1 不等关系 练习1

合集下载

不等关系

不等关系

1.不等关系我们学过等式,知道利用等式可以解决许多问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容。

既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子。

通过测量一棵树围(树干的周长)可以计算出它的树龄。

通常规定以树干离地面1.5米的地方作为测量部位,某树栽种时的树围为5㎝,以后树围每年增加约为3㎝,这棵树至少生长多少年其树围才能超过2.4米?(只列关系式)这些关系式都是用不等号连接的式子,由此可知:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.试举几个用不等式表示的例子。

1.用适当的符号表示下列关系:(1)a是非负数;(2)直角三角形斜边c比它的两直角边a,b都长;(3)x与17的和比它的5倍小。

2.用不等式表示:(1) x 与5的差不小于x 的2倍: ;(2)小明的身高h 超过了160cm : .3.用不等号连接下列各组数: (1)π 3.14 ; (2)(x -1)2 0 ; (3)。

2.不等式的基本性质还记得等式的基本性质吗?等式的基本性质1:用字母可以表示为:_________________________________________, 那么不等式的基本性质1是什么?先猜一猜。

如果在不等式的两边都加上或都减去同一个整式,结果会怎样?请举几例试一试,并与同伴交流。

不等式的基本性质1与等式的基本性质1类似,不等式的基本性质1:______________________________________________________ 用字母可以表示为:_________________________________________等式的基本性质2: 用字母可以表示为:_____________________________________ 对应的大家能不能归纳出不等式的基本性质2是什么呢?13-14-例如:商场A 种服装的标价高于B 种服装的标价,如果都打八折出售,那么还是A 种服装价格高。

不等式-不等关系

不等式-不等关系

不等式—不等关系,一元二次不等式一、目标要求:1、掌握不等式关系、不等式及一元二次不等式的概念;2、理解不等式的性质及不等式的分类;3、掌握实数比较大小的方法;4、能运用不等式的性质证明简单的不等式;5、理解一元二次不等式、二次函数、一元二次方程的关系;6、会解一元二次不等式、含参数的不等式、分式不等式、简单的高次不等式;二、例题讲解:例题1、已知,a b的大小;例题2、在ABC 中,,,a b c 分别是角,,A B C 的对边,S是其面积,求证:222a b c S ++≥;例题3、设函数()122,1,1log ,1,x x f x x x -⎧≤=⎨-〉⎩,求满足()2f x ≤的x 的取值范围;例题4、解关于x 的不等式: (1)()2110;ax a x +--〉 (2)220;x kx k +-≤例题5、解关于x 的不等式: ()22210,1;x x x a a a a a +-+〈+〉≠且例题6、解不等式()()22120;x x x +--〉例题7、解不等式2225560;11x x x x +-〈++例题8、已知不等式22412ax x a x ++〉-对一切实数x 恒成立,求实数a 的取值范围;三、巩固练习:1、解下列不等式: (1)2220;3x x -+-〉 (2)2414;x x -≥-2、已知某种商品的定价上涨x 成,其销售量便相应的减少2x 成,按规定,税金是从销售额中按一定的比例缴纳,如果这种商品的定价无论如何变化,从销售额中扣除税金后的金额总比涨价前的销售额少,是列出此时税率p 满足的不等关系。

3、某蔬菜收购点租用车辆,将100t 新鲜辣椒运往某市销售,可租用的大卡车和农用车分别为10辆和20辆,若每辆大卡车载重8t ,运费960元,每辆农用车载重2.5t ,运费360元,运输成本之和不能超过10000元,据此安排两种车型,应当满足那些不等关系?请列出来。

4、解不等式:22;x x -≥5、解不等式:(1)()()1130;2x x x ⎛⎫--+〈 ⎪⎝⎭(2)()()()231120x x x x -++≥。

高二数学-不等式与不等关系(

高二数学-不等式与不等关系(

二、题型探究
考点二 比较大小
【比较大小的常用方法】
(1)作差法,步骤:作差⇒变形(因式分解)⇒判断差与 0 的大小⇒得出结论.
(2)作商法,步骤:作商⇒变形(因式分解)⇒判断商与 1 的大小⇒得出结论.(同号)
(3)构造函数法:构造函数,利用函数单调性比较大小.
(4)赋值法和排除法:可以多次取特殊值,根据特殊值比较大小,从而得出 结论. (5)中间量法:一般选取 0,1 或 -1 作为中间值.
三、随堂练习
1. 思考辨析,判断正误 (1)两个实数 a,b 之间,有且只有 a>b,a=b,a<b 三种关系中的一种. √
(2)一个不等式的两边同时加上或乘同一个数,不等号方向不变. × (3)一个非零实数越大,则其倒数就越小. ×
(4)a>b⇔ac2>bc2. ×
(5)若 a>b 且 ab<0,则1<1. ab
二、题型探究
考点二 比较大小
例 4(1)已知实数 a=2ln2,b=2+2ln2,c=(ln2)2,则 a,b,c
的大小关系是( B )
A.c<b<a B.c<a<b
C .b <a <c
D.a<c<b
∵a=2ln2∈(1,2),b=2+2ln2>2,c=(ln2)2∈(0,1)∴b>a>c,选 B.
一、知识回顾
[ 常用结论]
1.倒数性质的几个必备结论 (1)a>b,ab>0⇒1a<1b. (3)a>b>0,d>c>0⇒ac>bd .
(2)a<0<b⇒1a<1b. (4)0<a<x<b 或 a<x<b<0⇒1b<1x<1a.
2.两个重要不等式 若 a>b>0,m>0,则 (1)ba<ba+ +mm;ba>ba- -mm(b-m>0). (2)ab>ab+ +mm;ab<ab- -mm(b-m>0).

