对数函数及其性质2

合集下载

高一数学对数函数及其性质2

高一数学对数函数及其性质2

(
2 x 8)
函数的奇偶性
例3、函数 y log2 (x x2 1)(x R)的奇偶性为
()
A.奇函数而非偶函数 C.非奇非偶函数
B.偶函数而非奇函数 D.既奇且偶函数
二 函数的单调性
例4
1.求函数 y log 2 (x2 2x)
例2 求函数的值域
1 f ( x) log2 x
2 f ( x) loga x
x [1,2]
x [1,2]
3 f ( x) log 2( x2 2)
4 f ( x) log 2(8x x2 7)
5 f
(x)

(log2
x 2 )(log2
x) 4
2.2.2 对数函数及其性质(二)
对数函数y=log a x<1

y
y

o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
质 x>1时, y>0
(4) 0<x<1时, y>0; x>1时, y<0
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻轻一转,就“轻而易举”地打开了锁。对于一般的事物、问题而言,这里的“心”是指事物的关键之处、问题的症结所在;对于人的思想、情感而言,“心” 是指隐秘之处的思想和情感。“铁棒”天生不是开锁的料,只会砸“锁”、撬“锁”。我们可以把它理解为没有抓住事物的关键或问题的症结

2.2.2对数函数及其性质(二)

2.2.2对数函数及其性质(二)

练习
1995年我国人口总数是 亿,如果人口的自然增长率 年我国人口总数是12亿 年我国人口总数是 控制在1.25%,问哪一年我国人口总数将大约等于 亿? 控制在 ,问哪一年我国人口总数将大约等于14亿 解: 年后人口总数超过14亿 设 X年后人口总数超过 亿,依题意得 年后人口总数超过 12.(1+0.0125)X=14 即 1.0125X=14/12,两边取常用对数, ,两边取常用对数, 得:X.lg1.0125=lg14-lg12 即:X= (lg14-lg12)/ lg1.0125≈12.4 年后, 年我国人口总数将大约等于14亿 答:12年后,即2007年我国人口总数将大约等于 亿。 年后 年我国人口总数将大约等于
基本初等函数( 第二章 基本初等函数(Ⅰ)
§2.2.2 对数函数及其性质(二) 对数函数及其性质(
复习: 复习:对数函数 y = log a x 的图象与性质 a>1
3
3 2.5
0<a<1
2.5 2 1.5
2
1.5
图 象 函 数 性 质
1
-1
1
1
1
1
0.5
0.5
0
-0.5
1
2
3
4
5
6
7
8
-1
0
1
-0.5
课堂回顾: 课堂回顾:
1.如何利用对数函数的单调性比较大小? 如何利用对数函数的单调性比较大小? 2.如何构建对数函数模型,解决生活中的实 如何构建对数函数模型, 际问题? 际问题? 3.怎样理解同底的指数函数与对数函数互为 反函数? 反函数?
例5:已知函数 f ( x) = log 2 (3x − 1), 若 f ( x) < 0, 求 x 的 取 值 范围 .

对数函数及其性质2

对数函数及其性质2
x
y 2 ( x R) 互为反函数
x
y 3 ( x R) x y a ( x R)
的反函数是什么?
y log3 x( x (0, ))
的反函数是什么?
y loga x( x (0, ))
演示
探究:两个互为反函数的图象间有什么关系?
对数函数与指数函数的关系: 对数函数和指数函数互为反函数
解:(1)根据对数的运算性质,
有pH=
-lg[H+]=lg[H+]-1= lg

1 [H ]
1 在(0, )上,随着[H ]的增大, 减小,相应地, [H ] 1 lg 也减小,即pH减小,即知随着溶液中氢离子 [H ] 的浓度增大,溶液中酸度就越小。
(2) [H ] 10 时 ,pH lg10 7, 所 以 当 纯 净 水 的 H是7。 p
复习与回顾
(一)对数函数的概念:
函数 y loga x (a 0, 且a 1)叫做对数函数. 其中x是自变量,函数的定义域是(0,+∞).
a>1
y x=1 y
0<a<1
x=1
图 象
o
1
x
y= ㏒ax (a>1)
o
1
x y= ㏒ax (0<a<1)
定义域
( 0 , + ∞) R
值域
性 质
反函数
y 2x ( x R)
x log2 y
y log2 x( x (0, ))
对于任意一个y∈(0,+∞)通过式子x=log2y, x在R中都有唯一确定的值和它对应,这时我们就说 x=log2y( y∈(0,+∞))是函数y=2x的反函 数.习惯上写成 y=log2x 对数函数 y log2 x( x (0, )) 与 指数函数

