2016-2017学年北京市顺义区七年级上期末数学考试题含答案
七年级上册北京市顺义区第三中学数学期末试卷测试题(Word版 含解析)
七年级上册北京市顺义区第三中学数学期末试卷测试题(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90 ).(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60 ,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.【答案】(1)解:ON平分∠AOC.理由如下:∵OM平分∠BOC,∴∠BOM=∠MOC.∵∠MON=90°,∴∠BOM+∠AON=90°.又∵∠MOC+∠NOC=90°∴∠AON=∠NOC,即ON平分∠AOC(2)解:∠BOM=∠NOC+30°.理由如下:∵∠BOC=60°,即:∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,所以:∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°,∴∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.【解析】【分析】(1)ON平分∠AOC.理由如下:根据角平分线的定义得出∠BOM=∠MOC ,根据平角的定义得出∠BOM+∠AON=90°.又∠MOC+∠NOC=90°,根据等角的余角相等即可得出∠AON=∠NOC,即ON平分∠AOC ;(2)∠BOM=∠NOC+30°.理由如下:根据角的和差得出∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,利用整体替换得出∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°。
初中数学- 顺义区上学期期末初一数学考试题考试卷及答案
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:据新华网报道,北京数字学校网络和电视平台的用户数已经覆盖全市所有中小学生、老师,月访问量稳定在3 000 000次左右,其中3 000 000用科学记数法表示为()A. B. C. D.试题2:下列合并同类项中结果正确的是()A.B.C. D.试题3:如果一个数的倒数是-2,那么这个数的相反数是()A.B.C.2 D.-2试题4:如图,从正面看由相同的小正方体搭成的几何体,所得到的平面图形是()试题5:下列比较两个数的大小错误的是()A. B. C.D.试题6:若方程和的解相同,则的值为()A. B. C. D.试题7:射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为()A.5 B.3 C.1 D.5或3试题8:若方程是关于x的一元一次方程,则这个方程的解是()A. B. C. D.试题9:如图,∠AOB=∠COD,若∠AOD=110º,∠BOC=70º,则以下结论正确的个数为()①∠AOC=∠BOD=90º②∠AOB=20º③∠AOB=∠AOD-∠AOC ④A.1个 B.2个 C.3个 D.4个试题10:计算的值,结果正确的是()A.1 B.-1 C.0 D.-1或0试题11:如图,在数轴上有a,b两个有理数,若表示数a,b的点到原点的距离相等,则下列结论中,不正确的是()A.a+b=0 B.a-b=2bC. D.试题12:如图,,,,.则图中能表示点到直线的距离的线段长的条数有()A.4B.7C.8D.12试题13:绝对值等于6的数是.试题14:单项式的系数是,次数是.试题15:如果,那么代数式的值是.试题16:若,,则代数式,代数式=.试题17:计算:.试题18:一组数:2,1,3,x,11,y,128,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是a2-b”,例如这组数中的第三个数“3”是由“22-1”得到的,那么这组数中x、y分别表示的数为.试题19:商场某品牌的手机进价是2 400元,春节期间商场准备搞促销活动,计划按标价的八折出售,这样商场仍可获利10%,小明在促销期间花费元购买该品牌的手机,该品牌的手机标价是.试题20:直线AB外有C、D两个点,由点A、B、C、D可确定的直线条数是.试题21:你在宾馆的正门处看到过“旋转门”吗?从上面看“三翼式旋转门”的三个不同位置如图1-3所示,旋转门的三片旋转翼把空间等分成三个部分,则两片旋转翼之间的夹角是度;旋转翼在圆形空间内旋转,若每分钟转4圈,且门的三个扇形部分最多可容纳2个人,在30分钟内,最多有人通过旋转门进入宾馆;旋转门的出入口(图4中的弧形虚线)大小相同,如果出入口太宽,正在旋转的旋转翼便无法形成封闭的空间,空气便能在出入口之间自由流动,造成不必要的热量增减.若旋转门的圆形周长是6m,要使空气无法在出入口自由流动,每个门口的最大弧形(虚线部分)的长应为.试题22:一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比有理数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B. 若A ={-2,0,1,5,7},B ={-3,0,1,3,5},则A+B = .试题23:试题24:试题25:试题26:试题27:先化简,再求值:,其中.试题28:解方程:.试题29:已知:,,平分,求的度数.试题30:阅读下面一段文字:问题:能用分数表示吗?探求:步骤①设,步骤②,步骤③,步骤④,步骤⑤,步骤⑥,步骤⑦.根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是;(2)仿照上述探求过程,请你尝试把表示成分数的形式.试题31:2014年12月28日开始,北京地铁新票价已经实施,告别了“地铁2元任意坐”的时代.小颖在北京某高校读书,每周末回家一次,若一年除寒暑假外她有42周在校读书时间,她计算后发现,一年乘地铁“回家”的往返费用要比“2元时代”多花费504元,求新票价实施后小颖乘地铁“回家”的单程票价.试题32:在数轴上,表示数与的点之间的距离可以表示为.例如:在数轴上,表示数-3与2的点之间的距离是5=,表示数-4与-1的点之间的距离是3=.利用上述结论解决如下问题:(1)若,求x的值;(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且,点C表示的数为-2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值.试题1答案:B试题2答案:C试题3答案:A试题4答案:D试题5答案:D试题6答案:C试题7答案:D试题8答案:A试题9答案:C试题10答案:B试题11答案:B 试题12答案:C试题13答案:;试题14答案:,3 ;试题15答案:;试题16答案: 2000,2015;试题17答案:;试题18答案:,-7;试题19答案:2640,3300;试题20答案:6或4试题21答案:120,720,1m;试题22答案:{-3,-2,0,1,3,5,7}.试题23答案:解:原式试题24答案:解:原式试题25答案:解:原式试题26答案:解:原式试题27答案:解:原式==当时,原式=.试题28答案:解:去分母,得.去括号,得.移项,得.合并同类项,得.系数化1,得.试题29答案:解:符合题意的图形有两个,如图1、图2,在图1中,∵,∴.∵,∴.∵平分,∴.∴.在图2中,∵,∴.∵,∴.∵平分,∴∴.综上,的度数为65或25.试题30答案:解:(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立.(2)设,,,,,,.试题31答案:解:设新票价实施后小颖乘地铁“回家”的单程票价为x元,依题意得解得答:新票价实施后小颖乘地铁“回家”的单程票价为8元.试题32答案:解:(1)因为,所以在数轴上,表示数x 的点与数5的点之间的距离为3,所以或.(2)因为,所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧.①当点C为线段AB 的中点时,如图1所示,.∵点C 表示的数为-2,∴,.②当点A为线段BC的中点时,如图2所示,.∵点C 表示的数为-2,∴,.③当点B为线段AC的中点时,如图3所示,.∵点C表示的数为-2,∴,.综上,,或,或,.。
北京市2016-2017七年级上数学期末测试题
2016-2017学年七年级(上)期末数学模拟试卷(一)一、选择题:本题共30分,每小题3分.1.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|2.据统计,怀柔雁栖湖常年总库容量38300000立方米,将38300000用科学记数法表示为()A.0.383×108 B.3.83×107C.38.3×106D.383×1053.如果x=是关于x的方程4x+m=3的解,那么m的值是()A.1 B.C.﹣1 D.4.下列运算正确的是()A.3x+4y=7xy B.6y2﹣y2=5 C.b4+b3=b7D.4x﹣x=3x5.下图中几何体从正面看能得到()A B C D6.如图,把教室中墙壁的棱看做直线的一部分,那么下列表示两条棱所在的直线的位置关系不正确的是( )A.AB⊥BC B.AD∥BC C.CD∥BF D.AE∥BF7.如果|a+3|+(b﹣2)2=0,那么代数式(a+b)2016的值为()A.5 B.﹣5 C.1 D.﹣18.一家商店把一种旅游鞋按成本价a元提高50%标价,然后再以8折优惠卖出,则这种旅游鞋每双的售价是()A.0.4a元B.0.8a元C.1.2a元D.1.5a元9.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”译文:“假设有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?鸡的价钱是多少?”设有x个人共同买鸡,根据题意列一元一次方程,正确的是( )A.9x+11=6x﹣16 B.9x﹣11=6x+16C.D.10、如图的运算程序中,如果开始输入的x值为﹣48,我们发现第1次输出的结果为﹣24,第2次输出的结果为﹣12,…,第2016次输出的结果为( )A.﹣3 B.﹣6 C.﹣12 D.﹣24二、填空题:本题共21分,每小题3分。
2016-2017学年七年级上期末数学试卷含答案解析
2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。
北京市顺义区第三中学七年级上册数学期末试卷(含答案)
北京市顺义区第三中学七年级上册数学期末试卷(含答案)一、选择题1.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .32.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-=3.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( )A .2B .22C .2D .324.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a π D .94a π 5.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3806.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a -7.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( )A .50°B .130°C .50°或 90°D .50°或 130° 8.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣1 9.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元 10.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm11.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<012.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.14.把53°24′用度表示为_____.15. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.16.分解因式: 22xy xy +=_ ___________17.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.18.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.19.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.20.