5min 四道门可通过5×2××(1﹣20%)=1600(名),∵1600>1440.∴建造的4道门符合安全规定.解法二:还可以求出紧急情况下全大楼学生通过这4道门所用时间:=4.5min .4.5<5,因此符合安全规定.28.若我们规定三角“”表示为:abc ;方框“”表示为:(x m +y n ).例如: =1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算: = ﹣ ;(2)代数式为完全平方式,则k= ±3 ;(3)解方程:=6x2+7.【考点】完全平方式.【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解.【解答】解:(1)=[2×(﹣3)×1]÷[(﹣1)4+31]=﹣6÷4=﹣.故答案为:﹣;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为:±3;(3)=6x2+7,(3x﹣2)(3x+2)]﹣[(x+2)(3x﹣2)+32]=6x2+7,解得x=﹣4.2016年11月21日。

相关文档
最新文档