高一数学对数函数及其性质2

高一数学对数函数及其性质2

例题讲解
1 x 例3、 已知函数 f ( x ) log 2 , 1 x
求函数f(x)的定义域,并确定其 奇偶性、单调性.
例题讲解
例4、 求下列函数的定义域:
(1) y=log0.5|x+1| ;
(2) y=log2(4-x) ; (3) y ln(16 4 ) .
x
例题讲解
例5、求下列函数的定义域、值域:
作业: 1、P73 练习3(做书上). P74 习题2.2A组:8,B组:1、2.
2、《学法大视野》第22课时
; /gupiaodapan/ 大盘分析 ;
咱对手或许十分强大,不排除会偷摸来泄恨,咱亦有可能来不及救援丶""三,去咱南风城,咱自会保你尤家,最后壹条,就是你们举亭搬迁,离开天海城系城,未来如何,咱没有能力管丶"根汉淡淡道,语气没有丝毫波澜,似乎在讲述壹件事不关己の事情,接着他又补充道:"你们不用担心咱会欺骗 你们,梅梅落落是咱道侣,尤家也算是咱半个娘家,没有必要去骗你等丶"尤家家主脸色阴晴不定,转瞬间,就有咯决定,与尤家老三对视壹眼,沉声道:"咱尤家愿意去南风城!""好,你们去准备壹番,当咱离开天海系城时就带你们离开,你们会庆幸今日の决定!"根汉淡然壹笑,他现在还不打算离 开天海系城,那炉聚魂丹还没有练成,他最早也要等那炉丹药炼制出来丶虽然不知聚魂丹の药效,但起码是有那么壹个机会,根汉不愿意放过任何壹个机会,毕竟关乎着天道宗圣女天晴の性命丶"姐夫,你是不是早就要打算?要将咱尤家收入囊中?"待尤家家主离去,尤落落急忙拉着根汉问道,黑 白分明の大眼睛满是笑意,晶莹琼鼻微皱,似乎在思索根汉の计谋丶"像咱这么英俊潇洒の人,怎么会去计算你家?咱这是将计就计,保护尤家丶

对数函数及其性质(2)教学设计

对数函数及其性质(2)教学设计

对数函数及其性质(2)教学设计延长县中学焦存江一、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

二、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

三、教学目标1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概念,激发学生的学习兴趣。

2、通过对对数函数有关性质的研究,渗透数形结合、分类讨论的数学思想。

培养观察、分析、归纳的思维能力和交流能力,增强学习的积极性。

掌握对数函数的图象与性质,并会初步应用。

3、培养学生自主学习、数学交流能力和数学应用意识。

通过联系观点分析,解决两数比较大小的问题。

四、教学重点和难点重点:1、对数函数的定义、图象、性质。

2、对数函数的性质的初步应用。

难点:底数a对对数函数图象、性质的影响。

第二章 2.2.2 第2课时 对数函数及其性质(二)

第二章 2.2.2 第2课时  对数函数及其性质(二)

第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。

2.2.2 对数函数及其性质

2.2.2   对数函数及其性质

3 y x ( x R) 的反函数,并且画出原来的函数和它 例13:求函数
的反函数的图象。
解:由y x 3,得 x 3 y ∴函数 y x 的反函数是: y 3 x ( x R)
3 3 y x ( x R)和它的反函数 y 3 x ( x R) 的图象如图所示: 函数
(2)在定义域上是增函数
注:函数 y log a x(a 0且a 1) 的图象与 y log 1 x(a 0且a 1) 的 a 图象关于 x轴对称。 练习: 1. 函数 y log 4.3 x 的值域是( D )
A.(0,) C义:
一般地,我们把函数 y log a x(a 0, 且a 1) 叫做对数函数, 其中 x 是自变量,函数的定义域是(0,) 。
注:
x y a 1.由于指数函数 中的底数a满足a 0且a 1 ,则对数函数 y log a x 中的底数 a 也必须满足 a 0且a 1。
二、对数函数的图象和性质:
例2:函数 y log2 x 和 y log1 x 的图象。
2
一般地,对数函数y log a x(a 0,且a 1)的图象和性质 如下表所示:
0 a 1
图象
a 1
定义域 值域 性质 (2)在定义域上是减函数
(0,)
R
(1)过定点(1,0),即x=1时,y=0
x f 1 ( y)
y 注:在函数 x f 1 ( y)中,表示自变量,表示函数。但在习惯上, x 我们一般用 x 表示自变量,用 y表示函数,为此我们常常对调函数 x f 1 ( y)中的字母 x, y,把它改写为 y f 1 ( x)。
2.如果函数 y f ( x)有反函数 f 1 ( x) ,那么函数 y f 1 ( x) 的反函 数就是y f ( x) 。

4.4对数函数及其性质2

4.4对数函数及其性质2

授课主题:对数函数及其性质教学目标1.理解对数函数的单调性,掌握对数函数图象通过的特殊点.2.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).3.进一步理解对数函数的图象和性质.4.理解对数函数和指数函数互为反函数,了解互为反函数的两个函数的图象的关系.教学内容1.对数函数的概念(1)定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征⎩⎪⎨⎪⎧log a x的系数:1log a x的底数:常数,且是不等于1的正实数log a x的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.2.对数函数的图象与性质:01a<<1a>图象y=log a x (0<a<1)1Oyxy=log a x (a>1)1Oyx定义域(0)+∞,值域R性质(1)函数图象过定点(10),,即当1x=时,0y=(2)在(0)+∞,上是减函数(2)在(0)+∞,上是增函数(3)当1x>时,0y<;当01x<<时,0y>.(3)当1x>时,0y>;当01x<<时,0y<.(4)log a y x =与1log ay x=关于x 轴对称。

