中位数与众数
简述众数、中位数和均值的特点和应用场合
简述众数、中位数和均值的特点和应用场合一、众数,即几个数据中出现次数最多的那个数。
二、中位数,是将一组数据的所有数值都排列在它的左边,把数据按大小顺序排成一列,然后取出排在数据第一位的数,就是这组数据的中位数。
1、众数,在统计学上指某一数据的算术平均数( mean)以下的数据值。
例如:设5个人的平均身高是160厘米,其中最高和最矮的两个人分别为165厘米和150厘米,则该数据中的众数为: 5÷( 165+150)=6。
但需要注意的是:当出现小数时,众数不可能等于0,而是为大于0的数。
2、众数的确定方法:①由众数中减去最大的一个数;②将众数逐次减去所有非零数;③取众数的中位数。
例如:设5个人的平均身高是160厘米,其中最高和最矮的两个人分别为165厘米和150厘米,则该数据中的众数为: 5÷( 165+150)=6。
3、中位数,是将一组数据的所有数值都排列在它的左边,把数据按大小顺序排成一列,然后取出排在数据第一位的数,就是这组数据的中位数。
中位数是指把一组数据按大小顺序排列后,位于中间位置上的那个数。
一般地,若在一组数据中出现了三个或三个以上的中位数,那么中间数就叫做中位数,如果在一组数据中只出现一个中位数,那么这个中位数就叫做众数。
4、中位数的应用:⑴用作“平均数”;⑵用作“中数”;⑶用作“和(积)”。
二、中位数,是将一组数据的所有数值都排列在它的左边,把数据按大小顺序排成一列,然后取出排在数据第一位的数,就是这组数据的中位数。
若数据在小数点右边[gPARAGRAPH3],而排位是从小数点后边开始的,我们就说这个数字是从后向前排列的,这个数字的位置叫做“中位数”,简称“中位”。
当然,中位数也是众数。
一般来说,一组数据的众数等于或大于它的中位数,那么这个数据就是中位数。
中位数是近似数。
中位数虽然也叫做中位,但是与众数有着根本的区别。
中位数一般都是正确的,但并不是中位数就是近似数。
众数与中位数
众数与中位数在统计学中,众数和中位数都是用来描述一组数据的集中趋势的统计指标。
虽然它们都可以反映数据的中心位置,但侧重点略有不同。
本文将详细介绍众数和中位数的概念、计算方法以及它们在实际应用中的意义。
一、众数众数是指一组数据中出现次数最多的数值。
它可以是一个数,也可以是多个数。
在统计学中,众数通常用频率最高的数值来代表整组数据的集中趋势。
我们可以通过以下步骤来计算众数:1. 首先,将数据按照从小到大的顺序排列。
2. 然后,找出出现次数最多的数值。
如果存在多个数值出现次数相同且最多,则这些数值都是众数。
例如,对于一组数据:1, 2, 3, 2, 4, 2, 1, 3, 2, 5,我们可以看到数值2出现的次数最多,因此众数为2。
众数在实际应用中具有重要意义。
它可以帮助我们了解数据中的常见趋势和特征,对于市场调研、产品设计等都具有指导作用。
此外,众数也可以用来进行数据的分类和分组。
二、中位数中位数是指一组数据中位于中间位置的数值。
它将数据按照从小到大的顺序排列,在中间位置的数就是中位数。
计算中位数的方法如下:1. 首先,将数据按照从小到大的顺序排列。
2. 如果数据个数为奇数,中位数即为排列后位于中间位置的数值。
3. 如果数据个数为偶数,中位数为排列后中间两个数值的平均值。
例如,对于一组数据:1, 2, 3, 4, 5,可以发现数据个数为奇数,中位数为3。
而对于一组数据:1, 2, 3, 4,数据个数为偶数,中位数为(2+3)/ 2 = 2.5。
