250kW光伏并网逆变器设计

合集下载

光伏储能一体化充电站设计方案

光伏储能一体化充电站设计方案

光伏储能一体化充电站设计方案:项目名称:项目编号:版本:日期:…拟制:^审阅:批准:目录1 技术方案概述 (3)1.1 项目基本情况 (3)1.2 遵循及参考标准 (4)1.3 系统拓扑结构 (5)1.4 系统特点 (6)2 系统设备介绍 (7)2.1 250K W并离网型储能变流器 (7)2.1.1 EAPCS250K型储能变流器特点 (7)2.1.2 EAPCS250K型并离网逆变器技术参数 (7)2.1.3 电路原理图 (8)2.1.4 通讯方式 (9)2.2 50K_DCDC变换器 (9)2.2.1 50K_DCDC变换器特点 (9)2.2.2 50K_DCDC变换器技术参数 (10)2.3 光智能光伏阵列汇流箱 (11)2.3.1汇流箱简介 (11)2.3.2汇流箱参数 (12)2.4 光伏组件系统 (13)2.4.1 270Wp光伏组件 (13)2.5 60KW双向充电桩 (15)2.5.1 60KW充电柱概述 (15)2.5.2 充电桩功能与特点 (15)2.5.3 EVDC-60KW充电桩技术参数 (16)2.6 消防系统 (17)2.7 微网能量管理系统 (17)2.7.1 能量管理 (18)2.7.2 光电预测 (19)2.7.3 负荷预测 (19)2.7.4 储能调度 (20)2.7.5 购售计划 (20)2.7.6 管理策略 (20)2.8 动环监控系统 (22)2.9 电池系统 (23)2.9.1 电池组 (23)2.9.2电池模组与电池架设计 (23)2.9.3电池系统参数表 (24)2.10 定制集装箱 (25)3 设备采购信息介绍 (26)1 技术方案概述(1)项目主要包括:1台250kW并离网型储能变流器(PCS),4个50kW的DC/DC模块,(2)长春年平均日照时间为4.8h,光伏系统占地面积200㎡,采用自发自用。

(3)储能系统采用集装箱方案,箱内集成储能变流器、DC/DC变换系统、电池系统、电池管理系统、能量管理系统、交流配电柜、动环监控系统和自动消防系统等设备。

金石光电家庭250kw屋顶配置清单++ (自动保存的)

金石光电家庭250kw屋顶配置清单++ (自动保存的)
用户自备
8
系统的链接电缆及防护材料
自选
4mm²、6mm²、动力线
M
充足
注意事项:
1,组件朝南,安装角度:
a,可以平铺屋顶向南的斜面。
b,纬度0~25°,安装角度=纬度
纬度26~40°,安装角度=纬度+5~10
纬度41~55°,安装角度=纬度+10~15
2,组件的连接方式:、
20块串联,共50串,1000块组件,分3路连接到直流汇流箱。一个方阵,共计1000块组件。经过直流汇流箱汇总,再分别接入逆变器中。
3,系统结构图:
分布式并网250kw屋顶配置清单
序号
名称
厂家
规格
单位
数量
备注
1
太阳能组件
宁波金石
NBJ-320P
PCS
780
2
支架
宁波金石
铝合金
套780Biblioteka 3并网柜宁波金石
600A

1
4
光伏并网逆变器
锦浪
GCI-30K
PCS
8
5
通讯监控装置
锦浪
WIFI box
PCS
1
6
系统防雷及接地装置
用户自备
7
土建、配电房等基础设施

光伏储能一体化充电站设计方案

光伏储能一体化充电站设计方案

光伏储能一体化充电站设计方案项目名称:项目编号:版本:日期:拟制:审阅:批准:目录1 技术方案概述 (3)1.1 项目基本情况 (3)1.2 遵循及参考标准 (4)1.3 系统拓扑结构 (5)1.4 系统特点 (6)2 系统设备介绍 (7)2.1 250K W并离网型储能变流器 (7)2.1.1 EAPCS250K型储能变流器特点 (7)2.1.2 EAPCS250K型并离网逆变器技术参数 (7)2.1.3 电路原理图 (8)2.1.4 通讯方式 (9)2.2 50K_DCDC变换器 (9)2.2.1 50K_DCDC变换器特点 (9)2.2.2 50K_DCDC变换器技术参数 (10)2.3 光智能光伏阵列汇流箱 (11)2.3.1汇流箱简介 (11)2.3.2汇流箱参数 (12)2.4 光伏组件系统 (13)2.4.1 270Wp光伏组件 (13)2.5 60KW双向充电桩 (15)2.5.1 60KW充电柱概述 (15)2.5.2 充电桩功能与特点 (15)2.5.3 EVDC-60KW充电桩技术参数 (16)2.6 消防系统 (17)2.7 微网能量管理系统 (17)2.7.1 能量管理 (18)2.7.2 光电预测 (19)2.7.3 负荷预测 (19)2.7.4 储能调度 (20)2.7.5 购售计划 (20)2.7.6 管理策略 (20)2.8 动环监控系统 (22)2.9 电池系统 (23)2.9.1 电池组 (23)2.9.2电池模组与电池架设计 (23)2.9.3电池系统参数表 (24)2.10 定制集装箱 (25)3 设备采购信息介绍 (26)1 技术方案概述(1)项目主要包括:1台250kW并离网型储能变流器(PCS),4个50kW的DC/DC模块,(2)长春年平均日照时间为4.8h,光伏系统占地面积200㎡,采用自发自用。