(5)a 越接近于0,图象越靠近x 轴(5)a 越大,图象越靠近x 轴3.反函数(1)对数函数的反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. (2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域; ②互为反函数的两个函数的图象关于直线y =x 对称. (3)求已知函数的反函数,一般步骤如下: ①由y =f (x )解出x ,即用y 表示出x ; ②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.题型一:对数函数的概念例1. 函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.解析:由a 2-a +1=1,解得a =0,1. 又a +1>0,且a +1≠1,∴a =1. 答案:1例2. 下列函数中是对数函数的为__________.(1)y =log a x (a >0,且a ≠1);(2)y =log 2x +2; (3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析:序号 是否 理由(1) × 真数是x ,不是自变量x(2) × 对数式后加2(3) × 真数为x +1,不是x ,且系数为8,不是1(4) × 底数是自变量x ,不是常数(5)√底数是6,真数是x答案:(5)中取值,则相应曲线C1,C2∴函数f (x )是奇函数.(3)当a >1时,由1log 1a x x +->0=log a 1,得11x x+->1,解得0<x <1; 当0<a <1时,由1log 1ax x +->0=log a 1,得0<11x x +-<1,解得-1<x <0. 故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.1.函数f (x )=lg(x -1)+4-x 的定义域为( )A .(1,4]B .(1,4)C .[1,4]D .[1,4)解析:选A.⎩⎪⎨⎪⎧x -1>04-x ≥0,解得1<x ≤4. 2.函数y =x |x |log 2|x |的大致图象是( )解析:选D.当x >0时,y =x x log 2x =log 2x ;当x <0时,y =x -xlog 2(-x )=-log 2(-x ),分别作图象可知选D. 3.已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( )A .1B .2 C.12 D.14解析:选A.如图由f (a )=f (b ),得|lg a |=|lg b |.设0<a <b ,则lg a +lg b =0.∴ab =1.4.下列各组函数中,定义域相同的一组是( )A.y=a x与y=log a x(a>0,且a≠1) B.y=x与y=xC.y=lg x与y=lg x D.y=x2与y=lg x2解析:选C.A.定义域分别为R和(0,+∞),B.定义域分别为R和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R和x≠0.x的图象关于()5.函数y=log2x与y=log12A.x轴对称B.y轴对称C.原点对称D.直线y=x对称x=-log2x.解析:选A.y=log126.已知a>0且a≠1,则函数y=a x与y=log a(-x)的图象可能是()解析:选B.由y=log a(-x)的定义域为(-∞,0)知,图象应在y轴左侧,可排除A、D选项.当a>1时,y=a x应为增函数,y=log a(-x)应为减函数,可知B项正确.而对C项,由图象知y=a x递减⇒0<a<1⇒y=log a(-x)应为增函数,与C图不符.7.对数函数的图象过点M(16,4),则此对数函数的解析式为()xA.y=log4x B.y=log14x D.y=log2xC.y=log12解析:选D.设y=log a x,∴4=log a16,∴a4=16,∴a=2.8.已知图中曲线C1,C2,C3,C4分别是函数y=log a1x,y=log a2x,y=log a3x,y=log a4x的图象,则a1,a2,a3,a4的大小关系是()A.a4<a3<a2<a1B.a3<a4<a1<a2C.a2<a1<a3<a4(2)∵⎩⎪⎨⎪⎧ 3-x >0x -1>0x -1≠1,∴⎩⎪⎨⎪⎧1<x <3x ≠2.∴函数的定义域为(1,2)∪(2,3). 15.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由如图所示的图象知:当0<a <2时,恒有f (a )<f (2).故当0<a <2时,不存在满足f (a )>f (2)的a 的值.16.函数f (x )=log 2(32-x 2)的定义域为A ,值域为B .试求A ∩B .解:由32-x 2>0得:-42<x <42,∴A =(-42,42).又∵0<32-x 2≤32,∴log 2(32-x 2)≤log 232=5,∴B =(-∞,5],∴A ∩B =(-42,5].1.函数212log (56)y x x =-+的单调增区间为( )答案:D答案:D3.函数y =log a (3x -2)(a >0,a ≠1)的图象过定点( )A .(1,0)B .(0,1) C.⎝⎛⎭⎫0,23 D.⎝⎛⎭⎫23,0 答案:A4.当a >1时,函数y =log a x 和y =(1-a )x 的图象只能是( )解析:取a =2知,A ,C ,D 不正确.故选B.答案:B5.答案:C6.图中曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110四个值,则相应于C 1,C 2,C 3,C 4的a 值依次为( ) A.43,3,35,110 B.3,43,110,35C.3,43,35,110D.43,3,110,35答案:A7.函数f (x )=log a (x +2)(0<a <1)的图象必不过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A8.——————.答案:-b9.已知函数y =log 4x ,则:①当y >12时,x ∈__________; ②当1<y <2时,x ∈__________.答案:①(2,+∞) ②(4,16) 10.函数y =(2)x 的反函数是____________;函数y =ln x 的反函数是____________.答案:11.作y =|lg x |和y =lg|x |的图象.解析:分别作出y =lg|x |和y =|lg x |的图象,如图(1)和图(2)所示.12.已知:f(x)=lg(a x-b x)(a>1>b>0).(1)求f(x)的定义域;(2)判断f(x)在其定义域内的单调性;(3)若f(x)在(1,+∞)内恒为正,试比较a-b与1的大小.解析:(2)设x2>x1>0,a>1>b>0,∴f(x2)-f(x1)=∴f(x2)>f(x1).∴f(x)在(0,+∞)是增函数.(3)当x∈(1,+∞)时,f(x)>f(1),要使f(x)>0,须f(1)≥0,则a-b≥1.。

高一数学对数函数及其性质2

高一数学对数函数及其性质2

比较下列各组数的大小: (1)log2π与log20.9; (2)log20.3与log0.20.3; (3)3log45与2log23; (4)log1/30.3,log20.8 【思路点拨】 由题目可获取以下主要信息: (1)中底数相同,真数不同; (2)中底数不同,真数相同; (3)(4)中底数与真数各不相同.解答本题可考虑利用对数函数的单 调性或图象求解.

