机器人学-并联机构与并联机器人

合集下载

并联机器人原理

并联机器人原理

并联机器人原理
并联机器人是一种由多个机械臂和连接它们的关节组成的机器人系统。

与传统的串联机器人不同,每个机械臂都可以独立运动,同时协同工
作以完成任务。

这种并联结构为机器人带来了更高的精度、速度和灵
活性。

并联机器人由基座、运动平台、连杆和关节组成。

基座是机器人的固
定部分,通常安装在地面上或其他支撑物上。

运动平台是相对于基座
移动的部分,它支撑着连杆和工具端执行器。

连杆是连接运动平台和
工具端执行器的部分,它们通常由多个轴组成,并且能够扭曲和伸缩
以适应不同的任务需求。

关节是连接连杆和运动平台或工具端执行器
的旋转点,使得整个系统能够实现各种运动。

并联机器人采用了“约束自由度”控制策略,即通过将一个或多个自
由度限制在特定范围内来控制整个系统。

这种控制方式可以减少系统
中不必要的自由度,并提高精度和稳定性。

并联机器人还可以通过使用力传感器实现力控制。

力传感器可以检测
到机器人与工作物件之间的力和扭矩,并将其转换为电信号,以便机
器人系统可以实现精确的力控制和力反馈。

总之,通过并联结构和约束自由度的控制策略,以及使用力传感器实现精确的力控制和反馈,使得并联机器人在工业生产、医疗保健、科学研究等领域具有广泛应用前景。

第11章-并联结构

第11章-并联结构








11.1概述 7. 医疗器械 在医疗领域,由于要求定位精度高、安全度高等因素,并/混联机构常常 出现在各类显微外科手术机器人如脑外科、腹腔外科、矫形外科、眼科、 泌尿外科等中。例如在机器人末端经常采用基于VCM的并联设计方法以 提供机器人的操作安全性(图11-8)。
图11-8 2-DOF外科手术用RCM机械手
(11-5) (11-6)
s=d-
l +1 F
因此,一旦已知 l和 F 时,就可得到支链的自由度数 s,进而可以枚举分支运 动链。例如, d=F=3 时, s=3 ,支链的运动链可以是 RRR 、 RPR 、 PPR 、 PRR 等。
l=6, F= 3 时, s=5 ,支链的运动链可以是 RPS、 PRS、 RRS 、 UPU 等。







11.1概述
4. 并联机床(PKM) PKM是一类以并联机构作为部分或全部进给机构的机电一体化装置。 具有结构简单、制造方便、刚性好、重量轻、速度快、精度高、价格 低等优点。







11.1概述 5. 多维感测元件与交互装置 用在多维力与力矩传感器中也是并联机构应用较为成功的例子之一。 很多并联机构以传感器敏感元件的形式出现。 。







11.1概述 8.仿生装置 许多自然设计都采用了并联构型,因此将并联机构用在仿生装置中确 是天经地义的事情。如多指灵巧手、各类仿生关节、仿生腰、仿生脊 柱、甚至仿生腿、仿生毛虫等都是并联机构同仿生学相结合的产物 (图11-9,图11-10)。

工业机器人技术基础 工业机器人的分类-根据拓扑结构分类

工业机器人技术基础 工业机器人的分类-根据拓扑结构分类
• 并联机器人结构形式:
• 当末端执行器通过至少两个独立运动链和基座相连,且 组成一闭式机构链时,所获得的机器人结构称为并联结 构。
• 并联机器人结构有两个或两个以上串联机器人来支撑末 端执行器
并联结构机器人
• 并联机器人特点:
• 并联结构承载能力强,定位精度高 • 与串联机构相比刚度大,结构稳定 • 运动负荷小 • 在位置求解上,串联机构正解容易,但反解十分困难,
工业机器人的分类
——根据拓扑结构分类
学习目标
串联结构机器人
串联结构机器人结构形式、特点、应用
并联结构机器人
并联结构机器人结构形式、特点、应用
混合结构机器人
混合结构机器人结构形式、特点
串联结构机器人
• 串联机器人结构形式:
• 当各连杆组成一开式机构链时,所获得的机器人结构称为串 联结构
• 一般来说,串联机器人每个连杆上都要安装驱动器,通过减 速器来驱动下一个连杆
混合结构机器人
• 混合机器人优点:
• 既有并联机构刚度好的优点,又有串联机构工作空间大的优点,能充分发挥串、并联 机构各自的优点,进一步扩大机器人的应用范围,提高机器人的性能。
总结
1.了解串联结构机器人的结构形式、特点和应用 2.了解并联结构机器人的结构形式、特点和应用 3.了解混合结构机器人的结构形式和特点
混合结பைடு நூலகம்机器人
• 混合机器人结构:
• 一种将串联和并联有机结合起来的机构,即为混联式机构。 • (1)并联机构通过其他机构串联而成
防护罩 并联机构
末端操作器
电机
腰部
基座
混合结构机器人
• 混合机器人结构形式:
• 一种将串联和并联有机结合起来的机构,即为混联式机构。 • (1)并联机构通过其他机构串联而成 • (2)并联机构直接串联在一起 • (3)在并联机构的支链中采用不同的结构