用“>”或“<”填空:13_____35;223-_____﹣3. 21.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.22.3.6=_____________________′23.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.28.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.29.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQ AB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.30.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.31.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q第二次重合时,P Q、两点停止运动.(1)求AC,BC;(2)当t为何值时,AP PQ=;(3)当t为何值时,P与Q第一次相遇;(4)当t为何值时,1cmPQ=.32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.2.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.3.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.4.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.6.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.7.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.8.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.9.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.10.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.11.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.16.【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y1)【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.17.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.18.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.19.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.20.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.21.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.22.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:3 36【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:3.630.63(0.660)'=︒+︒=︒+⨯=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.27.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】 (1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC ﹣BC =AB ,∴5x ﹣3x =22,解得:x =11,∴点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN =MP +NP =12AP +12BP =12(AP +BP )=12AB =12×22=11; ②当点P 运动到点B 的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.29.(1)点P 在线段AB 上的13处;(2)13;(3)②MN AB的值不变. 【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=12 23(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.30.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.31.(1)AC=4cm, BC=8cm;(2)当45t=时,AP PQ=;(3)当2t=时,P与Q第一次相。
学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)
2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。
2016-2017七年级上期末数学试卷含答案解析
2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。
北京市2016-2017学年新人教版七年级上期末调研数学试卷含答案
2016-2017学年度第一学期期末调研试卷七年级数学考生须知1.本试卷共4页,共八道大题,满分120分。
考试时间120分钟。
2.请在试卷和答题卡密封线内准确填写学校、姓名、班级、考场和座位号。
3.除画图可以用铅笔外, 其他试题必须用黑色字迹签字笔作答,作答在答题卡上。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方米.将1 40 000用科学记数法表示应为( )A .14×104B .1.4×105C .1.4×106D .0.14×1062.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是( )A .aB .bC .cD .d 3.单项式23117x y -的次数是( ) A .6 B .5 C .3 D .2 4.下列计算中,正确的是( )A .22254a b a b a b -=B .235235b b b += C.33624aa -= D.a b ab +=5.很多美味的食物,它们的包装盒也很漂亮,观察banana boat 、可爱多冰激凌、芒果原浆以及玫瑰饴的包装盒,从正面看、从上面看分别得到的平面图形是长方形、圆的是( )AB C D6.下列式子正确的是( )A .ππ-=-33B .若ax =ay ,则x =yC .a +b >a -bD .2299-=- 7.已知:∠A ='2512 ,∠B =25.12°,∠C =25.2°,下列结论正确的是( ) A .∠A =∠B B .∠B =∠C C .∠A =∠C D .三个角互不相等 8.在2016年春节到来之际,“小猪班纳”童装推出系列活动,一位妈妈看好两件衣服,她想给孩子都买下来作为新年礼物,与店员商量希望都以60元的价格卖给她。
(完整word版)2016-2017新版人教版七年级数学上册期末测试题及答案
2016~2017学年度上学期七年级期末学情调研数学试卷(人教版)(试卷共4页,考试时间为90分钟,满分120分)题号一二三总分2122232425262728得分一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) 题号 12 3 4 5 6 7 8 9 10 11 12答案1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1 5.下列各组单项式中,为同类项的是( )A .a 3与a 2B .12a 2与2a 2 C .2xy 与2x D .-3与a6.如图,数轴A 、B 上两点分别对应实数a 、b,则下列结论正确的是A .a +b 〉0B .ab >0C .110a b -<D .110a b +> 7.下列各图中,可以是一个正方体的平面展开图的是( )ABCDABC第8题图8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B.90° C .105° D.120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东AOB 的大小为 ( )A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x )×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.6222 4 20 4 884446 ……第8题图19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)共43元共94元一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.26.(本小题满分8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.A E DB F C28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那解释王老师为什么说他用这些钱只买这两种笔的帐算错了.么帐肯定算错了."请你用学过的方程知识....②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元...数学试题参考答案及评分说明说明:1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.一、选择题(每小题3分,共36分)1.C;2.B;3.A;4.D;5.B;6. D;7.C;8.D;9.C;10。
顺义区七上期末数学试卷
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √16B. √-9C. πD. 2.52. 已知a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 3 < b + 3D. a - 3 > b - 33. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长是()A. 26B. 28C. 30D. 324. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 3x^2 + 2D. y = x^3 + 25. 已知一元二次方程x^2 - 5x + 6 = 0,下列说法正确的是()A. 方程有两个不相等的实数根B. 方程有两个相等的实数根C. 方程没有实数根D. 无法确定6. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形7. 已知正方形的对角线长为10,则这个正方形的边长是()A. 5B. 8C. 10D. 208. 若一个圆的半径是r,则这个圆的面积是()A. πr^2B. 2πrC. πrD. 2πr^29. 下列数中,无理数是()A. √4B. √9C. √16D. √-910. 下列图形中,是中心对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形二、填空题(每题5分,共50分)11. 计算:(-3)^2 + (-2)^3 + 2^4 = ______12. 简化下列分式:4/(-8) = ______13. 已知x + 2 = 5,求x的值:x = ______14. 已知a = 3,b = -2,求2a - 3b的值:2a - 3b = ______15. 等腰三角形的底边长为6,腰长为8,求这个三角形的面积:______16. 已知y = 3x - 2,当x = 2时,求y的值:y = ______17. 求解一元二次方程x^2 - 4x + 3 = 0的解:x1 = ______,x2 = ______18. 等腰直角三角形的两条直角边长分别为3和4,求斜边长:______19. 已知圆的半径为5,求这个圆的周长:______20. 求下列函数的值:y = 2x + 3,当x = -1时,y = ______三、解答题(每题10分,共30分)21. (1)已知a = -2,b = 3,求2a + 3b的值;(2)若a - b = 5,求a^2 - b^2的值。
2016北京市顺义区初一(上)期末数学
若将绳三折测之,绳多 4 尺,若将绳四折测之,绳多
.m 0
. 90°
1 / 10
1 尺,绳长井深各几何?”
