Vortex lattice melting in layered superconductors with periodic columnar pins

合集下载

化工专业英语单词汇总

化工专业英语单词汇总

a function of …的函数 absorption:吸附 acetone 丙酮acrylics丙烯酸树脂 Aerospace 航空 agricultural engineering农业工程agricultural engineer农艺师 Amalgam 汞齐,水银;混合物,交叉ammonia 氨 ammonium nitrate硝酸铵ammonium sulfate硫酸铵 analyte分析物 analytical chemistry分析化学amorphous 非定型的,非晶型的,非结晶的,玻璃状的;无一定目的的,乱七八糟approximate to:接近,趋近 area 面积 argon氩 aromatic 芳香烃的as a whole整体而言 ash纯碱 asphalt沥青a priori:先验的,既定的,不根据经验的,由原因推出结果的,演绎的,直觉的accessory heater 附属加热器accident prevention事故预防accountant会计师,会计,出纳 activity coefficient活度系数actualrate of absorption 实际吸收速率 adiabatic绝热的,不传热的alkane烷烃 ammonia-air mixture 氨气-水混合物ammonium phosphate磷酸铵anhydrous无水的applied Chemistry应用化学aquatic plant 水生植物 artificial人工的 asphaltene沥青油assay分析化验 at right angles to 与…成直角,与…垂直bottoms product塔底产品 baffle-plate折流挡板,缓冲挡板balance 抵消,平衡 barrier障碍物 batch间歇的;benzene苯binary distillation双组分精馏 bioengineering生物工程 bionics(仿生学)biosynthesis生物合成 blower 风机 boundary layer 边界层brick wall 墙壁 brittleness 脆性 bubble-cap tower 泡罩塔Buchner funnel 布氏漏斗 bulk explosive集装炸药 buoyancy force 浮力by virtue of 由于,根据,凭借于 barrel桶(国际原油计量单位)base塔底,基础 biological production生物制品生产biomechanics生物力学 bitumen沥青 blood-flow dynamics血液流动动力学boiling point 沸点 bottom 底部,塔底 branched chain支链烷烃branched-chain(带支链的) bulk chemical 大宗化工产品capillary action毛细管作用 carbon dioxide 二氧化碳capital expenditure 基建投资 carbon skeleton碳骨架capital outlay 费用,成本,基建投资 carrier载体carbon tetrachloride四氯化碳 straightforward简单明了的 catalyst 催化剂catalyst催化剂, catalytic cracking 催化裂化catalytic oxidation催化氧化 chemical additive添加剂centrifuge离心.离心机,离心分离 chemical process safety 化工过程安全chain-shaped链状的 chemical reactor transfer of heat, evaporation, crystallization结晶chain链 chlorofluorocarbon二氯二氟化碳,氟里昂chemical reaction化学反应 circulating gas 循环气civil engineer土木工程师 closed system封闭系统cleansing agent清洗剂 compound化合物close teamwork紧密的团队协作 computer microchip 计算机芯片coefficient系数 concentration difference 浓度差columnar liquid chromatography柱状液相色谱仪 concentration gradient 浓度梯度combustion燃烧 condensate冷凝液,凝缩液commercial proportions 商业规模 condensation冷凝commodity or specialty通用商品或特殊化学品 condenser冷凝器compress压缩 condense凝缩,冷凝computationally intensive计算量大的 constitute取代物,取代基concave (凸的,凸面) continuous:连续的concentration 浓度 convection 对流conduction 传导 convection drying对流干燥conduit导流管), cooling water 冷却水conical funnel 锥形漏斗 coordinating ligand配合体,向心配合体conservation of mass and energy能量与质量守衡定律 corrosive property 腐蚀性constant-rate drying period恒速干燥阶段 cost engineer造价师control volume 控制体 counterpart对应物,配对物cooler 冷却器 cracking of petroleum石油裂解counteract抵消 cracking裂化counter-current逆流 criteria 指标 conversion转化,转化率critical moisture content临界湿湿含量 crude oil原油cake filtration 饼层过滤 capillarity毛细现象,毛细管力 crystal flaw 晶体瑕疵decompose分解,离解,还原,腐烂 depth 深度 derivative衍生物descriptive 描述性的 diagnostic application of computers计算机诊断diammonium hydrogen phosphate磷酸二氢铵 dislocation 错位dispersion model分散模型 dissolve 溶解 distillate product塔顶馏出产品distillate section精馏段 downcomer 降液管 drag forces曳力 drying of Solids 固体干燥drying rate干燥速率 ductility 延展性 dairy牛奶deactivate失活 deep bed filtration 深层过滤 defect structure 结构缺陷demonstrate论证,证明,证实;说明,表明,显示density 密度 density difference密度差 deposit沉积物design engineer设计师 detector检测器 detrimental有害的devastate破坏,蹂躏 discolor变色,脱色drop in pressure 压降 drying gas干燥气体 drying干燥durability 耐久性,寿命,使用期限,强度eddy diffusion涡流扩散 efficiency improvement 效率提高electromagnetic wave 电磁波 Empirical model 经验模型employ采纳,利用 end-of-pipe solution 最终方案energy efficiency 能量效率 environmental health engineering环境健康工程equimolecular counter-diffusion 等分子反向扩散essential oil香精油 ether 乙醚 ethylene epoxidation 乙烯环氧化反应exothermic(放热的,endothermic吸热的,adiabatic绝热的)exotic chemistry 奇异化学explosive炸药 extract 萃取液extract萃取液 eddy 尾流,涡流 electrical conductivity 导电性emission释放物,排放物 emulsifying agent乳化剂energy saving 节约能量 enthalpy 焓 extract phase萃取相environmentally benign processing环境友好加工equilibrium constant 平衡常数 ethyl alcohol乙醇)energy conversion 能量转化falling-rate降速 falling-rate period降速干燥阶段feedstock 进料,原料 fermentation发酵Fick’s Law 费克定律 filter cake 滤饼filter paper 滤纸 filtering medium 过滤介质filtering surface 过滤表面 filtrate 滤液flux(通量,流通量) foodstuff 食品forces of friction 摩擦力 forefront最前线,最前沿fouling污垢,发泡 foundation 基础fraction collector馏分收集器fractional crystallization分步结晶fully developed turbulent flow充分发展湍流 functional group官能团furnace 火炉,燃烧器 fused quartz 熔化的石英factor 因数,因子,系数,比例 family族 feed liquor 进料液fertilizer化肥 fiber纤维 filter cake 滤饼filter 过滤器 filtration 过滤 final-proposal决议Fine chemical 精细化工 first-principles基本原理,基本规则fluid mechanics 流体力学 fluorescence 荧光色,荧光fossil fuel化石燃料 freeze drying冷冻干燥gas diffusivity气体扩散性,气体扩散系数gasoline汽油 general service facilities公用工程gravity重力 gas adsorption 吸收;Gas and Liquid Chromatography气相色谱与液相色谱gasoline汽油 governmental regulation政府规定heat exchanger 换热器 heat requirement热负荷heat-sensitive material 热敏性物质 heavy gas oil重瓦斯油helium氦 HF alkylation氰氟酸烷基化high-efficiency高效的 high-fidelity高保真的 high-performance高性能human-factors engineering人类与环境工程humidity湿度 hydrodynamic model水力学模型hydrogen and methane oxidation 氢气和甲烷氧化反应hydroquinone 对苯二酚 hard hat 安全帽hazard identification 危害辩识, health care保健hearing aid助听器 artificial limb假肢 heat exchange 热交换heats of solution and vaporization溶解热和汽化热 homologous series同系物human medicine人体医学 hydrocarbon naphthene环烷烃hydrogen cyanide氰化氢i feed tray进料板 ibuprofen异丁苯丙酸 ifetime寿命 impurity杂质in the vicinity of 在…附近,靠近..,大约…,在…左右information processing 信息处理injection注射 inorganic salt无机盐 insulation 绝缘inter-phase mass transfer界相际间质量传递is proportional to 与…成比例ideal system 理想系统 In principle从原理而言in the absence of无---存在 inert 惰性物,不参加反应的物质inflection:折射 intensity强度,程度is almost inversely proportional to 几乎与…成反比internal structure 内部结构ketone酮 kilogram千克labor 劳动力 laminar sub-layer 层流底层 latent heat潜热 law 定律 Lewis acid不可再生的路易斯酸liquid mixture 液体混合物 lubricating oil润滑油Latin or Greek stem 拉丁或者希腊词根least-squares-regression最小二乘法 life scientist生命科学家liquid-liquid extraction 液液萃取 locant位次,位标 loss prevention损失预防macroscopic phenomenon 宏观现象 thermal stability热稳定性maintenance expense 维修费 macroscopic particle 宏观的粒子materials science材料科学 magnet 磁铁,有吸引力的人或物matte无光泽的,无光的 mathematical expression steady-state model稳态模型mean value平均值 maximum最大的mechanical disturbance 机械扰动 mechanical, thermal, chemical, electric, magnetic, and optical behavior. (机械性能、热学性能、化学性能、电学性能、磁性能、光学性能)mechanical separation 机械分离) medical electronics医疗电子medical instrumentation医疗器械 medical engineering医学工程,医疗工程membrane technology膜技术 medium 介质metal wall of a tube 金属管壁 membrane module膜组件metallic solid 金属固体 methane甲烷metallurgy 冶金学,冶金术 milliliter毫升micro-reactor 微型反应器 miscible可混合的,可溶的,可搅拌的mobile phase移动相 model identification模式识别moisture content湿含量 molecular diffusion 分子扩散motion of unbound electrons 自由电子的运动 molecular transfer分子传递mount 安装,固定 moving gas stream移动的气流multi-component distillation多组分精馏natural gas天然气 naphtha石脑油near toequilibrium接近平衡 natural and forced convection 自然对流和强制对流neural network神经网络 net flow 净流量nitric acid 硝酸 nitric acid硝酸 nylon尼龙nitrogen oxides氮氧化物 nonlinear-equation-solving technique非线性方程求解技术nomenclature of chemical compound化学化合物的命名法 nuclear power 核能octane number of gasoline汽油辛烷值 of the same order具有同一数量级of enthalpy 焓通量 oil drilling采油operating condition操作条件 oil shale油页岩overhead vapor塔顶汽体 one-pass(单程)oxygenate content 氧含量 operating cost 操作费用or convex(凹的,凹面) organic有机的,有机物的outline描绘,勾勒 output产出,输出,产量oxides of nitrogen 氮氧化物paraffin石蜡,烷烃parent母链,主链penicillin青霉素partial vaporization 部分汽化particle size 颗粒尺寸pharmaceutical intermediate药物中间体pharmaceutical 制药 packed tower 填料塔phaseout消除 packing characteristics填充性质phenomenological model 现象模型 packing material 填料 pump 泵physical process 物理过程 paint涂料physiologists生理学 paraffin石蜡,链烷烃physiologist生理学家 per unit area单位面积plastic塑料 percent conversion百分比转化率plate tower 板式塔 installation 装置 feed 进料 perpendicular to:与----垂直polymers聚合物 Pharmaceutical制药power 动力 phosgene synthesis 光气合成.precipitate 沉淀物 plane chromatography薄层色谱precipitation沉淀,沉析 plant layout工厂布局pressure gradient plant location工厂选址probability of failure失效概率 pollutant 污染物process data historian:过程数据历史编撰师 poor conductor of electricity 不良导电体process engineering过程工程 porous medium 多孔介质process material过程物料(相对最终产品而言的) pretreatment 预处理process-simulation software packages过程模拟软件包 processcontrol(过程控制)product 产物,产品 production line生产线prosthetics假肢器官学 protein蛋白质psychology心理学 pyridine砒啶 purify 精制提纯qualitative定性的 quantitative precision定量的精确 quantitative relation 定量关系radiation 辐射 raffinate萃余液ratio of A to B A与B的比值 rate of diffusion扩散速率reactant 反应物 reaction 反应 separation 分离reaction byproduct 反应副产物 reaction yield反应产率reaction speed反应速度 reaction zone反应区reactive distillation 反应精馏 reactive distillation 反应精馏reactor energy input能量输入 recycle 循环回收reboiler再沸器 vaporization汽化 regression model回归模型.refix前缀 release释放,排放reflect 反射, replacement organ器官移植reflux回流 replication 复制 reforming重整 resistance 阻力regenerate再生 resistance 阻力,阻止replicating prefix重复前缀词 retention volume保留体积retention times保留时间 ring-shaped(环状的)Reynolds number雷诺准数 rules and regulations 规章制度reaction kinetics 反应动力学 reactant 反应物retardation factor保留因子,延迟因子safety experience安全经验 safety knowledge安全知识safety management support安全管理基础知识 safety shoe防护鞋sample样品 sandstone砂岩 sedimentary rock沉积岩 sanitation卫生segment段,片,区间,部门,部分;弓形,圆缺;分割,切断screening筛选,浮选sensor 传感器,探头 seepage渗出物 siltstone泥岩 self-taught自学size distribution 粒度分布 semiconductor 半导体sodium hydroxide 氢氧化钠 sensible heat(sensible heat:显热)solubility,溶解度,溶解性 separation of solids 固体分离solute溶质 settling tank沉降槽 solution溶液 setup 装置solvent make-up 补充溶剂 optimum 最优的 shape 形状solvent 溶剂 soap肥皂solvent-recovery system 溶剂回收系统 solid state physics固体物理学stage-type distillation column级板式精馏塔 soluble可溶解的 solvent溶剂statistical technique 统计技术 specialized group专业组storage仓库 specialty chemical特殊化学品,特种化学品stripping section汽提段,提馏段 spinning electrons 旋转电子structural steels 结构钢 spray chamber 喷淋室substituent取代基 stationary nonvolatile phase静止的不挥发相substitute取代,替代 steam蒸汽suffix后缀 stereoselective立体选择性的surface layer 表面层 straight line:直线surface treatment表面处理 streptomycin(链霉素)surgeon外科医生 styrene苯乙烯suspension 悬浮液 sublime升华supportive or substitute organ辅助或替代器官 synthetic rubber合成橡胶tanker油轮 kerosene煤油 tarry柏油的,焦油的,焦油状的technical competence技术能力 tangible return有形回报terminology术语,词汇 tar sand沥青石thermal conductivity 导热性 technical advance 技术进步thermal diffusion热扩散 technical challenge技术挑战,技术困难total condense全凝器 technical evaluation技术评估tower shell 塔体 Telecommunication 电信toxic有毒的 temperature gradient 温度梯度transport of momentum 动量传递 temperature gradient 温度梯度tray 塔板 temperature level 温度高低turbulent flow 湍流 test mixture测试混合物two-film theory 双膜理论 the Chemical Manufacturers Association化工生产协会two-phase flow两相流 the random motion of molecules 分子无规则运动thermal conduction 热传导 thermodynamic equilibrium热力学平衡 tonnage吨位,吨数,吨产量 top 顶部,塔顶trap 收集,捕集 triple bond三健,三价unconverted reactant未转化的反应物 unabsorbed component未吸收组分 purity纯度urea尿素vacant atomic site 原子空位 vacuum drying真空干燥vapor-liquid contacting device汽液接触装置 Vacuum 真空viscous resistance粘性阻力 valve tray浮阀塔板volatility挥发性 vapor pressure蒸汽压voluntary自愿的,无偿的,义务的;有意的,随意的;民办的 via经,由,通过,借助于 viscosity 黏度waste 废物 wastewater treatment污水处理 waste disposal废物处理water droplet水珠,水滴 water purification水净化wax石蜡 weir溢流堰 with the result that:由于的缘故,鉴于的结果water-cooling tower水冷塔yield 产率,收率。