;街拍第一站 https:/// 街拍第一站
②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的 对数函数的底数越大.
(2)要熟记对数函数y=lg x,y=log2x,y=log1/2x,y=log1/10x在 同一坐标系中图象的相对位置,从而掌握对数函数图象的位置变化与 底数大小的关系,这为应用函数图象及其性质解决问题带来了很大方 便.
复合函数y=logaf(x),x∈D的单调性:设集合M⊆D,若a>1,且 u=f(x)在x∈M上单调递增(减),集合M对应的区间是函数y=logaf(x) 的 单调增区间;若0<a<1,且u=f(x)在x∈M上单调递增(减),集合M
对应的区间是函数yx=1的右侧,底数大于1时,底数越大,图象 越靠近x轴;底数大于0且小于1时,底数越小,图象越靠近x轴.

对数函数及其性质2

对数函数及其性质2

例3.已知f(x) = lg(ax-bx) ( a>1>b>0 ) (1)求 f ( x ) 的定义域;
解:由题 ax -b x >0 得 ax > bx ∵ a>1>b>0 ∴ x >0
a x ( ) 1 b
故 f ( x ) 的定义域为 ( 0 , + ∞ ) (2)判断 f ( x ) 的单调性.
(3)令u=a-ax, ∵u>0,a>1,∴ax<a,x<1, ∴y=loga(a-ax)的定义域为{x|x<1}, ∵ax<a,且ax>0,u=a-ax<a,
∴y=loga(a-ax)<logaa=1,
∴函数的值域为{y|y<1}. 【评析】求函数的值域一定要注意定义域对它的影响, 然后利用函数的单调性求之,当函数中含有参数时,有 时需要讨论参数的取值.
综上所述,0 ≤a≤1. 【评析】本题两小题的函数的定义域与值域正好错位.
(1)中函数的定义域为R,由判别式小于零确定;
(2)中函数的值域为R,由判别式不小于零确定.
返回目录
例5 对数函数的单调性
y log 2 ( x 2 2 x) 的单调递增区间。 1.求函数
2.求函数 y log 1 ( x x 2) 的单调递减区间。
求值域: (1)y=log2 (x2-4x+6);
1 (2) y log 2 2 . - x 2x 2
(1)∵x2-4x+6=(x-2)2+2≥2,又∵y=log2x在(0,+∞)上是增 函数, ∴log2(x2-4x+6)≥log22=1. ∴函数的值域是[1,+∞). (2) ∵-x2+2x+2=-(x-1)2+3≤3, 1 1 ∴ - x 2 2x 2 <0或 - x 2 2x 2 ≥ 1 . 1 1 3 log 2 ∴ ≥ log 2 - x 2x 2 1 3 ∴函数的值域是 log 2 , ,

对数函数知识点总结

对数函数知识点总结

对数函数知识点总结对数函数是高中数学中的重要知识点之一,它广泛应用于数学、物理、经济学等领域。

本文将对对数函数的定义、性质和应用进行详细总结,帮助读者全面了解对数函数。

一、对数函数的定义1. 对数函数的定义:对于任意正实数a(a≠1)和正实数x,称y=logₐx为以a为底x的对数,其中x被称为真数,a被称为底数,y被称为对数。

记作y=logaₐx。

2. 以10为底的对数函数:y=log₁₀x,通常将其简写为y=logx。

3. 自然对数函数:以e≈2.71828为底的对数函数,记作y=loge x或y=lnx。

二、对数函数的基本性质1. 对数函数与指数函数的互为反函数性质:对数函数y=logₐx与指数函数y=aˣ满足关系方程aˣ=x,x>0,a>0且a≠1。

2. 对数函数的定义域和值域:对数函数y=logₐx的定义域是(0,+∞),值域是(-∞,+∞)。

3. 对数函数的对称关系:对于任意正实数x和定义域内的正实数a,有对称关系logₐx=y↔aʸ=x。

4. 对数函数的性质:(1)等式性质:logₐx=logₐy→x=y;logₐx=logb x/lobb a;logₐ1=0;l ogₐa=1。

(2)倒数性质:loga(1/x)=-logₐx。

(3)指数性质:logₐxⁿ=nlogₐx。

(4)乘法性质:logₐ(xy)=logₐx+logₐy。

(5)除法性质:logₐ(x/y)=logₐx-logₐy。

三、对数函数的图像与性质1. 对数函数y=logₐx的图像特点:(1)定义域为(0,+∞),值域为(-∞,+∞)。

(2)过点(1,0)。

(3)随着x的增大,y增大,但增长速度逐渐减小。

(4)曲线在x轴的右侧均为上升曲线。

(5)曲线在x=1处有一垂直渐近线。

2. 自然对数函数y=lnx的图像特点:(1)定义域为(0,+∞),值域为(-∞,+∞)。

(2)过点(1,0)。

(3)随着x的增大,y增大,但增长速度逐渐减小。

§2.2.2对数函数及其性质(2)