(3)储能系统采用集装箱方案,箱内集成储能变流器、DC/DC变换系统、电池系统、电池管理系统、能量管理系统、交流配电柜、动环监控系统和自动消防系统等设备。

100KW,250KW_500KW光伏逆变器方案选型推荐

100KW,250KW_500KW光伏逆变器方案选型推荐

100KW光伏逆变器硬件选型方案介绍建议选择1200V IGBT双管,构成100KW的总功率输出。

单台100KW逆变器设计IGBT:选择FF600R12IE4 (3支)驱动器:2SP0320T2A0-FF600R12IE4 (3支) 与IGBT行程一对一连接母线电容根据贵司的设计需求,推荐EPCOS金膜电容产品:金膜电容B25620-B0158-K882 880V/1500uF, 85度/100,000H, 116*173建议使用4并联进行,无需均压处理按照贵司给定的开关频率5000Hz,输出电流150A、调制比0.85、功率因数0.98,母线电压650Vdc,输出电压380Vac,最高使用环境温度50度进行仿真计算,结果如下:图一IGBT模块内部温度分布图假定选定的散热器Rch=0.044k/w的前提下,当输出电流150A时,IGBT的最大结温为70.6度,IGBT的壳温为62.3度,散热器的温度为60.2度。

图二IGBT结温温度纹波图图二表明,在给定工作条件下,IGBT结温的最大结温,最小结温分别是70.6度和67.9度,温度纹波为2.8度。

图三IGBT损耗结果图三,表示IGBT模块在给定工作条件下,最终的损耗为:230.3W。

其中IGBT的通态损耗为66.1W,开关损耗为86.6W,反并联二极管的通态损耗为14.2W,开关损耗为59.3W,IGBT 内部焊线的损耗为4.22W。

因此,三相逆变器总的损耗P=6*230.3=1381.8W.在输出150A电流时,IGBT的最大结温小于150度,满足使用要求。

说明:实际上许多厂家的并网逆变器采用有并网变压器和无并网变压器并网两种模式,因为无变压器对的输出电压小,对逆变器输出电流的能力较强,因此,仅以无并网变压器为列,逆变器输出电压270V,经过三角转星型变压器转换成380V然后并网。

国家标准考虑的电网波动范围为(-10%~7%),最小持续时间10s,因此并网时候,需要考虑10%的过载情况。

本科毕业设计_太阳能光伏发电并网三相逆变器的设计

本科毕业设计_太阳能光伏发电并网三相逆变器的设计

目录1 绪论 (1)1.1 课题背景 (1)1.2 国内外研究现状 (2)1.2.1 国外的研究现状 (2)1.2.2 国内的研究现状 (2)1.3 光伏并网逆变器的发展趋势 (3)1.4主要研究内容 (3)2 光伏逆变器主电路的设计与工作原理 (4)2.1 光伏逆变器的基本结构 (4)2.2 逆变器的拓扑分类 (4)2.3 系统工作原理 (5)2.3.1 前级Boost升压电路的工作原理 (5)2.3.2 后级单相全桥逆变器的工作原理 (7)2.4 本章小结 (7)3 光伏阵列的最大功率点跟踪 (8)3.1 光伏阵列的输出特性 (8)3.1.1 光伏电池简介 (8)3.1.2 光伏电池的工作原理 (8)3.1.3 光伏电池的物理模型 (11)3.1.4 光伏电池的输出功率 (12)3.1.5 光伏阵列的温度特性和光电特性 (13)3.2 最大功率点跟踪法的比较与分析 (14)3.2.1 电导增量法 (15)3.2.2 干扰观测法 (17)3.2.3 固定电压跟踪法 (18)3.2.4 其他MPPT方法 (21)3.3 本章小结 (22)4 三相并网逆变器的控制策略 (22)4.1 并网逆变器的控制目标 (22)4.2 并网逆变器的原理 (23)4.3 并网逆变器控制策略的比较 (23)4.4 电流跟踪控制方式的比较 (24)4.4.1 电流滞环瞬时比较方式 (24)4.4.2 三角波比较方式的电流跟踪方式 (24)4.4.3 SVPWM电流控制方式 (25)4.5 SVPWM控制原理 (25)4.5.1 SVPWM的特点 (25)4.5.2 SVPWM的原理 (26)4.6 SVPWM的实现 (27)4.6.1 参考电压所在扇区的判断 (27)4.6.2 各个扇区开关持续时间的计算 (29)4.7 SVPWM控制的实现 (29)4.8 本章小结 (30)5 光伏并网逆变器的仿真 (30)5.1 恒定电压法MPPT跟踪的仿真实现 (31)5.1.1 固定电压法MPPT跟踪的仿真方法 (31)5.1.2 固定电压法MPPT仿真 (31)5.1.3 固定电压法MPPT仿真结果分析 (32)5.2 SVPWM控制的仿真 (33)5.2.1 SVPWM控制仿真方法 (33)5.2.2 SVPWM控制仿真电路 (34)5.2.3 SVPWM控制仿真结构分析 (35)5.3 本章小结 (36)6 结论 (36)参考文献 (37)致谢 (38)1 绪论1.1 课题背景随着煤炭、石油等现有化石能源的频频告急和大量使用化石能源对生态环境造成严重的破坏,人类不得不尽快寻找新的清洁能源和可再生资源。