机器人基础知识—零基础入门

机器人基础知识—零基础入门

《机器人基础》第5章串/并联机器人5.1串联机器人简介5.1.1串联机器人的结构组成5.1.2串联机器人的运动控制5.2并联机器人简介5.2.1并联机器人的结构组成5.2.2并联机器人的运动控制5.3经典应用案例5.3.1串联机器人应用案例5.3.2并联机器人应用案例5.1串联机器人简介(1P2)在智能制造蓬勃发展的同时工业机器人的发展越来越快速,各行各业对机器人机械学的发展也越来越重视,从大范围来分机器人机械学可分为串联机器人、并联机器人和串并联混合的混联机器人这三大类型。

串联机器人一般是由基座、腰关节、腰部、肩关节、大臂、小臂、腕关节、手腕以串联的形式连接而形成的开链式结构。

开链是指一种不含回路的运动链,也称为开式运动链。

如图5.1所示,由运动副和构件以串联的形式组成的开链称之为单个开式链,即单开链(single pended chain,SOC)。

一般而言串联机器人通常是由单开链组成的。

该类机器人结构简单,灵活性大,易控制、且具有很好的规避功能。

常被应用各种领域,如工业中的机械手夹具、航天领域中导航陀螺仪和生活中的雷达天线等。

如果多个单开链互相结合在一起,就形成了树状开链,如图5.2所示。

除了线性方面,在平面和空间上,单开链有平面开链和空间开链之分。

平面单开链是指所有运动副都在同一个平面内运动,平面串联机器人就是平面单开链组成的串联机器人;而空间单开链式指运动副在不同的平面内运动,则空间串联机器人就是由空间单开链组成的串联机器人。

(1P15)近年来研究人员对机器人的各个部件以及各个部件的性能进行了特殊研究,改进了机器人各部件的结构使其获得更好的运动性能,这些研究对推广串联机器人的广泛运用有重要的意义。

图 5.1单开链图 5.2树状开链除了上述串联机器人的优点,也有明显的不足,如各关节均为悬臂结构,这就意味着在相同的自重条件或者体积下与并联机器人相比,串联机器人的承重能力更低,刚度也下降,这就使得串联机器人的各个关节误差的累计与放大,在误差大的同时它的精度就会减低。

机器人学-并联机构的基础理论

机器人学-并联机构的基础理论

并联机构的逆解软件
机床尺寸 标准C程序
控制系统界面操作步骤
• 进入控制系统界面后,先进行文件管理操作,完成数控 文件录入;
• 然后进行回零操作,建立机床坐标系; • 接着进行文件操作,将第一步完成的数控程序装入; • 通过单步或连续运行,完成原定机床的运动。 • 完成运动后,进行回零操作,使机床回到初始位置。
2.2 运动学方程建立-正解方程
2.3 速度方程
2.3 速度方程
3. 并联机构终端的自由度数确定
3. 并联机构终端的自由度数确定
3. 并联机构终端的自由度数确定
M 3(8 9 1) 9 3
空间可重构并联机构搭建
实际装置RPKM(II)
实际装置RPKM(II)
实际装置RPKM(II)
并联机构的分析和搭建 ——基础理论
1. 并联机构的定义
定义:只要是多自由度,驱动器分配在不同环路上的闭 式多环机构均可称为并联机构(Parallel manipulator; Parallel mechanism; Stewart platform)。 特点: (1)多自由度, (2)闭式,多环机构
并联机构的基本分析方法
1. 一种六自由度并联机构
1.1 机构模型
B3 B4
Y
B2 B
B1 X
B5
B6
T3 T4
T5
y
T2
T1
T
x
T6
1.2 运动学方程建立
动静平台坐标表示
1.2 运动学方程建立-逆解方程
旋转矩阵(欧拉角表示方法)
根据旋转变换,动平台坐标系中动平台各铰链位置矢量在基础坐标系中表示为 运动平台上各铰接点在基础坐标系中坐标为: 支链矢量表示为: 运动学逆解:

并联机器人的运动学分析

并联机器人的运动学分析

并联机器人的运动学分析一、引言机器人技术作为现代工业生产的重要组成部分,已经在汽车制造、电子设备组装、医疗器械等领域发挥着重要作用。

而在机器人技术中,并联机器人以其独特的结构和运动方式备受关注。

本文将对并联机器人的运动学进行深入分析,探讨其工作原理及应用前景。

二、并联机器人的运动学模型并联机器人由多个执行机构组成,这些执行机构通过联接杆件与运动基座相连,使机器人具有多自由度运动能力。

为了对并联机器人的运动学进行建模,我们需要确定每个执行机构的运动关系。

其中,分析最为常用的是基于四杆机构的并联机器人。

1. 四杆机构的运动学模型四杆机构是一种由两个连杆和两个摇杆组成的机构,通过这些部件的相对运动实现机构的运动。

在并联机器人中,常见的四杆机构包括平行型、等长型等。

以平行型四杆机构为例,我们可以将其简化为平面结构,并通过设定适当的坐标系进行建模。

在平行型四杆机构中,设两个连杆为L1和L2,两个摇杆为L3和L4。

定义坐标系,以机构的连杆转轴为原点,建立运动坐标系OXYZ。

假设L3的转角为θ3,L4的转角为θ4,连杆L1和L2的长度分别为L1和L2,则可以通过几何关系得到机构的运动学方程。

2. 并联机器人的运动学模型并联机器人由多个四杆机构组成,各个四杆机构之间通过杆件连接,使得整个机器人能够实现更复杂的运动。

以三自由度的并联机器人为例,每个四杆机构的连杆长度、摇杆转角都有一定的自由度限制。

通过对每个四杆机构的运动学模型进行分析,可以得到整个并联机器人的运动学方程。

三、并联机器人的动力学分析除了运动学分析,动力学分析也是对并联机器人进行研究的重要方向。

动力学分析包括对并联机器人在运动过程中的力矩、加速度等动力学参数的研究,是实现机器人精确控制和安全运行的基础。

1. 动力学模型的建立在并联机器人的动力学分析中,我们通常采用拉格朗日方法建立动力学数学模型。

通过拉格朗日方程可以建立机器人运动学和动力学之间的联系,从而实现对机器人运动过程中各个关节力矩的估算。

并联机器人控制

并联机器人控制

数据融合
将多个传感器的数据进行融合,以获得更准 确的环境感知信息。
数据传输
将处理后的数据传输到控制系统中,以实现 实时的机器人控制。
感知系统在控制中的应用
01
路径规划
根据传感器获取的环境信息,规 划机器人的安全、高效的运动路
径。
03
障碍物规避
通过传感器检测到的障碍物信息 ,实现机器人的自主避障功能。
算法库
选择或开发适合机器人控制的 算法库,如PID控制、模糊控制
等。
运动学与动力学建模
运动学建模
建立机器人的运动学模型,描述机器人 末端执行器的位置和姿态与关节角度之 间的关系。
VS
动力学建模
建立机器人的动力学模型,描述机器人末 端执行器的力和关节驱动力之间的关系。
控制策略与算法
控制策略
根据机器人的应用需求,选择合适的控制策略,如轨迹规划、力控制等。
02
运动控制
根据传感器检测到的机器人运动 状态和环境信息,实时调整机器 人的运动参数,实现精确控制。
04
任务执行
根据传感器获取的任务目标信息 ,实现机器人的自主抓取、搬运
等作业任务。
05 并联机器人编程与调试
编程语言与开发环境
编程语言
Python、C、Java等高级编程语言以及Assembly、PLC等低 级编程语言。
安全与可靠性问题
安全防护
加强并联机器人的安全防护措施,防止未经授权的访问和恶意攻 击。
可靠性设计
通过优化设计、材料选择和制造工艺,提高并联机器人的可靠性 和稳定性。
故障诊断与恢复
建立故障诊断和恢复机制,确保并联机器人在出现故障时能够快 速恢复正常运行。

