数学知识点秋人教版数学九年级上册期末复习提纲word下载-总结
(完整word版)人教版数学九年级上册知识点整理
知识点五:与圆有关的位置关系
5.点与圆
的位置关系
设点到圆心的距离为d.
⑴d<r?点在OO内;(2)d=r?点在OO上;(3)d>r?点在OO夕卜.
6.直线和 圆的位
m¥方
宀护¥方位置大糸
相离
相切
相交
图形
l®1
[GDI
公共点个数
0个
1个
2个
数量关系
d>r
d=r
dvr
知识点六:切线的性质与判定
解•
(2 )因式分解法:可化为(ax+m)(bx+ n)=0的方程,用因式分解法求
解•
(3 )公式法:一元二次方程ax2+bx+c=0的求根公式为x=
2.一元二次方
b曲4ac(b2-4ac>0).2a
程的解法
(4)配方法:当元二次方程的二次项糸数为1, 次项糸数为偶数时,
也可以考虑用配方法.
先
先用其他,再用公式
(3)弧:圆上任意两点间的部分叫做弧,小于半圆的 弧叫做劣弧,大于半圆的弧叫做优弧.
(4)圆心角:顶点在圆心的角叫做圆心角
(5)圆周角:顶点在圆上,并且两边都与圆还有一个 交点的角叫做圆周角.
(6)弦心距:圆心到弦的距离.
知识点二:垂径定理及其推论
2.垂径定
理及其推
论
定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
知识点三:二次函数的平移
4.平移与
解析式
的关系
x/_ov2向左(h<0)或向右(h>0)2向上(k>0)或向下(kv0)2
常”>y=a(x-h)—、y=a(x—h)2+k
九年级数学知识点总结 人教新课标版
初中数学总复习提纲1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
最新中心对称与中心对称图形知识点复习:必备的初三上册数学-word文档
中心对称与中心对称图形知识点复习:必备的初三上册数学学好知识就需要平时的积累。
知识积累越多,掌握越熟练,查字典数学网编辑了中心对称与中心对称图形知识点复习:必备的初三上册数学,欢迎参考!1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
3.中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
三、轴对称与中心对称的区别与联系:轴对称中心对称有一条对称轴——直线有一个对称中心——点图形沿对称轴对折(翻折180o)后重合图形绕对称中心旋转180 o后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分四、几种常见的轴对称图形和中心对称图形:轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;中心对称图形:线段、平行四边形、菱形、矩形、正方形、圆对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。
说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。
五、坐标系中的轴对称变换与中心对称变换:点P(x,y)关于x轴对称的点P1的坐标为(x,-y),关于y轴对称的点P2的坐标为(-x,y)。
九年级数学复习提纲
章节难易程度重难点分析知识点归纳知识拓展第一章二次函数★★★★★1、二次函数图像2、二次函数性质以及性质综合应用3、二次函数应用性问题:①面积最值问题②高度、长度最值问题③利润最大化问题④求近似解1、二次函数概念y=ax2+bx+c(a≠0)2、求二次函数解析式一般式y=ax2+bx+c、顶点式y=a〔x+m〕2+k交点式y=a〔x-x1〕(x-x2)3、二次函数图像和性质当a>0时,图像开口向上,有最低点,有最小值当a<0时,图像开口向下,有最高点,有最大值顶点式对称轴:直线x=-m一般式对称轴:直线x=-b/2a交点式对称轴:直线x=〔x1+x2〕/24.二次函数图像平移函数y=a〔x+m〕2+k图像,可以由函数y=ax2图像先向右〔当m<0时〕或向左〔m>0时〕平移|m|个单位,再向上〔当k>0时〕或向下〔当k<0时〕平移|k|个单位得到4、抛物线与系数关系二次项系数a决定抛物线开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