江苏兆伏新能源 NSG-250K3TL 光伏并网逆变器 说明书

江苏兆伏新能源 NSG-250K3TL 光伏并网逆变器 说明书

NSG-250K3TL光伏并网逆变器用 户 手 册江苏兆伏新能源有限公司 版本号V1.0目录1、绪论 (3)1.1符号解释 (3)1.2手册说明 (5)2、安全指示 (6)3、产品描述 (7)3.1系统简介 (7)3.2产品说明 (8)3.2.1产品型号说明 (8)3.2.2产品铭牌 (8)3.2.3技术参数 (9)3.2.4效率曲线 (10)3.3外观说明 (11)3.4内部连接 (12)3.4.1线缆规格 (12)3.4.2 主回路连接 (13)3.4.3 控制回路连接 (17)3.4.4 保护接地连接 (17)3.5工作模式 (18)3.6保护功能 (19)4、操作与设置 (21)4.1操作界面 (21)4.2菜单显示 (22)4.3开机与关机 (25)4.4参数设置 (26)5、故障与维护 (28)5.1故障分析 (28)5.2维护 (29)6、附录 (30)6.1质量保证 (30)6.2联系ZOF (31)1、绪论1.1 符号解释本手册使用的指示符号的含义解释如下:此标志表明如果发生将会导致伤亡或重大损坏的注意事项或操作。

此标志表明如果发生将会导致伤亡或重大损坏的注意事项或操作此标志表明如果发生将会导致伤亡或重大损坏的注意事项或操作此标志表明系统良好工作的最佳配置和操作设备上面,显示器上面或者手册里面将会使用标志来代替文字。

商标小心触电!保护接地小心触电!蓄能放电时间:20分钟!断电之后20分钟之内都会存在危险高压。

1.2 手册说明尊敬的客户,感谢您选用本公司的产品。

使用前,请您务必仔细阅读本手册。

本手册是NSG-250K3TL光伏并网逆变器用户手册,版本号V1.0。

主要介绍了江苏兆伏新能源有限公司生产的NSG-250K3TL光伏并网逆变器的产品信息及使用规范,主要包括产品的特点、外观、内部连接、功能、操作与设置以及故障诊断与维护等方面的内容。

本手册的最终解释权归江苏兆伏新能源有限公司所有,如有疑问或建议,请及时与本公司联系。

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器及其拓扑结构的设计对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。

但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。

因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显。

欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。

它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。

欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分。

因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率(图1)。

图 1: 欧洲效率计算比重1、功率器件的选型在通用逆变器的设计中,综合考虑性价比因素,IGBT是最多被使用的器件。

因为IGBT导通压降的非线性特性使得IGBT的导通压降并不会随着电流的增加而显著增加。

从而保证了逆变器在最大负载情况下,仍然可以保持较低的损耗和较高的效率。

但是对于光伏逆变器而言,IGBT的这个特性反而成为了缺点。

因为欧洲效率主要和逆变器不同轻载情况下效率的有关。

在轻载时,IGBT的导通压降并不会显著下降,这反而降低了逆变器的欧洲效率。

相反,MOSFET的导通压降是线性的,在轻载情况下具有更低的导通压降,而且考虑到它非常卓越的动态特性和高频工作能力,MOSFET成为了光伏逆变器的首选。

另外考虑到提高欧效后的巨大经济回报,最新的比较昂贵的器件,如SiC二极管,也正在越来越多的被应用在光伏逆变器的设计中,SiC肖特基二极管可以显著降低开关管的导通损耗,降低电磁干扰。

为了得到最大输入功率,电路必须具备根据不同太阳光条件自动调节输入电压的功能,最大功率点一般在开环电压的70%左右,当然这和具体使用的光伏电池的特性也有关。

典型的电路是通过一个boost电路来实现。

然后再通过逆变器把直流电逆变为可并网的正弦交流电。

光伏并网逆变器选型指南

光伏并网逆变器选型指南
1.逆变部分采用开关速度快、功耗小的智能IGBT(IPM)作为功率器件。逆变变压器又是采用高效完全隔离型的,所以逆变器具有了输出波形失真小;动态特性好;逆变效率高的特性。
2.控制部分是采用高速度的微处理器为核心的控制部件,所以具有了输出过载,输出高、低电压保护动作快,抗干扰能力强,稳压精度高等特性。
E:附加功能,人性化设计
人性化界面设计
数据显示多样化
方便的窗口排列设置
避免重复运行的设计
多种时间日期显示
F:不断创新,力求完美(无线监控介绍)
系统描述:
设备只需插入一张SIM卡,就可通过GSM网络以短消息或数传(Data)的形式完成远程的双向数据传输。而远程终端可以是PC机,移动手机或其他移动设备。
4.1.1LED指示灯说明
LED 灯
含义
并网
并网工作(并网发电,灯亮)
离网
停止并网(离网,灯亮)
4.1.2按键说明
1)监控系统单元共设有五个按键,功能名称按顺序分别为:返回键(ESC)、上翻键( ),下翻键( ) 、确认键(read)、复位键(Reset)。
2)液晶显示菜单中的一级菜单包括:系统设置、实时时钟、实时监控、故障记录。
1、1MW以上光伏发电的系统:建议选择多台GSG250KC的电源进行并联运行;
2、500KW至1MW的系统:建议选择多台GSG100KC的电源进行并联运行;
3、200KW至500KW的光伏发电系统:建议选择多台GSG50KC的并联运行;
4、200KW以下的光伏发电系统:建议采用多台GSG20KC或GSG50KC的电源进行并联运行。
具体功能
A:实时数据显示与处理
采用召唤应答式规约,在线实现数据实时显示。
对于实时数据处理后,可以参照对比专家系统意见,提供最佳电源使用优化方案。