不等关系练习含答案

不等关系练习含答案

不等关系一、选择题1.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A.ac>bdB.ac<bdC.ad>bcD.ad<bc[答案] D[解析] 本题考查不等式的性质,ac-bd=ad-bccd,cd>0,而ad-bc的符号不能确定,所以选项A、B不一定成立.ad-bc=ac-bddc,dc>0,由不等式的性质可知ac<bd,所以选项D成立.2.如果a∈R,且a2+a<0,那么a,a2,-a,-a2的大小关系为( ) A.a2>a>-a2>-a B.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2[答案] B[解析] 因为a2+a<0,所以a2<-a,a<-a2,又由于a≠0,∴-a2<a2,即a<-a2<a2<-A.故选B.3.设a,b∈R,若a-|b|>0,则下列不等式中正确的是( )A.b-a>0 B.a3+b3<0C.a2-b2<0 D.b+a>0[答案] D[解析] 利用赋值法:令a=1,b=0排除A,B,C,选D.4.若a>b>c,a+2b+3c=0,则( )A.ab>ac B.ac>bcC.ab>bc D.a|b|>c|b|[答案] A[解析] ∵a>b>c且a+2b+3c=0,∴a>0,c<0.又∵b>c且a>0,∴ab>aC.选A.5.若-1<α<β<1,则下面各式中恒成立的是( )A.-2<α-β<0 B.-2<α-β<-1C.-1<α-β<0 D.-1<α-β<1[答案] A[解析] 由题意得-1<α<1,-1<-β<1,α-β<0,故-2<α-β<2且α-β<0,故-2<α-β<0,因此选A.6.如果a>0,且a≠1,M=log a(a3+1),N=log a(a2+1),那么( ) A.M>N B.M<NC.M=N D.M、N的大小无法确定[答案] A[解析] 当a>1时a3+1>a2+1,y=log a x单增,∴loga(a3+1)>log a(a2+1).当0<a<1时a3+1<a2+1,y=log a x单减.∴log a(a3+1)>log a(a2+1),或对a取值检验.选A.二、填空题7.如果a>b,那么下列不等式:①a3>b3;②1a<1b;③3a>3b;④lg a>lg B.其中恒成立的是________.[答案] ①③[解析] ①a3-b3=(a-b)(a2+b2+ab)=(a-b)[(a+b2)2+34b2]>0;③∵y=3x是增函数,a>b,∴3a>3b当a>0,b<0时,②④不成立.8.设m=2a2+2a+1,n=(a+1)2,则m、n的大小关系是________.[答案] m≥n[解析] m-n=2a2+2a+1-(a+1)2=a2≥0.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:机架数所满足的所有不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则⎩⎨⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎨⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.10.(1)已知a >b ,e >f ,c >0.求证:f -ac <e -bC . (2)若bc -ad ≥0,bd >0.求证:a +b b ≤c +dd. [证明] (1)∵a >b ,c >0,∴ac >bc ,∴-ac <-bc ,∵f <e ,∴f -ac <e -bC . (2)∵bc -ad ≥0,∴ad ≤bc , 又∵bd >0,∴a b ≤cd, ∴a b +1≤c d+1, ∴a +b b ≤c +dd.。

三角形三边关系不等式的证明题

三角形三边关系不等式的证明题

三角形边角不等式关系练习题一、边的不等关系证明1、如图1,在△ABC 的边AB 上截取AD=AC ,连结CD , (1)说明2AD >CD 的理由(填空);解:∵AD+AC >CD ( ) 又∵AD=AC ( ) ∴AD+AD>CD( ) ∴2AD >CD(2)说明BD <BC 的理由。

解:∵_______<BC ( )又∵AD=AC ( )∴AB –AD <BC ( ) 而AB –AD=BD∴BD <BC ( )2、如图2,△ABC 中,AB=BC ,D 是AB 延长线上的点,说明AD >DC 的理由。

2、如图3,已知P 是△ABC 内任意一点,则有AB+AC >PB+PC.3. 如图所示,在△ABC 中,D 是BA 上一点,则AB+2CD>AC+BC 成立吗?•说明你的理由.4.如图,已知△ABC 中,AB =AC ,D 在AC 的延长线上.求证:BD -BC <AD -AB .AB CDAB C D图3 图2图15.如图,△ABC 中,D 是AB 上一点.求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .6.在右图中,已知AD 是△ABC 的BC 边上的高,AE 是BC 边上的中线,求证:AB+AE+12BC>AD+AC 证明:∵AD ⊥BC( )∴AB >AD( ) 在△AEC 中,AE+EC>AC( )又∵AE 为中线( )∴EC=12BC( )即AE+12BC>AC( ) ∴AB+AE+12BC >AD+AC7.已知如图:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 参考答案2.解:延长BP 交AC 于E ,在△PEC 中,PE+EC >PC∴BP+EP+EC >BP+PC 即BE+EC >BP+PC.在△ABE 中,AE+AB >BE ∴AE+EC+AB >BE+EC , 即AC+AB >BE+EC ,∴AB+AC >PB+PC4.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD ,∴ BD -BC <AD -AB .5.(1)AC +AD >CD ,BC +BD >CD ,两式相加:AB +BC +CA >2CD .ACEP B(2)AD+CD>AC,BD+CD>BC,两式相加:AB+2CD>AC+BC.7.(法一)将DE两边延长分别交AB、AC 于M、N,在△AMN中,AM+AN >MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC。