§2.2.2对数函数及其性质(2)
答 对于底数 a>1 的对数函数, 在(1,+∞)区间内,底数越大 越靠近 x 轴;对于底数 0<a<1 的 对数函数,在(1,+∞)区间内, 底数越小越靠近 x 轴.
例.阅读课本P72例9及P73.
【例题探究】 例2.求下列函数的定义域与值域: (1)y=log2(x2+2x+5); (2)y=log1/2(4x-x2); (3) y (log x )2 2log x 3
§2.2.2对数函数 及其性质(2)
1.对数函数的图象与性质 a>1 0<a<1y 1 o y Nhomakorabeax
o
1
x
定义域:(0,+∞) ,值域:R 过定点(1,0),即x=1时,y=0 在(0,+∞)上递增 在(0,+∞)上递减
2.重要结论 同 正 异 负
a 1 0 a 1 loga x 0 或 x 1 0 x 1 a 1 0 a 1 loga x 0 或 0 x 1 x 1
【练习一】 2.求满足下列不等关系的x的范围. (1) log2(x+1)>log2(1-x); (0,1) (2) log1/3x2>log1/34 (-2, 0)∪(0, 2) (2) log3(2x-1)<1; (0, 2) (3) log1/2(3-2x)>0. (1, 3/2)
探究 观察下图所示函数 y=log2x,y=log0.5x,y=log10x,y =log0.1x 图象,你能得出什么结论?
2 2
【作业】1.P75 B组 3、4 2.求函数
f ( x) log1 ( x 2x 3) 1
2 2

2.2.2《对数函数及其性质》课件

2.2.2《对数函数及其性质》课件

例2 比较下列各组中,两个值的大小: (1) log23.4与 log28.5 (2)log 0.3 1.8与 log 0.3 2.7
(2) 解法1:画图找点比高低
解法2:考察函数y=log 0.3 x , 解:∵0.3< 1,
∴函数y=log 0.3 x ,在区间(0,+∞)上是减函数;
∵1.8<2.7 ∴ log 0.3 1.8> log 0.3 2.7
2
作图步骤: ① 列表 ② 描点 ③ 连线
作y=log2x的图象

x
1/4 1/2 1 2
表 y=log2x -2 -1 0 1
y

2

1 11
42
0 1 23 4
x

-1
线
-2
4… 2…
y
认真观察函数
2
y=log2x 的图象填写下表
1 11 42
0 123 4 -1
x
-2
图象位于y轴右方
定义域 : ( 0,+∞)
1. 两个同底数的对数比较大小的一般步骤:
①确定所要考查的对数函数; ②根据对数底数判断对数函数增减性; ③比较真数大小,然后利用对数函数的增减性判断两 对数值的大小.
课后练习 课后习题
连 线
-1
-2
关于x轴对称
认真观察函数
y log 1 x
2
的图象填写下表
y 2
1 11
42
0 123 4
x
-1
-2
图象位于y轴右方
定义域 : ( 0,+∞)
图象向上、向下无限延伸 值 域 : R
自左向右看图象逐渐下降 在(0,+∞)上是: 减函数

高中数学必修1第2章第2节对数函数课件《对数函数及其性质》(共11张PPT)

高中数学必修1第2章第2节对数函数课件《对数函数及其性质》(共11张PPT)

上是减函数,则a的取值范围.
思考1:已知函数y lg( x 2 ax 1)
(1)当定义域为R时,求a的取值范围; (2)当值域为R时,求a的取值范围.
思考2:
已知二次函数 f (x) x2 (lg a 2)x lgb 满足
f (1) 2 ,且满足对于任意 x R ,恒有
f (x) 2x 成立,求实数 a 、b 的值.
1
不等于零
1、求 y log7 1 3x 的定义域、值域.
2、求 y log2(x2 2x 5) 的定义域、
值域.
练习:
y 1、求:(1) logx1(16 x) 的定义域.
2 f (x) log1 x 3 2的定义域.
2
(3)y log2 (x2 3x 2)的值域.
二 函数的单调性、奇偶性、图象变换问题
、f
x ,其中0
(1) 的大小. 3
a
1,试比
三 含参数的问题:
1.已知 log0.7 2m log0.7 (m 1),求m的取值范围
2、若函数 f (x) loga x a 1 在区间[a, 2a]
a 上的最大值与最小值之差为 1,求 的值.
3、已知
loga
3
0 ,求
2
a
的取值范围.
5
4.已知函数 y loga (2 ax) 在[0,1]
奇偶性
对称性
图象随a
的变化
图象的 分布
非奇非偶函数
x y loga x与y log1 x 关于 轴对称 a X>1时底大图低 X>1时底大图低
x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
x∈(0, 1)时,y>0 x∈(1, +∞)时,y<0.