华为250kw组串式逆变器

华为250kw组串式逆变器

华为250kW组串式逆变器是一种高效、可靠的逆变器,采用组串式设计,能够将直流电转换为交流电,满足各种并网或离网发电系统的需求。

这种逆变器具有以下特点:
1.高效率:采用先进的电力电子技术和智能控制策略,确保逆变器在各种条件下
都能够高效运行,提高发电系统的整体效率。

2.可靠性:采用模块化设计,单个模块的故障不会影响整个系统的运行,提高系
统的可靠性。

3.便于维护:模块化设计还使得逆变器的维护更加方便,可以快速更换故障模块,
缩短维修时间。

4.宽范围适用:适用于各种类型的发电系统,如光伏、风力发电等,并且可以满
足并网或离网的需求。

5.智能控制:通过集成智能控制策略,逆变器可以自动调整运行状态,确保系统
稳定、安全运行。

总之,华为250kW组串式逆变器是一种高性能、高可靠性的逆变器,能够为各种发电系统提供优质的电力转换服务。

光伏并网逆变器的设计

光伏并网逆变器的设计

半导体器件应用网/news/201535.html 光伏并网逆变器的设计【大比特导读】基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。

该设计模式具有电路简单、性能稳定、转换效率高等优点。

基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。

该设计模式具有电路简单、性能稳定、转换效率高等优点。

在能源日益紧张的今天,光伏发电技术越来越受到重视。

太阳能电池和风力发电机产生的直流电需要经过逆变器逆变并达到规定要求才能并网,因此逆变器的设计关乎到光伏系统是否合理、高效、经济的运行。

1光伏逆变器的原理结构光伏并网逆变器的结构如图1所示,主要由前级DC/DC变换器和后级DC/AC逆变器构成。

其基本原理是通过高频变换技术将低压直流电变成高压直流电,然后通过工频逆变电路得到220V交流电。

这种结构具有电路简单、逆变电源空载损耗很小、输出功率大、逆变效率高、稳定性好、失真度小等优点。

图1光伏逆变器结构图逆变器主电路如图2所示。

DC/DC模块的控制使用SG3525芯片。

SG3525是双端输出式SPWM脉宽调制芯片,产生占空比可变的PWM波形用于驱动晶闸管的门极来控制晶闸管通断,从而达到控制输出波形的目的。

作为并网逆变器的关键模块,DC/AC模块具有更高的控制要求,本设计采用TI公司的TMS320F240作为主控芯片,用于采集电网同步信号、交流输入电压信号、调节IGBT门极驱动电路脉冲频率,通过基于DSP芯片的软件锁相环控制技术,完成对并网电流的频率、相位控制,使输出电压满足与电网电压的同频、同相关系。

滤波采用二阶带通滤波器,是有源滤波器的一种,用于传输有用频段的信号,抑制或衰减无用频段的信号。

其可以有效地滤除逆变后产生的高频干扰波形,使逆变后的电压波形达到并网的要求。

并网光伏电站设计—逆变器

并网光伏电站设计—逆变器
也受并联模块之间特性的相互影响,因此会影响光伏器 件的输出功率。该逆变器对光伏器件的利用率低于其它 类型;
b、光伏阵列中某一个组件被阴影遮挡时,该组件不仅不能 输出功率,还会成为系统的负载,引起该组件的发热。
2、组串型逆变器
(1)特点:每个光伏组串通一个逆变器, 在直流端具有最大功率峰值跟踪,在交流 端并联并网。对光伏组件串的利用率高一 些。
c、电压保护水平(Vp):
汇流箱参数:额定直流电 电压保护水平Vp/kV
压Vn/V
Vn≤60
<1.1
60<Vn≤250
<1.5
250<Vn≤400
<2.5
400<Vn≤690
<3.0
690<Vn≤1000
<4.0
5、其他功能
(1)通信功能,实现远程通信; (2)显示功能,具有显示光伏组串电流; (3)外壳防护等级,IP65,满足室外安装。
2、选择逆变器类型
(1)大型电站(100kW以上的)一般选择 集中型逆变器;
(2)家庭电站或某些单位的小型电站一般 选用组串型逆变器;
(3)微型逆变器由于价格较高,目前国内 很少使用。
3、逆变器功率的选择
要与光伏方阵的设计容量相匹配,差距不 要太大。
六、汇流箱
汇流箱是将光伏组串连接,实现光伏组串 间并联的装置,并将必要的保护器件安装 在此装置内。
并网光伏电站设计—选型
光伏发电系统组成 主要包括太阳能电池组件、光伏支架、
汇流箱、逆变器、升压变压器、二次监控系 统等。
光伏并网逆变系统的设计
一、光伏并网逆变器的类型 二、光伏并网逆变器的功能 三、光伏并网逆变器电路结构框图 四、阳光电源公司SG500MX的交流参数 五、逆变器选型 六、ห้องสมุดไป่ตู้流箱