不等关系与不等式(2)

不等关系与不等式(2)
0.1 因此,销售总收入为: (8 x 2.5 0.2)x万元
0.1
用不等式表示为: (8 x 2.5 0.2)x 20 0.1
问题3.某钢铁厂要把长度为4000mm的钢管 截成500mm和600mm的两种规格。按照生 产的要求,600mm的钢管的数量不能超过 500mm钢管的3倍 请思考:(1)找出两种规格 的钢管的数量满足的不等关系. (2)用不等式(组)表示上述不等关系. 分析:假设截得500mm的钢管x根,截得 600mm的钢管y根。根据题意,应当有什么 样的不等关系呢? (1)截得两种钢管的总长度不能超过4000mm;
2
2
2. 比较 x 3 与 x2 x 1的大小.
解:x3-(x2-x+1)=x3-x2+x-1
=x2(x-1)+(x-1)
∵ x2+1>0,
=(x-1)(x2+1),
∴ 当x>1时,x3>x2-x+1; 当x=1时,x3=x2-x+1,
当x<1时,x3<x2-x+1.
思考:当p,q都是正数且p+q=1时,试 比较代数式(px+qy)2与px2+qy2的大小. 解:(px+qy)2-(px2+qy2)
(1)点A和点B重合; (2)点A在点B的右侧; (3)点A在点B的左侧. 在这三种位置关系中,有且仅有一种成立,由 此可得到结论: 对于任意两个实数a和b,在a=b,a>b,a<b 三种关系中有且仅有一种关系成立.
如果a-b是正数,则a>b;如果a>b, 则a-b为正数;
如果a-b是负数,则a<b;如果a<b, 则a-b为负数;

不等式概念及性质知识点详解与练习[1]

不等式概念及性质知识点详解与练习[1]

(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改)的全部内容。

不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥"及“≤"等不等号把代数式连接起来,表示不等关系的式子。

a —b 〉0a>b, a —b=0a=b, a-b 〈0a<b 。

(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。

(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>"读作“大于",它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

不等式练习及答案汇总

不等式练习及答案汇总

一.选择题(共2小题)1.若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a2.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是.4.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).6.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B 种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.8.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.10.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?12.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?13.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题(共2小题)1.(2010春•邹城市校级期末)若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.2.(2013春•蚌埠期中)若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x ≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.4.(2016春•谷城县期末)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.6.(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.7.(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.8.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.9.(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.10.(2015•淄博模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.11.(2012•绥化)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?【分析】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【解答】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所.则,解得由①的a≤3,由②得a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.12.(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.13.(2016•宿州二模)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a的值为8,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)=12800,解得:a=8,故采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.。