初中数学最重要局部,在中考中占比重大,跟其他知识点联系多,以数形结合题型考察几何,解方程、代数等都相互联系,知识点多题型多变,压轴题多以此为出题点1、考察形式:以选择题、填空题形式考察二次函数图像性质,以解答题形式考察以二次函数为载体综合题。
2、考察趋势:二次函数图像与系数关系,二次函数应用仍是重点3、二次函数求最值应用:依据实际问题中数量关系,确定二次|a|越大,则抛物线开口越小。
一次项系数b和二次项系数a共同决定对称轴位置。
当a与b同号时〔即ab>0〕,对称轴在y 轴左;当a与b异号时〔即ab<0〕,对称轴在y 轴右。
常数项c决定抛物线与y轴交点抛物线与y轴交于〔0,c〕抛物线与x轴交点个数Δ= b2-4ac>0时,抛物线与x轴有2个交点。
Δ= b2-4ac=0时,抛物线与x轴有1个交点。
Δ= b2-4ac<0时,抛物线与x轴没有交点5、二次函数应用函数解析式,结合方程、一次函数等知识解决实际问题〔对于二次函数最大〔小〕值确定,一定要注意二次函数自变量取值范围,同时兼顾实际问题中对自变量特殊约定,结合图像进展理解〕第二章简单事件概率★★★☆☆1、简单事件概率2、用频率估计概率3、概率简单应用1、确定事件〔必然事件和不可能事件〕和不确定事件2、用列举法〔列表法和树状图法〕计算简单事件发生概率P〔A〕= m / n3、事件发生概率是有大小,必然事件发生概率是1,不可能事件发生概率是0,不确定事件发生概率在0与1之间4、知道大量试验时频率可作为事件发生概率估计值\5、概率实际应用掌握对事件解及分类,学会画树状图或列表方法解题,在中考中通常以选择题考察概念,以填空题、简答题考察概率计算1.考察形式:简单事件概率计算,利用列表法或树状图法求解简单事件概率2、考察趋向:用列举法〔列表法和树状图法〕计算简单事件发生概率,概率在实际问题〔判别“划算〞、“公平〞〕中应用第三章圆根本性质★★★★☆1、图形旋转2、垂径定理3、弧、弦与圆心角关系4、圆心角与圆周角关系,直径所对圆周角特征5、圆内接四边1、圆有关概念,点与圆位置关系,确定圆条件〔不在同一条直线上三点确定一个圆〕2、图形旋转:旋转特征和旋转性质3、垂径定理:垂直于弦直径平分这条弦,并且平分弦所对弧推论1:平分弦直径垂直于弦,并且平分弦所对弧推论2:平分弧直径垂直平分弧所对弦4、弧、弦与圆心角关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一组量相等,则其余各组量都相等5、一条弧所对圆周角等于它所对圆心角一半,直径所对圆周角等于90°6、圆内接四边形对角互补,正多边形内角和为〔n-2〕*180°正多边形中心角为n/360°7、弧长L=nπr/180扇形面积S= nπr2/360初三数学难点,知识点多,涉及定理多,题型多变,几何题通常与三角形结合,角与边关系需要灵活运用,需要牢记特殊角所对应边比值关系,添关键辅助线帮助解题是考试中一大难点1、考察形式:以选择题、填空题形式考察有关性质和计算,把简单几何体通过几何变换求某阴影局部面积形和正多边形6、弧长及扇形面积2、考察趋向:与圆有关计算与证明第四章相似三角形★★★★★重点1、比例线段2、由平行线截得比例线段3、相似三角形性质与判定4、相似三角形应用难点:1、相似三角形判定题型与圆1、比例根本形式;2、公式拓展:〔1〕更比性质(交换比例内项或外项):〔2〕反比性质(把比前项、后项交换):.〔3〕合、分比性质:.3、三角形中平行线分线段成比例定理:平行于三角形一边直线截其它两边(或两边延长线)所得对应线段成比例4、对应角相等,对应边成比例三角形,叫通常与二次函数结合来考察,在动点问题时学会分类讨论,通过相似来得到角度、边大小,证明两个三角形相似是考试中难点,要学会添辅助线,必要时需要设x列方程得到需要解1、考察形式:相似三角形简单计算、识别与作图以选择题、填空题形式出现,相似三角形性质与其他知识综合以解答题形式出现2、考察趋向:形结合2、利用相似三角形性质来解决实际问题做相似三角形.相似用符号“∽〞表示5、三角形相似判定方法〔1〕、定义法:三个对应角相等,三条对应边成比例两个三角形相似.〔2〕、平行法:平行于三角形一边直线和其它两边(或两边延长线)相交,所构成三角形与原三角形相似.