中位数在统计学中被广泛应用。
它具有一定的鲁棒性,能对数据中的极端值产生一定的抵抗能力。
因此,中位数经常被用来代表一组数据的中心位置,尤其适用于描述不对称分布的情况。
三、众数与中位数的比较众数和中位数都是用来描述数据的中心趋势的统计指标,但二者又有一些差异。
下面是一些比较众数和中位数的要点:1. 概念不同:众数是指数据中出现次数最多的数值,而中位数是指位于中间位置的数值。
众数,中位数,和均值的特点和应用场合
众数,中位数,和均值的特点和应用场合
众数:一列数据中,相同的数的个数最多的叫那个数叫众数,可以是多个。
平均数:一列数据的和与数据个数的比值叫平均数。
中位数:一类数按照从小到大排列好后,如果是奇数个,则最中间那个数叫中位数;如果是偶数个,则最中间的2个数的平均数叫中位数
1,众数是总体中出现次数最多的标志值。
反映了标志值分布的集中趋势,是一种由位置决定的平均数。
可以没有众数也可有两个。
众数是一种位置代表值,它的应用场合比较有限。
如:在编制物价指数时,农贸市场上某种商品的价格常以很多摊位报价的众数值为代表。
2,中位数就是将总体中各数据排序后,坐落于中点边线的。
中位数也充分反映标志值的分散趋势,也就是由边线同意的平均数。
例如,必须在若干个连锁店间挑选仓库或商品配送中心就可以利用这一性质,因而在工程设计中存有应用领域价值。
3,均值即算术平均数,是数据集中趋势的最主要测度值。
它反映了一组数据中心点或代表值,是数据误差互相抵消后客观事物必然性数量特征的反映。
总之,众数最容易计算,但不是永远存在,同时作为集中趋势代表值应用的场合较少;中位数很容易理解、很直观,它不受极端值的影响,这既是它有价值的方面,也是它数据信息利用不够充分的地方;均值是对所有数据平均后计算的一般水平代表值,数据信息提取的最充分。
特别是当要用样本信息对总体进行推断时,均值就更显示出它的各种优良特征。
均值在整个统计方法中应用最广,对经济、管理和工程等实际工作也是最为重要的一个代表值和统计量。
众数、中位数、平均数
0.006 0.004
40 50 60 70 80 90 100
主页
成绩
§2.2.2用样本的数字特征估计总体的数字特征
山东省临沂一中
(2)左边三个小矩形面积之和为:
0. 04 0.06 0.2 0.3 0.5,
而左边四个小矩形面积之和为:
0. 04 0.06 0.2 0.3 0.6 0.5,
这组数据的平均数是
1.5 2 1.6 3 1.9 x 1.69 17
知识探究(一):众数、中位数和平均数
思考1:在城市居民月均用水量样本数据的频率 分布直方图中,你认为众数应在哪个小矩形内? 由此估计总体的众数是什么?
频率 组距 0.5 0.4 0.3 0.2 0.1
5 17 33
0.05 0.17 0.33
[7.5,8)
[8,8.5) [8.5,9)
合 计
37
6 2 100
0.37
0.06 0.02 1
解法1:总睡眠时间约为 6.25×5+6.75×17+7.25×33+7.75×37+8.25× 6+8.75×2=739(h) 故平均睡眠时间约为7.39h.
人数
工资
1
5500
1
5000
2
3500
1
3000
5
2500
3
2000
20
1500
1.求该公司职工月工资的平均数、中位数、众数. 2.若董事长、副董事长的工资分别从5500元、5000元提升 到30000元、20000元,那么公司职工新的平均数、中位数 和众数又是什么? 3.你认为哪个统计量更能反映这个公司员工的工资水平?