七下数学人教版一元一次不等式练习题及答案

七下数学人教版一元一次不等式练习题及答案

一元一次不等式组同步练习一、选择题1,关于x的不等式2x-a≤-1的解集如图2所示,则aA.0B.-3C.-2D.-12,已知a=32,23x xb++=,且a>2>b,那么x的取值范围是()A.x>1 B.x<4 C.1<x<4 D.x<13,若三角形三条边长分别是3,1-2a,8,则a的取值范围是()A.a>-5 B.-5<a<-2 C.-5≤a≤-2 D.a>-2或a<-54,如果不等式组8xx m<⎧⎨>⎩无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤85,一种灭虫药粉30kg,含药率是15100,现在要用含药率较高的同种灭虫药粉50kg和它混合,使混合后含药率大于30%而小于35%,则所用药粉的含药率x的范围是()A.15%<x<28% B.15%<x<35% C.39%<x<47% D.23%<x<50% 6,韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未满;若全部安排B队的车,每辆车4人,车不够,每辆坐5人,•有的车未满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆二、填空题7,代数式1-k的值大于-1且不大于3,则k的取值范围是________.8,已知关于x的不等式组2123x ax b-<⎧⎨->⎩的解集是-1<x<1,那么(a+1)(b-2)的值等于______.9.不等式组23182xx x>-⎧⎨-≤-⎩的最小整数解是________.10.把一篮苹果分组几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生最多得3个,求学生人数和苹果数?设有x个学生,依题意可列不等式组为________.11.若不等式组1,21x mx m<+⎧⎨>-⎩无解,则m的取值范围是______.12.若关于x的不等式组211,3xxx k-⎧>-⎪⎨⎪-<⎩的解集为x<2,则k的取值范围是_______.三、解答题13.解不等式组⎪⎩⎪⎨⎧+≥+<+4134)2(3x x x x14.要使关于x 的方程5x-2m=3x-6m+1的解在-3与4之间,m 必须在哪个范围内取值?15.在车站开始检票时,有a (a>0)名旅客在候车室等候检票进站,•检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,•检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,•以使后来到站的旅客能随到随检,至少要同时开放几个检票口?16,某校举行“建校50周年”文娱汇演,评出一等奖5个,二等奖10个,•三等奖15个,学校决定给评奖的学生发奖品,同一等次的奖品相同,•并且只能从下列所列物品中选取1件:(1)如果获奖等次越高,奖品单价就越高,那么学校最少花多少钱买奖品?(2)学校要求一等奖的奖品单价是二等奖品单价的5倍,•二等奖奖品单价是三等奖奖品单价的4倍,在总费用不超过1200元的前提下,有几种购买方案?花费最多的一种方案需要多少钱?17,为了迎接2006年世界杯足球赛,某足协举办了一次足球联赛,•其记分规划及奖励办法如下表所示:A队当比赛进行12场时,积分共19分(1)通过计算,A队胜,平、负各几场?(2)若每赛一场,每名参赛队员可得出场费500元.若A•队一名队员参加了这次比赛,在(1)条件下,该名队员在A队胜几场时所获奖金最多,奖金是多少?数学:9.3一元一次不等式组同步练习( 人教新课标七年级下)参考答案一、1,B.解:x ≤12a +,又不等式解为:x ≤-1,所以12a +=-1,解得:a =-3. 2,C.解:由已知a>2>b 即为32222223x a x b +⎧>⎪>⎧⎪⎨⎨+<⎩⎪<⎪⎩建立不等式组再求解. 3,B.解:由三角形边长关系可得5<1-2a<11,解得-5<a<-2.4,B.解:因为不等式组无解,即x<8与x>m 无公共解集,利用数轴可知m≥8. 5,C.解:依题意可得不等式15503030353947100,1005030100100100x x +⨯<<<<+解得. 6,B.解:设A 队有出租车x 辆,B 队有(x+3)辆,依题意可得11155561656934(3)56115(3)56185x x x x x x x x ⎧<⎪<⎧⎪⎪⎪>>⎪⎪⎨⎨+<⎪⎪<⎪⎪+>⎩⎪>⎪⎩化简得 解得913<x<11, ∵x 为整数,∴x=10. 二、7,-2≤k<2.解:由已知可得1113k k ->-⎧⎨-≤⎩解不等式组得-2≤k<2. 8,-8.解:解不等式组2123x a x b -<⎧⎨->⎩可得解集为2b+3<x<12a +,因为不等式组的解集为-1<x<1,所以2b+3=-1,12a +=1,解得a=1,b=-2代入(a+1)(b-2)=2×(-4)=-8. 9,-1.解:先求出不等式组解集为-32<x≤3,其中整数解为-1,0,1,2,3,故最小整数解-1.10,436(1)436(1)3x x x x +≥-⎧⎨+≤-+⎩点拨:设有x 名学生,苹果数为(4x+3)个,再根据题目中包含的最后一个学生最多得3个,即不等关系为0≤最后一个学生所得苹果≤3,所以不等式组为436(1)0436(1)3x x x x +--≥⎧⎨+--≤⎩. 11,m≥2.解:由不等式组x 无解可知2m-1≥m+1,解得m≥2.12,k≥2.解:解不等式①,得x>2.解不等式②,得x<k.因为不等式组的解集为x<2,所以k≥2.三、13,答案:解不等式(1),得463+<+x x1-<x解不等式(2),得334+≥x x3≥x∴原不等式无解14,解方程5x-2m=3x-6m+1得x=412m -+.要使方程的解在-3与4之间,只需-3<412m -+<4.解得-74<m<74. 15,设至少同时开放n 个检票口,且每分钟旅客进站x 人,检票口检票y 人.依题意,得3030,10210,55.a x y a x y a x ny +=⎧⎪+=⨯⎨⎪+≤⎩第一、二两个式子相减,得y=2x .把y=2x 代入第一个式得a=30x .把y=2x ,a=30x 代入③得n≥3.5.∵n 只能取整数,∴n=4,5,…答:至少要同时开放4个检票口.16,解:(1)根据题意,最少花费为:6×5+5×10+4×15=140元.(2)设三等奖的奖品单价为x 元,根据题意得52010451200201204x x x x x ⨯+⨯+≤⎧⎪≤⎨⎪≥⎩解得4≤x≤6,因此有3种方案分别是:方案1:三等奖奖品单价6元,二等奖奖品单价24元,一等奖奖品单价120元.方案2:三等奖奖品单价5元,二等奖奖品单价20元,一等奖奖品单价100元.而表格中无此奖品故这种方案不存在,舍去.方案3:三等奖奖品单价4元,二等奖奖品单价16元,一等奖奖品单价为80元.方案1花费:120×5+24×10+6×15=930元,方案2花费:80×5+16×10+4×15=620元,其中花费最多的一种方案为一等奖奖品单价120元,二等奖奖品单价24元,•三等奖奖品单价6元,共花费奖金930元.点拨:(1)学校买奖品花钱最少,则奖品依次为相册,笔记本,•钢笔等这些单价偏低的商品分别作为一,二,三等奖品.(2)根据题目中包含的不等关系1200⎧⎪⎨⎪⎩费用不超过一等奖奖品单价不大于120三等奖奖品单价不小于4,建立不等式组,再由奖品单价为整数,求出符合题意的整数解.确定购买方案.17,解:(1)设A 队胜x 场,平y 场,负z 场,则12319x y z x y ++=⎧⎨+=⎩用x 表示y ,z 解得:19327y x z x =-⎧⎨=-⎩∵x≥0,y≥0,z≥0且x ,y ,z 均为正整数,∴ 01930270x x x ≥⎧⎪-≥⎨⎪-≥⎩解之得312≤x≤613,∴x=4,5,6,即A 队胜,平,负有3种情况,分别是A 队胜4场平7场负1场,A 队胜5场平4场负3场,A 队胜6场平1场负5场,(2)在(1)条件下,A 队胜4场平7场负1场奖金为:(1500+500)×4+(700+500)×4+500×3=16300元,A 队胜6场平1场负5场奖金为(1500+500)×6+(700+500)×1+500×5=15700元,故A 队胜4场时,该名队员所获奖金最多.点拨:在由已知设胜x 场,平y 场,负z 场,首先根据比赛总场次12场,得分19分,•建立方程组,用x 表示y ,z 最后关键在于分析到题目中隐含的x≥0,y ≥0,z≥0且x ,y ,z 为整数从而建立不等式组求到x 的值.(2)把3种情况下的奖金算出,再比较大小.备用题:1,C.1,解:设有x 名学生获奖,则钢笔支数为(3x+8)支,依题意得385(1)0385(1)3x x x x +--≥⎧⎨+--<⎩解得5<x≤612,∵x 为正整数.∴x=6,把x=6代入3x+8=26.答:该校有6名学生获奖,买了26支钢笔.点拨:设出获奖人数,则可表示奖励的钢笔支数,再根据题目中第二个已知条件,每人送5支,最后一人所得支数不足3支,隐含了0≤最后一人所得钢笔支数<3•这样的不等式关系列不等式组,求出x 的取值范围5<x≤612,又x 表示人数应该是正整数,•所以x=6,3x+6=26,因此一共有6名学生获奖,买了26支钢笔发奖品.3,解:设生产甲型玩具x 个,则生产乙型玩具(100-x )个,依题意得:73(100)48025(100)370x x x x +-≤⎧⎨+-≤⎩解之得:4313≤x≤45,∵x 为正整数,∴x=44或45,100-x=56或55,故能实现这个计划,且有2种方案,第1种方案:生产甲型玩具44个,生产乙型玩具56个.第2种方案:生产甲型玩具45个,生产乙型玩具55个.。