并联机器人

并联机器人

并联正文:1.简介本文档是一个并联的详细说明,包括的结构、工作原理、控制系统等方面的内容。

2.结构2.1 机械结构并联的结构由多个关节和连杆组成,其中关节连接主要的动力元件,连杆连接各个关节。

机械结构的设计需要考虑的运动范围、负载能力以及稳定性等因素。

2.2 末端执行器并联的末端执行器通常包括夹爪、工具等,用于完成特定的任务,如抓取、装配等。

3.控制系统并联的控制系统主要包括硬件和软件两个部分。

3.1 硬件硬件部分包括传感器、驱动器和控制器。

传感器用于对的姿态、位置等进行测量,驱动器用于驱动机械结构的关节,控制器则用于运行控制算法并实施控制策略。

3.2 软件软件部分包括运动规划、路径规划等算法的开发与实现。

通过软件控制,可以使在特定的工作空间内完成精确的运动任务。

4.工作原理并联通过控制系统的指令实现工作任务,其工作原理基于运动学和动力学原理。

的工作过程需要考虑运动学约束、静力学约束等因素。

4.1 运动学的运动学描述的位置和姿态之间的关系。

运动学约束主要包括正向运动学和逆向运动学。

4.2 动力学的动力学描述在外部力作用下的运动学特性。

动力学约束主要包括速度和加速度的限制。

5.应用领域并联广泛应用于汽车制造、航空航天、医疗卫生等领域。

的高精度、高效率和精确性使其成为许多工业任务的理想选择。

附件:本文档涉及的附件包括相关设计图纸、算法代码等。

法律名词及注释:1.并联:由多个关节和连杆组成的结构,具有高度精确性和高效率的特点。

2.运动学:描述的位置和姿态之间的关系的科学。

3.动力学:描述在外部力作用下的运动学特性的科学。

并联机器人的工作原理

并联机器人的工作原理

并联机器人的工作原理
并联机器人是由多个独立的机械臂组成的,每个臂都能够单独操作和移动。

每个机械臂都有自己的关节和执行器,能够实现自由度运动。

并联机器人的工作原理是通过控制每个机械臂的运动,使它们协同工作完成特定的任务。

并联机器人的工作过程通常分为三个步骤:计算运动轨迹、控制机械臂运动和协同工作。

在计算运动轨迹阶段,通过输入任务要求和环境约束,利用运动学和动力学原理计算每个机械臂的运动轨迹。

这些轨迹被传输给每个机械臂的控制系统。

在控制机械臂运动阶段,每个机械臂的控制系统根据接收到的运动轨迹,控制各自的电机和执行器,使机械臂按照预定的轨迹进行运动。

通过传感器的反馈信息,控制系统可以实时调整机械臂的运动,以适应变化的任务和环境。

在协同工作阶段,各个机械臂的控制系统通过通信协议进行相互之间的数据交换和协调。

它们根据共同的任务目标和约束条件,实时更新自己的运动轨迹,并与其他机械臂进行协作,完成复杂的操作任务。

这种协同工作可以通过中央控制系统或分散式控制系统实现。

通过以上的工作原理,每个机械臂可以独立运动,同时又能够与其他机械臂进行协作,从而实现更高效、更灵活的操作。


联机器人在许多领域都有广泛的应用,如物流、制造业和医疗等。

并联机器人机构拓扑特征

并联机器人机构拓扑特征

并联机器人机构拓扑特征
并联机器人机构拓扑特征
机器人学是研究机器人的设计、制造和控制的一门学科,而机器人的机构拓扑结构是机器人的一项重要组成部分。

在制造并联机器人时,机构的拓扑特征是非常重要的,因为它直接会影响到机器人的运动学和动力学性能。

1. 拓扑结构的定义
拓扑结构是机器人机构的一个关键组成部分,描述了它的物理形态和结构构成。

拓扑结构也称为机构的拓扑特征或机构拓扑。

2. 并联机器人的机构拓扑结构
并联机器人的机构拓扑结构是与传统的串联机构不同的。

它具有多个链状结构,这些链状结构可以并联在一起。

由于并联机器人具有多个链状结构,相对于串联机器人来说,具有更高的自由度和更大的工作空间。

3. 并联机器人的机构拓扑结构类型
(1)串联并联型机器人:每个并联机构后面随着一个串联机构。

(2)并联串联型机器人:每个串联机构后面连接一个并联机构。

(3)混合型机器人:有一些支链机构是串联机构,其他支链机构是并联机构。

4. 并联机器人与串联机器人的区别
并联机器人比串联机器人更加灵活,因为它可以执行多种运动模式,
从而达到更广泛的操作空间;并联机器人也因为由多个运动组件组成,可以分担运动负荷,因此其负荷承载能力更加分散,比单链和串联结
构更加可靠。

5. 总结
并联机器人是一个非常重要的机器人拓扑结构,由于机器人的机构拓
扑特征是机器人性能的关键组成部分之一,因此制造机器人时需要仔
细考虑机构拓扑的选择。

并联机器人的优点是具有较大的工作空间和
较高的自由度,能够完成多种不同的操作。

delta并联机器人

delta并联机器人
• 奇异(或称为特殊)位形是机构固有的性质, 是闭环机构, 尤其是并联机构研究中较复 杂的问题。可分为边界奇异、局部奇异和 结构奇异三种形式。
• delta机器人奇异位形也也比较复杂,不过 可以通过限制主动臂运动范围来避免奇异。
2021/1/11
注意:中间杆14是为了增加末端执行器绕Z轴旋转的自由度,两端 是通过十字万向节与电机轴、末端执行器连接,末端执行器与动平台
通过轴承联接,故对动平台姿态保持无影响。
13
2.4运动学分析
• 与串联机器人相反,delta机器人逆解比正解的求取简单。 也可以像串联机器人一样建立DH坐标系,但逆解球分析 法会简单得多。
• 1985年,法国克拉维尔(Clavel) 教授设计出delta并联机构,经 过不断修改完善,成功应用于医 疗、工业,实现商业化。于 1990年前后在各国申请专利。
• 在此之后,并联机器人逐渐成为 研究热点,越来越多的并联机构 被提出,但真正能应用于生产实 际的并不多。
• delta被称为“最成功的并联机 器人设计”,由于专利保护,限 制了其推广。专利到期后各企业

(3)运动精度高。并联机构不仅没有串联机构中存在的误差累积,而且
各条运动链的误差在末端可以有一个相互抵消的平均化效果。

(4)结构紧凑灵活性强。通过运动耦合,可以实现末端复杂的运动轨迹,
尤其当应用于机床行业时,容易实现多轴联动,加工复杂曲面。

(5)使用寿命长。由于受力结构合理,运动部件磨损小。
• 缺点:
2021/1/11
41Leabharlann 2 并联机构特点• 优点:

(1)刚度质量比大。因采用并联闭环杆系,杆系理论上只承受拉、压载荷,
是典型的二力杆,并且多杆受力,使得传动机构具有很高的承载强度。

并联机器人简介介绍

并联机器人简介介绍

医疗领域
并联机器人在医疗领域可用于 辅助手术、康复训练以及精确 的医疗设备定位等。
科研与教育
并联机器人还可用于科研机构 的实验研究以及教育领域的教
学和培训。
并联机器人的发展历程
初期探索
20世纪70年代,并联机器人概念开始萌芽,研究人员开 始探索其运动学和动力学特性。
技术突破
80年代至90年代,随着计算机技术和控制理论的发展, 并联机器人的设计、分析和控制技术取得了重要突破。
特点
高刚度、高精度、高负载能力、结构紧凑、动态响应快等。由于并联机器人的 这些特点,它们在许多领域都得到了广泛应用。
并联机器人的应用领域
制造业
并联机器人在制造业中用于高 精度装配、焊接、切割、打磨 等作业,提高生产效率和产品
质量。
航空航天
由于并联机器人具有高刚度和 高精度特点,它们在航空航天 领域被用于飞机和卫星的精密 装配与检测。
控制系统
并联机器人的工作原理基于先进 的控制系统,通过计算机或控制 器对各个关节进行精确的协调和
控制。
运动学逆解
在工作过程中,控制系统根据目 标位置和姿态,通过运动学逆解 算法计算出各个关节的需要到达
的位置。
动力学控制
控制系统根据机器人的动力学模 型,通过控制算法实现机器人平 稳、快速的运动,并确保机器人
并联机器人在汽车制造、重型机械等需要承受较大负载的行业中,能够发挥很好 的应用效果。
紧凑的结构设计
空间占用
并联机器人采用紧凑的结构设计,使得其在空间占用上相对 较小,有利于节省生产现场的空间资源。
灵活布局
紧凑的结构设计使得并联机器人能够灵活地适应各种生产布 局,提高生产线的整体效率和灵活性。