悬浮区熔融法英文

悬浮区熔融法英文

悬浮区熔融法英文English:The suspended melt method, also known as the floating zone melting method, is a technique used in materials science and metallurgy to purify and grow single crystals. In this process, a solid material is heated to its melting point, and a small zone of the material is melted using a localized heat source such as a radio frequency induction coil or a laser. The molten zone is then moved along the length of the material, allowing impurities to segregate and be excluded from the growing crystal. This method is commonly used to produce high-purity semiconductor materials and superalloys, as well as to study the behavior of materials under extreme conditions such as high temperatures and pressures.中文翻译:悬浮区熔融法,也称为浮动区熔化法,是材料科学和冶金学中用于纯化和生长单晶体的一种技术。

在这个过程中,固体材料被加热到其熔点,并且使用局部热源(如射频感应线圈或激光)熔化材料的小区域。

脱轻组分塔的英语

脱轻组分塔的英语

脱轻组分塔的英语English:The distillation column used for separating light components from a feed stream is commonly referred to as a "stripping column" or "dewaxing tower". This type of tower operates at lower temperatures and pressure to favor the removal of lighter, less desirable components from the feed stream. The feed stream, which is typically a mixture of hydrocarbons, enters the tower and is heated as it rises through the tower. The light components are then vaporized and carried to the top of the column, while the heavier components remain in liquid form and are removed from the bottom. In the case of dewaxing towers, the focus is on removing waxy components from the feed stream, which can improve the quality and flow properties of the final product.Translated content:用于从进料流中分离轻组分的精馏塔通常被称为“剥离塔”或“脱蜡塔”。

tem 高分辨晶格衍射条纹英语

tem 高分辨晶格衍射条纹英语

tem 高分辨晶格衍射条纹英语High-Resolution Lattice Diffraction Patterns in TEM: A Technical Insight Transmission electron microscopy (TEM) is a powerful tool in materials science, offering atomic-scale visualization of materials' internal structure. Among its various capabilities, TEM excels in providing high-resolution lattice diffraction patterns, which are crucial for understanding the crystallographic properties of materials.Lattice diffraction patterns, also known as electron diffraction patterns, are produced when a beam of electrons interacts with the atomic lattice of a material. These patterns are essentially the result of electron waves diffracting from the regular spacing of atoms within the crystal lattice. The resulting diffraction pattern, observed on a screen or detector, appears as a series of bright spots arranged in a characteristic pattern that reflects the lattice symmetry and spacing of the material.In high-resolution TEM (HRTEM), these diffraction patterns are obtained with remarkable clarity, revealing minute details of the crystal structure. This high resolution is achieved through the use of advanced electron optics, which focus the electron beam to nanometer-scale dimensions, and high-sensitivity detectors, which capture the weak diffracted signals.The analysis of these high-resolution lattice diffraction patterns provides valuable insights into the materials' atomic arrangement, phase composition, and defects. For instance, the spacing between diffraction spots can be used to determine the lattice parameters of the material, while the intensity and shape of the spots can reveal information about atomic bonding and the presence of defects such as dislocations or grain boundaries.In summary, high-resolution lattice diffraction patterns in TEM are a crucial tool for understanding the crystallographic properties of materials. They provide a detailed and often quantitative view of atomic-scale structure, essential formaterials research and development in areas as diverse as solid-state physics, chemistry, and engineering.。

Vortex lattce melting in 2D superconductors and Josephson arrays

Vortex lattce melting in 2D superconductors and Josephson arrays

a rXiv:c ond-ma t/94371v312May1994Vortex lattice melting in 2D superconductors and Josephson arrays M.Franz and S.Teitel Department of Physics and Astronomy,University of Rochester,Rochester,NY 14627(February 1,2008)Abstract Monte Carlo simulations of 2D vortex lattice melting in a thin superconduct-ing film (or alternatively an array of Josephson junctions)are performed in the London limit.Finite size scaling analyses are used to make a detailed test of the dislocation mediated melting theory of KTNHY.We find that the melting transition is weakly first order,with a jump in shear modulus very close to that predicted by the KTNHY theory.No hexatic liquid phase is found.PACS number:64.60-i,74.60-w,74.76-wTypeset using REVT E XInterest in the melting transition of two dimensional(2D)vortex lattices has revived recently,primarily due to the belief that the stronglyfluctuating,layered,high-T c super-conductors may behave2D like in sufficiently large magneticfields[1].This2D melting transition has generally been believed to be described by the Kosterlitz-Thouless-Nelson-Halperin-Young(KTNHY)theory[2–4]of dislocation mediated melting.However,the very existence of a2D vortex lattice at anyfinite temperature has been recently questioned by Moore[5],whofirst argued that phasefluctuations destroy such a lattice,and then found support for this picture from Monte Carlo(MC)simulations[6].High order,high tempera-ture perturbative expansions[7],similarly show no evidence for freezing into a vortex lattice in2D.Other MC simulations[8,9],however,find clear evidence for a melting transition at finite temperature.Hu and MacDonald[9]find this transition to befirst order,in opposition to the KTNHY prediction.The above cited simulations,have all been performed in the“lowest Landau level”ap-proximation,in which the complex order parameterψ(r)is expanded in terms of eigenstates of the Gaussian part of the Landau-Ginsburg free-energy functional.Alternatively,one may use instead the London approximation,in which the amplitude ofψ(r)is assumed to be constant,and only the phase is allowed to vary.In this limit,the problem can be efficiently simulated by utilizing the well known mapping[10]onto the2D Coulomb gas.Logarithmi-cally interacting point charges model vortices in the phase ofψ(r).For a uniform magnetic field B,one has afixed density B/Φ0of positive integer charges,on a uniform neutralizing background(Φ0is theflux quantum).The London approximation should be valid whenever the bare vortex core radiusξ0≪a v,the average spacing between vortices.This corresponds to temperatures well below the meanfield transition temperature,where vortex lattice melt-ing is expected to occur.Earlier simulations of this2D Coulomb gas,in the context of the 2D one component plasma problem[11],show clear evidence for afinite temperature melt-ing transition,and suggest that the transition is weaklyfirst order.In the following,we report on new simulations in this London approximation,in which we carry out thefirst finite size scaling analysis of the melting transition,making a detailed comparison with theKTNHY theory.We show that the shear modulus jumps discontinuously to zero at the melting transition with a value very close to the universal KTNHY prediction,however we find no evidence for a hexatic liquid phase.We perform thefirst conclusive test of the order of the melting transition(within the London approximation)using the histogram method. Wefind that the transition is weaklyfirst order,consistent with earlier suggestions.The model we simulate is given by the Hamiltonian,H=13a20/2)(B/Φ0)=(a0/a v)2,and V(r)is the lattice Coulomb potential in2D,which solves,∆2V(r)=−2πδr,0(2)subject to periodic boundary conditions.Here∆2is the discrete Laplacian.To keep the energyfinite,it is necessary to preserve total charge neutrality,which leads to the constraint N c≡ i n i=Nf,where N=L2is the total number of sites in the grid,and N c is the totalnumber of charges in the system.Thus f is the density of charges.Further details may be found in Ref.[12].The connection between Eq.(1)and the superconducting system is obtained by measuring the temperature of the Coulomb gas model,in units ofΦ20d/8π2λ2, whereλis the magnetic penetration length,and d the thickness,of the superconducting layer[3,10].The Hamiltonian(1)has been studied extensively[12,13]in the dense charge limit(f= 1/2,1/3).Here we are interested in the dilute limit f≪1,where we expect our discretized model to well approximate the continuum(see Refs.[11]for similar simulations,directly in the continuum).We always choose f commensurate with the system length L,so that theground state will be a perfect triangular charge(vortex)lattice.We study various charge densities f=1/m2,with m=3to12,andfixed N c≈100.Detailedfinite size scaling analyses are carried out for the specific case of f=1/49,and N c=16,25, (169)Our MC updating scheme is as follows.In each MC step one charge is selected at random and moved to a different site within a radius∼a v/2.This excitation is then accepted or rejected according to the standard Metropolis algorithm.N c such attempts we refer to as one MC sweep.At low temperature,we also make global moves,by attempting to shift entire rows of charges by one space.Such moves are meant to model long wavelength shear excitations,and help to accelerate equilibration near the vortex lattice melting transition. Data is collected by heating the system up from the ground state.At each temperature we discard30,000MC sweeps to equilibrate the system.Then,starting from this equilibrated configuration,we perform several(typically4−6)independent runs of100,000sweeps each to sample physical quantities.Errors are estimated from the standard deviation of these independent runs.To verify consistency of our results,we also perform cooling from a random configuration at high temperature;no substantial hysteresis is found.The physical quantities we measure are:(i)the inverse dielectric function,ǫ−1(T)≡limk→01−2πN2c ij e i6(θi−θj) (4)where the sum is over sites with non-vanishing charges n i=+1,andθi is the angle of the bond from n i to its nearest neighbor,relative to somefixed reference direction;and(iii)the structure functionS(k)≡1N c ij e i k·(r i−r j) n i n j .(5)In Fig.1,we plotǫ−1(T)andϕ6(T),versus T,for f=1/49and N c=169.The behavior ofϕ6(T)indicates two separate transitions at T c(f)and T m.For a simple visualization of the resulting three phases,we show in Fig.2intensity plots of S(k),for k’s in thefirst Brillouin zone(BZ).We show results for three different temperatures,with the data for each value of T restricted to one third of the BZ.For T=0.003(Fig.2a),just below T c(f), we see a regular array ofδ-function Bragg peaks,indicating long range translational order. Thus for T<T c(f),we have a vortex lattice which is pinned to the discretizing grid.For T=0.0065(Fig.2b),just below T m,we see a regular array of peaks,but the peaks are now offinite width.These peaks are consistent with power law singularities,characteristic of the algebraic translational order expected for a2D lattice in the continuum.Thus for T c(f)<T<T m,we have a“floating”vortex lattice,which is depinned from the grid,and we have reached the continuum limit.For T=0.0075(Fig.2c),slightly above T m,we see a rotationally invariant structure(ϕ6∼0),typical for a liquid with short range correlations. Thus for T>T m,thefloating lattice has melted into a liquid.Returning to Fig.1,we see thatǫ−1vanishes at the depinning transition T c(f).Thus thefloating lattice has lost superconducting phase coherence.This is nothing more than a reflection of thefluxflow resistance to be expected from an unpinned vortex lattice,which is free to drift transversly to an applied d.c.current.Our results explicitly show that the absence of phase coherence in this k→0sense,does not not imply the absence of a well defined vortex lattice.In the inset to Fig.1,we show the dependence of T c(f)and T m on the charge density f. We see that only for sufficiently dilute systems,f<1/25,is there afloating lattice phase;for f>1/25there is only a single transition from a pinned lattice to a liquid.As f decreases, T c(f)→0as∼f,while T m quickly approaches afinite constant T m=0.0070±0.0005,in good agreement with the melting temperature found in earlier continuum simulations[11].In terms of the superconductor,this means a vortex lattice melting at T m=0.0070Φ20d/8π2λ2,well within the bounds estimated by Fisher[3]from the KTNHY theory.The transition at T c(f)is an artifact of our discretization of the continuum,and hence has no direct physical meaning for a uniform continuous superconductor.However T c(f) does represent a physical depinning transition for the related problem of vortex states in periodic superconducting networks,such as Josephson junction arrays.In this case,our result that T c(f→0)vanishes,is consistent with early commensurability arguments by Teitel and Jayaprakash[15].The result that afloating lattice exists above T c(f)is,however, a new observation in the Josephson array context;the melting of this lattice at afinite T m may dominate the physics of such arrays at small f.To investigate the nature of the melting transition T m,we have carried out detailed finite size scaling analyses for the case f=1/49,in which T m is well separated from T c.Our approach is guided by the KTNHY theory[2].For a2D lattice in the contin-uum,translational correlations decay algebraically with a temperature dependent expo-nent, e i G·(r i−r j) ∼|r i−r j|−ηG(T),where G is a reciprocal lattice vector of the real space charge lattice.For the2D superconducting case,where the vortex compressibility is infinite,ηG(T)=k B T|G|2/4πµ,whereµis the vortex shear modulus.If G1is the shortest reciprocaltakes a discontinuous jump lattice vector,then the KTNHY theory predicts that at T m,ηG1(T−m)=1/3.to infinity from the universal value ofηG1To test this prediction for translational order,we measure the height of peaks in the structure function.From Eq.(5)wefind that these should scale asS(G)∼L2−ηG(T)for T<T m.(6) Above T m,translational order has exponential decay with a correlation lengthξ.One then obtainsS(G)∼ξ2for T>T m.(7) In the Fig.3a we plot S(G1)/L2,as a function of L on a log-log scale,for several different temperatures.Data for each temperature fall on a straight line,confirming the expectedpower-law behavior.These straight lines fall into three distinct groups.For T<T c≃0.0045, S(G1)/L2∼1,indicating the long range order of the pinned lattice.For T c<T<T m≃0.007,wefind algebraic decay,S(G1)/L2∼L−ηG(T).For T>T m,wefind S(G1)/L2∼L−x, with x→2as T increases,consistent with the short range order of a liquid.The lines in Fig.3a are afit to Eq.(6);the resulting exponentsηG1(T)are shown in Table1.We see thatηG1first exceeds the KTNHY universal value of1/3at T=0.0065,very close to our estimatedmelting transition of T m≃0.007,where the slopes of the lines in Fig.3a show an apparent discontinuous jump.Similar results,within the“lowest Landau level”approximation,have very recently been obtained byˇS´aˇs ik and Stroud[16].As a consistency check,we have also computed S(G2),where G2=ing similar fits as in Fig.3a,we determine the exponentηG2,and show the results in Table.1.We seethatηG2≃4ηG1as expected,sinceηG∼|G|2.We now consider the orientational order.Below T m,KTNHY predict long range6−fold orientational order given by e i6(θ(r)−θ(0)) ∼αe−r/ξ6+ϕ∞6.Forξ6≪L,one obtains from Eq.(4)ϕ6∼2παξ6Thus our results for thefloating lattice phase are consistent with expectations for a2D continuum lattice,and wefind that translational correlations at the melting transition are consistent with the KTNHY prediction.However we do notfind any evidence for a hexatic liquid above T m.The absence of the hexatic liquid suggests the possibility that the melting transition is not of the KTNHY type,but is perhaps weaklyfirst order as found by Hu and MacDonald [9],and as suggested in Refs.[11].To examine this possibility,we measured the energy distribution P(E)∼e−F(E)/T at the melting temperature T m[18],and in Fig.4we plot the resulting free energy F(E)versus E.We see a double well structure with an energy barrier ∆F between two coexisting phases.In the inset to Fig.4we plot the dependence of∆F on system length L.The growth in∆F as L increases is a clear signal that the transition isfirst order,although our sizes remain too small,and our data too noisy,to see clearly the predicted scaling∆F∼L.To determine the distributions in Fig.4,we have computed P(E)atfixed T≃T m,and then extapolated[19]to determine P(E)at nearby T,finding the precise value of T that gives equal minima in F(E).In this way we obtain an improved estimate T m≃0.0066.To conclude,our results demonstrate that there is a clearfinite temperature melting transition of the vortex lattice in two dimensions,within the London approximation.This transition isfirst order,with melting directly into an isotropic vortex liquid;no hexatic liquid is found.Thefirst order transition however is very weak,so that the jump at melting inηG(and hence in the vortex lattice shear modulus)remains very close to the KTNHY universal prediction.The authors are grateful to T.Chen,D.A.Huse,D.R.Nelson,and Z.Teˇs anovi´c for useful discussions.This work was supported by DOE grant DE-FG02-89ER14017.One of us (M.F.)acknowledges the Rush Rhees Fellowship of the University of Rochester for support in the initial stages of this project.REFERENCES[1]D.S.Fisher,M.P.A.Fisher,and D.A.Huse,Phys.Rev.B43,130(1991);L.I.Glazman and A.E.Koshelev,Phys.Rev.B43,2835(1991).[2]D.R.Nelson and B.I.Halperin,Phys.Rev.B19,2457(1979);A.P.Young,Phys.Rev.B16,1855(1979).[3]D.S.Fisher,Phys.Rev.B22,1190(1980).[4]S.Doniach and B.Huberman,Phys.Rev.Lett.42,1169(1979).[5]M.A.Moore,Phys.Rev.B45,7336(1992).[6]J.A.O’Neill and M.A.Moore,Phys.Rev.Lett.69,2582(1992);Phys.Rev.B49,374(1993).[7]E.Br´e zin,A.Fujita and S.Hikami,Phys.Rev.Lett.65,1949(1990);S.Hikami,A.Fujita and rkin,Phys.Rev.B44,10400(1990).[8]Z.Teˇs anovi´c and L.Xing,Phys.Rev.Lett.67,2729(1991);Y.Kato and N.Nagaosa,Phys.Rev.B47,2932(1993).[9]Jun Hu and A.H.Macdonald,Phys.Rev.Lett.71,432(1993).[10]P.Minnhagen,Phys.Rev.B23,5745(1981).[11]Ph.Choquard and J.Clerouin,Phys.Rev.Lett.50,2086(1983);J.M.Caillol,D.Levesque,J.J.Weis,and J.P.Hansen,J.Stat.Phys.28,325(1982).[12]J.-R.Lee and S.Teitel,Phys.Rev.B46,3247(1992).[13]G.S.Grest,Phys.Rev.B39,9267(1989);J.-R.Lee,Phys.Rev.B49,3317(1994).[14]P.Minnhagen and G.G.Warren,Phys.Rev.B24,2526(1981);T.Ohta and D.Jasnow,Phys.Rev.B20,130(1979).[15]S.Teitel and C.Jayaprakash,Phys.Rev.Lett.51,1999(1983).[16]R.ˇS´aˇs ik and D.Stroud,OSU preprint.[17]In principle,the discretizing mesh acts like an orderingfield for6−fold orientationalorder,and so even in the isotropic liquid one mightfindϕ∞6small butfinite.The vanishing values ofϕ∞6which wefind numerically above T m indicate that this is a very small effect at the density f which we are studying.[18]J.Lee and J.M.Kosterlitz,Phys.Rev.Lett.65,137(1990).[19]A.M.Ferrenberg and R.H.Swendsen,Phys.Rev.Lett.61,2635(1988).TηG1(T)ϕ∞60.004750.188±0.0080.571±0.007 0.005000.207±0.0070.529±0.005 0.005250.211±0.0070.504±0.004 0.005500.248±0.0050.476±0.003 0.005750.255±0.0080.458±0.003 0.006000.296±0.0060.426±0.007 0.006250.319±0.0100.403±0.004 0.006500.4±0.160.33±0.030 0.00675 1.4±0.310.20±0.041 0.00750 3.4±0.370.03±0.046 0.01100 2.8±0.23-0.01±0.032 0.01500 2.2±0.120.00±0.020Table1:Temperature dependence of the exponentsηG1(T)andηG2(T).Also displayedlimiting values ofϕ6(T)for L→∞,ϕ∞6.FIGURESFig.1Inverse dielectric functionǫ−1(T)and orientational order correlationϕ6(T)versus T for f=1/49and N c=169.Inset shows the dependence of the depinning and melting temperatures,T c and T m,on charge density f.Solid and dashed lines are guides to the eye only.Fig.2Structure function S(k)in thefirst Brillouin zone,(BZ)for f=1/49and N c=63, and three different temperatures T.Data for each T is restricted to one third of the BZ.(a)T=0.003,just below T c,in the“pinned lattice”state.(b)T=0.0065,just below T m,in the“floating lattice”state.(c)T=0.0075,just above T m,in the liquid.Intensities are plotted nonlinearly to enhance features.Fig.3(a)Finite size scaling of S(G1)/L2(note the log-log scale).Solid and dashed lines arefits to Eqs.(6).(b)Finite size scaling ofϕ6(T).Solid and dashed lines arefits to eq.(8).Fig.4Free energy distribution F(E)versus E,at melting T m,for several system sizes L.The growth in energy barrier∆F with increasing L(see inset)indicates afirst order transition.Curves for different L are offset from each other by a constant,for the sake of clarity.。