不等式的基本性质--习题精选(一)

不等式的基本性质--习题精选(一)

不等式的基本性质1、不等式的基本性质1:如果a>b,那么 a+c____b+c, a-c____b-c.不等式的基本性质2:如果a>b,并且c>0,那么ac_____bc.不等式的基本性质3:如果a>b,并且c<0,那么ac_____bc.2、设a<b,用“<”或“>”填空.(1)a-1____b-1;(2)a+1_____b+1;(3)2a____2b;(4)-2a_____-2b;(5)-a2_____-b2;(6)a2____b2.。

3、根据不等式的基本性质,用“<”或“>”填空.(1)若a-1>b-1,则a____b;(2)若a+3>b+3,则a____b;(3)若2a>2b,则a____b;(4)若-2a>-2b,则a___b.4、若a>b,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m;(2)a+n___b+n;(3)m-a___m-b;(4)an____bn;(5)am____bm;(6)an_____bn;!5、下列说法不正确的是A.若a>b,则ac2>bc2(c 0) B.若a>b,则b<aC.若a>b,则-a>-b D.若a>b,b>c,则a>c6、根据不等式的基本性质,把下列不等式化为x>a或x>a的形式:(1)x-3>1;(2)-23x>-1;(3)3x<1+2x;(4)2x>4.)7、已知实数a、b、c在数轴上对应的点如图所示,则下列式子中正确的是A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b1、已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.2、已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)3、若m>n,且am<an,则a的取值应满足条件;A.a>0 B.a<0 C.a=0 D.a≥04、下列不等式的变形正确的是A.由4x-1>2,得4x>1 B.由5x>3,得x>3 5C.由x2>0,得x>2 D.由-2x<4,得x<-25、若a>b,且m为有理数,则am2____bm2.6、同桌甲和乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对为什么。