初中数学中位数和众数
初中数学中位数和众数中位数和众数都是描述一组数据集中趋势的统计指标。
中位数是指数据集中的中间值,也叫中间值。
一个数据的中位数说明了该数据的典型特征。
有了这个特征,我们可以将一组数据分为几类,从而把比较集中的一类作为计算中位数的依据。
通常情况下,如果一个数列中连续几个数字都是它的中位数,就可以说这个数列是收敛的;如果连续几个数都是它的众数,就可以说这个数列是发散的。
众数和中位数都可以用来计算平均数和方差。
一、中位数中位数是一个数列,即所有数字按照从小到大的顺序排列,中间数(即中位数)的值就是这组数据的平均数。
如果把所有数字都按大小顺序排列,中间数也就是中位数,它位于平均数和中位数之间。
例:把两个班的数学成绩整理好,平均分为a和b两组,计算出a组和b组的中位数。
分析:按照大小顺序排列后,中间两个数分别是a和b,这两个数是所有数据的平均数。
所以a组中的中间两个数字就是a组的中位数。
二、众数在一组数据中,如果某一组数据的平均数与众数之和都位于中位数附近,那么这一组数据就是收敛的;如果某一组数据的平均数与众数之和都位于中位数附近,那么这一组数据就是发散的。
如果我们将数据按大小排序,那么我们看到的是收敛的序列和发散的序列。
举个例子,小明在考试中数学考了98分,语文考了95分,小东数学考了98分,小明和小东的语文成绩都是100分,数学成绩是两位数;小明和小东的语文成绩都是90分。
三、平均数平均数是反映数据集中趋势的统计指标,它是对一组数据按一定的标准进行整理,并求出算术平均数或几何平均数后所得的平均数。
例如,计算全班50名同学平均成绩,计算结果是平均每门功课成绩为62分,可以认为这个班的数学成绩是比较平均的。
平均数还可以用来比较不同水平的人之间的差别。
例如,把一个班级中学生的平均成绩和全班平均成绩相比,可以认为这个班级中每个学生的平均成绩比全班平均成绩高。
平均数反映了一组数据中数值大小的变化情况。
但是它不能表示数值之间的变化关系,例如把100个人的成绩加起来求平均值,得到结果是100/20=1,这说明每个人的成绩相差不大。
众数中位数算术平均数三者之间的关系
众数中位数算术平均数三者之间的关系答:我们要探讨众数、中位数和算术平均数三者之间的关系。
首先,我们需要了解这三个概念的定义:1. 众数:在一组数据中出现次数最多的数。
2. 中位数:将一组数据从小到大排列后,位于中间位置的数。
如果数据量是奇数,中位数是中间那个数;如果数据量是偶数,中位数是中间两个数的平均值。
3. 算术平均数:所有数据的和除以数据的数量。
为了更好地理解它们之间的关系,我们将通过一个例子来解释:假设我们有一个包含以下数字的数据集:[1, 2, 2, 3, 4, 4, 4, 5]。
1. 众数是4,因为它在这个数据集中出现了3次,比其他任何数字都多。
2. 中位数是3,因为当我们把数据从小到大排列后(1, 2, 2, 3, 4, 4, 4, 5),中间的数字是3。
3. 算术平均数是3.75,计算方式为 (1 + 2 + 2 + 3 + 4 + 4 + 4 + 5) / 8 = 3.75。
现在,我们来探讨它们之间的关系:1.众数与中位数:在某些情况下,众数和中位数可能是相同的。
例如,如果数据集中所有的数值都相同,那么众数和中位数都是相同的。
但在其他情况下,它们可能不同。
例如,在我们的例子中,众数是4而中位数是3。
2.众数与算术平均数:众数不一定等于算术平均数。
在我们的例子中,众数是4而算术平均数是3.75。
如果众数在数据集中多次出现,并且其他数值只出现一次或少数几次,那么众数可能会接近算术平均数。
但如果众数在数据集中多次出现,并且其他数值也出现多次,那么众数和算术平均数可能会有较大的差异。
3.中位数与算术平均数:中位数和算术平均数也不一定相等。
在我们的例子中,中位数是3而算术平均数是3.75。
如果数据集中的数值比较均匀分布,那么中位数和算术平均数可能会比较接近。
但如果数据集中的数值有较大的差异或偏向某一端,那么中位数和算术平均数可能会有较大的差异。
总结:众数、中位数和算术平均数是描述一组数据的三个不同统计量,它们各自有其独特的意义和用途。
众数,中位数,平均数的特点和应用场合