材料科学专业英语词汇

材料科学专业英语词汇

材料科学专‎业英语词汇‎a-grain‎高铝颗粒A.S.T.M. speci‎f icat‎i on A.S.T.M. 的规范abbe numbe‎r or abbe value‎阿贝值abbe refra‎c tome‎t er 阿贝折射计‎abber‎t ite 黑沥青ablat‎i on 耗损ablat‎i ve shiel‎d ing 剥落,散热性屏蔽‎(太空)abnor‎m al setti‎n g 异常凝结abnor‎m al steel‎异常钢abrad‎a nt 摩擦剂Abram‎'s law 亚伯姆定律‎Abram‎s metho‎d of propo‎r tion‎i ng 阿不伦氏配‎合方法abras‎i on 磨耗abras‎i on cutti‎n g 磨切abras‎i on resis‎t ance‎耐磨抗力abras‎i on test 磨耗试验abras‎i ve 研磨剂,磨料abras‎i ve belt 研磨带abras‎i ve brick‎研磨砖abras‎i ve cloth‎研磨布,砂布abras‎i ve disc 金刚砂研磨‎盘abras‎i ve grain‎研磨粒abras‎i ve grain‎s研磨粒abras‎i ve hardn‎e ss 耐磨硬度abras‎i ve paper‎砂纸abras‎i ve paper‎磨擦纸abras‎i ve stone‎磨石abras‎i ve tool 磨具abras‎i ve wheel‎砂轮,磨轮abros‎阿伯罗期1‎-一种抗腐蚀‎合金88%Ni;10%Cr;2%Mn)absol‎u te tempe‎r atur‎e绝对温度absor‎b er1 中子吸收材‎料 2 动能吸收材‎料(如铅,金属,蜂巢,塑胶泡沫等‎) absor‎p tion‎吸着absor‎p tion‎band 吸收带absor‎p tion‎coeff‎i cien‎t吸收系数absor‎p tion‎edge 吸收限absor‎p tion‎limit‎吸收限absor‎p tion‎test 吸收率试验‎absor‎p tion‎-type inhib‎i tor (inhib‎i ter)吸着型(腐蚀)抑制剂Abyss‎i nian‎gold 阿比西尼亚‎金88%Cu,11.5%Zn,0.5%Au AC param‎e tric‎test/AC testA‎C参数试验/交流测试AC test 交流测试accel‎e rate‎d aging‎加速老化(橡胶)accel‎e rate‎d cemen‎t速凝水泥accel‎e rate‎d gum 速成胶accel‎e rati‎o n 自旋马达之‎加速度特性‎accel‎e rati‎o n facto‎r加速因数accel‎e rati‎o n tube 加速管accel‎e rati‎o n volta‎g e 加速电压accel‎e rato‎r催速剂;加速器accep‎t able‎wafer‎size 适用晶圆尺‎寸accep‎t or 受素;受体accep‎t or impur‎i ty 受素不纯物‎accep‎t or level‎1受素能阶 2 受者能阶acces‎s ory miner‎a l 附生矿物accom‎m odat‎i on kink 缓和节accum‎u late‎/accum‎u lati‎o n 累积加算accum‎u lato‎r metal‎蓄电合金(90%Pb, 9.2%Sn, 0.8%Sb)accur‎a cy 精度accur‎a cy test 精度试验aceto‎n e 丙酮acety‎l ene 乙炔acety‎l ene tetra‎b romi‎d e 四溴化乙炔‎Aches‎o n furna‎c e 艾其逊炉(制碳化矽用‎电弧炉) Aches‎o n proce‎s s 艾其逊法(用电弧炉制‎碳化矽) acicu‎l ar cast iron 针状铸体acicu‎l ar powde‎r针状粉末acicu‎l ar struc‎t ure 针状组织acid Besse‎m er conve‎r ter 酸性柏思麦‎转炉acid Besse‎m er proce‎s s 酸性柏思麦‎法acid Besse‎m er steel‎柏思麦钢acid brick‎酸性砖acid britt‎l enes‎s酸洗脆性acid bronz‎e耐酸青铜acid dip 酸浸acid earth‎酸性土acid elect‎r ic arc furna‎c e 酸性电弧炉‎acid elect‎r ic furna‎c e 酸性电炉acid embos‎s ing 酸刻acid etchi‎n g 酸蚀acid flux 酸性溶剂acid frost‎i ng 酸霜法(玻)acid heart‎h酸性炉膛(床)acid linin‎g1 酸性衬里 2 酸性炉衬acid open-heart‎h furna‎c e 酸性平炉acid open-heart‎h proce‎s s 酸性平炉法‎acid pickl‎i ng 酸洗acid pig iron 酸性生铁acid polis‎h ing 酸磨光acid proof‎alloy‎耐酸合金acid proof‎cast iron 耐酸铸铁acid refra‎c tori‎e s 酸性耐火材‎料acid refra‎c tory‎mater‎i al 酸性耐火材‎料acid resis‎t ing cast iron 耐酸铸铁acid resis‎t ing ename‎l抗酸搪瓷acid resis‎t ing steel‎耐酸钢acid slag 酸性渣acid steel‎酸性钢acid-core solde‎r酸心软焊条‎acid-proof‎brick‎耐酸砖acid-proof‎cemen‎t耐酸水泥acidi‎c compo‎n ent 酸性成分acidi‎c oxide‎酸性氧化物‎acidi‎c rock 酸性岩acidi‎t y 酸度acier‎a ge 电镀铁(钢)acier‎a tion‎加碳於铁(钢)包括渗碳表‎面硬化表面‎渗覆acous‎t ic fatig‎u e 音波疲劳(亦称sonic‎fatig‎u e 为由噪音或‎乱气流所产‎生之疲劳acous‎t ic mill 音控磨acrol‎i te1 陨石2 爱尔兰合金‎(12%Cu, 2%Mn 之活塞用铝‎合金)actin‎o lite‎阳起石activ‎a ted absor‎p tion‎活性吸着activ‎a ted alumi‎n a 活性铝氧activ‎a ted atom 活化原子activ‎a ted carbo‎n活性碳activ‎a ted charc‎o al 活性炭activ‎a ted speci‎e s 活性种activ‎a tion‎活性化activ‎a tion‎analy‎s is 活性分析activ‎a tion‎energ‎y活性化能activ‎a tion‎polar‎i zati‎o n 活性极化activ‎a tor 活化剂activ‎e carbo‎n活性碳activ‎e clay 活性黏土activ‎e dampe‎r有源阻尼器‎activ‎e load 有能源负载‎,主动负载activ‎e mater‎i al 放射[性]材料activ‎e regio‎n活性区activ‎e-passi‎v e metal‎活性-钝态金属activ‎e-passi‎v e trans‎i tion‎活性-钝态转变activ‎i ty1 活[性]度 2 活[性]量activ‎i ty coeff‎i cien‎t活性系数activ‎i ty index‎活性指数actua‎l wafer‎thick‎n ess 晶圆实际厚‎度adapt‎e r brick‎楔砖(陶)adapt‎i ve contr‎o ller‎/autom‎a tic thick‎n ess contr‎o ller‎自适控制器‎/自动厚度控‎制器adapt‎i ve Z funct‎i onZ 轴上承载压‎自动调整功‎能adapt‎o r 接头addit‎i on agent‎添日剂addit‎i ve 添加剂addre‎s s multi‎p lex funct‎i on 位址多工功‎能addre‎s s scram‎b le funct‎i on 位址打散功‎能adher‎e nce test 黏着试验adhes‎i on force‎附着力adhes‎i on promo‎t er coat/vapor‎prime‎r黏着力促进‎膜涂敷/汽相底层adhes‎i on stren‎g th 附着强度adhes‎i ves 黏合剂adiab‎a tic chang‎e绝热变化adiab‎a tic compr‎e ssio‎n绝热压缩adiab‎a tic curve‎绝热曲线adiab‎a tic defor‎m atio‎n绝热变形adiab‎a tic demag‎n etiz‎a tion‎绝热去磁adiab‎a tic elast‎i city‎绝热弹性adiab‎a tic equat‎i on 绝热方程式‎adiab‎a tic expan‎s ion 绝热膨胀adiab‎a tic gradi‎e nt 绝热梯度adiab‎a tic invar‎i ance‎绝热不变性‎adiab‎a tic invar‎i ant 绝热不变量‎adiab‎a tic poten‎t ial 绝热电位adiab‎a tic princ‎i ple 绝热原理adiab‎a tic proce‎s s 绝热过程adiab‎a tic syste‎m绝热系统adjus‎t able‎die 可调模具adjus‎t able‎gauge‎可调量规adjus‎t able‎mandr‎e l 可调心轴admir‎a lty brass‎海将炮铜admir‎a lty metal‎海将金属admix‎t ure 搀和物Adnic‎alloy‎艾德立克合‎金(冷凝器管用‎之铜镍合金‎,70%Cu,29%Ni,1%Sn)adobe‎admix‎t ure 土砖;晒乾砖adsor‎b ed film 吸附膜adsor‎b ed layer‎吸附层adsor‎p tion‎吸附 [作用]adsor‎p tion‎energ‎y吸附能adula‎r ia 冰长石advan‎c e 艾德凡司(含40%-44%Ni 之铜合金热‎电偶用)advan‎c ed globa‎l align‎m ent 进步型全晶‎圆调准AEC, Atomi‎c Energ‎y commi‎s sion‎原子能委员‎会aegir‎i te 纯钠辉石aerat‎e d concr‎e te 充气混凝土‎aerat‎i on 充气法aerat‎i on 充气(水泥)aerat‎i on cell 充气电池aerat‎o r 松砂机aerob‎i c bacte‎r ia 嗜氧细菌aeroc‎l ay 风簸黏土aerog‎r aph 喷雾器aerol‎i te1 陨石 2 爱罗耐合金‎(12%Cu, 2%Mn 其余为Al 制活塞用)aeros‎p ace corro‎s ion 太空腐蚀aeros‎p ace mater‎i al 太空材料aerug‎o铜绿after‎blow1‎後期吹炼2‎後期吹风after‎contr‎a ctio‎n再热收缩after‎cure/post cure 二次熟化/二次硬化after‎glow Micro‎w ave plasm‎a enhan‎c ed CVD syste‎m隔离行微波‎等离子体增‎强型CVD 系统after‎-corro‎s ion 後端腐蚀after‎-treat‎m ent 後处理agalm‎a toli‎t e 寿山石agalm‎a toli‎t e brick‎蜡石砖agate‎玛瑙age 材龄age harde‎n ing 时效硬化agglo‎m erat‎e d struc‎t ure 聚结组织agglo‎m erat‎i ng 黏聚(从化工)agglo‎m erat‎i on1 凝聚 2聚结aggre‎g ate 骨材;聚集体aggre‎g ate-cemen‎t ratio‎骨材水泥比‎aging‎时效aging‎crack‎时效裂纹(痕)aging‎range‎时效温度范‎围aging‎test 时效试验agita‎t ion 搅拌agita‎t or 搅拌器agric‎u ltur‎a l steel‎农具钢(0.25%-0.5%C)aguit‎e普通辉石air analy‎s is 风析air analy‎z er 风析器air autom‎a tic weldi‎n g 气体自动[电弧]焊接air belt1‎风带 2 风箱air bendi‎n g 空中弯折air blast‎鼓风air blast‎quenc‎h ing 强风淬火air blast‎i ng 鼓风air box 风箱air break‎d own 空气绝缘破‎坏air brick‎通风砖air burne‎r喷灯air carbo‎n-arc cutti‎n g 空气炭弧切‎割air chamb‎e r 气室air chann‎e l 开路air chuck‎气动夹头air class‎i fica‎t ion 空气分级air compr‎e ssor‎空气压缩机‎air conte‎n t test 空气含量试‎验air cooli‎n g[ 空]气冷[却]air craft‎quali‎t y steel‎航空级用钢‎air depos‎i ted clay 风积黏土air dried‎stren‎g th 风乾强度air drive‎n hamme‎r气动鎚air dry 兆乾air dry fiber‎风乾纤维air dust 导气管air entra‎i ning‎admix‎t ure 输气搀加物‎air entra‎i ning‎agent‎输气剂air entra‎i ning‎cemen‎t拌沬水泥air entra‎i ning‎Portl‎a nd cemen‎t输气波特兰‎水泥air entra‎i nmen‎t输气air float‎e d powde‎r风簸粉air flue 空气道air furna‎c e 空气炉air gap 空气隙air gas furna‎c e 煤气炉air gauge‎ (quaua‎n atic‎micro‎m eter‎)空气量规air gun 气枪air hamme‎r空气鎚air harde‎n ing 风硬air harde‎n ing steel‎风硬钢air hole 气孔air leaka‎g e test 漏气试验air lift 气升air melti‎n g 大开熔解air meter‎气量计air nozzl‎e空气喷嘴air paten‎t ing 空气勒化air perme‎a bili‎t y 透气性air port 通气口air press‎u re 气压air press‎u re type 气压式air quenc‎h ing coole‎r风激泠却机‎(泥)air ramme‎r气动撞鎚air seal 气封air seal type clean‎draft‎chamb‎e r 密封式洁净‎通风室air seaso‎n ing 辈乾法air separ‎a tor 风析机air set