译文:“用绳子测水井深度,如果将绳子折成三等份, 井外余绳 4 尺;如果将绳子折成四等份,井外余绳 1 尺.问绳长、井深各是多少尺?”
设井深为 x尺,根据题意列方程,正确的是(
)A. 3 x 4Fra bibliotek4 x 112 月 19 日一天, “北京数字学校”访问量就达到了 133 万次,中小学生通过电视课堂实现了“停课不停学,
安心在家学” .其中“ 133 万”用科学记数法表示为(
)
A . 133 104 B . 13.3 105 C . 1.33 105 D . 1.33 10 6
3.下列叙述正确的个数是(
)
11.比较大小: 2 3
3
.(填“ >”“ <”或“ =”)
4
12 .在
3 , 0 , -30 , 22 , +20, π , -2.6 这 7 个数中 ,整 数有
8
5
有
.
,负 分数
13. 90 45 30' =
度.
14.多项式 2ab 4a3b a2b3 1 的次数是
,二次项系数是
.
15 .某个一元一次方程满足两个条件:①
B
. 3x 4 4x+1 C . 3 x 4 4 x 1
D. x 4 x 1
3
4
10.按下面的程序计算:
输入 x
计算 4x-2的值
>149 No
Yes 输出结果
如果输入 x 的值是正整数,输出结果是 150,那么满足条件的 x 的值有(
2016-2017学年北京市七年级(上)期末数学试卷
2016-2017学年北京市七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果水位升高0.5米记为+0.5米,那么水位下降1米应记为( )A.﹣1米B.+1米C.﹣1.5米D.+1.5米2.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为216000000度,将数据216000000用科学记数法表示为( )A.216×106 B.21.6×107C.2.16×108D.2.16×1093.若a>b>0,则在数轴上表示数a,b的点正确的是( )A.B.C.D.4.下列计算正确的是( )A.2a+3b=5ab B.2ab﹣2ba=0 C.2a2b﹣ab2=a2b D.2a2+3a2=5a35.若x=﹣是关于x的方程5x﹣m=0的解,则m的值为( )A.3 B.C.﹣3 D.﹣6.下列结论正确的是( )A.直线比射线长B.过两点有且只有一条直线C.过三点一定能作三条直线D.一条直线就是一个平角7.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是( )A.我B.的C.梦D.国8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( )A. B.C.D.9.下列各题正确的是( )A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=510.若a、b互为相反数,c、d互为倒数,m的绝对值是2,n是有理数且既不是正数也不是负数,则2015a+b+1+m2﹣(cd)2015+n(a+b+c+d)的值为( ) A.2015 B.2016 C.2017 D.2018二、填空题(本题共30分,每小题3分)11.的倒数是__________.12.比较大小:﹣5__________﹣3(填“<”、“>”、“=”)13.数轴上A、B两点所表示的有理数的和是__________.14.在有理数﹣4.2,6,0,﹣11,中,分数有__________.15.由四舍五入得到的近似数23.71精确到__________位.16.代数式可以把实际问题的数量关系用式子的形式表示出来,同时,代数式也可以代表很多实际意义,例如“酸奶每瓶3.5元,3.5a的实际意义可以是买a瓶酸奶的价钱”,请你给4x+y赋予一个实际意义__________.17.若代数式8x﹣7的值与代数式6﹣2x的值互为相反数,那么满足条件的x 是__________.18.如果x﹣2y=3,那么代数式1+2x﹣4y的值是__________.19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.《九章算术》采用问题集的形式,全书共收集了246个问题,分为九章,其中的第八章叫“方程”章,方程一词就源于这里.《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“几个人一起去购买物品,如果每人出8钱,那么剩余3钱;如果每人出7钱,那么差4钱.问有多少人,物品的价格是多少”?设有x人,可列方程为__________.20.如图,点A,O,B在同一条直线上,∠COB=20°,若从点O引出一条射线OD,使OD⊥OC,则∠AOD的度数为__________.三、计算题(本题共16分,每小题16分)21.(16分)①7﹣(+5)+(﹣4).②.③.④.22.先化简,再求值3(a2+2a)﹣2(3a﹣a2+5),其中|a|=2.五、解下列方程(本题共12分,每小题12分)23.解方程①3x﹣7(x﹣1)=3﹣2(x+3)②.六、画图(本题7分)24.已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)量出∠AED和∠BEO的度数,并写出它们的数量关系;(4)请画出从点A到射线CB的最短路线,并写出画图的依据.七、应用题(本题共12分,第1小题4分,第2小题8分)25.当k为何值时,关于x的方程(k﹣5)x﹣7=x﹣1的解是﹣2?26.(8分)某陶瓷商,为了促销决定卖一只茶壶,赠一只茶杯。
201601顺义初一上数学期末答案
顺义区2015—2016学年度第一学期期末七年级教学质量检测数学评分标准一、选择题(共10道小题,每小题3分,共30分)二、填空题:(共10道小题,每小题3分,共30分) 11. >; 12. 0,30-,20+;83-,6.2-(第一空1分第二空2分); 13. 44.5︒; 14. 5,-2(第一空1分第二空2分); 15. 26x =(答案不唯一); 16. 12cm ; 17.两点确定一条直线; 18.数轴;乘方(第一空2分第二空1分);19.a b <,0a b +<,0ab >(答案不唯一,每个1分); 20. 27;()21n +;1200(每空1分).三、解答题(共12道小题,共60分) 21.(4分)(2)(5)(5)9-⨯-÷-+()=1059÷-+…………………………………………………………………………….…...2分=29-+………………………………………………………………………………………..3分 =7…………………………………………………………………………………………..…..4分22.(5分) )41(2521)25(4325-⨯+⨯--⨯31125424⎛⎫=⨯+- ⎪⎝⎭………………………………………………………………………….......2分251=⨯……………………………………………………………………………………...…...4分 25=…………………………………………………………………………….…………….....5分 23.(5分)()41110.563⎛⎫---⨯⨯ ⎪⎝⎭1110.563⎛⎫=--⨯⨯ ⎪⎝⎭……………………………………………………………………….…...1分11166⎛⎫=--⨯ ⎪⎝⎭……………………………………………………………………………..…..2分15=-………………………………………………………………………….…………...…...4分 4=-………………………………………………………………………….………………....5分24.(5分)3(5)22(+3)x x -=-153226x x -=--………………………………………………………………….……..2分 322615x x -+=--………………………………………………………………….…...3分19x -=-…………………………………………………………………………….....4分 19x =…………………………………………………………………………….…...5分25.(5分)2425312=--+x x 21521221234x x +-⎛⎫-⨯=⨯ ⎪⎝⎭…………………………………………………….