〔3〕、判定定理1:如果一个三角形两个角与另一个三角形两个角对应相等,则这两个三角形相似.简述为:两角对应相等,两三角形相似.〔4〕、判定定理2:如果一个三角形两条边与另一个三角形两条边对应成比例,并且夹角相等,则这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.〔5〕、判定定理3:如果一个三角形三条边与另一个三角形三条边对应成比例,则这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、(1)相似三角形对应高比,对应中线比和对应角平分线比都等于相似比.(2)相似三角形周长比等于相似比.(3)相似三角形面积比等于相似比平方.相似三角形判定,利用相似证明线段成比例、乘积问题;相似三角形与全等三角形、四边形、圆知识综合探索;相似三角形在函数背景下坐标相应计算,在动态问题中特征作用等。
九年级上册数学《圆》点、线和圆的位置关系-知识点整理
圆知识要点圆的定义:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点叫圆心,线段OA叫做半径;(2)圆是到定点的距离等于定长的点的集合。
1、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r <====>点P在⊙O内;d=r <====>点P在⊙O上;d>r <====>点P在⊙O外。
2、直线与圆的位置关系(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交<====>d<r;直线l与⊙O相切<====>d=r;直线l与⊙O相离<====>d>r;3、切线的判定和性质(1)、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2)、切线的性质定理圆的切线垂直于经过切点的半径。
如右图中,OD垂直于切线。
4、切线长定理(1)、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
(2)、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
如右图中:圆外一点P与圆O相切与D,E两点,所以有PD=PE,可以通过连接OP来证明。
5、过三点的圆(1)、不在同一直线上的三个点确定一个圆。
(2)、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。
如图圆O是△ABC的外接圆(3)、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
(4)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
(5)、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
如图圆O是△A'B'C'的内切圆。
人教版九年级上册数学二次函数知识点归纳及练习(1)(可编辑修改word版)
八、二次函数的图象与各项系数之间的关系
1. 二次项系数 a
二次函数 y ax2 bx c 中, a 作为二次项系数,显然 a 0 .
⑴ 当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当 a 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.
【 【 (k>0)【 【 【 (k<0)【 【 【 |k|【 【 【
【 【 (h>0)【 【 【 (h<0)【 【 【 |k|【 【 【
【 【 (k>0)【 【 【 (k<0)【 【 【 |k|【 【 【
y=a(x-h)2+k
2. 平移规律 在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”.
向上
h何 k X=h
向下
ቤተ መጻሕፍቲ ባይዱ
h何 k X=h
性质 x h 时, y 随 x 的增大而增大; x h 时, y 随 x 的增大而减小; x h 时, y 有最小
值k. x h 时, y 随 x 的增大而减小; x h 时, y 随 x 的增大而增大; x h 时, y 有最大
值k.