光伏电源逆变器的设计

光伏电源逆变器的设计

摘要随着传统的三大化石能源日渐枯竭,绿色能源的开发和利用将会得到空前的发展,太阳能作为世界上最清洁的绿色能源之一,起并网发电备受世界各国普遍关注。

而光伏并网发电系统的核心部件,如何可靠的高质量地向电网输送功率尤为重要,因此在可再生能源并网发电系统中起点能变换作用的逆变器成为了研究的一个热点。

为此本文仍然采用“全桥逆变+LC滤波+工频升压”的逆变电源设计方案。

整个系统设计分为SPWM波形产生电路、H桥驱动及逆变电路、欠压过流保护电路。

在SPWM波形产生环节,本文采用脉宽调制芯片SG3525的为核心。

由文氏桥振荡电路产生50Hz的正弦波基准信号。

然后经过精密整流、放大等处理输入到SG3525的补偿信号端,从而输出SPWM波。

最后进行死区延时,输入到驱动电路中。

在驱动电路设计环节中,本文采用两片IR2110半桥驱动芯片构成全桥驱动电路。

输出侧逆变电路中开关管选用耐压值高的MOSFET。

然后经过工频变压器进行升压到市电,供家用电器使用。

对输入、输出进行采样,实时监控是否欠压、过流,进行保护动作。

最后,给出额定功率为500W(输入电压12V输出交流220V)的单相逆变器样机的试验波形。

关键词:光伏电源,逆变器,SPWM,SG3525,IR2110DESIGN OF PV POWER INVERTERABSTRACTIn recent years, photovoltaic technology has broad application. As our country's new energy law enacted, the photovoltaic power system in our country will have a broader space for development. Inverter is an important component in PV system. Its performance has great influence on the application of photovoltaic system. Currently, the domestic pure sine wave output inverter mainly uses 50Hz transformer for raising the output voltage, this paper is still developed an inverter by using the “Full-bridge circuit + LC filter + Isolator transformer” design proposal. The whole system is divided into SPWM waveform generator circuit, H bridge driver circuit and the inverter circuit, low voltage and over-current protection circuit.In SPWM waveform generation part, this paper uses SG3525 PWM chip core. The Wien bridge oscillation circuit generates 50Hz sine reference signal. After this signal precision rectification, amplification and other processing of the compensation signal input to the SG3525-side, so this part output the SPWM wave. Finally, the SPWM signals enter into the driving circuit after dead-time delay.In the design of drive circuit part, using two IR2110 half-bridge driver chips constitute a full-bridge driver circuit. The output side of inverter switch circuit selects high voltage value MOSFET. Then through 50Hz transformer, boost to the mains for household appliances. Testing the samples of the input and output voltage, real-time monitoring is under-voltage, over current, protection action.Finally, rated power for 500W (Input voltage 12V, Output communication 220V) single-phase ac inverter prototype test waveforms have been given.KEY WORDS:PV power, Inverter, SPWM, SG3525, IR2110目录前言 (1)第1章系统设计概述 (3)§1.1 光伏电源逆变器的基本结构和设计要求 (3)§1.1.1 系统的基本结构 (3)§1.1.2 系统的基本设计要求 (3)§1.2 系统电源设计 (3)§1.3 逆变电路 (4)§1.3.1 逆变电路的基本工作原理 (4)§1.3.2 电压型逆变电路 (5)§1.4 SPWM调制技术 (5)§1.4.1 理论基础 (5)§1.4.2 单极SPWM调制方式 (6)§1.4.3 双极性SPWM调制方式 (7)第2章SPWM调制电路 (8)§2.1 SG3525芯片介绍 (9)§2.1.1 功能结构 (9)§2.1.2 SG3525特性 (9)§2.2 单极性SPWM调制电路 (11)§2.2.1 SPWM调制电路结构 (11)§2.2.2 正弦波发生器 (11)§2.2.3 精密整流电路 (13)§2.2.4 误差放大及加法电路 (14)§2.2.5 SPWM调制 (15)§2.2.6 时序控制电路 (16)第3章逆变电路 (19)§3.1 IR2110芯片介绍 (19)3.1.1功能结构 (19)§3.1.2 IR2110特性 (20)§3.2 驱动电路设计 (21)§3.3 输出滤波器设计 (23)§3.4 保护电路设计 (24)第4章系统调试 (27)§4.1 信号板电路的调试 (27)§4.2 信号板与H桥联调 (29)§4.3 保护电路调试 (30)结论 (32)参考文献 (33)附录 (36)前言逆变器(INVERTER)就是一种直流电转化为交流电的装置,一般是把直流电逆变成220V交流电。

墨西哥250kW光伏发电项目方案V1.1

墨西哥250kW光伏发电项目方案V1.1

2
并网逆变器
250KW 三相并网逆变器 台 1
3
直流防雷汇流箱 SA-SUN 智能防雷汇流箱 台 6
4
交流配电柜
SA-SUN 防雷交流配电柜 台 1
5
支架
铝合金+镀锌钢平面支架 套 500
6
线缆类材料
PV 专用线材
米 待定
7
PVC 电缆导管
米 待定
8
监控系统(可选) 智能监控系统
套1
9
其它设备材料
注:由于没有现场的详细资料,初步方案中的线缆等材料无法确定具体数量
经过系统考查,本方案采用 3BB 型号 HR-250P-18/Bbb 的 250W 多晶硅光伏组件,该组件在多个大型项目中使用, 并常年出口欧洲,在同行业中一直保持良好的口碑。
●HR-250W 组件采用先进的生产工艺,高效率的多晶 电池和高透光的钢化玻璃使组件的最大转化效率 达到 15%以上
●组件的使用用寿命可达 25 年,并提供 10 年的质保 服务 ●组件功率正公差 0-5%,确保客户使用的组件功率 高于标称功率 ●取得了 IEC612215 IEC61730 ROHS 认证,多年来 一直稳定出货到欧美市场
2 项目地理环境概述
墨西哥 Baja California 地区 250kWp 光伏发电项目的建设地点位于墨西哥北部地区(北 纬 22.9°西经 109.9°,海拔 142 米),位于北回归线以南属于热带沙漠气候。本地区日照充 足,长夏无冬。根据美国太空总署 NASA 气象资料,墨西哥的年辐照值可以达到 8100MJ/m2 (2200kWh/m2)。所以这个地区的气象条件非常适合太阳能发电项目。
4.1.1 组件电气参数
2014 年 5 月 4 日 V1.1