……..1分 ()()42135224x x +--=………………………………………………………………..2分8415624x x +-+=…………………………………………………………….…..3分8152446x x -=--714x -=…………………………………………………………….…...4分 2x =-………………………………………………………………....5分26.(4分)(1)10条,不符合………………………………………………………………………....1分 (2)ABC DEAB CDE……………………………....4分答案不唯一,其它情况酌情给分 27.(5分)2(2a 2-5a )-4 (a 2+3a -5)2241041220a a a a =---+……………………………..............................................2分2220a =-+…………………………………………………………………………..…....3分当a =-2时,原式()22220=-⨯-+64=………………………………………….........5分 28.(5分)(1)……………...4分(每个步骤1分)(2)1.7…………………………………………………………………………………....5分 29.(5分)解:设每件衬衫的进价是x 元.依题意可列方程:15080%20%x x ⨯-=……………………………………..……...3分12020%x x -=20%120x x +=1.2120x =100x =…………………………………..……..….....4分答:每件衬衫的进价是100元.…………………………………..…………..……......5分 30.(5分)(1)解:∵()2310a b -+-=,∴()23a -和1b -互为相反数,又∵()230a -≥,10b -≥,………………..…………....…………......1分 ∴()23=0a -,1=0b -,………………..…………....….…………........2分 ∴30a -=,10b -=.∴3a =,1b =.…………………………………..…………....……...........3分(2)a ,b 都是整数.…………………………………..………………….…..….........5分 31.(6分)(1)是 …………………………………..………………….……..................1分(2)依题意得62x m =+的解为26m +-,……………….…….............2分∴()6262m m +-=+……………….……........................................................3分()642m m -=+526m =265m =……………….……..........................................................................................6分32.(6分).(1)补全图….……...........................................................1分∵OD 平分∠BOC , ∴12BOD BOC ∠=∠. ∵∠BOC =40°, ∴∠BOD =20°.……….……..............................................2分 ∵OA ⊥OB , ∴∠AOB =90°, ∴∠AOD =110°. ∵OE 平分∠AOD ∴∠EOD =55°,……….……...............................................................................3分 ∴∠BOE =35°.……………….……....................................................................4分 (2)454α︒-或45+4α︒……………….................................6分(1个答案1分)以上答案仅供参考,如有错误,请老师们自己改正,多谢!寒假愉快!EAD BCO。
北京市顺义区七年级(上)期末数学试卷
七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共8 小题,共16.0 分)1.以下各式中结果为负数的是()A. -(-2)B. |-2|C. (-2)2D. -|-2|2.面粉厂规定某种面粉每袋的标准质量为 50 ±,现随机选用 10 袋面粉进行质量检测,结果以下表所示:序号 1 2 3 4 5 6 7 8 9 10 质量( kg) 50 50 50则不切合要求的有()A. 1袋B. 2袋C.3袋D.4袋3. 以下各组式子中,不是同类项的是()A.34与43B. - mn与3nmC. 与13m2nD. m2n3与n2m34. 如图,左面的平面图形绕轴旋转一周,能够获得的立体图形是()A.B.C.D.5.已知点 O 在线段 A、B 上,则在等式 AO=OB; OB=12AB ; AB=2 OB; AO+OB=AB中,能判断点O 是线段 AB 中点的有()A. 1个B. 2个C.3个D.4个6. 如图,数轴上的A、B 两点所表示的数分别是a、b,如果 |a|> |b|,且 ab> 0,那么该数轴的原点O 的地点应当在()7.设■,●,▲ 分别表示三种不一样的物体,以下图,前两架天平保持均衡,假如要使第三架天平也均衡,那么以下方案不正确的选项是()A. B. C. D.8. 有一张厚度为0.1 毫米的纸片,对折 1 次后的厚度是 2×0.1 毫米,持续对折, 2 次,3 次,4 次假定这张纸对折了20 次,那么此时的厚度相当于每层高 3 米的楼房层数约是(参照数据:210=1024, 220=1048576 )()A. 3层B. 20层C. 35层D. 350层二、填空题(本大题共10 小题,共 20.0 分)9.计算: -3 ÷ (-13) ×3=______.10.写出一个只含有字母 x 的二次三项式 ______.11.植树时,只需定出两棵树的地点,就能确立这一行树所在的直线,这是因为 ______.12. 125 °÷4=______ °′.13.写出一个解为 x=3 的方程: ______ .14. 某种理财富品的年利率是4%,李彤购置这类理财富品的本金是10 万元,则一年后的本利息和是 ______元(用科学记数法表示).15. 若 a-b=2, ab=-1 ,则 b-a-2ab 的值为 ______.16. 一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为 ______.17.如图是一个无盖的长方体盒子的睁开图(重叠部分不计),依据图中数据,则该无盖长方体盒子的容积为______.18.察看以下各等式:-2+3=1-5-6+7+8=4-10-11-12+13+14+15=9-17-18-19-20+21+22+23+24=16依据以上规律可知第11 行左起第一个数是______.三、计算题(本大题共 4 小题,共20.0 分)19.计算:34-1-(2-14).20.计算:(-112-136+14-16)× (-48).21.计算:[(-2)× (-43)+(-2)3]-34÷ (-27).22.解方程:x+23 =1+2x-14.四、解答题(本大题共8 小题,共44.0 分)23.请你画一条数轴,并把-2 4 0,213 ,- 112 这五个数在数轴上表示出来.,,24.已知:如图,∠AOB 和 C、D 两点.( 1)过点 C 作直线 CE,使直线CE 只与∠AOB 的一边订交,且交点为E;( 2)请你经过绘图、丈量,比较点 D 到点 C 的距离与点 D 到射线 OB 的距离的大小关系.25.解方程:3x-2(x-1)=2-3(4-x).26.已知:a、b表示有理数,请你比较a+b 和 a 的大小.27.阅读资料并回答以下问题:阅读资料:数学课上,老师给出了以下问题:如图 1,∠AOB=120°,OC 均分∠AOB.若∠COD=20°,请你补全图形,并求∠BOD 的度数.以下是小明的解答过程:解:如图2,∵∠AOB=120 °,OC 均分∠AOB.∴∠BOC=______∠AOB=______ .∵∠COD =20 °,∴∠BOD =______ .