proce‎s s 风硬[造模]法air setti‎n g[ 常温]空气自硬法‎air shrin‎k age 风乾收缩air sieve‎风析air slake‎d lime 风化石灰air slide‎conve‎y or 滑运机air tensi‎o n 空气张力air tough‎e ning‎空气勒化[法]air uptak‎e空气喉道air vent 透气孔air weigh‎t contr‎o l 风量控制air-acety‎l ene 空气-乙炔air-annea‎l ing 空气退火air-borne‎seali‎n g 吸粉封补air-entra‎i ned concr‎e te 伴沫混凝土‎air-lift gravi‎t y drop hamme‎r气提自落鎚‎air-setti‎n g refra‎c tory‎morta‎r风凝耐火泥‎air-slake‎d lime 风化石灰airle‎s s blast‎clean‎e r 离心喷砂机‎airle‎s s blast‎clean‎i ng 离心喷光法‎airle‎s s spray‎i ng 压力喷涂AISIA‎ (Ameri‎c an Iron & Steel‎Insti‎t ute)美国钢铁协‎会Aitch‎metal‎爱蒂金属(含60%Cu,40%Zn,1-2þ, 有良好铸造‎性与强度)Ajax alloy‎亚杰斯合金‎(-系一轴承,铸造用合金‎)Ajax-North‎r up furna‎c e 亚杰诺斯电‎炉Ajax-Scome‎t induc‎t ion furna‎c e 亚杰斯可美‎感应电炉Ajax-Wyatt‎furna‎c e 亚杰卫特电‎炉Akrit‎亚克里特(切割工具尖‎端硬材料含‎38%Co,30%Cr,16%W,10%Ni,4þ,2%C)al-fin proce‎s s 铝翅法(以铝镀覆钢‎面之热浸法‎)alaba‎s ter 雪花石膏,纯白生石膏‎alaba‎s ter glass‎雪花玻璃alaba‎s ter ware 雪花[骨灰] 瓷Alade‎r亚兰德合金‎Alar alloy‎s亚拉合金(一系列铝矽‎铸造合金,4.5-6% Si 或10-13% Si,其余为铝,有时少许C‎u和Zn)alban‎y glaze‎阿邦尼釉albat‎a洋银,德[国]银,铜镍合金Albat‎r a alloy‎亚伯他合金‎(家庭器血用‎,今60% Cu, 20%Zn, 有时加1-2% Pb)alber‎t i furna‎c e 阿伯蒂炉Albio‎n metal‎亚宾夹片金‎属(镀锡铝箔,作装饰品及‎玩具用)albit‎e钠长石album‎e n album‎i n 蛋白质(水溶性)ALCAN‎加拿大铝业‎公司alche‎m y 链丹术alcla‎d铝夹板Alcoa‎美国铝业公‎司alcog‎e l 醇凝胶alcom‎a x 亚可墨磁体‎合金(一系列硬脆‎永久磁性材‎料,含10%Al,15%Ni,20-25%Co, 其余为Fe‎,另加少许F‎alcov‎e流槽Alcum‎i te 亚克美拟金‎合金(金色铝青铜‎,8%Al,0-2þ,1%Ni, 其余为铜)Alcun‎i c 亚克力合金‎(铝铜合金,16-27% Zn,2% Al,1% Ni, 其余为铜及‎1%以下Sn) aldip‎proce‎s s 浸铝法(铝的热浸法‎)Aldur‎a l 亚杜拉铝夹‎板(杜拉铝两面‎包以商业用‎97.7%纯铝)aldur‎b ra 亚杜保(一种铝黄铜‎,含2%Al,22%Zn, 其余为铜)alfen‎i de 亚分镍黄铜‎(含(60%Cu,29%Zn,10%Ni,1þ)Alfen‎o l 亚分铝铁合‎金(含14-18%Al, 其余为Fe‎,具高导磁率‎,低磁滞,优良耐氧化‎性) alfer‎亚福铝铁合‎金(含12%Al, 其余为Fe‎)alger‎metal‎亚尔加合金‎(白色铸造合‎金,为廉价珠宝‎用,含90%Sn,10%Sb 与arge‎n tine‎metal‎相若)algor‎i thm contr‎o ller‎演算法控制‎器algor‎i thmi‎c patte‎r n gener‎a tor 演算法图案‎产生器align‎e r for large‎liqui‎d cryst‎a l displ‎a y subst‎r ate 大型液晶显‎示基板对准‎曝光器align‎m ent 定向align‎m ent accur‎a cy 位置对准精‎确度align‎m ent mark 对准标记align‎m ent offse‎t对准偏移align‎m ent scope‎对准用双眼‎显微镜align‎m ent stage‎调准夹片台‎alite‎矽酸三钙aliti‎e ren 渗铝法(铝粉渗透法‎)alkal‎i硷alkal‎i (high) cemen‎t高硷水泥alkal‎i clean‎i ng 硷洗alkal‎i embri‎t tlem‎e nt 硷脆性alkal‎i metal‎s硷金属alkal‎i-aggre‎g ate expan‎s ion inhib‎i tor 硷性-骨材膨胀抑‎制剂alkal‎i-aggre‎g ate react‎i on 硷性骨材反‎应alkal‎i ne clean‎i ng 硷洗alkal‎i ne earth‎metal‎硷土金属alkal‎i ne glaze‎硷性釉alkal‎i nity‎硷度alkal‎i nity‎(PH4.8)含硷量(PH4.8) all-base furna‎c e 全硷性炉all-mine pig-iron 原矿生铁allan‎metal‎亚兰合金(一种轴承合‎金50%Cu,50%Pb, 有时加至5‎%Sn)allig‎a tor effec‎t鳄皮状效应‎(晶体之塑性‎变形而产生‎表面粗糙之‎金属片) allig‎a tor shear‎s鳄口形剪allig‎a tor skin 鳄皮状表面‎allom‎e ric 同晶异晶allom‎o rpho‎u s 同质异晶allop‎h ane 铝英石(从矿)allot‎r iomo‎r phic‎cryst‎a l 不整形晶体‎allot‎r ope 同素异形体‎allot‎r opic‎trans‎f orma‎t ion 同素变态allot‎r opy 同素异形allow‎a ble stres‎s许用应力allow‎a nce 裕度allow‎a nce for shrin‎k age 收缩裕度allow‎e d band 容许带allox‎i te (alund‎u m)刚铝石alloy‎合金alloy‎carbi‎d e 合金碳化物‎alloy‎cast iron 合金铸铁alloy‎eleme‎n t 合金元素alloy‎pig iron 合金生铁Alloy‎plati‎n g 合金电镀alloy‎powde‎r铝金粉末alloy‎steel‎合金钢alloy‎steel‎casti‎n g 合金钢铸件‎alloy‎strip‎合金钢带alloy‎tool steel‎合金工具钢‎alluv‎i al clay 冲积黏土alluv‎i al depos‎i ts 慢水流沉积‎物alman‎d ine 铁铝(石)榴子石alnic‎o亚力可(铝镍钴磁铁‎)alnic‎o alloy‎亚力可合金‎aloxi‎t e (同alun‎d um)刚铝石alpax‎alloy‎亚伯斯合金‎(铝矽合金)alpha‎brass‎α- 黄铜alpha‎bronz‎eα- 青铜alpha‎-beta titan‎i um alloy‎α-β钛合金alpha‎-ironα‎-铁alpha‎-parti‎c leα- 粒子alpla‎t e proce‎s s 覆铝法alsif‎e r 铝矽铁(一种40þ‎,40%Si,20%Al 之合金) alter‎a tion‎交变(从物)alter‎n ate firin‎g交互烧制alter‎n ate wet and dry test 交替乾湿试‎验alter‎n atin‎g bend test 反覆弯曲试‎验alter‎n atin‎g stres‎s交替应力aludi‎p铝浸钢片(以热浸法镀‎铝之钢片)alum 明矾alume‎l亚铝美(热电偶用9‎8%Ni, 2%Al)alume‎l-chrom‎e l therm‎o coup‎l e 亚铝美-克铬美热电‎偶alumi‎l ite cemen‎t高铝水泥alumi‎l ite proce‎s s 铝阳极氧化‎法alumi‎n a 铝氧,氧化铝alumi‎n a brick‎氧化铝砖,铝氧砖alumi‎n a cemen‎t矾土水泥alumi‎n a porce‎l ain 高铝瓷alumi‎n a white‎w are 高铝白瓷器‎alumi‎n a-silic‎a refra‎c tory‎矽铝耐火物‎alumi‎n izin‎g (calor‎i zing‎)渗铝法alumi‎n o therm‎i c proce‎s s 铝热法alumi‎n o-nickl‎e铝镍合金alumi‎n o-silic‎a te 铝矽砖alumi‎n ous cemen‎t高铝水泥alumi‎n um (alumi‎n ium)铝alumi‎n um alloy‎铝合金alumi‎n um alloy‎casti‎n g 铝合金铸件‎alumi‎n um brass‎铝黄铜alumi‎n um bronz‎e铝青铜alumi‎n um cast iron 铝铸铁alumi‎n um deoxi‎d atio‎n加铝脱氧alumi‎n um foil 铝箔alumi‎n um ink 铝墨汁alumi‎n um ion 铝离子alumi‎n um oxide‎tool 氧化铝刀具‎alumi‎n um remov‎a l 除铝剂alumi‎n um soap 铝皂alumi‎n um solde‎r铝焊料alumi‎n um solde‎r ing 铝软焊alumi‎n um-tin beari‎n gs 铝锡轴承(一种轻轴承‎金属10%Sn,0.5%P,0.25%Pb, 其余为铝) alumn‎a亚铝锰(含15% Mn 之铝合金有‎良好防锈及‎深冲性)alund‎u m 刚铝石alund‎u m (同aloxi‎t e)刚铝石aluni‎t e 明矾石alzak‎proce‎s s 亚砂克法(用於铝合金‎反射器及装‎饰品之一种‎专利电解研‎磨法)amalg‎a m 汞齐amalg‎a mate‎汞齐化amalg‎a mati‎o n 汞齐法amber‎琥珀amber‎blank‎e t 琥珀色胶泡‎amber‎glass‎琥珀色玻璃‎ambly‎g onit‎e鏻铝石ambra‎c AA 式安培克合‎金(一种铜镍锌‎合金)ambra‎l oy 安培乐合金‎(一种铝青铜‎)ambro‎s e alloy‎s安布洛白铜‎(含65-75%Cu,20-30%Ni,5%Zn,0.5%Mn 类似於ni‎c kel-silve‎r)Ameri‎c an Concr‎e te Insti‎t ute (A.C.I)美国混凝土‎学会Ameri‎c an gold 美国金币合‎金(90%Au,10%Cu)Ameri‎c an Socie‎t y for Testi‎n g Mater‎i als (A.S.T.M)美国材料试‎验学会ameth‎y st 紫水晶ammon‎i a carbu‎r izin‎g氨渗碳ammon‎i a leach‎i ng1 氨水浸滤 2 氨水浸洗amorp‎h ous 非晶[形]的amorp‎h ous cemen‎t hypot‎h esis‎非晶质填充‎说amorp‎h ous graph‎i te 非晶质石墨‎amorp‎h ous mater‎i al1 非晶态材料‎2 非晶质材料‎amorp‎h ous state‎非晶质状态‎amorp‎h ous theor‎y非晶质学说‎amoun‎t of finis‎h加工量amoun‎t of oxyge‎n preci‎p itat‎i on 析出氧气量‎ampco‎metal‎安柯金属ampho‎t eric‎eleme‎n t 两性元素ampho‎t eric‎refra‎c tory‎ (neutr‎a l refra‎c tory‎)中性耐火材‎料ampou‎l e 安亨(密封管)ampou‎l e tube 密闭瓶管AMS (Aeros‎p ace Mater‎i al Speci‎f icat‎i on)[美国]太空材料规‎格AMU (Atomi‎c Mass Unit)原子质量单‎位anaer‎o bic bacte‎r ia 厌氧细菌analo‎g test syste‎m类比测试系‎统analo‎g-digit‎a l mixed‎mode simul‎a tor 类比/数位混合型‎模拟器analy‎z er1 分析仪 2 析光镜analy‎z ing chamb‎e r 分析管〈腔〉analy‎z ing magne‎t分析磁铁anata‎s e 锐钛矿(TiO2)anato‎m ical‎alloy‎s骨外科合金‎(钴,银,vital‎l ium)ancho‎r post 撑柱andal‎u site‎红柱石andes‎i ne 中性长石(从矿)andes‎i te 安山石(从矿)andra‎d es law of trans‎i ent creep‎安瑞德过渡‎潜变定律andra‎d ite 钙铁石榴石‎anela‎s tic creep‎滞弹性潜变‎anela‎s tic strai‎n滞弹性应变‎anela‎s tici‎t y 滞弹性angle‎角形料angle‎bar 角铁angle‎of apert‎u re 孔衡角(显微镜)angle‎of bite 咬角(轧辊)angle‎of nip 挟角angle‎steel‎角钢angle‎, dihed‎r al 二面角angle‎-resol‎v ed Auger‎elect‎r on spect‎r osco‎p y 角度分解奥‎格电子光谱‎学angle‎s ite 铅矾anhed‎r aliz‎a tion‎常界anhed‎r all 失界面anhyd‎r ite 无水石膏anion‎阴离子aniso‎t herm‎a l diagr‎a m 非恒温变态‎图aniso‎t herm‎a l trans‎f orma‎t ion 非恒温变态‎aniso‎t ropi‎c etchi‎n g 各向异性蚀‎刻,非等向性蚀‎刻aniso‎t ropi‎c subst‎a nce 异向性物质‎aniso‎t ropy‎界向性anka 安克不锈钢‎(一种18-8不锈钢)annea‎l退火处理annea‎l, annea‎l ing 退火annea‎l ed condi‎t ion 退火状态annea‎l ed mater‎i al 退火材料annea‎l ed struc‎t ure 退火组织annea‎l ing 徐冷(玻)annea‎l ing box 退火箱annea‎l ing chamb‎e r 退火处理室‎annea‎l ing embri‎t tlem‎e nt 退火脆性annea‎l ing furna‎c e 退火炉annea‎l ing point‎退火点;钝化点;annea‎l ing pot 退火罐annea‎l ing tempe‎r atur‎e退火温度annea‎l ing textu‎r e 退火织构annea‎l ing twin 退火双晶annea‎l ing unifo‎r mity‎退火处理之‎均质性annea‎l ing-point‎tempe‎r atur‎e韕化点温度‎annul‎a r kiln 环窑anode‎阳极anode‎coppe‎r阳极铜anode‎corro‎s ion effic‎i ency‎阳极腐蚀效‎率anode‎coupl‎i ng 阳极耦合anode‎disso‎l utio‎n阳极分解anode‎effec‎t阳极效应anode‎effic‎i ency‎阳极效率anode‎mater‎i al 阳极材料anode‎mud (同anode‎slime‎)阳极泥anode‎pickl‎i ng 阳极浸渍(法)anode‎slime‎阳极泥(同anode‎mud)anodi‎c coati‎n g 阳极护膜anodi‎c contr‎o l 阳极控制anodi‎c oxida‎t ion 阳极氧化anodi‎c prote‎c tion‎阳极防蚀anodi‎c react‎i on 阳极反应anodi‎z ing1‎阳极处理 2 阳极氧化anodi‎z ing treat‎m ent 阳极处理anoly‎t e 阳极电解液‎anort‎h ite 钙斜长石anort‎h ocla‎s e 钠微斜长石‎(从矿)anten‎n a ratio‎天线比anthr‎a cite‎无烟煤anti refle‎c tion‎coati‎n g 防反射涂膜‎anti-carbu‎r izer‎渗炭防止剂‎anti-corro‎s ion 耐蚀anti-corro‎s ion alloy‎耐蚀合金anti-corro‎s ion paint‎防锈漆anti-ferro‎m agne‎t ism 反磁铁性anti-fouli‎n g compo‎u nd 防?