高中数学必修5不等式与不等关系专题练习

高中数学必修5不等式与不等关系专题练习

高中数学必修5不等式与不等关系专题练习一、选择题1. 已知a,b,c ∈R,下列命题中正确的是A 、22bc ac b a >⇒>B 、b a bc ac >⇒>22C 、ba b a 1133<⇒> D 、||22b a b a >⇒>2.设a ,b ∈R ,且a ≠b ,a+b=2,则下列不等式成立的是 ( )A 、2b a ab 122+<<B 、2b a 1ab 22+<<C 、12b a ab 22<+<D 、1ab 2b a 22<<+ 3.二次方程22(1)20x a x a +++-=,有一个根比1大,另一个根比1-小,则a 的取值范围是( )A .31a -<<B .20a -<<C .10a -<<D .02a <<4.下列各函数中,最小值为2的是 ( )A .1y x x =+B .1sin sin y x x =+,(0,)2x π∈ C .222y x =+ D .1y x x =- 5.已知函数2(0)y ax bx c a =++≠的图象经过点(1,3)-和(1,1)两点,若01c <<,则a 的取值范围是( )A .(1,3)B .(1,2)C .[)2,3D .[]1,36.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是 ( )A .12B .32C .52D .17、已知正数x 、y 满足811x y+=,则2x y +的最小值是( )A.18 B.16 C .8 D .108.已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为A 、11{|}32x x -<< B 、11{|}32x x x <->或 C 、{|32}x x -<< D 、{|32}x x x <->或 ( )二、填空题9.不等式0121>+-x x的解集是 10.已知x >2,则y =21-+x x 的最小值是 . 11.对于任意实数x ,不等式23208kx kx +-<恒成立,则实数k 的取值范围是12、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是 。

一元一次不等式练习题(精华版)

一元一次不等式练习题(精华版)

一元一次不等式1、下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ;2.下列各式中,是一元一次不等式的是( ) A 。

5+4>8 B 。

2x -1 C.2x ≤5D 。

1x-3x ≥0 3. 下列各式中,是一元一次不等式的是( )(1)2x<y (2) (3) (4)4.用“〉”或“〈”号填空. 若a 〉b,且c ,则:(1)a+3______b+3; (2)a —5_____b —5; (3)3a____3b ; (4)c —a_____c-b (5); (6)5。

若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、填空题(每题4分,共20分) 1、不等式122x >的解集是: ;不等式133x ->的解集是: ; 2、不等式组⎩⎨⎧-+0501>>x x 的解集为 。

不等式组3050x x -<⎧⎨-⎩>的解集为 .3、不等式组2050x x ⎧⎨-⎩>>的解集为 。

不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .三. 解下列不等式,并在数轴上表示出它们的解集.(1) 8223-<+x x 2. x x 4923+≥-(3)。

)1(5)32(2+<+x x (4). 0)7(319≤+-x (5)31222+≥+x x (6) 223125+<-+x x(7) 7)1(68)2(5+-<+-x x (8))2(3)]2(2[3-->--x x x x(9)1215312≤+--x x (10) 215329323+≤---x x x (11)11(1)223x x -<- (12) )1(52)]1(21[21-≤+-x x x(13)41328)1(3--<++x x (14) ⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组,并在数轴上表示它的解集 1. ⎩⎨⎧≥-≥-.04,012x x2。

列不等式组解应用题一

列不等式组解应用题一

练习九:列不等式组解应用题知识整理:一、下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.(例1)2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.(例2)二、下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.(例3)2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限。

(例4.)三、列一元一次不等式(组)解决实际问题,掌握解不等式应用题的步骤:(1)审题,分析题目中已知什么,求什么,明确各数量之间的关系(2)设适当的未知数(3)找出题目中的所有不等关系(4)列不等式组(5)求出不等式组的解集(6)写出符合题意的答案例题讲解:例1、为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电”价),22:00至次日8:00每千瓦时0.28元(“谷电”价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题.例2、周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).例3、已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.(1)用含x的代数式表示出y,并求出x的取值范围;(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?分析:本题存在的两个不等量关系是:①合计生产M、N型号的服装所需A 种布料不大于70米;②合计生产M、N型号的服装所需B种布料不大于52米.例4、某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m本课外读物,有x名学生获奖.请回答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x-1)本后所余课外读物应在大于等于0而小于3这个范围内.例5、某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.练习1:1、某次数学测验,共16个选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。