光伏逆变器的设计原理

光伏逆变器的设计原理

光伏逆变器的设计原理并网光伏逆变器的基本设计无论采用何种技术,逆变器的基本设计都很明确,且非常相似。

其核心就是将直流电压(光伏组件)转换成交流电压(可并网)的过程。

在转变的过程中,不停地转换直流电的正负极连接,从而形成方向变化的交流电。

所以,逆变器的关键部件是桥接开关(晶体管元件,见图1:a)),这个开关桥的一侧连接输入的直流电源,在另一侧连接交流电网。

在工作过程中,只有两个相对的开关可以同时关闭。

如果将此开关桥的开关速度设置成与电网频率相同,则在理论上可以将桥的输出侧与电网连接。

但是,由于这样输出的电流是方波,且强度没有变化,因此需要在输出端安装一个具有铁芯的电感器,用以将输出电流控制成为正弦波形状。

桥的断开采用脉冲过程进行,从而形成与脉冲相关的较小电流分量。

这样的电流分量可以对电感器的电流进行控制。

脉冲的频率一般为20KHz ,这样就完全可以形成50Hz的电流,见图1:b)。

对于光伏逆变器来说,还有一个非常重要的设备不能遗漏:输入端的电容器,见图1:c ) 。

电容器的作用是储存电能,确保来自发电侧的电流持续一致供给桥接开关,并通过与电网频率同步变化的桥进入电网。

只有在输入电容器的容量足够大的情况下,才能够保证光伏发电系统的持续、正常运行。

图1:光伏逆变器的基本设计图2描述了可用于直接并网的逆变器的基本功能。

但在实际应用中,输入电压的范围具有一定的局限性。

对于并网发电应用,其输入电压必须在任何时刻都高于电网的峰值电压。

当电网电压的有效值为250V时,达到正常并网要求的发电源侧的最低电压应为354V。

与标准逆变器的基本设计不同,直接并网逆变器有很多方法来调整或提升输入电压范围。

常用的逆变器技术方案与结构都各不相同:图2:最常用的逆变器电路图表一览上面提到的逆变器拓朴结构不仅在电气隔离方面不同,在可达到的效率、对电压的依赖性等方面也各不相同。

因此,没有统一的公式来界定何种逆变器设计是最优秀的设计,用户必须要考虑到具体使用的逆变器特性。

光伏并网逆变器设计毕业设计

光伏并网逆变器设计毕业设计

摘要近年来由于人们对能源短缺、环境污染问题的日益关注,太阳能的应用与普及越来越受到人们的重视,应用领域也越来越广泛,这也使得光伏产业在近些年发展较为迅猛。

本设计针对光伏电站的现状,应用计算机技术、网络通信技术等相关技术,研究开发了一套以现场总线为骨干的太阳能光伏电站监控系统。

该系统能够同时实现本地监控和远程监控功能,具有实时性好、功能全面等特点,具有很强的工程实用价值。

本设计首先介绍了光伏发电技术及其监控系统的研究现状,阐述了光伏电站监控系统的组成和功能。

根据实际应用的需求,选取了 AVR ATmega系列单片机作为该系统的控制器,进行了系统的软硬件的设计,实现了对光伏电站运行状态的实时监控,具有参数显示和设置等功能。

其次,通过比较目前常用的远程通信方式,选用了 GPRS无线通信方式来实现监控系统远程通信功能。

并结合GPRS无线通信方式的优点,详细阐述了系统是如何利用GPRS无线通信技术构建数据通信链路与实现数据远程传输的。

最后,分别给出了基于MCGS的本地监控和基于WEB的远程监控人机界面设计,并详细给出了单片机与本地上位机的通信协议——Modbus-RTU。

本监控系统是通过多重窗体程序来实现人机界面的,通过不同的窗体可以实现电站的运行状态的实时显示和参数设定等功能。

在实验室搭建了系统测试平台,进行了模拟调试,达到了设计的预期效果。

此系统已经在实际的工程中得到应用。

关键词:光伏电站;远程监控;单片机;GPRS;现场总线AbstractEnergy is the basis for human survival. Nowadays, energy crisis is increasingly serious. Solar energy, as an inexhaustible supply, is clean and renewable. It has been paid more and more attention. Therefore, using photovoltaic effect to convert solar power to electricity is one of the important methods to solve the current crisis. In this thesis, the PV power plant monitoring system is researched and designed based on fieldbus by using computer technology, network communication technology and related technologies. The system is able to achieve local and remote monitoring, and is very practical for its multiple functions and performance of real-time.Firstly, the research status of photovoltaic technology and its monitoring system was introduced in the thesis, and then the composition and function of the PV power plant monitoring system was described. According to the needs of practical application, A VR ATmega series microcontrollers were selected as the system controller in the thesis. The hardware design and software design for the controller were mainly studied, they could achieve real-time data acquisition, data and state display, parameter setting etc al.Secondly, by comparing with the current commonly used remote means of communication, GPRS wireless communication was chosen to achieve the remote communication, and how to use GPRS to build a data communication link and achieve remote data transmission was described in detail by combining the advantages of GPRS.Finally, the thesis gave the human-machine interface design based on MCGS and WEB respectively, and communication principle Modbus-RTU between the single-chip microcomputer and host computer. The human-machine interface was achieved through multiple forms program. The monitoring system achieved real-time displaying and parameter settings and other functions in different forms.In the laboratory, the hardware test platform was built. And by testing and debugging the system, it achieved the expected effect. In addition, this system has been applied in practical engineering.KEYWORDS: PV power plant; Remote monitoring; Microcontroller; GPRS; Fieldbus目录摘要 ............................................... 错误!未定义书签。