小敏说:“我感觉这个题有两种状况,小明考虑的是OD 在∠BOC 内部的状况,事实上 OD 还可能在∠AOC 的内部”.达成以下问题:( 1)请你将小明的解答过程增补完好;( 2)依据小敏的想法,请你在图 1 中画出另一种状况对应的图形,此时∠BOD的度数为 ______.28.某景点的门票价钱以下表:购票人数1~ 40 40~ 80 80 以上每人门票价25 20 15某校七年级一、二两班共82 人去旅行该景点,此中一班人数少于40 人,二班人数多于 40 人少于 80 人,现有两种购票方案,方案一:两班以班为单位分别购票;方案二:两班联合起来作为一个集体购票.若按方案一购票,则共支付1825 元.(1)求两班各有多少名学生?(2)若按方案二购票,则共可节俭多少元?29.有这样一个题目:依照给定的计算程序,确立使代数式n(n+2)大于 2000 的 n 的最小正整数值.想一想,如何快速找到这个n 值,请与同学们沟通你的领会.小亮试试计算了几组n 和 n( n+2)的对应值以下表:n5040n( n+2)26001680(1)请你持续小亮的试试,再算几组填在上表中(几组任意,自己画格),并写出知足题目要求的 n 的值;(2)联合上述过程,关于“如何快速找到 n 值”这个问题,谈谈你的想法.30.关于数轴上的两点 P,Q 给出以下定义: P, Q 两点到原点 O 的距离之差的绝对值称为 P, Q 两点的绝对距离,记为||POQ||.比如: P,Q 两点表示的数如图 1 所示,则 ||POQ ||=|PO-QO|=|3-1|=2.( 1) A, B 两点表示的数如图 2 所示.①求 A, B 两点的绝对距离;②若 C 为数轴上一点(不与点O 重合),且 ||AOB ||=2||AOC||,求点 C 表示的数;(2) M, N 为数轴上的两点(点 M 在点 N 左侧),且 MN=2,若 ||MON ||=1,直接写出点 M 表示的数.答案和分析1.【答案】D【分析】解:A 、-(-2)=2,是正数,错误;B、|-2|=2 是正数,错误;2C、(-2)=4 是正数,错误;D、-|-2|=-2 是负数,正确;应选:D.依据相反数、有理数的乘方、绝对值,分析化简即可解答.本题考察了正数和负数,解决本题的重点是明确正数和负数的观点.2.【答案】A【分析】解:因为面粉每袋的标准质量为 50±,即 49.8kg ≤m≤,故 49.7kg 不切合要求,应选:A.依据标准质量为 50±,得出小于 49.8kg 的面粉是不合格的.本题考察了正数和负数,解题重点是理解“正”和“负”的相对性,确立一对具有相反意义的量.注意不是同一类其他量,不可以当作是拥有相反意义的量.3.【答案】D【分析】解:假如两个单项式,它们所含的字母同样,而且同样字母的指数也分别同样,那么就称这两个单项式为同类项,而且全部的常数项都是同类项.应选:D.依据同类项的观点即可求出答案.本题考察同类项,解题的重点是正确理解同类项的观点,本题属于基础题型.4.【答案】C【分析】解:梯形绕高旋转是圆台,故 C 正确;应选:C.依据面动成体,梯形绕高旋转是圆台,可得答案.本题考察了点、线、面、体,利用面动成体,梯形绕高旋转是圆台.5.【答案】C【分析】解:∵点 O 在线段 AB 上,∵AO=OB ,∴点 O 是线段 AB 的中点;∵OB=AB ,∴点 O 是线段 AB 的中点;∵AB=2OB ,∴点 O 是线段 AB 的中点;应选:C.依据线段中点的定义判断即可.本题考察了两点间的距离,线段中点的定义,熟记定义是解题的重点.6.【答案】B【分析】解:由ab> 0 知 a、b 同号,即 a、b 同正或同负,由 |a|>|b|知 a 到原点的距离大于 b 到原点的距离,∴a、b 同为负数,且 b>a,则数轴的原点 O 的地点应当在点 B 的右侧,应选:B.由由 ab> 0 知 a、b 同号,再依据|a|>|b|知 a 到原点的距离大于 b 到原点的距离即可得.本题主要考察数轴和绝对值,娴熟掌握绝对值的定义是解题的重点.7.【答案】A【分析】●+▲=■② ,由 ①② 可得 ●=2▲,■=3▲, 则 ■+●=5▲=2●+▲=●+3.▲应选:A .依据第一个天平可得 2●=▲+■,依据第二个天平可得 ●+▲=■,可得出答案.本题考察了等式的性 质,依据图示得出 ●、▲、■的数目关系是解 题的重点.8.【答案】 C【分析】解:依据题意得,对折两次的厚度 为:2×2×(毫米),故对折 20 次的厚度 为 220×毫米 ≈,104.9 ÷ 3≈层35,则对折 20 次后相当于每 层高度为 3 米的楼房 35 层.应选:C .依据对折规律确立出 对折 2 次的厚度,再利用 对折规律确立出楼 层即可.本题考察了有理数的乘方,熟 练掌握乘方的意 义是解本题的重点.9.【答案】 27【分析】解:=9×3 =27.故答案为:27.从左往右挨次 计算即可求解.考察了有理数的乘除法,关 键是娴熟掌握计算法例正确进行计算.210.【答案】 x +2 x+1(答案不独一)【分析】解:由多项式的定义可得只含有字母 x 的二次三项式,比如 x 2+2x+1,答案不独一.二次三项式即多项式中次数最高的 项的次数为 2,而且含有三项的多项式.答案不独一.本题考察了多项式的定义,解题的重点是弄清多项式次数是多项式中次数最高的项的次数.11.【答案】两点确立一条直线【分析】解:“植树时只需定出两棵树的地点,就能确立这一行树所在的直线”用数学知识解说其道理是:两点确立一条直线,故答案为:两点确立一条直线.经过两点有且只有一条直线.依据直线的性质,可得答案.本题考察了直线的性质,熟记直线的性质是解题重点.12.【答案】3115【分析】解:125°÷4=31° 15.′故答案为:31°15.′类比与小数的计算方法,计算度分秒即可,注意满 60 进一,借一当 60.本题考察度分秒的换算,注意度分秒之间的换算:1 度=60 分,1 分=60 秒.13.【答案】x-3=0(答案不独一)【分析】解:∵方程的解为 x=3,∴方程为 x-3=0,故答案为:x-3=0(答案不独一).方程的解是指派方程两边相等的未知数的值,依据方程解的定义进行填空即可.本题考察了方程的解,掌握方程解的定义是解题的重点.14.【答案】×105【分析】解:∵年利率是 4%,李彤购置这类理财富品的本金是 10 万元,∴一年后的本息和为 10 ×(1+4%)=10.04 万元 =1.04 10×5元,5计算出本息和后用科学记数法表示出来即可.本题考察了科学记数法的知识,解题的重点是能够依据利率和本金计算出本息和,而后用科学记数法表示.15.【答案】0【分析】解:当a-b=2,ab=-1 时,b-a-2ab=-(a-b)-2ab=-2+2=0,故答案为:0.依据添括号法则把原式变形,代入计算即可.本题考察的是整式的混淆运算,掌握添括号法则是解题的重点.16.【答案】37【分析】解:设这个两位数个位数为 x,十位数字为 y,依题意得:,解得:.则这个两位数为 37.故答案为:37.设这个两位数个位数为 x,十位数字为 y,依据个位数字比十位数字大 4,个位数字与十位数字的和为10,列方程组求解.本题考察了二元一次方程组的应用,解答本题的重点是读懂题意,设出未知数,找出适合的等量关系,列方程组求解.17.【答案】6000cm3【分析】解:长方体的高是 10cm,宽是 30-10=20(cm),长是 50-20=30(cm),∴长方体的容积是 30 ×20 ×10=6000(cm 3),故答案为:6000cm 3.依据察看、计算,可得长方体的长、宽、高,依据长方体的体积公式,可得该无盖长方体盒子的容积.本题考察了几何体的睁开 图,睁开图折叠成几何体,得出 长方体的长、宽、高是解题的重点.18.【答案】 -122【分析】解:由已知等式知第 n 行左起第 1 个数为-(n 2+1),当 n=11 时,-(n 2+1)=-(121+1)=-122,故答案为:-122.依据已知等式得出第 n 行左起第 1 个数为-(n 2+1),据此求解可得.本题主要考察数字的变化规律,解题的重点依据已知等式得出第n 行左起第1 个数为-(n 2+1)的广泛规律.19.【答案】 解: 34-1-(2-14)= 34-1-2+14 =1-1-2 =-2 .【分析】在加减混淆运算中,往常将和 为零的两个数,分母同样的两个数,和 为整数的两个数,乘积为整数的两个数分 别联合为一组求解.本题主要考察了有理数的混淆运算, 进行有理数的混淆运算 时,注意各个运算律的运用,使运算 过程获得简化. 