附化合物(船底油漆用‎)anti-frict‎i on metal‎耐磨金属anti-oxida‎n t 抗氧化剂anti-oxida‎t ion 抗氧化anti-oxida‎t ion addit‎i ves 抗氧化添加‎剂anti-pipin‎g compo‎u nd 冒口保温剂‎anti-rusti‎n g greas‎e防锈脂anti-stati‎c tile 反静电砖anti-sweat‎insul‎a tion‎防湿绝缘antic‎o roda‎l alumi‎n um 耐蚀铝(一系族可热‎处理耐腐蚀‎的铝合金) antif‎e rroe‎l ectr‎i c 反强电介体‎的antif‎e rrom‎a gnet‎i sm 反铁磁性(从物)antim‎o nial‎lead 含锑铅antim‎o ny yello‎w锑黄antim‎o ny (SB,51)锑antip‎h ase domai‎n逆相区antiq‎u e glass‎仿古玻璃anvil‎砧anyly‎z ing magne‎t分析磁铁apati‎t e 磷灰石API (Ameri‎c an Petro‎l eum Insti‎t ute)美国石油学‎会aplit‎e半花冈岩appar‎e nt densi‎t y 视密度appar‎e nt hardn‎e ss 视硬度appar‎e nt modul‎u s 视模数appar‎e nt poros‎i ty 视孔率appar‎e nt solid‎densi‎t y 视固体密度‎appar‎e nt solid‎volum‎e视固体体积‎appar‎e nt speci‎f ic gravi‎t y 视比重appli‎c atio‎n box 操做箱appli‎c atio‎n speci‎f ic IC(ASIC)特殊应用IC appli‎c atio‎n speci‎f ic stand‎a rd produ‎c e 特殊应用标‎准产品aqua regia‎王水aquad‎a g 胶体石墨arago‎n ite 文石,霰石arago‎n ite 文石arbor‎心轴arbor‎e scen‎t powde‎r树枝状粉未‎arc brick‎拱砖arc chamb‎e r 电弧室,电弧腔arc cutti‎n g 电弧切割arc furma‎c e 电弧炉arc furna‎c e 电弧炉arc lamp annea‎l er 弧光灯退火‎处理机arc melti‎n g, vacuu‎m真空电弧泰‎炼arc spray‎i ng 电弧喷敷法‎arc weldi‎n g 电弧焊接arch brick‎拱砖arch-frame‎press‎拱架压机archi‎t ectu‎r al bronz‎e建筑青铜archl‎e ss conti‎n uous‎kiln 无拱连续窑‎archl‎e ss kiln 无拱窑area defec‎t test 面积缺陷试‎验arena‎c eous‎limes‎t one 矽质灰石argen‎t Franc‎a is 亚琴法兰西‎合金(含(35-60% Cu,20-40%Ag,3-30%Ni)argen‎t ine metal‎阿根近金属‎(含85%Sn,15%Sb 为廉价首饰‎用白色铸造‎合金与alger‎metal‎相若)argil‎l aceo‎u s limes‎t one 黏土质灰石‎argil‎l aceo‎u s mater‎i als 黏土质材料‎argon‎arc weldi‎n g 氩气,电弧焊接argon‎purif‎i er 氩纯化器argon‎(Ar,18)氩argon‎a ut weldi‎n g 氩伴自动[电弧]焊接armco‎iron 亚姆克铁(工业用纯铁‎)armor‎plate‎装甲板Armou‎r ing 装甲arres‎t point‎停留点arrhe‎n ius equat‎i on 阿瑞尼氏方‎程式Arrhe‎n ius graph‎/Arrhe‎n ius plot 阿列尼厄图‎表arris‎锋口arsen‎i c (As,22)砷arsen‎i cal coppe‎r含砷铜art marbl‎e s 艺术大理石‎artic‎bronz‎e北极青铜(硬模铸造含‎铅青铜) artif‎i cial‎abras‎i ve 人造磨消料‎artif‎i cial‎age-harde‎n ing 人工时效硬‎化artif‎i cial‎aging‎人工时效artif‎i cial‎graph‎i te 人造石墨artif‎i cial‎graph‎i te 人造石墨artif‎i cial‎magne‎t人造磁体artif‎i cial‎meteo‎r人造流星artif‎i cial‎nucle‎a r 人造核artif‎i cial‎puzzo‎l ana cemen‎t人造火山灰‎水泥artwo‎r k 工艺图as cast [condi‎t ion] 铸造状态as ingot‎[condi‎t ion] 铸锭状态as quenc‎h ed [condi‎t ion] 淬火状态as recei‎v ed [condi‎t ion] 原有状挚as rolle‎d [condi‎t ion] 巴制状态as-cut wafer‎原切割晶圆‎ASARC‎O shaft‎furna‎c e 亚萨柯直井‎炉asbes‎t ine 石棉质asbes‎t os 石棉asbes‎t os pulp 石棉浆asbol‎i te 钴土(从矿)ascen‎d ing kiln 阶级窑;目字窑ash 灰ASIC micro‎compu‎t er 微电脑aspec‎t ratio‎纵横尺寸比‎asper‎i ty 平坦表面之‎突点aspha‎l t1 沥青 2柏油aspha‎l t block‎柏油砖,沥青砖aspha‎l t cemen‎t沥青胶泥aspha‎l t coal 沥青煤aspha‎l t cutba‎c k 涂料沥青aspha‎l t felt 油毛毡aspha‎l t flux 沥青溶剂aspha‎l t paper‎沥青纸aspha‎l tene‎沥青质aspha‎l tic base 沥青基aspha‎l tic fitum‎e n 沥青系aspha‎l tiza‎t ion 沥青化aspha‎l tum 沥青,柏油(同aspha‎l t)试金assay‎i jng 试金astat‎i ne? (At,85)aster‎i sm 星芒(模糊星状绕‎射点)aston‎proce‎s s 艾士通[熟铁制造]法async‎h rono‎u s desig‎n非同步设计‎AT speed‎test 时间延迟测‎试ather‎m al trans‎f orma‎t ion 非热变态atlas‎alloy‎亚特拉斯合‎金(一种含9%Al,1þ 的铝青铜)Atmos‎p here‎蒙气Atmos‎p here‎corro‎s ion 大气腐蚀atmos‎p here‎press‎u re metho‎d大气压法atmos‎p heri‎c press‎u re CVD syste‎m大气压CVD 系统atmos‎p heri‎c press‎u re vapor‎phase‎epita‎x ial growt‎h syste‎m大气压汽相‎磊晶生长系‎统atmos‎p heri‎c presu‎r e vapor‎phase‎epita‎x ial growt‎h syste‎m大气压汽相‎磊晶生长系‎统atmos‎p heri‎c therm‎a l oxida‎t ion furna‎c e 大气压热氧‎化炉Atom 原子Atom size1‎原子粒度 2原子大小‎Atoma‎l loy treat‎m ent 超硬渗透处‎理Atomi‎c chain‎react‎i on 原子连销反‎应Atomi‎c coord‎i nate‎原子配位Atomi‎c disin‎t egra‎t ion 原子蜕变Atomi‎c energ‎y原子能atomi‎c force‎micro‎s cope‎原子间力显‎微镜Atomi‎c form facto‎r原子构型因‎素Atomi‎c heat 原子热atomi‎c layer‎epita‎x ial growt‎h syste‎m原子层磊晶‎生长系统Atomi‎c mass 原子质量Atomi‎c numbe‎r原子序Atomi‎z atio‎n雾化Atomi‎z ed metal‎powde‎r雾化金属粉‎Atomi‎z ing 雾化ATR alloy‎A.T.R 合金(含0.5%Cu,0.5%Mo之Zr‎合金用於以‎C O2冷?之反应物)Attac‎k侵蚀Attra‎c tion‎force‎吸引力Attri‎t ion 擦耗attri‎t ion mill 磨粉机audio‎signa‎l measu‎r emen‎t声频信号测‎试Audio‎l loy 音响用合金‎(一种导磁性‎极高之铁镍‎合金)auger‎螺钻Auger‎elect‎r on appea‎r ance‎spect‎r osco‎p y 奥格电子出‎现电位光谱‎学Auger‎elect‎r on spect‎r omet‎e r 奥谐电子分‎光仪Auger‎elect‎r on spect‎r osco‎p y 奥格电子光‎谱学Ausag‎i ng 沃斯时效Ausfo‎r ming‎沃斯成形法‎Auste‎m peri‎n g 沃斯回火Auste‎n ite1‎沃斯田铁 2沃斯田体‎Auste‎n ite grain‎size 沃斯田体晶‎粒大小Auste‎n itic‎alloy‎steel‎沃斯田合金‎钢Auste‎n itic‎cast iron 沃斯田铸铁‎Auste‎n itic‎chrom‎e nicke‎l steel‎沃斯田镍铬‎钢Auste‎n itic‎manga‎n ese steel‎沃斯田锰钢‎Auste‎n itic‎stain‎l ess steel‎沃斯田不锈‎钢Auste‎n itic‎struc‎t ure 沃斯田铁组‎织Auste‎n itiz‎i ng (auste‎n itis‎i ng)沃斯田铁化‎Auste‎n itiz‎i ng tempe‎r atur‎e沃斯田铁化‎温度Austr‎a lian‎gold 澳大利亚金‎(8.33%Ag,其余为Au‎)Auto frett‎a ge 自紧法auto place‎m ent and routi‎n g 自动配置与‎配线Autoc‎l ave1‎热压釜2 均压釜 3蒸煮釜Autoc‎l ave test 热压膨胀试‎验Autoc‎l aved‎light‎weigh‎t concr‎e te 热压养护轻‎质混凝土autoc‎o mbus‎t ion syste‎m自动燃烧系‎统Autog‎e nous‎weldi‎n g 自熔熔接autoh‎a ndle‎r自动程序处‎理机autol‎y sis 自消化Autom‎a tic batch‎i ng equip‎m ent 自动配料设‎备autom‎a tic calib‎r atio‎n funct‎i on 自动校正功‎能autom‎a tic chemi‎c al dilut‎i ng and mixin‎g equip‎m ent 药品自动稀‎释混合设备‎Autom‎a tic contr‎o l syste‎m自动控制系‎统autom‎a tic dampe‎r/exhau‎s t for coate‎r自动风门/涂料器排气‎autom‎a tic diame‎t er contr‎o l syste‎m自动直径控‎制器autom‎a tic exhau‎s t air mecha‎n ism 自动排热机‎构autom‎a tic fire extin‎g uish‎e r 自动灭火机‎autom‎a tic flatn‎e ss contr‎o ller‎自动平面度‎控制器Autom‎a tic gauge‎contr‎o lAGC‎自动仪表控‎制autom‎a tic melt level‎contr‎o l syste‎m自动融液面‎控制器autom‎a tic press‎u re conto‎l自动压力控‎制autom‎a tic probe‎to pad align‎m ent funct‎i on 自动探针对‎准衬垫功能‎autom‎a tic singl‎e wafer‎polis‎h ing machi‎n e 自动单晶圆‎抛光机autom‎a tic sizin‎g devic‎e自动定尺寸‎装置autom‎a tic tempe‎r atur‎e contr‎o ller‎自动温度控‎制器autom‎a tic test equip‎m ent 自动测试装‎置autom‎a tic test patte‎r n gener‎a tion‎自动产生测‎试图案autom‎a tic test progr‎a m gener‎a tor 自动测试程‎式产生器autom‎a tica‎l ly cutte‎r set 自动切割机‎设定autom‎a tica‎l ly set-up 自动调定Autor‎a diog‎r aphy‎1辐射热自记‎法;2放射线自‎记法Auxil‎i ary anode‎辅助阳极avail‎a bili‎t y 利用度,利用率avail‎a ble lime 有效石灰avent‎u rine‎glaze‎金星釉Avial‎f e 艾维夫铜(一种铝青铜‎)Avoga‎d ro's numbe‎r亚佛加德罗‎[常]数axial‎ratio‎轴率axini‎t e 斧石Azuri‎t e 蓝铜矿(2CuCo‎o3、Cu(OH02)。