并联机器人的主要特点及应用

并联机器人的主要特点及应用

并联机器人的主要特点及应用首先,与传统的串联机器人相比,并联机器人具有较高的刚度和精度。

由于机械臂之间通过平行连杆连接,并联机器人的结构更加坚固,具有更高的刚度,能够提供更强的负载能力和更高的位置精度。

这使得并联机器人在需要进行高精度操作的场景中得到了广泛应用,如精密组装、精细加工和高精度测量等。

其次,并联机器人具有更大的工作空间和更灵活的运动能力。

由于多个机械臂可以互相协作,使得并联机器人能够覆盖更大的工作空间,并且可以进行更灵活的运动。

这使得并联机器人在需要进行大范围操作或者快速运动的领域中具有显著优势,如装配线作业、物料搬运和飞行模拟等。

此外,并联机器人具有更好的稳定性和安全性。

通过平行连杆的结构,使得并联机器人具有更好的抗干扰能力和更好的姿态稳定性。

这对于一些需要在不稳定环境中工作的场景来说非常重要,如海上作业、航天器的安装和维护等。

同时,并联机器人采用多机器臂协作的方式,使其在一些机械臂失效时仍然能够继续工作,具有更高的可靠性和安全性。

并联机器人的应用非常广泛。

一方面,在制造业中,由于并联机器人具有较高的刚度和精度,因此其最主要的应用之一就是替代传统人工进行生产线的装配和加工操作。

并联机器人可以准确地进行零件的拾取、定位和装配,并且可以实现高速连续作业,提高了生产效率和质量。

另一方面,由于并联机器人具有较大的工作空间和灵活性,因此其也广泛应用于物流和仓储领域。

并联机器人可以快速地将货物从一个地点搬运到另一个地点,并且可以根据不同的需求进行灵活调整,提高了物流效率。

此外,并联机器人还被广泛应用于医疗和康复领域。

并联机器人可以帮助患者进行康复训练,实现关节的主动和被动运动,加速康复效果。

同时,并联机器人还可以进行微创手术操作,提高手术的精确性和安全性。

在教育和科研领域,由于并联机器人具有较强的灵活性和可编程性,因此其可以用于教学实验、科研研究和仿真模拟等方面,培养学生和研究人员的创新能力和实践能力。

机器人学及其智能控制第3章 机器人的感知系统

机器人学及其智能控制第3章 机器人的感知系统

机器人学及其智能控制第3章机器人的感知系统机器人学,作为一门跨越多个学科领域的综合性科学,正在推动着人类社会的科技进步。

它的研究与应用涵盖了计算机科学、机械工程、电子工程、生物医学工程等多个领域。

其中,机器人的感知系统作为机器人智能控制的重要组成部分,对于机器人的行为决策和任务执行具有决定性的影响。

一、机器人的感知系统概述机器人的感知系统可以理解为机器人通过各种传感器获取环境信息的能力。

这包括了机器人对环境的视觉、听觉、触觉、嗅觉等多种感知方式。

这些传感器可以看作是机器人的“五官”,它们将外部环境的信息转化为机器人可以理解和处理的电信号或数据。

二、视觉感知系统视觉感知是机器人感知系统中最为重要的一部分。

机器人的视觉系统通过图像传感器捕捉环境中的视觉信息,再通过图像处理技术进行解析和理解。

这包括了物体的形状、大小、颜色、运动轨迹等信息的识别和处理。

机器人的视觉系统不仅可以用于识别物体,还可以用于导航、避障、目标追踪等任务。

三、听觉感知系统机器人的听觉系统通过声音传感器捕捉环境中的声音信息,再通过语音识别和自然语言处理技术进行解析和理解。

这包括了语音识别、语意理解、对话交互等功能。

机器人的听觉系统不仅可以用于人机交互,还可以用于环境监测、异常声音检测等任务。

四、触觉感知系统机器人的触觉系统通过触觉传感器感知物体的形状、大小、重量、质地等信息。

这些信息可以帮助机器人更好地理解和操作物体。

例如,在机器人进行装配、搬运、抓取等操作时,触觉感知系统可以提供实时的反馈信息,帮助机器人做出更精确的动作。

五、嗅觉感知系统嗅觉感知在人类生活中扮演着重要的角色,但在目前的机器人技术中,嗅觉感知的应用相对较少。

不过,随着技术的进步,嗅觉感知可能会在未来的机器人应用中发挥重要作用。

例如,在环境监测、灾害救援等领域,嗅觉感知可能会帮助机器人检测到人类无法察觉的气味,从而进行更有效的任务执行。

六、感知系统的融合与优化以上四种感知系统各自具有独特的优点和局限性。

并联机器人-习题解答-第11章 并联机器人的控制习题解答-20210528

并联机器人-习题解答-第11章  并联机器人的控制习题解答-20210528

第11章并联机器人的控制习题解答三江学院许兆棠刘远伟11-1. 绘制并联机器人控制系统的组成的示意图,介绍并联机器人控制系统。

解:并联机器人控制系统的组成的示意图:图11-1 并联机器人控制系统的组成并联机器人控制系统:(1)并联机器人本体并联机器人本体由并联机构、动平台上的操作器和驱动系统组成。

1)并联机构并联机构是并联机器人的执行部分的主要部分,通过机构的运动确定动平台及操作器的运动,决定了动平台及操作器自由度、工作空间、奇异位形、主要工作精度等,没有并联机构,就没有并联机器人。

2)操作器操作器是并联机器人的执行机构,除了操作器本身的驱动器控制其运动外,操作器的运动主要取决于动平台的运动。

3)驱动系统驱动系统由驱动器、动力装置和驱动控制器等组成,驱动器和动力装置是驱动系统本体。

驱动系统的形式有液压、气压、电和微驱动系统。

(2)控制系统控制系统由驱动控制系统、计算机硬件和控制软件、输入/输出设备(I/O设备)和传感器组成,如图11-1中虚线框中所示。

1)驱动控制系统驱动控制系统控制驱动器,使驱动器按照操作器的位姿要求工作,为并联机器人提供动力和运动。

2)控制部分计算机硬件和控制软件、输入/输出设备(I/O设备)是控制系统的控制部分,计算机硬件和控制软件组成控制器,通过计算机硬件和控制软件控制驱动器等的运动,并通过传感器的负反馈信息修正驱动器的运动,输入/输出设备(I/O设备)用于输入控制数据和修改控制软件,改变驱动器输出的运动和力的变化的规律;从I/O设备输入的控制数据主要是动平台工作中的位姿数据;驱动器输出的运动和力的变化的规律和要求决定了控制系统的控制规律,也决定了控制软件。

3)传感器传感器为控制系统的传感部分,用于监视操作器或动平台、驱动器和其他工作器件的运动、力和温度等;对操作器或动平台监视的传感器,监视操作器或动平台的位姿、速度和加速度;对驱动器监视的传感器,监视驱动器输出的动力和运动;对其他工作器件监视的传感器,有监视连杆的力的传感器,有监视操作器、动平台和连杆的温度的传感器等;传感器将监视得到的信息负反馈给控制器;没有传感器的并联机器人由人控制;对动平台和操作器没有传感器监视的并联机器人,为并联机器人本体开环控制的并联机器人;对动平台和操作器有传感器监视并有负反馈信息给控制器的并联机器人,为并联机器人本体闭环控制的并联机器人。

并联机器人的设计讲义

并联机器人的设计讲义

并联机器人的设计讲义并联机器人是一种由多个自由度机械臂通过并联机构连接并协同运动的机器人系统。

它通过将多个自由度机械臂的末端连接在同一平面上或在三维空间内,实现更高自由度的运动灵活性和操作精度。

本文将介绍并联机器人的设计讲义。

一、机器人整体结构设计1.机器人基座和支撑结构:机器人的基座是机器人的主要支撑结构,需要具备足够的稳定性和刚度。

基座采用高强度材料制造,并结合有限元分析进行优化设计;2.并联机构设计:并联机构是机器人的核心构件,用于连接多个自由度机械臂。

设计并联机构时需要考虑运动灵活性和刚度之间的平衡,以及机构的可制造性;3.自由度机械臂设计:自由度机械臂是并联机器人的执行器,用于完成各种操作任务。

机械臂的设计需要考虑负载能力、工作范围和操作精度等因素;4.控制系统设计:机器人的控制系统包括传感器、控制算法和驱动器等。

根据任务需求选择合适的传感器和控制算法,并设计相应的驱动系统。

二、运动学建模与分析1.机器人的运动学建模:通过建立机器人的联动关系和几何条件,得到机器人各个运动部件之间的运动学方程;2.运动学分析:利用运动学方程分析机器人的位置、速度和加速度等运动特性,包括正逆运动学分析和运动学仿真。