2022年高中数学第三章不等式1不等关系与不等式练习含解析新人教A版必修

2022年高中数学第三章不等式1不等关系与不等式练习含解析新人教A版必修

课时训练15 不等关系与不等式一、不等式性质的直接应用与判断1.若1a <1b<0,则下列结论不正确的是( )A.a2<b2B.ab<b2C.b a +ab>2 D.ba<1答案:D解析:由1a <1b<0可知,b<a<0,所以ba<1不成立,故选D.2.(2015山东威海高二期中,1)已知a>b,则下列不等式中成立的是( )A.a2>b2B.1a <1bC.1a-b>1aD.a3>b3答案:D解析:A.虽然-1>-2,但(-1)2>(-2)2不成立;B.虽然3>-2,但是13<1-2不成立;C.虽然2>-3,但是12-(-3)>12不成立;D.∵a>b,∴a3-b3=(a-b)(a2+ab+b2)>0. (∵a2+ab+b2=(a+12b)2+34b2>0)成立.综上可知,只有D正确.故选D.3.已知下列说法:①若a<b<0,则a2>ab;②若a≥b,ac≥bc,则c≥0;③若a>b>0,c<0,则ca >cb;④若0<a<1,则log a(1+a)>log a(1+1a)其中正确的有 .答案:①③④解析:对于①,由a<b,a<0,可得a2>ab,故①正确;对于②,当a=b时,c可以为负数,故②错误;对于③,当a>b>0时,得0<1a < 1 b,又c<0,∴ca >cb,故③正确;对于④,当0<a<1时,1a >1,则1+a<1+1a,∴log a(1+a)>log a(1+1a),故④正确.二、利用不等式的性质比大小4.(2015山东威海高二期中,2)不等式:①a2+2>2a;②a2+b2≥2(a-b-1);③a2+b2≥ab恒成立的个数是( )A.0B.1C.2D.3答案:D解析:①a2+2-2a=(a-1)2+1≥1,∴a2+2>2a,正确;②∵a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1),正确;③a2+b2-ab=(a-12b)2+34b2≥0,当且仅当a=b=0时取等号,正确.综上可得:①②③都恒成立.故选D.5.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B 或A>BD.A>B答案:B 解析:∵A-B=a 2+3ab-4ab+b 2=a 2-ab+b 2=(a -b 2)2+34b 2≥0,∴A ≥B.6.(2015河南郑州高二期末,16)现有甲、乙两人相约爬山,若甲上山的速度为v 1,下山的速度为v 2(v 1≠v 2),乙上山和下山的速度都是v 1+v 22(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t 1,t 2的大小关系为 .答案:t 1>t 2解析:由题意知,甲用的时间t 1=S v 1+S v 2=S ·v 1+v 2v 1v 2,乙用的时间t 2=2×S v 1+v 22=4S v 1+v 2.∵t 1-t 2=S ·v 1+v 2v 1v 2−4S v 1+v 2=S (v 1+v 2v 1v 2-4v 1+v 2)=S (v 1-v 2)2v 1v 2(v 1+v 2)>0.∴t 1>t 2.7.已知a ,b ,x ,y 均为正实数,且1a >1b ,x>y ,试判断x x +a 与y y +b的大小关系.解:因为x x +a −y y +b =bx -ay (x +a )(y +b ),又1a >1b且a>0,b>0,所以b>a>0.又x>y>0,所以bx>ay ,即bx-ay>0.又x+a>0,y+b>0,所以bx -ay (x +a )(y +b )>0,即x x +a >y y +b.三、利用不等式的性质求代数式范围8.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是 .答案:27解析:∵4≤x 2y ≤9,∴16≤x 4y 2≤81.①∵3≤xy 2≤8,∴18≤1x y 2≤13.②由①②可得2≤x 4y 2·1x y 2≤27,即2≤x 3y 4≤27.∴x 3y 4的最大值为27.9.已知1<a<2,3<b<4,求下列各式的取值范围:(1)2a+b ;(2)a-b ;(3)ab .解:(1)因为1<a<2,所以2<2a<4.又3<b<4,所以5<2a+b<8.(2)因为3<b<4,所以-4<-b<-3.又1<a<2,所以-3<a-b<-1.(3)因为3<b<4,所以14<1b <13.又1<a<2,所以14<ab <23.四、利用不等式的性质证明10.已知a>b>0,c<d<0.求证:3√ad <3√bc .思路分析:解答本题可先比较a d 与b c 的大小,进而判断3√a d <3√bc .证明:∵c<d<0,∴-c>-d>0.∴0<-1c <-1d .又a>b>0,∴-ad >-bc>0.∴3√-a d>3√-b c,即-3√a d>-3√b c.两边同乘以-1,得3√a d<3√b c.(建议用时:30分钟) 1.若a,b∈R,且a>b,则( )A.a2>b2B.ba<1C.lg(a-b)>0D.(12)a<(12)b答案:D解析:∵a>b,无法保证a2>b2,ba<1和lg(a-b)>0,∴排除A与B,C,故选D.2.如果a<b<0,那么下列不等式成立的是( )A.1 a <1bB.ab<b2C.-ab<-a2D.-1a <-1b答案:D解析:当a=-2,b=-1时,检验得A,B,C错误,故D正确.3.若a>b>c,则下列不等式成立的是( )A.1 a-c >1b-cB.1a-c<1b-cC.ac>bcD.ac<bc 答案:B解析:∵a>b>c,∴a-c>b-c>0.∴1 a-c <1 b-c.故选B.4.下列结论正确的是( )A.若a>b>0,a>c,则a2>bcB.若a>b>c,则ac > b cC.若a>b,n∈N*,则a n>b nD.a>b>0,则ln a<ln b答案:A解析:对于B,当c<0时,不成立,对于C,当a=1,b=-2,n=2时,a n>b n不成立.对于D,由对数函数性质得不正确,故选A.5.若α,β满足-π2<α<β<π2,则2α-β的取值范围是( )A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π答案:C解析:∵-π2<α<π2,∴-π<2α<π.又-π2<β<π2,∴-π2<-β<π2.∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.6.若实数a≠b,则a2-ab ba-b2(填不等号).答案:>解析:(a2-ab)-(ba-b2)=a2-ab-ba+b2=(a-b)2,∵a≠b,∴(a-b)2>0.∴a2-ab>ba-b2.7.已知2b<a<-b,则ab的取值范围为 .答案:-1<ab<2解析:∵2b<a<-b,∴2b<-b.∴b<0.∴-b b <ab<2bb,即-1<ab<2.8.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大顺序是 . 答案:m<p<q<n解析:∵(p-m)(p-n)<0,∴{p-m>0,p-n<0或{p-m<0,p-n>0.又m<n,∴m<p<n.同理m<q<n,又p<q,∴m<p<q<n.9.甲、乙两位采购员同去一家粮食销售公司买了两次粮食(同一品种),两次粮食的价格不同,两位采购员的购粮方式也不同.其中,甲每次购买1 000 kg,乙每次购粮用去1 000元钱,谁的购粮方式更合算?解:设两次价格分别为a元、b元,则甲的平均价格为m=a+b2元,乙的平均价格为n=20001000a+1000b=2aba+b,∴m-n=a +b 2−2ab a +b =(a -b )22(a +b )>0.∴乙更合算.10.已知函数f (x )=ax 2-c ,-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.解:因为f (x )=ax 2-c ,所以{f (1)=a -c ,f (2)=4a -c .即{a -c =f (1),4a -c =f (2),解得{a =13[f (2)-f (1)],c =13f (2)-43f (1),所以f (3)=9a-c=83f (2)-53f (1).又因为-4≤f (1)≤-1,-1≤f (2)≤5,所以53≤-53f (1)≤203,-83≤83f (2)≤403,所以-1≤83f (2)-53f (1)≤20,即-1≤f (3)≤20.。