⑵ 保持抛物线 y ax2 的形状不变,将其顶点平移到 h何 k 处,具体平移方法如下:
当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的右侧. 2a
⑵ 在 a 0 的前提下,结论刚好与上述相反,即 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴右侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a 当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的左侧. 2a
秋九年级数学上册 第2章 一元二次方程 2.5 一元二次方程的应用 第2课时 图形面积和动点几何问题
第2课时 图形面积和动点几何问题知|识|目|标1.通过讨论、探究,会用一元二次方程解决图形面积问题.2.在理解直角三角形面积计算的基础上,能够建立一元二次方程解决与动点有关的几何问题.目标一 能利用一元二次方程解决图形面积问题例1 教材例3针对训练如图2-5-2,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一块长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽. 图2-5-2【归纳总结】利用图形的面积建立一元二次方程模型的步骤(1)设元;(2)用未知数表示各边的长度;(3)利用面积公式列一元二次方程;(4)解一元二次方程;(5)针对实际情况舍去负根和超X围的根,从而得出结果.目标二利用一元二次方程解决动点几何问题例2 教材补充例题在矩形ABCD中,AB=5 cm,BC=6 cm,点P从点A开始沿边AB向终点B以1 cm/s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2 cm/s的速度移动.如果点P,Q分别从点A,B同时出发,当点Q运动到点C时,两点同时停止运动.设运动时间为t s(t>0).(1)填空:BQ=________ cm,PB=________ cm(用含t的代数式表示).(2)当t为何值时,PQ的长度等于5 cm?(3)是否存在t的值,使得五边形APQCD的面积等于26 cm2?若存在,请求出此时t的值;若不存在,请说明理由.【归纳总结】利用一元二次方程解决动点问题的方法(1)构造直角三角形法,利用勾股定理建立一元二次方程.(2)等线段法,利用三角形全等构造两线段相等,建立一元二次方程;(3)等面积法,利用三角形面积(或三角形高)的变化建立面积等式.实现将几何问题转化为代数问题,从而加以解决.知识点利用一元二次方程解几何图形问题常用的等量关系有:(1)勾股定理;(2)面积的等量关系.[点拨] 在建立一元二次方程模型解几何图形实际问题的过程中,必须检验方程的根的实际意义,所求得的根应该保证几何图形的存在.如图2-5-3,某农场有一块长40 m ,宽32 m 的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140 m 2,求小路的宽.图2-5-3解:解法1:设小路的宽为x m ,则东西方向小路的面积为40x m 2,南北方向小路的面积为32x m 2. 则40×32-40x -32x =1140,解得x =3518. 所以小路的宽为3518m. 解法2:设小路的宽为x m ,将4块种植地平移为一个矩形,其长为(40-x )m ,宽为(32-x )m.根据矩形面积公式,得(40-x )(32-x )=1140,整理得x 2-72x +140=0.解得x 1=2,x 2=70.答:小路的宽应是2 m 或70 m.以上两种解法正确吗?若不正确,出现错误的原因是什么?请给出正确的答案.详解详析【目标突破】例1 解:(1)由图可知,花圃的面积为(40-2a)(60-2a)平方米.(2)由已知可列方程:60×40-(40-2a)(60-2a)=38×60×40,解得a 1=5,a 2=45(舍去).答:此时通道的宽为5米.例2 解:(1)2t (5-t)(2)由题意得(5-t)2+(2t)2=52,解得t 1=0(不合题意,舍去),t 2=2.∴当t =2时,PQ 的长度等于5 cm .(3)存在.∵矩形ABCD 的面积是5×6=30(cm 2),五边形APQCD 的面积等于26 cm 2,∴△PBQ 的面积为30-26=4(cm 2),∴(5-t)×2t×12=4, 解得t 1=4(不合题意,舍去),t 2=1.即当t =1时,五边形APQCD 的面积等于26 cm 2.备选题型 用一元二次方程解决存在性问题例 用一根长22 cm 的铁丝,能不能恰好折成一个面积为32 cm 2的矩形?试分析你的结论.解:设折成的矩形的长为x cm ,则宽为(11-x)cm ,矩形的面积为x(11-x)cm 2,依题意,得x(11-x)=32,化简为x 2-11x +32=0, Δ=b 2-4ac =(-11)2-4×1×32=121-128=-7<0,因此方程无实数根,则用长为22 cm 的铁丝不能折成一个面积为32 cm 2的矩形.【总结反思】[反思] 解:两种解法都不正确,解法1多减去了两条小路交叉重叠的小正方形的面积,因此正确的方程是40×32-40x -32x +x 2=1140;解法2没有考虑方程的根是否符合实际意义,因为x<32,显然x=70不符合题意.正确的答案为x=2,即小路的宽为2 m.。
(完整word版)初中数学七、八、九年级知识点及公式总结材料大全(人教版)(良心出品必属精品)
初中数学知识点总结九年级数学(上)知识点 第二十一章 二次根式 一.知识框架二.知识概念1、二次根式的定义:式子叫做二次根式,其中a叫做被开方数。
2、最简二次根式:满足下列两个条件的二次根式是最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含有开得尽方的整数或整式。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质: (1)(2)=|a|= a (a>0)-a (a<0) 0 (a=0) (3)积的算数平方根性质:(a≥0,b≥0)(4)商的算数平方根性质:ba ba (a≥0,b>0)5、二次根式的乘法:=(a≥0,b≥0)即两个二次根式相乘,根指数不变,被开方数相乘。