2.2.2对数函数及其性质(2)

2.2.2对数函数及其性质(2)
3.求函数f ( x) log2(8x x2 7) x [2,6] 的单调区间
(x)
(log2
x 2 )(log2
x )
4
(
2 x 8)
函数的奇偶性
例3、函数 y log 2 (x x2 1)(x R)的奇偶性为
()
A.奇函数而非偶函数 C.非奇非偶函数
B.偶函数而非奇函数 D.既奇且偶函数
虽然课相较线下面对面课堂,缺失一定的互动性和及时反馈,但希沃录播的回放功能,则在一定程度上弥补了课的诸多不足 直播的课程会自动上传到后台,学生可以根据自身学习情况进行回放复习,2019年 11月9日,由北京教育科学研究院与清华大学生态文明研究中心合作举办的第六届北京教育论坛在北京召开,国家教育咨询委员会秘书长张力、联合国教科文组织中国可持续发展教育全国工作委员会执 行主任史根东等人分别做了主题报告,写作素材 https://,但电商购、在线教育、在线文娱、移动办公等宅经济迅速崛起,智能制造、无人配送、医疗健康等新兴产业表现抢眼,创办 的童模星,是首家少儿模特形体礼仪专业机构,立志让世界瞩目邯郸学步让所有孩子彻底告别驼背、抠胸、内外八、O 型腿,激发孩子潜在气场,提升孩子们的气质及自信心,变成走路带风、自信快 乐的孩子!亲爱的宝爸宝妈们如果您的宝宝还不会走路,或者正在学习走路,请远离学步车,别让孩子养成不良的走路习惯,等一等,请让他放慢脚步&;&;亲爱的宝爸宝妈们,美育童优正在组织家长课堂, 期待和大家在课堂上见面,做儿童教育,我们是专业的,更是认真的、用心的,在AI+VR+5G环境下,未来的智慧教育在自主学习、个性赋能和千人千面上会发生质变
二 函数的单调性
例4
1.求函数 y log2 (x2 2x)

18.对数函数及其性质(2)

18.对数函数及其性质(2)
① 1 1 x ② O 1 x
O 1 y 1
y 1 x ④ O
1
③ O 1
x
讲授新课
例1 比较下列各组数中两个值的大小:
(1) log6 7, log6 6
( 2) log 3 , log 2 0.8 ( 3) 6 , 0.7 , log 0.7 6
小结:当不能直接比较大小时,经常 在两个对数中间插入中间变量1或0等, 间接比较两个对数的大小.
对数函数y=logax(a>0,且a≠1)与指数函数y=ax(a>0, 且a≠1)互为反函数. 它们的图象关于 y=x 对称. 1. Y=loga(x-2)的图像过定点 它的反函数过定点 2.Y=ax-2的图像过定点 , ,

返回目录
湖南省长沙市一中卫星远程学校
练习 1. 函数y=x+a与y=logax的图象可能是 y y ( )
定义域:(0, +∞); 值域:R 过点(1, 0),即当x=1时,y=0.
2. 对数函数的性质:
a> 1 0< a< 1yBiblioteka 图 象yO
x
O
x
性 x∈(0, 1)时,y<0; x∈(0, 1)时,y>0 质 x∈(1, +∞)时,y>0. x∈(1, +∞)时,y<0.
在(0,+∞)上是增函数
定义域:(0, +∞); 值域:R 过点(1, 0),即当x=1时,y=0.
a> 1 0< a< 1
y
图 象
y
O
x
O
x
定义域:(0, +∞);
性 质
2. 对数函数的性质:
a> 1 0< a< 1

2.2.2对数函数及其性质

2.2.2对数函数及其性质

2.2.2对数函数及其性质1.对数函数的概念形如y=log a x (a>0且a≠1)的函数叫做对数函数.对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y=log a x中,log a x前面的系数为1,自变量在真数的位置,底数a 必须满足a>0,且a≠1;(3)以10为底的对数函数为y=lg x,以e为底的对数函数为y=ln x.m (1)当(m -1)(n -1)>0,即m 、n 范围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 范围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1;(2)y =11-log a (x +a )(a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的范围.解 (1)要使函数有意义,必须{ 2x +3>0, x -1>0, 3x -1>0, 3x -1≠1同时成立,解得⎩⎨⎧x >-32, x >1, x >13, x ≠23. ∴x >1.∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba,log b a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1, log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba ∈(0,1),logb a ∈(0,1).又a >b a >1,且b >1,∴log b ba<log b a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12. 故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0内恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值范围为2221⎪⎭⎫⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f (x )=lg(ax 2+2x +1),若f (x )的值域是R ,求实数a 的取值范围.错解 ∵f (x )的值域是R ,∴ax 2+2x +1>0对x ∈R 恒成立,即{ a >0 Δ<0⇔{ a >0 4-4a <0⇔a >1. 错因分析 出错的原因是分不清定义域为R 与值域为R 的区别. 正解 函数f (x )=lg(ax 2+2x +1)的值域是R ⇔真数t =ax 2+2x +1能取到所有的正数.当a =0时,只要x >-12,即可使真数t 取到所有的正数,符合要求;当a ≠0时,必须有{ a >0 Δ≥0⇔{ a >0 4-4a ≥0⇔0<a ≤1. ∴f (x )的值域为R 时,实数a 的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(湖南高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a解析 ∵1e<x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0.∴a -b =t -2t =-t >0.∴a >b .c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b . 答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅ 答案 C2.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a 1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1=-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( ) A .c <b <a B .a <b <c C .b <c <a D .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ;又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数. 又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x 下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x 互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 答案 D解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x(x ∈R )的部分对应值如下表:则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1,即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数,一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数,因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值范围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2,又1≤x ≤2,∴0≤log 2x ≤1.∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).对数函数y =log a x (a >0且a ≠1)和指数函数y =a x _(a >0且a ≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.101,53,34,3B .53,101,34,3C .101,53,3,34D .53,101,3,34答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3.方法二过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系: (1)若logm5>logn5,则m n ; (2)若logm0.5>logn0.5,则m n. 答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域:(1)y =3log 2x ;(2)y =log 0.5(4x -3); (3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的范围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义, 必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧x +1>0x +1≠12-x >0,得⎩⎪⎨⎪⎧x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域. 解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1.当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1.综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小: (1)log 0.81.5与log 0.82; (2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =log 0.8x 在(0,+∞)内是减函数, ∵1.5<2,∴log 0.81.5>log 0.82.(2)log 35和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64, ∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小: (1)log 0.52.7,log 0.52.8; (2)log 34,log 65; (3)log a π,log a e (a >0且a ≠1). 解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数. 又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数, ∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数, ∴log 65<log 66=1. ∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数. ∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数. ∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ; 当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值范围.分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a .当a >1时,1a <34<a ,∴a >43.当0<a <1时,1a >34>a ,∴0<a <34.∴a 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性. (2)解决与对数函数相关的问题时要遵循“定义域优先”原则. (3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值范围. 解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎪⎨⎪⎧0<2a +1<10<3a <12a +1<3a,解得⎩⎪⎨⎪⎧ -12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎪⎨⎪⎧ 2a +1>13a >12a +1>3a ,解得⎩⎨⎧ a >0a >13a <1,∴13<a <1. 综上所述,a 的取值范围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。