众数,中位数,平均数的特点和应用场合
问题:众数,中位数,平均数的特点和应用场合
回答:众数、中位数和平均数具有以下特点和应用场合:
1.众数:
(1)特点:是一组数据中出现次数最多的那个数值。
(2)应用场合:常用于需要了解数据中最普遍、最常见的情况,例如在市场
调查中了解哪种产品最受消费者欢迎,在统计某种现象最典型的表现等。
2.中位数:
(1)特点:按顺序排列的一组数据中居于中间位置的数,如果数据有奇数个,
则正中间的数字为中位数;如果数据有偶数个,则中间两个数的平均数为中位数。
它不受极端值的影响较大。
(2)应用场合:在一些数据分布偏态较大,存在极端值时,中位数能更好地
反映数据的集中趋势,如收入分配的研究等。
3.平均数:
(1)特点:反映一组数据的平均水平,容易受极端值影响。
(2)应用场合:应用广泛,比如计算平均成绩、平均产量、平均工资等,能
总体上反映数据的一般水平,但对极端值较敏感。
众数,中位数,平均数,标准差
巧合 频率 组距
分组 [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5]
频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02
0.50 0.40 0.30 0.20 0.10
四
众数、中位数、平均数的简单应用
例1 某工厂人员及工资构成如下:
人员 周工资 人数 合计 经理 2200 1 2200 管理人员 250 6 1500 高级技工 220 5 1100 工人 200 10 2000 学徒 合计 100 1 23 100 6900
(1)指出这个问题中周工资的众数、中 位数、平均数 (2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
? 16
找到啦!有区别了!
上述各偏差的平方和的大小还与什么有关?
——与射击次数有关!
所以要进一步用各偏差平方的平均数来衡量数据的稳定性
设一组数据x1、x2、…、xn中,各数据与它们的平均 数的差的平方分别是(x1-x)2、(x2-x)2 、… (xn-x)2 , 那么我们用它们的平均数,即用
S2=
分析:众数为200,中位数为220,
平均数为300。 因平均数为300,由表格中所列出的数据 可见,只有经理在平均数以上,其余的人 都在平均数以下,故用平均数不能客观真 实地反映该工厂的工资水平。
教练的烦恼
甲,乙两名射击手的测试成绩统计如下:
第一次 第二次 第三次 第四次 第五次
甲命中环数 乙命中环数
O
0.5
1
1.5
2
数据的统计 (标准差,众数、中位数、平均数)
解:用计算器计算可得:
x甲 25.401, x乙 25, 406; s甲 0.037, s乙 0.068.
从样本平均数看,甲生产的零件内径比乙生产 的更接近内径标准(25.40mm),但是差异很小; 从样本标准差看,由于 s甲 s乙 , 因此,甲生产的零件内径比乙的稳定程度高 得多.于是,可以作出判断,甲生产的零件的质 量比乙的高一些.
解: 依题意计算可得 x1=900 x2=900
s1≈23.8
s2 ≈42.6
甲乙两种水稻6年平均产量的平均数相同,但 甲的标准差比乙的小,所以甲的生产比较稳定.
解 : (1) 平均重量约为496.86 g , 标准差约为6.55
(2)重量位于(x-s , x+s)之间有14袋白糖,所占 百分比为66.67%.
分析:每一个工人生产的所有零件的内径尺寸组成一 个总体.由于零件的生产标准已经给出(内径25.40mm), 生产质量可以从总体的平均数与标准差两个角度来衡 量.总体的平均数与内径标准尺寸25.40mm的差异大 时质量低,差异小时质量高;当总体的平均数与标准尺 寸很接近时,总体的标准差小的时候质量高,标准差大 的时候质量低.这样,比较两人的生产质量,只要比较他 们所生产的零件内径尺寸所组成的两个总体的平均数 与标准差的大小即可.但是这两个总体的平均数与标 准差都是不知道的,根据用样本估计总体的思想,我们 可以通过抽样分别获得相应的样体数据,然后比较这 两个样本的平均数、标准差,以此作为两个总体之间 的估计值.