注意:法则是由积的算数平方根的性质(a≥0,b≥0)反过来即得。
6、二次根式的除法:baba =(a≥0,b>0) 注意:法则是由商的算数平方根的性质ba ba =(a≥0,b>0)反过来得到的。
7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。
注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。
8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。
在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。
9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。
第二十二章 一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法:将一元二次方程变形为(x+p)2 =q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.(3)公式法:将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,•将a、b、c代入式子x=242b b aca-±-就得到方程的根.第二十三章旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
新课标九年级数学中考复习强效提升分数精华版期末复习提纲 圆
九年级数学上册期末复习提纲圆第24章24.1 圆24.1.1 圆·连接圆上任意两点的线段叫做弦。
圆上任意两点之间的部分叫做圆弧,简称弧。
24.1.2 垂直于弦的直径·垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:平分弦的直径垂直于弦且平分弦所对的两条弧。
24.1.3 弧、弦、圆心角1、顶点在圆心的角叫做圆心角。
2、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
推论1:相等的弧所对的弦相等,所对的圆心角也相等。
推论2:相等的弦所对的弧相等,所对的圆心角也相等。
24.1.4 圆周角1、顶点在圆上,且两边都与圆相交的角叫做圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,且都等于这条弧所对的圆心角的一半。
推论1:在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧也一定相等。
推论2:半圆或直径所对的圆周角是直角,90°的圆周角所对的弦是直径。
3、如果一个多边形的所有顶点都在同一个圆上,那么这个多边形就叫做圆内接多边形,这个圆就叫做多边形的外接圆。
4、圆内接四边形的对角互补。
24.2 点、直线、圆和圆的位置关系24.2.1 点和圆的位置关系1、若⊙O的半径为r,点P到圆心的距离为d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r。
(“⇔”读作“等价于”,表示可以从符号“⇔”的一端得到另一端)2、经过已知的两个点的圆的圆心在这两个点的连线段的垂直平分线上。
3、不在同一直线上的三个点确定一个圆,确定方法:作三点的连线段的其中两条的垂直平分线,交点即为圆心,以圆心到其中一点的距离作为半径画圆即可。
4、若三角形的三个顶点在同一个圆上,那么这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做三角形的外心。
5、假设命题的结论不成立,经过推理得出矛盾,则假设不正确,故原命题成立,这种证明方法叫做反证法。
(完整word版)九年级上册数学知识点总结
九年级上册数学知识点总结归纳1第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步第二十一章 一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程. 一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
知识点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解. 因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。
九年级数学总复习提纲 人教新课标版
2012年九年级数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商实数无理数(无限不循环小数) 0 (有限或无限循环性数) 整数分数 正无理数 负无理数0 实数负数整数 分数无理数有理数正数整数 分数 无理数有理数│a │2aa (a ≥0)(a 为一切实数)为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
(完整word版)九年级数学--初中各种函数知识点总结(良心出品必属精品)
初中各种函数知识点总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0x⇔y,0><点P(x,y)在第三象限0x⇔y<,0<点P(x,y)在第四象限0⇔yx,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称⇔横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称⇔纵坐标相等,横坐标互为相反数点P与点p’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx+知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
人教版初三数学上学期知识点归纳