250和500kw逆变器参数

250和500kw逆变器参数
0~900
0~900
MPPT范围(V)
450~820
450~820
450~820
MPPT范围(%)
>99.9%
>99.9%
>99.9%
进线方式
底部进线
底部进线
底部进线
可独立MPPT路数:直流输入端子路数
1:8
1:4
1:4
额定交流输出功率(KW)
500
250
250
最大交流输出功率(KW)
550
275
275
>0.99(满载),>0.98(半载)
电流总谐波变率THDi(%)
<3%
<3%
<3%
最大效率(%)
>98.5%
>98.5%
>98.5%
欧洲效率(%)
98.2%
98.2%
98.2%
夜间自耗电(W)
<100
<60
<60
噪音(db)
<70
<70
<70
工作温度(℃)
-25℃~55℃
-25℃~55℃
-25℃~55℃
工作电压范围
216~310
216~310
310~450
工作频率范围(HZ)
50±0.5HZ(默认为-2HZ~+1HZ可设置)
50±0.5HZ(默认为-2HZ~+1HZ可设置)
50±0.5HZ(默认为-2HZ~+1HZ可设置)
功率因素
>0.99(满载),>0.98(半载)
>0.99(满载),>0.98(半载)
250KW和500KW逆变器
逆变器型号
500kW
250kW
(无隔离变)ຫໍສະໝຸດ 250kW最大光伏方阵功率(KWp)

250和500kw逆变器参数

250和500kw逆变器参数
工作电压范围
216~310
216~310
310~450
工作频率范围(HZ)
50±0.5HZ(默认为-2HZ~+1HZ可设置)
50±0.5HZ(默认为-2HZ~+1HZ可设置)
50±0.5HZ(默认为-2HZ~+1HZ可设置)
功率因素
>0.99(满载),>0.98(半载)
>0.99(满载),>0.98(半载)
0~900
0~900
MPPT范围(V)
450~820
450~820
450~820
MPPT范围(%)
>99.9%
>99.9%
>99.9%
进线方式
底部进线
底部进线
底部进线
可独立MPPT路数:直流输入端子路数
1:8
1:4
1:4
额定交流输出功率(KW)
500
250
250
最大交流输出功率(KW)
550
275
275
250KW和500KW逆变器
逆变器型号
500kW
250kW
(无隔离变)
250kW
最大光伏方阵功率(KWp)
550
275
275
最大直流功率(KW)
550
275
275
最大方阵开路电压(V)
900
900
900
最大方阵输入电流(A)(输出cos φ =1 时)
1200
600
600
直流输入电压范围(V)0~900防护级IP20IP20
IP20
隔离变压器



不降低额定功率运行的最大海拔高度(m)
<3000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计(论文)题目 250kW光伏并网逆变器设计学院名称电气工程与其自动化学院专业班级电气09-2学生姓名宋子峰导师姓名李磊2013 年 6 月 10 日250kW光伏并网逆变器设计作者姓名宋子峰专业电气工程及其自动化指导教师姓名李磊专业技术职务高级工程师目录摘要 (4)ABSTRACT (2)第一章绪论 (3)1.1光伏系统的应用发展前景 (3)1.2光伏发电系统概述 (4)1.3 本课题所做的工作 (6)第二章光伏并网逆变器的工作原理及总体设计 (7)2.1 光伏并网逆变器的工作原理 (7)2.2 光伏并网逆变器的总体设计 (7)2.2.1 光伏并网逆变器的基本结构 (7)2.2.2 硬件设计中的各部分介绍 (8)2.2.3 控制电路设计 (9)2.3 逆变部分的主回路设计 (11)2.3.1主电路拓扑结构 (12)2.3.2变压器选择 (12)2.3.2电抗器选择 (12)2.3.3光伏阵列恒电压控制 (13)2.4 IGBT 并联运行分析 (14)2.4.1 光伏并网逆变器系统的设计 (14)2.4.2 IGBT并联电路的设计 (15)2.4.3 LCL滤波电路的设计 (16)2.4.4 直流支撑电容的设计 (16)2.4.5 IGBT驱动电路的设计 (17)2.4.6 控制电路的设计 (17)第三章光伏并网系统的“孤岛效应”分析与保护 (17)3.1 孤岛效应的产生及危害 (17)3.2 光伏系统孤岛效应的特点 (18)3.3 孤岛监测和系统保护的方法 (19)第四章仿真模型搭建及仿真结果分析 (20)第五章总结与展望 (24)5.1 总结 (24)5.2 展望 (25)参考文献 (27)致谢 (28)摘要随着社会生产的日益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。