2.2.2对数函数及其性质

2.2.2对数函数及其性质
y
当0<a<1时
y
1
5.1 5.9
o
1
5.1 5.9 x
o
x
loga5.1< loga5.9
loga5.1> loga5.9
(4) log0.37,log97.
log0.37<log0.31=0, log97>log91=0, ∴log0.37<log97.
5.
log 67 , log 7 6 ;
定义域 : 值 域 :
( 0,+∞) R
在(0,+∞)上是:减函数
(3)根据对称性(关于x轴对称)已知 f ( x) log3 x 的图象,你能画出 y 1
f ( x) log1 x 的图象吗?
3
o
1
x
(4)当 0<a<1时与a>1时的图象又怎么画呢?
对数函数y=logax
(a>0,且a≠1) 的图象与性质
下列是6个对数函数的图象,比较它们底数的 大小
规律:在 x=1的右边看图象,图 象越高底数越小.即图高底小
y loga1 x
y
y loga2 x y loga3 x
0 1
x
y loga4 x
y loga5 x y loga6 x
y
图 形
y=log
2
x
y=log
10
x
0
1
y=log
(2) log a2 a2 1.9 与 log a2 a2 1.7;
(2)∵a +a+2=a+2 +4≥4>1, ∴y= log a2 a2 x 是增函数. 又 1.9>1.7, ∴ log a2 a2 1.9> log a2 a2 1.7.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数及其性质(第二课时)
天津市滨海新区汉沽五中刘学军
一、教材与学情分析:
本节课为人教版(A版)普通高中课程标准实验教科书(必修1)第二章对数函数及其性质的第二课时,其主要包括三个内容,①同底数的两个对数比较大小(例8)②对数函数的实际应用(例9).③反函数.例8中3个小题都是同底的对数函数比较大小,相互联系,逐个深入,利用对数函数单调性求解。

对数函数的实际应用题部分,主要是让学生体会到对数在实际生活中有广泛的应用,培养学生数学应用意识,提高学生应用数学知识解决实际问题的能力.两个内容实际上统一在函数图象和性质的运用上,使得两个内容不是孤立的知识点,而是服务于对数函数的学习.对于反函数课标要求了解指数函数和对数函数是互为反函数,教学中我们将在反函数的教学中对两种函数图象和性质做一个简单梳理,通过学习进一步明确指、对数函数的关系,培养学生联系的观点,在揭示两种函数的关系中,加深对两种函数的认识.
反函数实际上是指、对数函数关系的整体呈现,具体的体现在函数性质的许多方面,教学中通过几何画板课件,直观展示这种数学关系下,函数性质的变化,有利于发展学生数形结合的思想.使学生感受到数与形的统一,内容与形式的和谐.
本节应用题教学中,通过对教材中例题和练习题的改编,使题目在实际生活的背景中体现更丰富的数学原理,更能引导学生综合运用对数函数的知识,解决问题,既激发了学生学数学、用数学的兴趣,也在解题训练上提升了一个台阶.
二、教学目标:
1.知识与技能
①进一步理解对数函数的图象和性质。