20.【答案】 解:原式 =4+ 43-12+8=43 . 【分析】利用乘法的分派律 进行计算.本题考察了分式的混淆运算:分式的混淆运算,要注意运算 次序,式与数有相同的混淆运算 顺序;先乘方,再乘除,而后加减,有括号的先算括号里面的. 21.【答案】 解:原式 =83-9-8-81 (÷-27)=83 -8+3 =-73 . 【分析】先进行乘方和乘法运算,再进行除法运算,而后进行加减运算.本题考察了实数的运算:要注意运算次序,先乘方,再乘除,而后加减,有括号的先算括号里面的.22.【答案】解:去分母,得 4 x+2 =12+3 (2x-1 ),()去括号,得 4x+8=12+6 x-3,移项,得4x-6x=12-3-8 ,归并同类项,得 -2x=1,系数化成 1 得 x=-12 .【分析】去分母、去括号、移项、归并同类项,系数化成 1 即可求解.本题考察解一元一次方程,去分母、去括号、移项、归并同类项、系数化为 1,这仅是解一元一次方程的一般步骤,针对方程的特色,灵巧应用,各样步骤都是为使方程逐渐向 x=a 形式转变.23.【答案】解:以下图:.【分析】直接画出数轴,从而在数轴上表示出各数即可.本题主要考察了实数与数轴,正确画出数轴是解题重点.24.【答案】解:(1)如图,CE为所作;(2)作 DH ⊥OB 于 H ,连结 CD,测得 CD =2cm,,因为 CD >DH ,因此点 D 到点 C 的距离大于点 D 到射线 OB 的距离.【分析】(1)依据几何语言画出对应的几何图形;(2)作DH ⊥OB 于 H,连结 CD,而后丈量 CD、DH 的长度,从而可判断点 D 到点 C 的距离与点 D 到射线 OB 的距离的大小关系.本题考察了作图-复杂作图:复杂作图是在五种基本作图的基础长进行作图,一般是联合了几何图形的性质和基本作图方法.解决此类题目的重点是熟习基本几何图形的性质,联合几何图形的基天性质把复杂作图拆解成基本作图,逐渐操作.25.【答案】解:3x-2(x-1)=2-3(4-x),3x-2x+2=2-12+3 x,3x-2x-3x=2-12-2 ,-2x=-12 ,x=6.【分析】去括号、移项、归并同类项、系数化为 1,依此即可求解.考察认识一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、归并同类项、系数化为 1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵巧应用,各样步骤都是为使方程逐渐向 x=a 形式转变.26.【答案】解:当b>0时,a+b>a;当 b=0 时, a+b=a;当 b< 0 时, a+b<a.【分析】分三种状况议论,即可比较 a+b和 a 的大小.本题主要考察了有理数大小的比较,比较有理数的大小能够利用数轴,他们从右到左的次序,即从大到小的次序;也能够利用数的性质比较异号两数及 0 的大小,利用绝对值比较两个负数的大小.27.【答案】1260° 40° 80°【分析】解:(1)如图 2,∵∠AOB=120°,OC 均分∠AOB .∴∠BOC=∠AOB=60°.∵∠COD=20°,∴∠BOD=60°-20 °=40 °.故答案为:;60°;40°;(2)如图 1,∵∠AOB=120°,OC 均分∠AOB .∴∠BOC=∠AOB=60°.∵∠COD=20°,∴∠BOD=60°+20 °=80 °.故答案为:80°.(1)依照角均分线的定义,即可获得∠BOC= ∠AOB=60°,再依据角的和差关系,即可得出∠BOD 的度数.(2)依照角均分线的定义,即可获得∠BOC= ∠AOB=60°,再依据角的和差关系,即可得出∠BOD 的度数.本题主要考察了角均分线的定义以及角的计算,从一个角的极点出发,把这个角分红相等的两个角的射线叫做这个角的均分线.28.【答案】解:(1)设一班x人,则二班(82-x)人.依题意可列方程:25x+20 (82-x) =1825 ,25x+1640-20 x=1825,5x=185 ,x=37 ,82-x=82-37=45 .答:一班37 人,则二班45 人.(2) 1825-82×15=595(元)答:两班共省 595 元.【分析】(1)设一班 x 人,则二班(82-x)人,依据题意能够列出相应的方程 25x+20(82-x)=1825,从而能够求得两个班的学生数;(2)依据题意能够求得按方案二购票的钱数,即可求得共可节俭多少元本题考察一元一次方程的应用,解答此类问题的重点是明确题意,找出所求问题需要的条件,列出相应的方程.29.【答案】解:( 1)填表以下:n 50 40 44 43n n+2) 2600 16802024 1935(由上表可得,知足条件的n 值为 44;( 2)因为 n 与( n+2 )是连续的两个偶数,确立使代数式n( n+2)大于 2000 的 n 的最小正整数值,因为50×52=2600 ,40×42=1680 ,2600-2000=600 > 2000-1680=320,因此 n<45,取 n=44 计算,发现 44×46=2024 > 2000,再取 n=43 计算,因为 43×45=1935< 2000,从而确立知足条件的n 值为 44.【分析】(1)取n=44 与 n=43,分别计算 n(n+2),即可达成表格,从而确立知足题目要求的 n 的值;(2)依据表格中给出的 n=50与 n=40时 n(n+2)的对应值,将它们与 2000比较,得出 n<45,取n=44 计算,依据此时 n(n+2)>2000,再取 n=43 计算,依据43×45=1935<2000,即可求出 n 的值.本题考察了规律型:数字的变化类,理解题意,依据表格得出 n< 45 是解题的重点.30.【答案】解:( 1)①求 A, B 两点的绝对距离为2;②∵|AOB|=2, |AOB|=2|AOC|,∴|AOC |=1,∴点 C 表示的数为 2 或-2;(2)∵MN=2, ||MON ||=1,点 M 在点 N 左侧,∴点 M 表示的数为 -0.5 或.【分析】(1)① 依据两点的绝对距离的定义即可求解;②先依据 ||AOB||=2||AOC||获得 |AOC|=1,再依据两点的绝对距离的定义即可求解;(2)依据两点间的距离公式,以及 ||MON||=1,即可写出点 M 表示的数.本题考察了数轴,解题重点是要读懂题目的意思,理解两点的绝对距离的定义.。
2016-2017学年北京市顺义区七年级上期末数学考试题含答案
4x 4
…………………………………………
系数化为 1,得
x1
……………………………………………
所以, x 1 是方程的解
……………………………………………
1分 2分 3分 4分 5分
22. 解:去分母 ,得 4( x 2) 12 3(2 x 1) ……………………………………… 2 分
去括号, 得 4x 8 1 2 x6 3 ………………………………………… 3 分 移项, 得 4x 6x 3 8 12 ………………………………………… 4 分
解:设 S 1 2 2 2 23 2 4 … 22016 2 2017 ,
将等式两边同时乘以 2 得:
2 S 2 22 23 24 2 5 … 22017 2 2018
将下式减去上式得 2S S 2 2018 1
即 S 22018 1
即 1 2 2 2 23 24 … 2 2017 2 2018 1
)
A. a 2 a 2 a 4
B. 如果 a b ,那么 a b 33
D. 如果 a b c 0 ,那么 a b c
B. 4a 3a 1
C. 3a 2b 4ba2 a2b
D. 3a 2 2a3 5a5
6. 若 x 3 是关于 x 的一元一次方程 2x m 5 0 的解,则 m 的值为(
)
A. 1
B. 0
3 49 5
…………………………………………………
21 = ()
33
= 1 ………………………………………………………………
5分
3
1分 2分 3分 4分 3分
19.解:原式 = 6 20+27 -3
…………………………………………………………
20152016年北京市顺义区七年级上学期数学期末试卷