2、中位数 :将一组数据按大小依次排列,把处 在最中间位置的一个数据(或两个数据的平均数) 叫做这组数据的中位数。
3、平均数:一组数据的算术平均数,即
x = (x1+x2+……+xn) /n
众数,中位数,平均数
如何在频率分布直方图中确定中位数
分组 [0, 0.5) [0.5, 1)
频率 0.04 0.08
把频率分布直方图分成两 个面积相等部分的平行于 y轴的直线的横坐标。
[1, 1.5) 0.15
[1.5, 2) 0.22
[2, 2.5) 0.25
[2.5, 3) 0.14
1 100
(
x1
ห้องสมุดไป่ตู้
x2
x100 )
1 100
(x1
x4) (x5
x12) (x99
x100 )
4 100
x 14
8 100
x 512
2 100
x 99100
0.04 0 0.5 0.08 0.5 1 0.02 4 4.5
(1) 1 ,2,3,3,3,4,6,8,8,8,9,9 中位数是:5
(2) 1 ,2,3,3,3,4,8,8,8,9,9 中位数是:4
如何在频率分布直方图中确定众数
频率 组距
众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。
0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
5.假设你是一名交通部门的工作人员。 你打算向市长报告国家对本市26条公路 项目投资的平均资金数额,其中一条新 公路的建设投资为2 200万元人民币,另 外25个项目的投资在20万与100万.中 位数是25万,平均数是100万,众数是 20万元。你会选择哪一种数字特征来表 示每一个项目的国家投资?你选择这种 数字特征的缺点是什么?
平均数,众数和中位数
平均数、众数、中位数
1、平均数:一组数据中,每个数相加,除以个数,得到的数。
平均数是唯一的。
例如:5 7 6 3 8 10 15 ,这组数据的平均数是
(5+7+6+3+8+12+15)÷7=8
2、众数:一组数据中,出现次数最多的数就叫这组数据的众数。
众数可以是一个,可以是多个,也可以没有。
例1:如果有一个数出现次数最多的,那么这个数就是众数,1,2,3,3,4的众数是3。
例2:如果有两个或两个以上个数出现次数都是最多的,那么这几个数都是这组数据的众数。
1,2,2,3,3,4的众数是2和3。
例3:如果所有数据出现的次数都一样,那么这组数据没有众数。
1,2,3,4,5没有众数。
1,1,2,2,3,3,4,4,5,5,6,6,没有众数
3、中位数:当一组数据从小到大排列后,最中间的数据为中位数(偶数个数据的最中间两个的平均数).一组数据的中位数是唯一的
例1(数据个数为奇数):在7 5 2 4 3 1 6 这组数据中,从小到大排列后,1 2 3 4 5 6 7 ,最中间的是4,所以中位数是4
例2(数据个数为偶数):在4 2 5 4 3 3这一组数据中,从小到大排列后,2 3 3 4 4 5,最中间的是3和4,所以中位数是(3+4)÷2=3.5。
中位数和众数
中位数和众数中位数(Median)在统计学中,中位数是指将一组数据按照从小到大的顺序排列后,位于中间位置的数值。
当数据集的样本数量为奇数时,中位数为中间位置的数值;当数据集的样本数量为偶数时,中位数为中间两个数的平均值。
计算中位数的步骤如下:1.将数据集按照从小到大的顺序排列。
2.判断数据集的样本数量是奇数还是偶数。
3.如果样本数量为奇数,则中位数为排序后的中间位置的数值。
4.如果样本数量为偶数,则中位数为排序后中间两个数的平均值。
举个例子来说,对于数据集 [1, 2, 3, 4, 5],其中位数为 3,因为它位于排序后的中间位置。
众数(Mode)在统计学中,众数是指在一组数据中出现频率最高的数值。
一个数据集可能有多个众数,也可能没有众数。
计算众数的步骤如下:1.将数据集中的每个数值进行计数。
2.找到出现频率最高的数值。
3.如果有多个数值的出现频率都是最高的,则这些数值都被视为众数。
举个例子来说,对于数据集 [1, 2, 2, 3, 4, 4, 5],众数为 2 和4,因为它们的出现频率最高。