②能应用对数函数性质解决实际中的问题.
③了解反函数的概念,理解同底数的指数函数与对数函数互为反函数.在反函数的研究中加深对指数函数和对数函数性质的理解.
2.过程与方法
①在对数函数图象和性质的教学中,进一步领悟函数思想、等价转化、分类讨论、数形结合的思想.
②在反函数的研究过程中,学生通过观察和类比函数图象,体会两种函数性质上的联系.
③培养学生对应用数学知识解决实际问题的能力,在解题中把具体的实际问题化归为数学问题.
3.情感、态度、价值观
①培养学生严谨的科学态度. 启发学生用所获得的结果去解释实际现象.
②用联系的观点分析问题,认识事物之间的相互转化.
三、重点、难点:
重点:对数函数性质的深化及其应用.
难点:1.对反函数概念的理解,并从中理解指、对数函数图象和性质的关系.
2.如何把具体的实际问题化归为数学问题,利用对数函数模型进行求解.
四、教法:启发引导,探索发现(多媒体辅助教学).
五、学法与教具:
学法:通过图象,理解对数函数与指数函数的关系. 强调要有数形结合、分类讨论、转化的数学思想
教具:多媒体、几何画板
六、教学过程:
(一).复习铺垫导入新课
与学生共同回忆对数函数,且的图象和性质,
>1
0<<1




(1)定义域(0,+∞);
(2)值域R;
(3)过点(1,0),即当=1,=0;
(4)在(0,+∞)上是增函数
在(0,+∞)上是减函数
本节课我们继续研究对数函数的性质,并应用这些知识解决一些问题,引入新课,板书课题: 对数函数及其性质(第二课时)
(二).例题讲解,强化性质
教师课件展示两个例题
例8 比较下列各组数中两个值的大小:
(1),(2) ,
(3),
与学生共同完成,教师板书,强化分类讨论的数学思想。

设计意图:例8以渐进式的方式呈现三个题目,(1)(2)注意构造函数应用单调性,(3)在学生认知冲突之后,用分类讨论的思想解题。

例9 溶液的酸碱度是通过pH值来刻画的,pH值的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是mol/L.
(1)已知纯净水中氢离子的浓度为[H+]=10-7mol/L,计算纯净水的pH值.
(2)根据联合国卫生组织的标准,当人体的血液PH值接近7.45的时候,我们可以称之为偏碱性体质,这种体制是最健康的.而中国广西巴马的水不仅矿物质非常丰富,水质PH值为7.5成弱碱性.和人体血液的PH值7.5基本吻合.求巴马水中氢离子的浓度. ()
(3)根据对数函数性质及上述pH值的计算公式,说明溶液的酸碱度与溶液中氢离子的浓度之间的变化关系.
设计意图:例9主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题.把课本(2)改为(1),增加(2),对比两组数据,体会溶液的酸碱度与溶液中氢离子的浓度之
间的变化关系.可以从的单调性去说明,启发学生用所获得的结果去解释实际现象.本题要求学生独立将实际问题转化为数学问题;在练习本上独立解决.教师指正,之后通过对“对数函数”应用(如航天技术、考古学、生物学等领域)的大致介绍,使学生感受数学的应用价值.强调数学应用思想
(II)学生练习:练习一
1.已知,,,,则()
A.B.C.D.
2.比较大小:
(1) ;
(2) .(写出推理过程)
3.声强级L(单位:dB)由公式:给出,其中I为声强(单位:W/m2 ).
(1)平时常人交谈时的声强约为10-6W/m2,求其声强级.
(2)一般正常人听觉能忍受的最高声强为1W/m2 ,能听到的最低声强为10-12W/m2.求人听觉的声强级范围.
设计意图:前两题均是利用了对数函数的图象和性质,但题目编制中注意引导学生转化成例8的问题模型来解决,在强化函数性质同时,培养学生转化与化归的数学思想.第3题本题主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题.(1)直接求函数值,(2)强化对数函数单调性应用,培养学生转化的数学思想.培养学生严谨的学习习惯. (三).深入研究,拓展延伸
(I)教师屏幕展示指数函数和对数函数的简单性质,
指数函数
对数函数
定义域
值域
定点
并组织学生讨论:指、对数函数有何关系:性质中的值是互换的。

教师通过具体的函数引导学生从解析中认识反函数的意义,
(II)以反函数提出的问题为载体,具体研究两种函数性质的一些统一性。

既然指、对数函数中的的值是互换的。

那么他又是如何将这样的特点反映在函数的性质上呢?结合图象以性质中值的关系猜想对数函数的相关性质,并作进一步的归纳:
学生猜想
几何画板演示,直观感知操作确认,并把问题推广到一般,归纳性质:同正异负
教学中关注数形结合的思想,尤其是数形结合具体体现形式,培养学生主动应用数形结合思想解决问题的能力。

(四)课堂练习二
1.判断下列数值的正负:
0;0;0.
2. 设,则()
A a<b<c
B a<c<b
C b<c<a
D b<a<c
研究与探讨(课下完成)
3.比较大小:;.
(五)小结所学,形成系统:带领学生从知识与方法两个方面进行回顾与总结,
指出:在知识方面,本节知道同底的指数函数和对数函数是互为反函数,又通过反函数类比研究了对数函数的一些性质。

在数学思想方法上体会到分类讨论、数形结合、转化与化归在数学解题中的应用,也应用知识解决相关问题的过程中,认识到了对数函数在实际生活中有广泛的应用.实际上对数函数还广泛应用于航天技术、考古学、生物学等领域.
(六)作业:
P74—P75 习题2.2 A组9题;12题,
阅读P76探究与发现“互为反函数的两个函数图象之间的关系”
(七)板书设计:
第七届中小学双优课赛教学设计
对数函数及其性质
(第二课时)
执教教师:刘学军
教师单位:天津市滨海新区汉沽五中。

相关文档
最新文档