顺义区2019—2019学年度第一学期期末七年级教学质量检测数学试卷一、选择题(共10道小题, 每小题3分, 共30分)下列各题均有四个选项, 其中只有一个是符合题意的.1.计算, 结果正确的是()A. 1B. -1C. 100D. -1002.2019年12月19日到22日, 北京市启动雾霾红色预警, “北京数字学校”成为学生在家自主学习的重要平台.仅12月19日一天,“北京数字学校”访问量就达到了133万次, 中小学生通过电视课堂实现了“停课不停学, 安心在家学”.其中“133万”用科学记数法表示为()A. B. C. D.3. 下列叙述正确的个数是()①表示互为相反数的两个数的点到原点的距离相等;②互为相反数的两个数和为0;③互为相反数的两个数积为1;④任何数都不等于它的相反数.A. 1个B. 2个C. 3个D. 4个4.下列各式中, 不成立的是 ( )A. (-2)1=-21B. (-2)2=-22C. (-2)2=22D. (-2)3=-235. 下列说法不正确的是()A. 直线AB及直线BA是一条直线B. 射线AB及射线BA是两条射线C. 射线AB是直线AB的一部分D. 射线AB比直线AB短6.如果, 则的取值范围是()A. B. C. D.7.3点30分时, 时钟的时针及分针所夹的锐角是()A. 70°B. 75°C. 80°D. 90°8. 下列变形中, 正确的是()A. 若x2=6x, 则x=6B. 若﹣3x=1, 则x=﹣3C. 若, 则D. 若, 则x=y9. 《算法统宗》是中国古代数学名著, 作者是我国明代数学家程大位. 在《算法统宗》中记载:“以绳测井,若将绳三折测之, 绳多4尺, 若将绳四折测之, 绳多1尺, 绳长井深各几何?”译文: “用绳子测水井深度, 如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份, 井外余绳1尺. 问绳长、井深各是多少尺?”设井深为x尺, 根据题意列方程, 正确的是()A. B. C.D.10. 按下面的程序计算:如果输入的值是正整数, 输出结果是150, 那么满足条件的的值有()A. 1个B. 2个C. 3个D.4个二、填空题: (共10道小题, 每小题3分, 共30分)11. 比较大小: . (填“>”“<”或“=”)12.在, 0, -30, , +20, π, -2.6这7个数中, 整数有 , 负分数有.13. = 度.14.多项式的次数是 , 二次项系数是.15. 某个一元一次方程满足两个条件: ①未知数的系数是2;②方程的解为. 请写出一个满足上述条件的方程: .16. 如图, 延长线段AB到点C, 使, 点D是线段AC的中点, 若线段BD=2cm,则线段AC的长为 cm.17. 建筑工人在砌墙时, 经常用细线绳在墙的两端之间拉一条参照线, 使垒的每一层砖在一条直线上.这样做的依据是: .18. 某小组整理了“有理数”一章的结构图, 如图所示, 则你认为A 表示;B表示 .19. 请你根据如图所示已知条件, 推想正确结论, 要求每个结论同时含有字母a, b. 写出至少三条正确结论:.20.观察下面的算式, 1+3=4=22 ;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52…则1+3+5+7+9+ … +13= ; 1+3+5+7+9+ … +(2n-1)+(2n+1)= ;41+43+45+ …… +77+79= .三、解答题(共12道小题, 共60分)21. (4分)计算: .22. (5分)计算: .23. (5分)计算: .24. (5分)解方程: .25. (5分)解方程: .26. (4分)学习线段后, 杨老师要求同学们自己设计一个图形, 且所设计图形中线段的总条数是8条.(1)如图是某个同学的设计, 请数一数他设计的图形中线段的总条数, 并判断是否符合杨老师的要求;(2)请你设计一个平面图形, 使所设计图形中线段的总条数是8条. 27.(5分)先化简, 再求值: 2(2a2-5a)-4 (a2+3a-5), 其中a =-2.28. (5分)画图并回答问题.(1)按下列要求画图:①画直线AC;②画射线BC;③过点B作直线AC的垂线段BD;④过点B 作射线BC 的垂线BF, 交直线AC 于点F ;(2)请你通过测量回答, 点B 到直线AC 的距离大约是 cm. (精确到0.1cm )29.(5分)两位同学去某商场调查商品销售情况, 得到以下信息:根据以上信息, 求每件衬衫的进价是多少元? 30. (5.阅读下列材料:老师提倡同学们自己出题, 下面是王海同学出的两道题及解答过程:题目1:已知 , 求a, b 的值.解: ∵ ,题目2:已知 , 求a, b 的值.解: ∵ ,∴ , 或 , .老师说: “题目1的解答过程跳步了. 题目2在编制时应该再添加已知条件” .请阅读以上材料, 解答下列问题:(1)补全题目1的解答过程;(2)依据题目2的解答过程, 题目2中应添加的已知条件是: .该商场某品牌衬衫31.(6分)我们规定, 若关于的一元一次方程的解为, 则称该方程为“差解方程”, 例如:2 =4的解为2, 且2=4-2, 则该方程2 =4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于的一元一次方程是差解方程, 求的值.32.(6分)如图, OA⊥OB, 引射线OC(点C在∠AOB外), OD平分∠BOC, OE平分∠AOD.(1)若∠BOC=40°, 请依题意补全图, 并求∠BOE的度数;(2)若∠BOC=α(), 请直接写出∠BOE的度数(用含α的代数式表示).。
2016-2017学年度七年级(上)期末数学试卷含答案解析
2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顺义区2016---2017学年度第一学期七年级教学质量检测 数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个符合题意,请把对应题目答案的相应字母填在括号内 .1. 2017年1月份某天的最高气温是4℃,最低气温是-9℃,那么这天的温差(最高气温减最低气温)是( ).A .-5℃B .13℃C .一13℃D . 5℃2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将这个数用科学记数法表示为( ) A .84410⨯ B .84.410⨯C . 94.410⨯D .104.410⨯3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( ) A .2(2)a b - B . 22()a b - C .22a b - D .2(2)a b -4.在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么33a b= C. 如果63=a,那么2a = D. 如果0a b c -+=,那么a b c =+ 5.下列各式中运算正确的是( )A. 422a a a =+ B. 134=-a aC. b a ba b a 22243-=- D.532523a a a =+6. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为( )A. 1- B .0 C. 1 D. 11 7. 下列叙述错误的是( )A. 经过两点有一条直线,并且只有一条直线B. 在同一平面内不相交的两条直线叫做平行线C. 连接两点的线段的长,叫做这两点间的距离D.从直线外一点到这条直线的垂线段,叫做点到直线的距离8.有理数a b ,在数轴上的位置如图所示,以下说法正确的是( ) A. 0a b += B. b a < C. 0ab > D.b a <9.如图,是正方体的平面展开图,每个面上都标有一个汉字, 与“信”字相对的面上的字为( ) A. 文 B.明 C. 法 D. 治10.计算20172016(0.125)8-⨯结果正确的是( )A .18- B .18C .8D .8-二、填空题 (共6个小题,每小题3分,共18分) 11.-3的相反数是 ; 12-的倒数是 ;-2的绝对值是 . 12. 计算:()5+3-+= ;12(3))3÷-⨯(-= ;()312-= . 13.北京市的“阶梯水价”收费办法是:每户一年用水不超过180吨,每吨水费5元;超过180吨但不超过260吨,超过的部分,每吨水费加收2元,超过260吨时,超过260吨的部分,每吨水费加收4元,小明家2016年共交水费1187元,那么小明家2016年共用水 吨.14. 换算:65.24°= 度 分 秒.15.如图, 图中共有 条线段, 个小于平角的角.16.