不等关系和不等式的基本性质

不等关系和不等式的基本性质

不等关系和不等式的基本性质【知识要点】①一般地,用符号“<”或者“≤”、“>”或者“≥”连接的式子叫做不等式。

②正确理解“非负数”、“不小于”、“不大于”、“至少”等数学术语。

③不等式的两边都加上(或减少)同一个整数,不等式号的方向不变。

④不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

⑤不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

【典型例题】例1 用不等式表示(1)5与x 的3倍的差为正数。

(2)a 与b 两数和的平方不能大于3。

(3)x 2是非负数。

(4)x 的一半比-5大,比3小。

(5)3x 的绝对值不小于5。

(6)a 的6倍与3的差不大于1。

例2 判断下列结果对不对,为什么? ①若323,2x x >>则 ②若36,2x x -<<-则③若12,12a a>->-则 ④若a>b ,则a>3b例3 根椐不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式。

①47x +> ②514x x <+ ③415x ->- ④2542x x +<-例4 设a<b ,用“<”或“>”填空。

(1)a+6 b+6 (2)4a 4b (3)8a -8b -例5 判断下列说法是否正确。

(1)若a>b ,则22ac bc > (2)若22,ac bc a b >>则 (3)若,c ab c a b>>则 (4)若,0a b a b ->>则 (5)若0,0,0ab a b >>>则例6 有一个两位数,个位上的数是m ,十位上的数是n ,如果把这个两位数的个位数与十位数对调,得到的两位数大于原来的两位数,那么m 与n 哪个大?【练习】1.用不等式表示下列数量关系。

①a 与b 的和大于a 的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 不等关系课时练
1.在数学表达式①-3<0;②4x+5>0; ③x=3; ④x2+x; ⑤ x-4;⑥ x+2>x+1是不等式的有( )
A.2个
B.3个
C.4个
D.5个
2. x的2倍减7的查不大于-1,可列关系式为( )
A.2x-7-1
B. 2x-7<-1
C. 2x-7=-1
D. 2x-7-4
3.下列列出的不等关系式中, 正确的是( )
A.a是负数可表示为a>0
B. x不大于3可表示为x<3
C. m与4的差是负数,可表示为m-4<0
D. x与2的和非负数可表示为x+2>0
4. 代数式3x+4的值不小于0,则可列不等式为( )
A. 3x+4<0
B. 3x+4>0
C. 3x+40
D. 3x+4<10
5.下列由题意列出的不等关系中, 错误的是( )
A.a不是是负数可表示为a>0
B. x不大于3可表示为x<3
C. m与4的差是非负数,可表示为x-40
D.代数式 x2+3必大于3x-7,可表示为x2+3>3x-7
6.用不等式表示“a的5倍与b的和不大于8”为 _______.
7.a是个非负数可表示为_______.
8.用适当的符号表示“小明的身体不比小刚轻”为_______.
9. 用适当的符号表示下列关系:
(1)x的与x的2倍的和是非正数;
(2)一枚炮弹的杀伤半径不小于300米;
(3)三件上衣与四条长裤的总价钱不高于268元;
(4)明天下雨的可能性不小于70%.
10.某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校骆红同学期中数学靠了85分,她希望自己学期总成绩不低于90分,她在期末考试中数学至少应得多少分?(只列关系式)
11.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不大或答错一题扣2分,某同学
要想得分为60分以上,他至少应答对多少道题?(只列关系式)
答案:
1.C
2.A
3.C
4.C
5.A
6.5a+b8
7. a0
8.设小明的体重为a千克, 小刚的体重为b千克,则应有ab
9.(1) x+2x0;(2)设炮弹的杀伤半径为r,则应有r300;(3)设每件上衣为a元, 每条长裤是b元,
应有3a+4b268;(4)用P表示明天下雨的可能性, 则有P70%.
10. 设她在期末至少应考x分, 则有40*85%+60*x90%.
11. 设该同学至少应答对x道题,依题意有6x-(16-x)*260。

相关文档
最新文档