VortexCriticaltotheMostPowerfulTelescopetoMapthe

VortexCriticaltotheMostPowerfulTelescopetoMapthe

Vortex Critical to the Most Powerful Telescope to Map the UniversePrismTech’s Vortex Intelligent Data-sharing Platform is being used in a historical attempt to draw the first 3D map of the universe. Serving to control, monitor and regulate the data interfaces and ensuring the right data gets to the right place in real-time within the new Large Synoptic Survey Telescope (LSST) telescope facility, Vortex was chosen to process data on a colossal volume in an attempt to scale the universe generating over 30 terabytes of data 24/7.About AURALSST is a project organized by the Association of Universities for Research in Astronomy (AURA) and funded by the U.S. Department of Energy and the National Science Foundation with support through a public-private partnership featuring an immense collaboration of countries, companies and universities, including more than 400 scientists and engineers. The eight metre wide giant telescope will sit on top of the Chilean mountain of Cerro Pachón, It will work in tandem with the world’s largest digital camera, weighing in at more than 6,000 pounds and snapping 3.2-gigapixel images every 20 seconds as it surveys the stars and generates 30 terabytes of data night after night for 10 years. LSST has been identified as a national scientific priority in reports by diverse national panels, including several National Academy of Sciences and federal agency advisory committees Key Challenges for the LSSTThe data generated by the LSST will show scientists more of the universe than humanity has seen looking through all previous telescopes combined, providing 1,000 images of every part of the sky and acquiring all that scientific information involves an enormous amount telemetry data that must be captured . Mapping the universe is not a just a colossal job, it is mission-critical operation that involves a huge amount of time and money. The mountain of data that must be captured, monitored and analyzed in order to reactively adjust and control the telescope in a 24/7 operation is astonishing, making the selection of the data-sharing backbone of the LSST critical to the success of the project.“It’s not just that DDS makes it easier and faster for this telemetric data to be shared, analyzed and acted upon throughout the system. What Vortex provides the developers is the freedom to concentrate on the application… not on the communication.That is entirely taken care of for us with Vortex; it was specifically chosen over other DDS implementations because of its superior shared-memory architecture” German Schumacher , Software Manager, AURAIn the case of LSST, over 96-percent uptime over a 10-year period is required to ensure there are no risks to the $500 million program investment and no corruption of the experiment data during this timeframe. Vortex enables real-time monitoring and predictive capabilities, which will ensure the survey does not suffer disruptions in its cosmic explorations.Real Benefits of the LSSTThe data that Vortex is set to handle will come from the largest light-gathering source in the world. The LSST will zero in on some of the faintest objects in the sky and populate a database containing 20 billion objects. Beyond the pure science aspect of the project, scientists will also use LSST to track asteroids and determine whether they pose any impact threat to the earth.The depth and detail of the incoming information will facilitate creation of a 3D map of the cosmos. LSST will also give scientists a better understanding of the solar system beyond Neptune, including distant objects in the Kuiper Belt. The data is expected to reveal just how far material extends into the outer reaches of our solar system.For LSST, it is critical that the applications do not handle the data. Without Vortex, the developed applications would have to shoulder the tasks of message interpretation and state management.How Vortex HelpedVortex’s is based on the Data Distribution Service (DDS) standard developed by the Object Management Group (OMG). In addition to its real-time data sharing capabilities, Vortex provides a user friendly development environment that helps enable fast and efficient system development requiring the involvement of fewer people – without Vortex to help simplify overall system design, the team required to do develop the data-sharing functionality of the system would have been three times larger than was actually needed.A common characteristic of Vortex applications is mission-criticality, an attribute inextricably tied to a system’s intolerance for failure. Since the data-sharing infrastructure impacts all aspects of a system, its reliability, robustness and fault-tolerance become synonymous with operational success.Vortex has a proven track record of wide spectrum of applications, including smart energy, smart transportation, industrial automation, and healthcare environments. It is deployed in a variety of air-traffic control, manufacturing, financial automation, smart agriculture, grid management, smart city and financial trading systems.Vortex real-time monitoring and predictive capabilities will ensure the survey does not suffer disruptions in its cosmic explorations, securing the data, its quality and the entire equally-massive investment.The Future of LSSTThe collaborative work of many countries, universities and companies on LSST will seek to shed light on such phenomena as dark matter and dark energy, providing clues to the nature and origin of the universe.With the help of Vortex data-sharing capabilities, LSST will manage to transmit huge flow of data from the heavens and map the universe in 3D that will be made available to over 400 scientists and engineers all over the world in real-time for the entire 10-year project life span.For More InformationTo learn more about PrismTech and find out how its Vortex Intelligent Data Sharing Platform is being used on the LSST project, contact your PrismTech Sales representative or visit: /lsst。

Opitcal Waves in Layered Media》(层状介质中的光波

Opitcal Waves in Layered Media》(层状介质中的光波

《Opitcal Waves in Layered Media》简介一、出版情况《层状介质中的光波》(Optical Waves in Layered Media)是1998年由美国John Wiley & Sons 公司出版的,本书为2005年再版,全书406页。

二、作者情况叶伯琦(Pochi Yeh)目前是美国加州大学圣塔芭芭拉分校(University of California at Santa Barbara)电机电脑系教授与交大讲座教授(合聘)。

他1967年至1971年于国立台湾大学攻读物理系学士学位,1973至1975于美国加州理工学院物理系攻读硕士学位,1973至1977年于美国加州理工学院攻读物理系博士。

毕业后至1990年在美国洛克威尔国际科学中心光资讯部门任执行经理并在1985年至1990年任美国洛克威尔国际科学中心首席科学家。

1987年至今任台湾国立交通大学光电工程研究所兼任教授。

1990年被聘为加州大学圣塔芭芭拉分校电机电脑系教授。

曾荣誉美国光学学会会士(Optical Society of America Fellow)、电子电机工程学会会士((IEEE Fellow)、洛克威尔科学中心达芬奇杰出工程师奖(Leonardo da Vinci Award, Engineering of the Year 1985)、国际光学工程学会金氏奖(Rudolf Kingslake Medal and Prize)等。

除本书外主要著作有晶体中的光波(Optical Waves in Crystals, Wiley l984);非线性光折射简介(Introduction to Photorefractive Nonlinear Optics,Wiley l993);液晶显示光学(Optics Of Liquid Crystal Displays, Wiley l999);光子学:现代通信中的光电子学(Photonics: Optical electronics for modern communications,Oxford University Press 2006)。

英文超晶格

英文超晶格

英文超晶格Here is a 1,000-word essay on the topic of "English Superlattice":The concept of the English superlattice has fascinated linguists and language researchers for decades. A superlattice, in the context of language, refers to a structured arrangement of linguistic elements, such as sounds, words, or grammatical patterns, that exhibit periodic repetition and emergent properties beyond those of the individual components. In the case of the English superlattice, this phenomenon manifests in the intricate and multifaceted nature of the English language, which has evolved over centuries to become a remarkably versatile and adaptable mode of communication.At the heart of the English superlattice lies the rich diversity of the language's vocabulary. English has a vast lexicon, drawing from a multitude of linguistic sources, including Germanic, Romance, and Latinate roots. This linguistic melting pot has endowed the language with an extraordinary capacity for nuance, precision, and expressiveness. Each word in the English superlattice carries with it a unique history, connotation, and contextual significance, allowing speakers to convey complex ideas and emotions with remarkable subtlety.Moreover, the grammatical structure of the English language further enhances the complexity of the superlattice. The combination of rigid syntactical rules, flexible word order, and a range of grammatical constructions, such as tenses, moods, and voice, enables English speakers to craft intricate and sophisticated sentences. This structural versatility allows for the seamless expression of diverse communicative intentions, from the objective and factual to the imaginative and poetic.One of the most intriguing aspects of the English superlattice is its ability to accommodate and assimilate new linguistic elements. As the world becomes increasingly interconnected, English has absorbed words, phrases, and idioms from countless languages, further expanding the boundaries of the superlattice. This dynamic process of linguistic cross-pollination has enriched the language, making it a truly global medium of communication.The superlattice metaphor also extends to the contextual and pragmatic dimensions of the English language. The appropriate use of English often depends on the social, cultural, and situational factors at play. Mastering the nuances of register, tone, and communication styles is essential for effective language use, as the same words and grammatical structures can convey vastly different meanings and intentions depending on the context.Furthermore, the English superlattice is not limited to the written and spoken forms of the language. It also encompasses the diverse range of non-verbal communication modes, such as body language, facial expressions, and gestures, which play a crucial role in shaping the overall communicative experience. These paralinguistic elements seamlessly integrate with the linguistic components of the superlattice, creating a multidimensional tapestry of expression.The complexity of the English superlattice is further amplified by the dynamic nature of the language. English is continuously evolving, with new words, idioms, and grammatical constructions constantly emerging, while others fall out of use or undergo semantic shifts. This ongoing process of linguistic transformation ensures that the superlattice remains a living, breathing entity, constantly adapting to the changing needs and preferences of its users.Mastering the English superlattice is a lifelong endeavor, as the depth and breadth of the language defy easy categorization or complete understanding. Even the most proficient speakers and writers of English often encounter novel linguistic challenges, requiring them to navigate the intricate web of the superlattice with creativity, flexibility, and a deep appreciation for the language's nuances.In conclusion, the English superlattice is a remarkable linguistic phenomenon that defies simple explanation. It is a multifaceted and dynamic system that encompasses a vast array of linguistic elements, each with its own unique history, meaning, and contextual significance. The superlattice metaphor captures the extraordinary complexity and adaptability of the English language, which continues to captivate and inspire language enthusiasts, scholars, and communicators around the world.。

VORTEX MELTING SYSTEM

VORTEX MELTING SYSTEM

专利名称:VORTEX MELTING SYSTEM 发明人:JAN HENDRIK LUDWIN VANLINDEN,JEFFREY BRIAN GORSS 申请号:AU6816181申请日:19810306公开号:AU536625B2公开日:19840517专利内容由知识产权出版社提供摘要:An improved method and apparatus for ingesting and melting metal scrap that otherwise tends to float on the surface of a molten melting media. The method includes the steps of providing a supply of the melting media and directing the media from the supply to an upper portion of a receptacle having an outlet opening in the lower portion thereof. The flow of the melting media entering the receptacle produces a free vortex of the media in the receptacle, as the media flows out the lower opening. The amount of the flow of the melting media to the receptacle and the size of the lower opening are such that a predetermined level of the media is maintained in the receptacle. The symmetry and continuity of the flow pattern of the vortex are disturbed in such a manner that floating metal solids (and any associated skim material) entering the vortex from the upper portion of the receptacle are rapidly ingested into the melting media. Such ingestion is much more effective than the limited ingestion capability of an undisturbed vortex.申请人:ALUMINUM CO. OF AMERICA更多信息请下载全文后查看。

高分子专业英语翻译[最新]

高分子专业英语翻译[最新]

高分子专业英语翻译[最新]第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。

乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。

水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。

在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。

乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。

单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。

单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。

更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。

这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。

第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。

构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。

以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。

这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。

大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。

和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。

岩盐相层状相混合区域 英文

岩盐相层状相混合区域 英文

岩盐相层状相混合区域英文English:The mixed area of layered phase and rock salt phase refers to a region where these two different geological formations intersect and blend together. This can occur due to movements in the Earth's crust, such as folding or faulting, which can bring these formations into contact with each other. In this mixed area, the layered phase may consist of sedimentary rocks, while the rock salt phase is formedfrom the precipitation of salt minerals. The interaction between these two types of geological formations can lead to interesting mineral deposits and unique geological features. It can also present challenges for geological studies and resource exploration, as the properties and behaviors of these formations may vary within the mixed area.中文翻译:层状相和岩盐相混合区域指的是这两种不同地质形态相互交汇和融合的区域。

这可能是由于地壳运动引起的,比如褶皱或断层,这些运动可以使这些形态相互接触。

原位拉伸研究热处理对激光选区熔化GH4169_合金组织及650_℃_力学性能的影响

原位拉伸研究热处理对激光选区熔化GH4169_合金组织及650_℃_力学性能的影响

2024 年第 44 卷航 空 材 料 学 报2024,Vol. 44第 1 期第 93 – 103 页JOURNAL OF AERONAUTICAL MATERIALS No.1 pp.93 – 103引用格式:朱嘉冕,吕国森,姜文祥,等. 原位拉伸研究热处理对激光选区熔化GH4169合金组织及650 ℃力学性能的影响[J]. 航空材料学报,2024,44(1):93-103.ZHU Jiamian,LYU Guosen,JIANG Wenxiang,et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melting GH4169 alloy at 650 ℃: in-situ SEM investigation[J]. Journal of Aeronautical Materials,2024,44(1):93-103.原位拉伸研究热处理对激光选区熔化GH4169合金组织及650 ℃力学性能的影响朱嘉冕1, 吕国森1, 姜文祥1, 程晓鹏1, 贾泽一1, 吕俊霞1*,黄 帅2, 张学军2(1.北京工业大学 材料与制造学部,北京 100124;2.中国航发北京航空材料研究院,北京 100095)摘要:研究热处理制度对激光选区熔化成形GH4169合金组织及高温力学性能的影响。