三、动力学建模与分析1.动力学建模:通过建立机器人的动力学方程,研究机器人在执行任务过程中的力矩、力和加速度等动力学特性;2.动力学分析:利用动力学方程分析机器人的受力、运动规律和运动过程中的惯性力等特性;四、控制系统设计1.模型驱动控制:根据机器人的动力学和运动学模型,设计相应的控制算法,实现对机器人的运动控制;2.传感器选择和数据采集:根据任务需求选择合适的传感器,如力传感器、位置传感器等,并设计数据采集系统;3.控制器设计:设计合适的控制器来实现对机器人的高精度控制,并选择合适的驱动器来驱动机器人的各个关节;4.控制算法优化:根据实际应用需求,对控制算法进行优化和改进,提高机器人的运动控制性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14
2020/3/20
15
2020/3/20
视频:饼干抓取
视频:试管分拣
16
2.2 虚拟轴机床简介(1990s)
• 虚拟轴机床又称并联机床(Parallel Kinematics Machine Tools ),实质上是机器人技术和机床 技术相结合的产物 。
• 与传统机床比较: 优点:比刚度高(弹性模量与其密度的比值,比
• 其中2、3自由度并联机构中存在平面机构这一特殊情况,研究难度降低很多, 较多地被人们研究和使用。
• 6 自由度并联机构是并联机器人机构中的一大类,是国内外学者研究得最多 的并联机构,广泛应用在飞行模拟器、6维力与力矩传感器和并联机床等领域。 但这类机构有很多关键性技术没有或没有完全得到解决,比如其运动学正解、 动力学模型的建立以及并联机床的精度标定等。
2020/3/20
5
2020/3/20
6
2020/3/20
7
• 为了满足越来越复杂的工作需求,研究和使用多自由度 (3~6)的空间机构显示出一定的必要性。
• 近年来, 国内外机构型研究主要集中在多自由度多支链并 联机器人构型问题上。并联机构的结构属于空间多环多自 由度机构。并联机构的构型综合是一个极具挑战性的难题。 到目前为止, 国内外主要有四种并联机构的型综合研究方 法, 即基于螺旋理论的给定末端运动约束的型综合法、基 于李代数的型综合法、基于给定末端运动的型综合法和列 举型综合法。
2020/3/20
33
• 从前面对delta系统分析的过程中我们已经 对并联机构的复杂性有所了解,而这种复 杂性正潜藏了一些未知的优越性,所以并 联机构和并联机器人的开发必将对机器人 事业的发展提供强大助力。
• 空间机构的研究,是有一些经典理论支持 的,比如《螺旋理论》。国内燕山大学黄 真教授对这方面做了大量研究并取得较大 成果,其编著的《高等空间机构学》也是 一本不错的参考书,可以作为空间机构研 究的切入点。有兴趣的同学以后可以一起 学习探讨。
1931年Gwinnett的娱乐装置 (5D电影)
2020/3/20
1965年Stewart机构 3
• 1985法国克拉维尔(Clavel)教 授设计出delta并联机构(或称为 delta机器人)
2020/3/20
4
按自由度分类
• (1 )2 自由度并联机构。 • (2 )3 自由度并联机构。 • (3 )4 自由度并联机构。 • (4 )5 自由度并联机构。 • (5 )6 自由度并联机构。(如Stewart机构、双Delta嵌套机构)
pl为平面低副数(即只有一个自由度的运动副) ph为平面高副数
• 针对空间机构自由度计算公式,国内外研究人员做了大量研究也得出 了大量的(至少35个)公式,其中大多都是适用条件限制或者若干 “注意事项”(如需要甑别公共约束、虚约束、环数、链数、局部自 由度等等)。
• 马娄谢夫(前苏联)空间机构计算式