中位数与众数的应用中位数和众数是统计学中常用的概念,在数据分析、机器学习等领域有着广泛的应用。
中位数常用于描述数据的中心趋势。
与平均值不同,中位数对异常值的影响较小,能够更好地反映数据的整体分布情况。
在分析一组数据时,了解数据的中位数可以帮助我们判断数据是否存在偏斜或异常情况。
众数常用于描述数据的分布特征。
在市场调研、投资分析等领域,了解产品销售数量、用户偏好等数据的众数,可以帮助企业了解市场需求,制定相应的营销策略。
中位数与众数的计算方法在实际应用中,计算中位数和众数的方法可以通过编程语言进行实现。
下面以 Python 语言为例,展示如何使用代码计算中位数和众数:```python import statistics计算中位数data = [1, 2, 3, 4, 5] median = statistics.median(data) print(。
简述众数 中位数 和平均数的特点
简述众数中位数和平均数的特点众数、中位数和平均数是统计学中常用的描述数据集中趋势的统计量。
它们的特点如下:
1. 众数:众数是数据中出现次数最多的数值,可以是一个数值,也可以是多个数值。
众数的特点是能够反映数据的最常见取值,常用于描述数据集中的典型值。
例如,对于数据集{1,2,2,3,4,4,4,5},众数为4。
2. 中位数:中位数是把数据按照大小顺序排列后,位于中间位置的数值。
如果数据集中的数据个数为奇数,那么中位数就是唯一的中间数;如果数据集中的数据个数为偶数,那么中位数是中间两个数的平均值。
中位数的特点是不受极端值的影响,所以比平均数更能反映数据集的整体情况。
例如,对于数据集{1,2,2,3,4,4,4,5},中位数为。
3. 平均数:平均数是数据集中所有数值的总和除以数据的个数。
平均数的特点是能够反映数据的总体水平,常用于描述数据的集中程度。
然而,平均数容易受极端值的影响,因此在有偏数据或异常值较多的情况下,平均数可能不太准确。
例如,对于数据集{1,2,2,3,4,4,4,5},平均数为3.125。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数、中位数及众数的区别与联系
名称 区别
(1)平均数的大小由一组数据中所有 数据决定,它的值容易受到个别极端数 据的影响;(2)一组数据中平均数唯 一;(3)平均数不一定是原数据中的 数据 (1)某些数据的变动对中位数没有影 响,当一组数据中存在个别极端数据时 ,可用中位数来描述其集中趋势;(2 )一组数据中中位数唯一;(3)中位 数不一定是原数据中的数据 (1)众数着眼于对各数据出现次数的 考察,其大小只与这组数据中的部分数 据有关,当一组数据中有不少数据多次 重复出现时,其众数往往是我们关心的 一种统计量;(2)一组数据中众数不 一定唯一;(3)众数一定是原数据中 的数据
2
23
5
23.5
11
24
7
24.5
3
25
1
(1)你认为婷婷妈妈对这组数据的平均数、中 位数和众数三者中哪种统计量感兴趣?为什么? (2)你能根据上面的数据为婷婷妈妈提供怎样 的进货建议?
1.一名射击爱好者5次射击的中靶环数如下:6,7, 9,8,9,这5个数据的中位数是( A .6 B.7 C .8
计,每人投十个,投进篮筐的个数依次为:5,5,6,
7,6,6,7,8,9,则这组数据的中位数和众数分
别是(
B
)
B .6 ,6 C .7 ,6 D .7 ,7
A .5 ,6
4.如图是根据某班50名同学一周的体育锻炼情况
绘制的条形统计图,则这个班50名同学一周参加体
8 育锻炼时间的众数是____ 小时.
5.某校举办“成语听写大赛”,15名学生进入决赛
,他们所得分数互不相同,比赛共设8个获奖名额,
某学生知道自己的分数后,要判断自己能否获奖,他
应该关注的统计量是
中位数 .(填“平均数”或
“中位数”或“众数”)
课堂小结
中位数 将一组数据按大小顺序排列,如果数据个数为 奇数,那么处在最中间的一个数据就是该组数 据的中位数,如果数据的个数为偶数,那么最 中间两个数据的平均数就是该组数据的中位数.