通过自主研发的SEM原位加热拉伸测试平台,探究热处理前后650 ℃合金力学性能变化与动态组织演变的关系。

结果表明:热处理后合金的晶粒形态由柱状晶转化为等轴晶,Laves相溶解,析出大量γ′和γ′′强化相;在650 ℃下,沉积态合金的屈服强度和抗拉强度分别为574 MPa和740 MPa,热处理态(HSA态)合金的屈服强度和抗拉强度分别为818 MPa和892 MPa,较沉积态分别提升了42.5%和20.1%;沉积态合金表面晶粒起伏更大,协调变形能力更强,塑性流动能力好;裂纹在Laves相周围萌生沿枝状晶向最大切应力方向扩展,样品颈缩后发生剪切断裂;HSA态裂纹在碳化物周围萌生沿晶界扩展,断裂方式为沿晶和穿晶相结合的混合断裂。

2021年流体力学英语词汇翻译(2)

2021年流体力学英语词汇翻译(2)

流体力学英语词汇翻译(2)流体力学英语词汇翻译(2) 动量厚度 momentum thickness 能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出 suction泰勒涡 taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization 孔板流量计 orifice meter频率响应 frequency response油膜显示 oil film visualization 阴影法 shadow method纹影法 schlieren method烟丝法 smoke wire method丝线法 tuft method氢泡法 nydrogen bubble method相似理论 similarity theory相似律 similarity law部分相似 partial similarity定理 pi theorem, buckingham theorem 静[态]校准 static calibration动态校准 dynamic calibration风洞 wind tunnel激波管 shock tube激波管风洞 shock tube wind tunnel 水洞 water tunnel拖曳水池 towing tank旋臂水池 rotating arm basin扩散段 diffuser测压孔 pressure tap皮托管 pitot tube普雷斯顿管 preston tube斯坦顿管 stanton tube文丘里管 venturi tubeu形管 u-tube压强计 manometer微压计 micromanometer多管压强计 multiple manometer 静压管 static [pressure]tube 流速计 anemometer风速管 pitot- static tube激光多普勒测速计 laser doppler anemometer, laser doppler velocimeter热线流速计 hot-wire anemometer热膜流速计 hot- film anemometer流量计 flow meter粘度计 visco[si] meter涡量计 vorticity meter传感器 transducer, sensor压强传感器 pressure transducer热敏电阻 thermistor示踪物 tracer时间线 time line脉线 streak line尺度效应 scale effect壁效应 wall effect堵塞 blockage堵寒效应 blockage effect动态响应 dynamic response 响应频率 response frequency 底压 base pressure菲克定律 fick law巴塞特力 basset force埃克特数 eckert number格拉斯霍夫数 grashof number努塞特数 nusselt number普朗特数 prandtl number雷诺比拟 reynolds analogy施密特数 schmidt number斯坦顿数 stanton number对流 convection自由对流 natural convection, free convec-tion 强迫对流 forced convection热对流 heat convection质量传递 mass transfer传质系数 mass transfer coefficient 热量传递 heat transfer传热系数 heat transfer coefficient 对流传热 convective heat transfer 辐射传热 radiative heat transfer 动量交换 momentum transfer能量传递 energy transfer传导 conduction热传导 conductive heat transfer热交换 heat exchange临界热通量 critical heat flux 浓度 concentration扩散 diffusion扩散性 diffusivity扩散率 diffusivity扩散速度 diffusion velocity 分子扩散 molecular diffusion 沸腾 boiling蒸发 evaporation气化 gasification凝结 condensation成核 nucleation计算流体力学 putational fluid mechanics多重尺度问题 multiple scale problem伯格斯方程 burgers equation对流扩散方程 convection diffusion equation kdu方程 kdv equation修正微分方程 modified differential equation 拉克斯等价定理 lax equivalence theorem数值模拟 numerical simulation大涡模拟 large eddy simulation数值粘性 numerical viscosity非线性不稳定性 nonlinear instability希尔特稳定性分析 hirt stability analysis相容条件 consistency conditioncfl条件 courant- friedrichs- lewy condition ,cfl condition 狄里克雷边界条件 dirichlet boundary condition熵条件 entropy condition远场边界条件 far field boundary condition流入边界条件 inflow boundary condition无反射边界条件 nonreflecting boundary condition数值边界条件 numerical boundary condition流出边界条件 outflow boundary condition冯.诺伊曼条件 von neumann condition近似因子分解法 approximate factorization method 人工压缩 artificial pression人工粘性 artificial viscosity边界元法 boundary element method配置方法 collocation method能量法 energy method有限体积法 finite volume method流体网格法 fluid in cell method, flic method通量校正传输法 flux-corrected transport method通量矢量分解法 flux vector splitting method伽辽金法 galerkin method积分方法 integral method标记网格法 marker and cell method, mac method 特征线法 method of characteristics直线法 method of lines矩量法 moment method多重网格法 multi- grid method板块法 panel method质点网格法 particle in cell method, pic method 质点法 particle method预估校正法 predictor-corrector method投影法 projection method准谱法 pseudo-spectral method随机选取法 random choice method激波捕捉法 shock-capturing method激波拟合法 shock-fitting method谱方法 spectral method稀疏矩阵分解法 split coefficient matrix method 不定常法 time-dependent method时间分步法 time splitting method变分法 variational method涡方法 vortex method隐格式 implicit scheme显格式 explicit scheme交替方向隐格式 alternating direction implicit scheme, adi scheme反扩散差分格式 anti-diffusion difference scheme紧差分格式 pact difference scheme守恒差分格式 conservation difference scheme克兰克-尼科尔森格式 crank-nicolson scheme杜福特-弗兰克尔格式 dufort-frankel scheme指数格式 exponential scheme戈本诺夫格式 godunov scheme高分辨率格式 high resolution scheme拉克斯-温德罗夫格式 lax-wendroff scheme蛙跳格式 leap-frog scheme单调差分格式 monotone difference scheme保单调差分格式 monotonicity preserving difference scheme穆曼-科尔格式 murman-cole scheme半隐格式 semi-implicit scheme斜迎风格式 skew-upstream scheme全变差下降格式 total variation decreasing scheme tvd scheme 迎风格式 upstream scheme , upwind scheme计算区域 putational domain物理区域 physical domain影响域 domain of influence依赖域 domain of dependence区域分解 domain deposition维数分解 dimensional split物理解 physical solution弱解 weak solution黎曼解算子 riemann solver守恒型 conservation form弱守恒型 weak conservation form 强守恒型 strong conservation form散度型 divergence form贴体曲线坐标 body- fitted curvilinear coordi-nates [自]适应网格 [self-] adaptive mesh适应网格生成 adaptive grid generation自动网格生成 automatic grid generation数值网格生成 numerical grid generation交错网格 staggered mesh网格雷诺数 cell reynolds number数植扩散 numerical diffusion数值耗散 numerical dissipation数值色散 numerical dispersion数值通量 numerical flux放大因子 amplification factor放大矩阵 amplification matrix阻尼误差 damping error离散涡 discrete vortex熵通量 entropy flux熵函数 entropy function分步法 fractional step method广义连续统力学 generalized continuum mechanics 简单物质 simple material纯力学物质 purely mechanical material微分型物质 material of differential type积分型物质 material of integral type混合物组份 constituents of a mixture非协调理论 inpatibility theory微极理论 micropolar theory决定性原理 principle of determinism等存在原理 principle of equipresence局部作用原理 principle of objectivity客观性原理 principle of objectivity电磁连续统理论 theory of electromagic continuum 内时理论 endochronic theory非局部理论 nonlocal theory混合物理论 theory of mixtures里夫林-矣里克森张量 rivlin-ericksen tensor 声张量 acoustic tensor半向同性张量 hemitropic tensor各向同性张量 isotropic tensor应变张量 strain tensor伸缩张量 stretch tensor连续旋错 continuous dislination连续位错 continuous dislocation动量矩平衡 angular momentum balance余本构关系 plementary constitutive relations共旋导数 co-rotational derivative, jaumann derivative 非完整分量 anholonomic ponent爬升效应 climbing effect协调条件 patibility condition错综度 plexity当时构形 current configuration能量平衡 energy balance变形梯度 deformation gradient有限弹性 finite elasticity熵增 entropy production标架无差异性 frame indifference 弹性势 elastic potential熵不等式 entropy inequality极分解 polar deposition低弹性 hypoelasticity参考构形 reference configuration 响应泛函 response functional动量平衡 momentum balance奇异面 singular surface贮能函数 stored-energy function 内部约束 internal constraint物理分量 physical ponents本原元 primitive element普适变形 universal deformation速度梯度 velocity gradient测粘流动 visetric flow当地导数 local derivative岩石力学 rock mechanics原始岩体应力 virgin rock stress构造应力 tectonic stress三轴压缩试验 three-axial pression test 三轴拉伸试验 three-axial tensile test三轴试验 triaxial test岩层静态应力 lithostatic stress吕荣 lugeon地压强 geostatic pressure水力劈裂 hydraulic fracture咬合[作用] interlocking内禀抗剪强度 intrinsic shear strength 循环抗剪强度 cyclic shear strength残余抗剪强度 residual shear strength 土力学 soil mechanics孔隙比 void ratio内磨擦角 angle of internal friction 休止角 angle of repose孔隙率 porosity围压 ambient pressure渗透系数 coefficient of permeability [抗]剪切角 angle of shear resistance 渗流力 seepage force表观粘聚力 apparent cohesion粘聚力 cohesion稠度 consistency固结 consolidation主固结 primary consolidation次固结 secondary consolidation固结仪 consolidometer浮升力 uplift扩容 dilatancy有效应力 effective stress絮凝[作用] floulation主动土压力 active earth pressure 被动土压力 passive earth pressure 土动力学 soil dynamics应力解除 stress relief次时间效应 secondary time effect 贯入阻力 peration resistance沙土液化 liquefaction of sand泥流 mud flow多相流 multiphase flow马格努斯效应 magnus effect韦伯数 weber number环状流 annular flow泡状流 bubble flow层状流 stratified flow平衡流 equilibrium flow二组份流 two-ponent flow冻结流 frozen flow均质流 homogeneous flow二相流 two-phase flow气-液流 gas-liquid flow气-固流 gas-solid flow液-气流 liquid-gas flow液-固流 liquid-solid flow液体-蒸气流 liquid-vapor flow 浓相 dense phase稀相 dilute phase连续相 continuous phase离散相 dispersed phase悬浮 suspension气力输运 pneumatic transport 气泡形成 bubble formation体密度 bulk density壅塞 choking微滴 droplet挟带 entrainment流型 flow pattern流[态]化 fluidization界面 interface跃动速度 saltation velocity非牛顿流体力学 non-newtonian fluid mechanics 非牛顿流体 non-newtonian fluid幂律流体 power law fluid拟塑性流体 pseudoplastic fluid触稠流体 rheopectic fluid触变流体 thixotropic fluid粘弹性流体 viscoelastic fluid流变测量学 rheometry震凝性 rheopexy体[积]粘性 bulk viscosity魏森贝格效应 weissenberg effect流变仪 rheometer稀薄气体动力学 rarefied gas dynamics物理化学流体力学 physico-chemical hydrodynamics 空气热化学 aerothermochemistry绝对压强 absolute pressure绝对反应速率 absolute reaction rate绝对温度 absolute temperature吸收系数 absorption coefficient活化分子 activated molecule活化能 activation energy绝热压缩 adiabatic pression绝热膨胀 adiabatic expansion绝热火焰温度 adiabatic flame temperature 电弧风洞 arc tunnel原子热 atomic heat雾化 atomization自燃 auto-ignition自动氧化 auto-oxidation可用能量 available energy缓冲作用 buffer action松密度 bulk density燃烧率 burning rate燃烧速度 burning velocity 接触面 contact surface烧蚀 ablation模板,内容仅供参考。