2020/3/20
10
• 由于专利保护的限制,delta机器人早期并没有得 到应有的推广,直到近年专利保护一一终止后, 才开始被世界各地的制造商争相生产和开发。
• 在Delta原型基础上,研究人员做了很多衍生机型。
2020/3/20
11
FANUC六轴机器人
• 三轴铰接式手腕(专利 产品)+delta机器人
主动臂L1在其工作范围内摆动时端点轨迹线 与球面S相交于一点J1,此时L1的摆动角theta 即为位置逆解。类似可以求得其他两个摆角
29
3.4 奇异性分析
• 奇异位形。奇异(或称为特殊)位形是闭环机构, 尤其是并联机构研究中 较复杂的问题, 长期以来许多学者非常关注奇异位形的研究。奇异位 形分为边界奇异、局部奇异和结构奇异三种形式。奇异形位是机构固 有的性质, 它对机构的工作性能有着严重的影响边界奇异位形。
• 边界奇异位形 det(J)=0有外边界和内边界奇异位形
• 局部奇异位形 det(J)→∞, 表示机器人末端在该位形有一个不可控的局 部自由度。局部奇异位形是并联机构特有的, 它不存在于串联机构中。 局部奇异位形是并联机构领域重点研究的问题之一。
• 结构奇异位形 det(J)→0:0当速度雅可比矩阵的行列式趋于零比零 时机器人处于结构奇异位形。结构奇异位形也是并联机构特有的特性, 只有满足特殊机构尺寸时方能产生结构奇异位形。
并联机器人
2020/3/20
1
内容安排:
1、并联机构简介
2、并联机构应用实例
3.1、delta机器人 3.2、虚拟轴机床
3、delta并联机器人详解
4、 关于并联机器人的思索
2020/3/20
2
1 并联机构简介
• 并联机构的出现可以回溯至20世纪30年代。1931年,格威内特 (Gwinnett)在其专利中提出了一种基于球面并联机构的娱乐装置。 在之后的几十年内,新的并联机构不断被提出并应用于汽车喷涂、轮 胎检测、飞行模拟器等工业领域。其中由Gough于1962年发明,并被 Stewart系统研究的Gough-Stewart机构(或称Stewart机构)运用最 广,至今仍然被广泛研究和使用。
2020详 误/3/2细解0 分。析对边相等的四杆机构如何在空间中保持共面,容易让人造成26
球铰联接的空间四杆机构 (初始状态)
自由扭曲
2020/3/20
约束球铰端面平行后扭曲
27
Delta初始状态
运动中扭曲
约束球铰端面平行后扭曲
2020/3/20
solidworks仿真时,仿真结构与真实机构差别只在 从动杆之间的弹簧上,试验证明其作用不(只)在于保证
2020/3/20
在仿真过程中出现了“扭曲”甚至“打结”到 无法复原的状况,应该就是到了奇异位形 But why?That‘s interesting! 想要理解透彻,应该需要很多下功夫啊~~ 30
共同症状就是无法顺利的 构建逆解分析球面。
2020/3/20
31
3.5 工作空间
• 可达工作空间是机器人末端可达位置点的集合; 灵巧工作空间是在满 足给定位姿范围时机器人末端可达点的集合; 全工作空间是给定所有 位姿时机器人末端可达点的集合。可达工作空间(W)可利用圆弧相 交的方法获得,其形状为一个似伞形的三维空间也可以用matlab实现
2020/3/20
32
4、关于并联机器人的思索
• 基于高精度、快速等固有优点,并联机器人从一出现就被 广泛地应用于工业、医疗等行业。随着科技水平的提升和 世界各国对机器人事业的推进,机器人已从工厂、实验室 等特定场所逐渐走向寻常百姓家,而并联机器人也理应占 据一席之地。
• 然而据统计,当前在役机器人中采用串联要远多于并联。 并联机器人使用受限的原因很多,比如工作空间较小、负 载能力有限等等。我认为,还有一个重要原因是因为并联 机构(尤其是空间并联机构)的复杂性,人们对并联机构 的研究还不够透彻,目前开发出的可用并联机构数量有限。 目前被充分研究并被广泛应用的也只有于Stewart、Delta 等少数几类。
2020/3/20
注意:中间杆是为了增加末端执行器绕Z轴旋转的自由度,两端是 通过十字万向节与电机轴、末端执行器连接,末端执行器与动平台25
通过轴承联接,故对动平台姿态保持无影响。
• 而实际生产中出于美观或其他工作条件的需求,常用球铰代替虎克铰 (须补充添加约束),在分析动平台姿态时,有文章也笼统地指出 delta机器人动平台保持水平是靠从动杆组成的平行四边形,但并没有
Delta:3个主动臂P5,12个球铰P3
W=6(11-1)-5*3-3*12-6=3
应注意机构中六根碳纤维杆保留6个绕自身轴线旋转的局部自由度
2020/3/20
22
• Kutzbach Grubler公式计算获得
2020/3/20
23
• 国内北华大学欧阳富等人发表了一系列文章,并于2003年 提出一个可以替代此前34个计算公式的公式:
• 作者称此公式适用范围最宽且计算过程简单,但事实上公 式中λ包含有5种多余自由度,甑别和计算过程并不简单。
2020/3/20
24
3.2 保证动平台始终水平的机制
十字万向节
• Clavel给出的简图中从动杆两端是用虎克铰(十字万向联轴节)联接的,很 容易分析出同组杆共面,有由对边长度相等得出每组(如5a和5b两杆)从动 杆参与构成平行四边形。于是,如图所示中的3组不同颜色轴线始终平行,进 而保证了动平台平行于静平台。
• 3.1 自由度计算
• 机构见图的化简有利于运动学的分析,但有文章在计算自由度的时候
也直接按化简后的简图计算,个人认为欠妥。因为把平台化简为点的
过程其实忽略了其姿态信息,而姿态的变化也属于自由度的范畴,因
2020此/3/2个0 人倾向于用原机构简图分析
21
平面机构自由度计算公式: F=3n-2pl-ph 式中 n为活动杆件数(不算机架)
球铰端面平行。那么这两个弹簧作用机理是如何呢?
28
3.3 运动学分析
• 并联机器人与串联机器人不同,后者正运动学简单而逆运动学求解复 杂,通常都是求出正运动学方程后借助matlab等数学工具反求逆运动 学解。而并联机器人往往是逆运动学求解简单而正运动学求解困难。
2020/3/20
位置逆解:已知末端位置求各主动臂摆角 几何求法:以末端位置P点为圆心作球面S,
• 优点:1、末端增加3个 旋转自由度,可以适用 更复杂工况
• 2、速度更快每秒2000 度的速度拾取、旋转和 放置物体
• 缺点:有效负载降低。 第一代最大负载0.5kg, 目前最大载荷可达6kg。
2020/3/20
12
瑞士工业公司,将转动副 驱动改为移动付驱动
2020/3/20
13
相关文档
最新文档