下列图案是我国古代窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第5个图中所贴剪纸“○”的个数为 ,第n 个图中所贴剪纸“○”的个数为 .三、解答题 (共13个小题,共62分) 17.(4分)计算:33124484⎛⎫+-+- ⎪⎝⎭18.(5分)计算:21522()(1)3493-⨯-+÷-12 3…………DBA19.(5分)计算: 2531(9)36()39412⨯--⨯-+ 20.(5分)计算:3221332()()()224-⨯-+-÷-()21.(4分)解方程: 262(35)x x -=- 22.(5分 ) 解方程:221134x x +--= 23.(5分)已知x ,y 为有理数,且满足2121(1)03x y ++-=,求代数式xy 的值. 24.(4分)如图,A ,B ,C ,D 为4个居民小区,现要在4个居民小区之间建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?画出购物中心的位置,并说明理由.25.(5分)已知平面上三点A 、B 、C . 按下列要求画出图形: (1)画直线AB ,射线BC ,线段AC ;(2)过点C 画直线CD ,使CD AB ; (3)画出点C 到直线AB 的垂线段CE .26.(5分) 某中学举办中学生安全知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分.小强考了68分,求小强答对了多少道题?27.(5分) 已知:90AOB ∠=︒,20BOC ∠=︒,OM 平分AOB ∠,求MOC ∠的度数.D ACBA28.(5分)阅读材料:求2342017122222++++++…的值.解:设234201620171222222S =+++++++…, 将等式两边同时乘以2得:23452017201822222222S =+++++++…将下式减去上式得2018221S S -=- 即201821S =-即2342017201812222221++++++=-…请你仿照此法计算:(1)2349122222++++++…; (2)234155555n ++++++…(其中n 为正整数).29.(5分)新华书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折; ③一次性购书满200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是多少元?选做题(5分)1.(2分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是 天.2.(3分)设-3a =,15b =,试确定20162017a b +的末位数字是几?顺义区2016---2017学年度第一学期七年级教学质量检测数学试题参考答案及评分参考三、解答题17.解:原式=3312+4484--+ ………………………………………………………1分 =3132++4448-- ……………………………………………………2分=318-- ………………………………………………………………3分=118- ……………………………………………………………4分18.解:原式=8153()+)3495-⨯-⨯(- …………………………………………………3分 =21()33+- =13………………………………………………………………5分19.解:原式=620+27---3 …………………………………………………………4分 =2- …………………………………………………………………5分20.解:原式=1948()443-⨯+⨯- ………………………………………………………4分 =23--=5- …………………………………………………………………5分21. 解:去括号,得 26610x x -=- ………………………………………1分移项, 得 26106x x -=-+ ………………………………………2分合并同类项,得 44x -=- …………………………………………3分 系数化为1,得 1x = ……………………………………………4分 所以,1x =是方程的解 …………………………………………… 5分22. 解:去分母 ,得 4(2)123(21)x x +-=-………………………………………2分去括号, 得 481263x x +-=- …………………………………………3分 移项, 得 463812x x -=--+ …………………………………………4分 合并同类项,得 21x -=系数化为1, 得 12x =- 所以 ,12x =-是方程的解 …………………………………………5分 23. 解:因为210x +≥,21(1)03y -≥,且满足2121(1)03x y ++-=,…………1分所以210x += 且 1103y -=. ………………………………………………3分所以12x =-,3y = ………………………………………………4分所以代数式xy 的值是32- ………………………………………………………5分24.解:连结AC 和BD ,AC 和BD 相交于点M , 则点M 即是购物中心的位置 .……………………………………………………2分 MA MC MB MD AC BD +++=+理由是两点之间线段最短. ……………………………………………………4分25.略 (每个图形各一分) ………………………………………………………5分26.解:设小李答对了x 道题. ……………………………………………………1分 依题意,列方程得53(20)68x x --=. ……………………………………………………3分解得16x =. ………………………………………………………………4分 答:小李答对了16道题. ………………………………………………………………5分27.解: ∵90AOB ∠=︒,OM 平分AOB ∠,∴︒=∠45BOM ………………………………………………………………1分又∵20BOC ∠=︒①当OC 在AOB ∠内部时,452025MOC BOM BOC ∠=∠-∠=︒-︒=︒ ……………………………3分② 当OC 在AOB ∠外部时452065MOC BOM BOC ∠=∠+∠=︒+︒=︒……………………………5分∴MOC ∠的度数是25︒.或65︒28.解:(1)设29122+2S =+++…则23102222+2S =+++…10221S S ∴-=-即1021S =- ……………………………………………2分2910122+2=21∴+++-…(2)设21555n S =++++…则23155555n S +=++++…1551n S S +∴-=-即1451n S +=-1514n S +-∴= ………………………………………………………………5分29.解:设小丽第一次购书的原价为x 元,则第二次购书的原价为3x 元, 依题意得:① 当10003x <≤时, 3229.4x x +=,解得:57.35x =(舍去); ……………………………………………………… 1分 ② 当100200<33x ≤时, 9+3229.410x x ⨯=,解得:62x =,此时两次购书原价总和为:4462248x =⨯=; …………………………………… 3分 ③ 当2001003x <≤时,73229.410x x +⨯=,解得:74x =,此时两次购书原价总和为:4=474=296x ⨯.综上可知:小丽这两次购书原价的总和是248或296元.………………………… 5分选做题(选做题得分可以加入总分中,加到满分100分止) 1. 5102. 解:∵15b =∴2017201715b =的末位数字一定是5 -----------------------------------------1分 ∵3a =-∴201620162016(3)3a =-=∵133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,∴推算20163的末位数字一定是1 ----------------------------------------------2分 ∴2016a 与2017b 的末位数字之和是16∴20162017a b +的末位数字是6 -----------------------------------------------3分。