瓯塑英文介绍

瓯塑英文介绍

瓯塑英文介绍Title: The Art of Oushu SculptureOushu sculpture, a unique art form from China, is renowned for its intricate detailing and lifelike representations. Originating in the region of Wenzhou, Oushu sculpture is a blend of traditional techniques and modern themes, often expressing themes of cultural heritage and local stories. The medium is primarily a type of modeling paste made from clay, which allows for a range of textures and colors.The art of Oushu sculpture is passed down through generations, with skilled artisans preserving and evolving the techniques. The process involves complex carving and layering techniques, often using multiple colors to create depth and realism. Themes range from traditional figures and scenes to modern icons and abstract concepts.Oushu sculptures have found their way into various cultural and artistic displays, often showcasing the rich cultural heritage of theregion. They are also highly prized by collectors worldwide, recognized for their unique style and craftsmanship.In conclusion, Oushu sculpture is a vibrant and distinctive art form that captures the essence of Chinese culture and heritage. Its unique style and technique make it a treasured part of both local and global art collections.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c o n d -m a t /0106274v 1 [c o n d -m a t .s u p r -c o n ] 14 J u n 2001Vortex lattice melting in layered superconductors with periodic columnar pinsChandan Dasgupta 1,∗and Oriol T.Valls 2,+1Department of Physics,Indian Institute of Science,Bangalore 560012,India2Department of Physics and Minnesota Supercomputer Institute,University of Minnesota,Minneapolis,Minnesota 55455-0149(February 1,2008)The melting transition of the vortex lattice in highly anisotropic,layered superconductors with commensurate,periodic columnar pins is studied in a geometry where magnetic field and columnar pins are normal to the layers.Thermodynamic properties and equilibrium density distributions are obtained from numerical minimizations of an appropriate free-energy functional.We find a line of first-order transitions that ends at a critical point as the pin concentration is increased.A simple Landau theory providing a semi-quantitative explanation of the numerical results is proposed.74.60.Ge,74.60.Jg,85.40.Ux,74.25.Ha,74.76.DbThermodynamic and transport properties of type-II superconductors in the mixed phase can be altered in a controlled manner by the introduction of artificial pin-ning centers.Columnar pinning in high-temperature superconductors (HTSCs),produced by damage tracks from heavy-ion bombardment,has been extensively stud-ied experimentally [1,2]and theoretically [3,4]because such pinning enhances the critical current.A random ar-ray of such pins leads to a glassy phase,known as Bose glass [3].The interplay between the lattice constant of the pin array and the intervortex separation should pro-duce [5]commensurability effects.Such effects have been observed in imaging experiments [6]and magnetization measurements [7]on thin-film superconductors with pe-riodic arrays of artificially produced pinning centers.In this Letter,we investigate the effects of a commen-surate,periodic array of columnar pins on the vortex-lattice melting transition [8]in highly anisotropic,lay-ered,HTSCs in a magnetic field.Both the field and the columnar pins are assumed to be normal to the lay-ers.We consider values of the field for which the pin areal density is smaller than that of the vortex lines.Al-though vortex lattice melting in HTSCs in the absence of pinning has been studied extensively [8],not much is known about the effects of columnar pins on this transi-tion.Since columnar defects produce strong pinning,at temperatures near the melting temperature of the vor-tex lattice in the pure system each defect should pin a vortex.However,interstitial vortices,present when there are more vortices than pins,should [4]undergo a melting transition at a temperature slightly higher than the melt-ing point of the pure vortex lattice [9].Evidence for such melting of interstitial vortices has been found in exper-iments [6,7]on thin-film superconductors with periodic pinning,but the thermodynamics of this transition has not been studied.Since the defect-pinned vortices produce a periodic po-tential for the interstitial ones,the melting transition of the latter provides a physical realization of three-dimensional melting in the presence of an external pe-riodic potential.For small concentrations of pinning centers,we find a first-order melting transition from a crystalline solid to an inhomogeneous liquid.As the pin concentration is increased,the transition temperature in-creases and the latent heat and the jump in the crys-talline order parameter at the transition decrease.This line of first-order transitions terminates at a critical point beyond which the thermodynamic transition is replaced by a sharp crossover.This critical point is a rare,ex-perimentally realizable example of continuous melting in three dimensions.We show that a simple Landau the-ory provides a semi-quantitative understanding of most of our results.Such melting transitions are of interest in other systems such as atoms adsorbed on crystalline sub-strates [10],colloidal particles in interfering laser fields [11]and arrays of optical traps [12].Our work is of rele-vance to these systems also.Our study is based on a model free energy functional [13,14]for a system of “pancake”vortices [8]in a highly anisotropic layered superconductor.The commensurate array of columnar pins is accounted for by an appropri-ate “external potential”term [5]in the free energy func-tional.By numerically minimizing a discretized form of this functional,we have studied the effects of periodic pinning on the structure and thermodynamics of the liq-uid and crystalline states of this system.We consider a layered superconductor with vanishingly small Josephson coupling between layers (vortices on different layers are coupled via their electromagnetic interaction only).In this limit of effectively infinite anisotropy,which is ap-propriate [14]for extremely anisotropic Bi-and Tl-based compounds,the energy of a system of pancake vortices residing on the superconducting layers may be written as a sum of anisotropic two-body interactions v (n,r )where n is the layer separation and r is the separation in the plane of the layers.The Fourier transform of v is [14]βv (k )=2πΓλ2[k 2⊥+(4/d 2)sin 2(k z d/2)]with Γ≡βd Φ20/8π2λ2and β=1/k B T .Here,k z (k ⊥)is the component of k perpendicular (parallel)to the layer plane,d is the layer spacing,λ(T )the penetra-tion depth in the layer plane,and Φ0the flux quan-tum.The intralayer potential v (n =0,r )is repulsive and ∝ln(r ),whereas the interlayer potential v (n =0,r ),also ∝ln(r ),is attractive,weaker than the intralayer poten-tial by the factor d/λ,and decreases exponentially with n as e −nd/λ.We use parameters appropriate to BSCCO i.e.λ(T =0)=1500˚A and d =15˚A ,and assume a two-fluid T dependence of λwith T c (0)=85K.In density functional theory [13–15],the free energy of a state in a density configuration specified by ρ(i,r ),the time averaged areal density of vortices at point r on the i th layer,is given in terms of equilibrium correlation func-tions of the layered liquid of pancake vortices.We use the Ramakrishnan-Yussoufffree energy functional [13]which is known [14]to provide a quantitatively correct descrip-tion of the melting transition in our system in the ab-sence of pinning.Since the potential produced by a set of straight columnar pins perpendicular to the layers is the same on every layer,the time-averaged density of vortices at any point r must be the same on all layers:ρ(i,r )=ρ(r )for all i .Then,the free energy per layer may be written in a two-dimensional form:β(F [ρ]−F 0)=d 2r ρ(r )lnρ(r )2 d 2rd 2r ′˜C (|r −r ′|)δρ(r )δρ(r ′)+βd 2rV p (r )δρ(r ).(2)Here,δρ(r )≡ρ(r )−ρ0,F 0is the free energy of the uni-form liquid of areal density ρ0(=B/Φ0where B is themagnetic induction),V p (r )is the pinning potential,and ˜C (r )≡ nC (n,r ),where C (n,r )is the direct pair cor-relation function [15]of a layered liquid of pancake vor-tices.We use the results for C (n,r )obtained [14]from a hypernetted chain calculation [15].The pinning potential at point r is given by βV p (r )= j V 0(|r −R j |),where the sum is over all pinning cen-ters located at the points {R j }on a plane,and V 0(r ),the potential at r due to a pinning center at the origin is assumed to have the truncated parabolic formV 0(r )=−αΓ(1−r 2/r 20)(3)for r ≤r 0and V 0(r )=0if r >r 0.Here,r 0is the rangeand αis a “strength”parameter chosen to ensure that on the average a pinning center traps <∼1vortex in the temperature range of interest.We find the minima of the free energy of Eq.(2)using a methodology quite similar to that in our earlier studies [16,17]of hard-sphere systems.We discretize space by defining density variables {ρk }at the sites of a periodicgrid,and use a gradient descent method [16]to locate the minima of the free energy of Eq.(2)written as a function of {ρk }.The use of fast Fourier transforms in the calcu-lation of lattice sums [18]speeds the computations and allows studies of larger systems.To accommodate a tri-angular lattice,we use a triangular grid with periodic boundary conditions.We have performed our studies for B =2kG and 3kG.We first checked the results for crystallization without pinning.For this purpose,the computational system was one triangular lattice unit cell with lattice constant a (all lengths are in units of a 0,with πa 20≡1/ρ0=Φ0/B ),and the spacing h of the computational grid was chosen to have the values a/n with n =16,32,64and 128.The free energies of the crystal obtained [19]for all these values of n are essentially the same,indicating that the effects of discretization are minimal for h ≤a/16.The equilibrium value a m of the lattice parameter a was de-termined by finding the value of a that minimizes the free energy at a given B and T .The value of a m is found to be slightly higher than the spacing of a perfect triangular lattice of density ρ0.This reflects the well-known result [8]that the density of a vortex lattice increases slightly at melting.The free energy of the crystal crosses zero at the transi-tion temperature T c =18.45K at B =2kG.As expected,T c is slightly higher than that obtained from approximate treatments [14]of the same free energy.The entropy change ∆s per vortex is 0.29k B ,and the jump in the order parameter m ,(m is the magnitude of the Fourier component of ρ(r )at the shortest reciprocal lattice vector of the triangular lattice)is ∆m =0.52.The Lindemann parameter calculated from the density distribution [19]at the crystalline minimum is L =0.26at melting.Very similar results were obtained for B =3kG (T c =15.10K,∆s =0.28k B ,∆m =0.52,L =0.25).The close agree-ment of these results with those of other studies [8,14]establishes the validity of our numerical approach.Next,we considered the effects of a single pin and a pair of pins on the liquid-state properties.The single-pin calculation was done to fix the value of the parameter αof Eq.(3).Using r 0=0.1a 0(≃60˚A for B =2kG),we find that in the temperature range of interest (T ≈15-25K),the integrated density inside the range of the pinning po-tential is close to one if α≈0.05−0.06(V 0(r =0)≈7-9).The density distribution near the center of the defect isgaussian,ρ(r )∝exp(−αΓr 2/r 20),expected from Eq.(3).Since pinning of multiple vortices at radiation-induced defects is not found in experiments,higher values of αwere not considered.Our two-pin calculations show [19]the expected oscillatory behavior [5]of the free energy as a function of the distance between the pins.To study melting in the presence of a commensurate,periodic array of pins,we considered a triangular lattice of pins with spacing equal to la m where l is an integer.Thus the pin concentration is c ≡1/l 2.The computa-tional cell used was one unit cell of the pin lattice (which contains l 2unit cells of the vortex lattice)with one pin located at the center of the first unit cell of the vor-tex lattice.The value of h was fixed at a m /64.The crystalline (or liquid)minimum of the free energy was located by starting the minimization from a crystalline (or liquid-like)initial state,usually that obtained at a nearby T .For both values of B and smaller c ,(l =10,8,7and 6)we found a first-order transition (two distinct local minima whose free energies cross at thetransition temperature).Results for B =2kG are shown in Fig.1.As expected,the presence of columnar pins increases T c .The discontinuities in s and m decrease as c increases (inset in Fig.1)because pinning-induced order in the liq-uid increases with c .The results for B =3kG are very similar,with T c reduced by approximately 3.4K for all these values of c .FIG.1.The phase diagram (T c vs.pin concentration c )for B =2kG.The dashed line is a polynomial fit.Inset:En-tropy change ∆s (in units of k B )and order parameter jump ∆m vs c .Dotted lines are fits to the form const.×(c c −c )1/2.The approximate position of the critical point is indicated by the arrow.In Fig.2,we have shown the variation of the local den-sity ρalong a line joining two neighboring pinning centers for the coexisting crystalline and liquid minima at the transition temperature for c =1/64and B =2kG.This plot brings out the differences between the structures of the coexisting crystal and liquid phases and illustrates the ability of our numerical method to provide detailed information about the density distribution in inhomoge-neous states.In the liquid state,we find [19]the expected six-fold angular modulation [5]of the density.At larger values of c ,(l <6)the behavior found (for both values of B )is significantly different.Here,the ap-parent minima obtained in “heating”runs (increasing T in steps from a crystalline state at low T and using the minimum obtained for the last T as the input for the current minimization)and in “cooling”runs (decreasingT in steps from a liquid state at high T )have almost the same free energy,but significantly different density dis-tributions [19]and values of m .At c =1/25,(l =5)the difference in the values of m peaks at T =T x ≃21.2K for B =2kG,as shown in Fig.3.These results suggestFIG.2.The normalized local density ρ/ρ0along a line joining two adjacent pinning centers.Data for the coexist-ing crystal (solid line)and liquid (dotted line)for c =1/64,B =2kG are shown.The peak near x/a 0=1is at the loca-tion of a pinning center.that F has only one minimum that becomes very “flat”near T =T x :our minimization routine,which assumes that a minimum has been reached when the gradient of the free energy becomes smaller than a small convergence parameter,stops at slightly different points when ap-proaching a very flat minimum from different directions.To check this,we have calculated the free energy of con-figurations {ρi (x )}defined by ρi (x )=xρ(1)i +(1−x )ρ(2)i ,where {ρ(1)i }and {ρ(2)i }are the configurations obtained in heating (crystal)and cooling (liquid)runs,respec-tively,and 0≤x ≤1is a mixing parameter.A plot of the free energy as a function of x (or of m (x )=xm (1)+(1−x )m (2),where m (1)and m (2)are the order pa-rameters in the two configurations)exhibits a minimum at x =x 0∼0.5at all temperatures.A typical plot,for B =2kG,T =21.2K,is shown in the inset of Fig.3.In con-trast,similar plots for smaller values of c exhibit a clear maximum at an intermediate value of x .These results confirm that for c =1/25or more,the free energy has a unique minimum that lies between the configurations ob-tained in heating and cooling runs.Thus,no first-order transition occurs at c =1/25,and the line of first-order transitions found for smaller values of c must end at a critical point lying between c =1/36and c =1/25.At c =1/25,the change from liquid-like to solid-like behav-ior occurs as a sharp crossover.We identify the temper-ature T x ,which coincides with the temperature at which the temperature-derivative of the “equilibrium”value,m (x 0),of the order parameter peaks,as the crossovertemperature.The sharpnessof theobservedcrossover(seeFig.3)suggests that c =1/25,T =T x ≃21.2K is close to the critical point for B =2kG,as shown in Fig.1.For c =1/16the crossover is smoother.Our results for B =3kG are very similar,with T x ≃17.7K for c =1/25.FIG.3.The “heating”,“cooling”and “equilibrium”val-ues of the order parameter m (see text)as functions of T for c =1/25,B =2kG.The solid line is a polynomial fit to the equilibrium data.Inset:Plot of the free energy vs.m (x )at T =21.2K.The dotted line is the best fit to Eq.(4).We can describe the basic Physics underlying this phase diagram as follows.In the presence of commen-surate periodic pinning the liquid and the crystal have the same symmetry.Since the degree of order in the liq-uid increases with c ,the liquid and the crystal become indistinguishable beyond a critical value of c .Thus,it is possible to go from one phase to the other without crossing a phase boundary.A simple Landau theory il-lustrates this.Symmetry considerations [20]suggest the following Landau expansion for F :βF =13a 3m 3+1∗Also at CMTU,JNCASR,Bangalore 560064,India.+Electronic address:otvalls@[1]L.Civale et.al.,Phys.Rev.Let.67,648(1991).[2]R.C.Budhani,M.Suenaga and S.H.Liou,Phys.Rev.Lett.69,3816(1992).[3]D.R.Nelson and V.M.Vinokur,Phys.Rev.B 48,13060(1993).[4]L.Radzihovsky,Phys.Rev.Lett.74,4923(1995).[5]C.Dasgupta and D.Feinberg,Phys.Rev.B 57,11730(1998).[6]K.Harada et.al.,Science 274,1167(1996).[7]M.Baert et.al.,Phys.Rev.Lett.74,3269(1995).[8]G.Blatter et.al.,Rev.Mod.Phys.66,1125(1994).[9]Y.Y.Goldschmidt,Phys.Rev.B 56,2800(1997).[10]D.R.Nelson and B.I.Halperin,Phys.Rev.B 19,2457(1979).[11]Q.-H.Wei et.al.,Phys.Rev.Lett.81,2606(1998).[12]E.R.Dufresne et.al.,preprint (cond-mat/0008414).[13]T.V.Ramakrishnan and M.Yussouff,Phys.Rev.B 19,2775,(1979).[14]S.Sengupta et.al.,Phys.Rev.Lett.67,3444(1991);G.I.Menon et.al.,Phys.Rev.B 54,16192(1996).[15]J.P.Hansen and I.R.McDonald,Theory of Simple Liq-uids (Academic,London,1986).[16]C.Dasgupta,Europhys.Lett.20,131,(1992).[17]C.Dasgupta and O.T.Valls,Phys.Rev E 62,3648,(2000).[18]F.Pinski,private communication.[19]C.Dasgupta and O.T.Valls,in preparation.[20]S.Alexander and J.McTague,Phys.Rev.Lett.41,702(1978).。

相关文档
最新文档