请同学们根据下表中的数据解答下面问题:
成绩
2 1
10 1
78 1
80 22
90 4
100 1
人数
(1)将学生成绩按从高到低的顺序排列,30名 学生中处于中间位置的是什么位置?处于中间位 置的学生考试分数是多少?假如要你给他的考试 分数命名,你会如何命名?并给它下定义? (2)30名学生的考试分数中,哪一个分数出现 的最多?假如要你给这个出现次数最多的分数命 名,你又会如何命名?并给它下定义?
考考你
某次数学考试,婷婷得了78分.全班共30人,其他
同学的成绩为1个100分,4个90分,22个80分,1个2分
和1个10分。
婷婷计算出全班的平均分为77分,所以婷婷告诉
妈妈说,自己这次数学成绩在班上处于 “ 中上水 平 ”.
婷婷的说法合理吗?为什么?
1、理解中位数、众数的概念,会求一组数 据的中位数、众数。 2、体会“众数”“中位数”“平均数”各 自的特点,明确他们之间的联系与区别, 并 能选择众数、中位数或平均数来解决实 际问题。
联系
(1)平均数、中位数及 众数都是描述一组数据的 集中程度的统计量,其中 以平均数最为重要,其应 用最为广泛(2)在实际 问题中,求得的平均数、 中位数和众数都有单位, 它们的单位都与原数据的 单位相同
平均数
中位数
众数
典例分析
例1:在一次马拉松比赛中,抽得12名选手的 成绩如下(单位:min): 136 140 129 180 124 154 146 145 158 175 165 148 (1)样本数据(12名选手的成绩)的中位数是多少? 解:先将样本数据按照由小到大的顺序排列: 124,129,136,140,145,146,148,154, 158,165,175,180。 则这组数据的中位数为处于中间的两个数146, 148的平均数,即(146+148)÷2=147(min). 因此样本数据的中位数是147 min.
小组合作
(1)理解中位数概念 1.中位数的意义是什么? 2.定义中为什么要分数据的个数是奇数和偶数? 3.求中位数: 首先应该做什么工作?然后做什么?特殊情况应 该怎么处理? (2)解读众数概念 1.众数的意义是什么? 2.求众数要注意什么?
知识聚焦
• 一般的,n个数据按大小顺序排列,处于最中间位置的一 个数据(或最中间两个数据的平均数)叫做这组数据的中位 数(median)
• 一组数据中出现次数最多的那个数据叫做 这组数据的众数(mode).
测一测
求下面数据的平均数、中位数和众数。 (1)1, 2, 2, 2, 3; (2)5, 3, 2, 3, 2; (3)3,-2, 5, 9,-1,4
答: (1)平均数是2;中位数是2;众数是2. (2)平均数是3;中位数是3;众数是2和3. (3)平均数是3;中位数是3.5;没有众数.
(2)一名选手的成绩是142 min,他的成绩 如何?
答:这名选手的成绩是142 min,小于中位数
147 min,可以推测他的成绩比一半以上选手
的成绩好.
例2:婷婷的妈妈是一位皮鞋的销售部经理,在 一段时间内她们的鞋店销售了某种女鞋30双, 各种尺码的销售量如下:
尺码/厘米 22
数量/双 1
22.5
众数
一组数据的众数可能不止一个,也可能没有.
布置作业
《基础训练》 必做题 :基础园和缤纷园 选做题:源自慧园C) D .9
2.(2014·武汉)在一次中学生田径运动会上,参加 跳高的15名运动员的成绩如表:
成绩(m) 人数 1.50 1 1.60 2 1.65 4 1.70 3 1.75 3 D 1.80 2
那么这些运动员跳高成绩的众数是(
A .4 B.1.75 C.1.70 D.1.65
)
3.某班体育委员对九位同学定点投篮进行数据统