地球中的化石能源是有限的,总有一天会被消耗尽。

随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。

可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。

其中太阳能资源在我国非常丰富,其应用具有很好的前景。

光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。

在阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。

此系统主要用于输电线路调峰电站以及屋顶光伏系统。

关键词:光伏电池并网安全光伏逆变器最大功率点跟踪ABSTRACTWith the development of social production, the demand of energy is increasing, and the energy crisis is becoming more and more prominent in the global scope. The fossil energy is limited, and it will be exhausted someday in the near future. The price of the fossil energy will be higher and higher with its reduction, and this will seriously restrict the development of production and the enhancement of people's living standard. Renewable energy is an important resource to meet the energy demand of the world, especially for China which has so many people. Solar energy resources are extremely rich in our country, and its application has very good prospect.Light volt incorporation net generating system can transform the solar energy into electricity energy through the solar cell board, and can change the Direct Current (DC) into Alternating Current (AC) which has the same frequency and phase with the city electricity through the incorporation inverse transformation, and can feed back to the electrical net. When the sunlight is sufficient, the electricity supplied by the solar energy can be used instead of the city net electricity; when the sunlight is not sufficient or the light volt electricity amount can not meet the demand, the control section can automatically adjust it, and the city net electricity can supplement. This system is mainly used for transmission line adjusting peak power plant and the rooftop light volt system.Key words:photo-cell; grid-connected; PV inverter; maximum power point tracking;第一章绪论1.1光伏系统的应用发展前景随着社会生产的日益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。

地球中的化石能源是有限的,总有一天会被消耗尽。

随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。

据测算,全世界能源消耗的大部分被家庭所占,改善家庭的能源消耗方式便可改善全球的环境质量,节约大量的化石能源,用于化工等他用,而不只是当作燃料使用。

因此自然能发电技术的应用受到越来越普遍的重视,洁净廉价的太阳能正适合于作为可再生的替代能源。

太阳能是一种自然资源,将太阳能进行采集、转换,使其变为可控电能的系统,即为太阳能光伏发电系统。

这项技术由美国贝尔实验室于上世纪五十年代初研究成功,最初仅用于航天等高科技领域。

上世纪七十年代爆发的全球性能源危机,促使该技术向民用方面迅速推广。

经过三十多年的不断改进与发展,目前己经形成一套完整而成熟的技术,随着全球可持续发展战略的实施,世界各国都在大力鼓励太阳能光电产业的发展。

据报道,日本1992年启动了新阳光计划,到2003年日本光伏组件生产占世界的50%,世界前10大厂商有4家在日本。

德国新可再生能源法规定了光伏发电上网电价,大大推动了光伏市场和产业发展,使德国成为继日本之后世界光伏发电发展最快的国家。

中国的常规能源储量远远低于世界的平均水平,大约只有世界总储量的10%。

2007年能源消费总量约为19.8亿吨,比2006年增长13%,其中:煤炭占67.1%,石油占22.7%、天然气占2.8%、水电等占7.3%。

2007年石油进口达到9900万吨,约占中国总石油消耗4096。

由于能源需求的强劲增长,煤炭在能源消费结构中的比例有所提高,比2006年提高1个百分点。

按照目前的经济发展趋势和中国的资源情况,2010年和2020年的电力供应单靠传统的煤、水、核是不够的,尚存在一定的缺口,需要由可再生能源发电来填补。

中国光伏产业在国家大型工程项目、推广计划和国际合作项目的推动下,以前所未有的速度迅速发展。

到2003年底,中国太阳能光伏系统累计安装量约达到了55兆瓦,主要为边远地区居民及交通、通讯等领域提供电力,现在己开始进行并网光伏发电系统的试验和示范工作。

全国己有太阳能电池生产及组装厂10多家,制造能力超过100MWp。

到2003年底,全国太阳热水器使用量为5200万平方米,约占全球使用量的40%,年生产量为1200万平方米[1]。

太阳能利用可分为热利用和光伏发电两种方式,热利用主要在采暖领域较多,形式比较单一;而光伏发电可以把太阳能转换为当今最普遍的能源利用形式一电能,从而具有热利用不可比拟的优势,光伏发电系统与其他发电系统相比具有许多优点:(1)它的能源取之不尽用之不竭,而且清洁无污染。

(2)没有动作部件,不会产生噪声,运行更可靠。

(3)轻便,易安装维护;(4)分布极其广泛,凡是太阳光能照到的地方就能发电。

(5)无论规模大小,其发电效率几乎是相同的。

(6)能在用电的现场发电。

光伏发电系统的应用可根据用户情况分成三大类:专业性应用、家电设备方面的应用和农村应用。

一些边远或孤立的地区对电力的需求问题可以依靠光伏系统来解决,如我国西藏、新疆等的一些边远偏僻的区。

这种市场的主要特点是能源需求量小,因此无论是通过扩展电网,还是利用柴油发电机,所提供的常规电力的价格都很高。

而光伏发电系统受用电规模的影响则不大[2]。

此外,维修量小是光伏发电系统的另一个优点。

有些地区游牧居民较多,由于居住比较分散且不固定,所以适于使用分布式电源,尤其适于用光伏电源系统或者风能发电系统,但风能发电装置易损坏,并且维护量大,不如光伏电源适合户用。

1.2光伏发电系统概述太阳能光伏发电系统的典型框图见1-1,其主要由以下四部分构成:图1-1光伏发电系统典型结构框图1.光伏电池阵列光伏电池是组成太阳能光伏发电系统最基本的单位。

但单体光伏电池发出的电能很小,而且是直流电,在大多数情况下很难满足实际应用的需要。

为了获得足够大的发电量,需要将单体光伏电池连接成电池组件,再由电池组件组合连接成为太阳能光伏阵列。

2.储能系统太阳能发电系统只是在日间有阳光的时候才能发电,但一般来说,人们主要在夜间大量用电,这样系统中就需要有储能单元(蓄电池)将白天所发出的电能储存起来供夜间使用。

3.逆变器光伏电池阵列所发出的电能为直流电,但是大多数用电设备以交流供电方式为主,所以系统中需要逆变单元将直流电转换为交流电供负载使用,逆变器的效率将直接影响到整个系统的效率,因此光伏系统逆变器的控制技术具有重要的研究意义。

相关文档
最新文档