人教版初三数学上学期知识点归纳伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。
学习也是一样的,需要积累,从少变多。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
九年级下册数学知识点归纳圆重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
(完整word版)初中数学知识点全总结(完美打印版),推荐文档
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
(精)最新版人教版九年级数学上册全册知识点
最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。
一元二次方程有四个特色:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程能否为一元二次方程,先看它能否为整式方程,若是,再对它进行整理.假如能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应知足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是经过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 往常用根号表示其运算结果.2、配方法经过配成完好平方式的方法,获取一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依照是完好平方公式。
1.转变:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右边4.配方:等号左右两边同时加前一次项系数一半的平方5.变形:将等号左侧的代数式写成完好平方形式6.开方:左右同时开平方7.求解:整理即可获取原方程的根3、公式法公式法:把一元二次方程化成一般形式,而后计算鉴别式△的值代入求根公式x=(b2- 4ac≥0) 便可获取方程的根。
=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,获取两个一元一次方程,解这两个一元一次方程所获取的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
2019秋人教版数学九年级上册期末复习提纲word下载
九年级(上)数学复习1第二十一章 二次根式•知识网络图表••习题练习•1.2)x > 2.0=,求x 、y 的值。
3..已知0b >4.a b ==a 、b 表示为多少?5.-6.=x 的取值范围是多少? 7.当x=_____时3的值最小,最小值是:_______. 8.在实数范围内分解因式:425x -(0,ab a b ≥a b ab =(a a a =9.计算2 1)+(2).22--10.等式:x y-=:________11.下列二次根式中,最简二次根式是( )12.下列各式中,( )13.3x=-成立,则x的取值范围为( )A.2x≥ B.3x≤ C.23x≤≤ D.23x<<14.计算结果是:( )A.15.数5的整数部分是x, 小数部分是y, 则x-2y的值是( )A.1B.1-1 D.1--16.已知a b==()A.5 B.6 C.3 D.417.若2x-有意义,则x的取值范围是:_________18.实数a在数轴上的位置如图,化简:1a-19.0=九年级(上)数学复习2第二十二章一元二次方程•知识网络图表••1.下列关于x 的方程中:①20ax bx c ++=,②2560k k ++=,③310342x x --=,④22(3)20m x +-=.是关于x 的一元二次方程的是:______(只填序号) 2.关于x 的方程1(3)50a a xx --++=是一元二次方程,则a =_______.3.如果210x x +-=,那么代数式3227x x +-的值为:____________. 4.已知m 是方程210x x --=的一个根,则代数式2m m -的值为多少? 5.用配方法解方程2410x x ++=,经过配方得:_____________6.对于二次三项式21036,x x -+小明同学得出如下的结论:无论x 取何值什么实数时,它12cx =的值都不可能等于11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上)数学复习1
第二十一章二次根式
∙知识网络图表∙
1.2)
x> 2.已知0,求x、y的值。
3..已知0
b>
4.a b
==a、b表示为多少?
5. 6.式子=x的取值范围是多少?
7.当x=_____时3的值最小,最小值是:_______.
8.在实数范围内分解因式:425
x-
9.计算2
1)
+
(0,
(0,
a b a b
a b
≥
≥>
a b ab
=
(
a a
a
=
(2).22--
10.等式:x y
-=:________
11.下列二次根式中,最简二次根式是( )
12.下列各式中, ( )
13.23
x-成立,则x的取值范围为( )
A. B.3 C.23
x
≤≤ D.23
x
<<
14.计算结果是:( )
A.
15.数5x, 小数部分是y, 则x-2y的值是( )
A.1
B.1-1 D.1
--
16.已知a b
==)A.5 B.6 C.3 D.4
17.x的取值范围是:_________
18.实数a在数轴上的位置如图,化简:1
a-
19.
九年级(上)数学复习2
第二十二章一元二次方程
∙
∙习题练习∙
1.下列关于x 的方程中:①2
0ax
bx c ++=,②2560k k ++=,
③
310342
x x --=,
④22(3)20m x +-=.是关于x 的一元二次方程的是:______(只填序号)
2.关于x 的方程1
(3)50a a x
x --++=是一元二次方程,则a =_______.
3.如果210x x +-=,那么代数式32
27x x +-的值为:____________.
4.已知m 是方程210x x --=的一个根,则代数式2
m m -的值为多少?
5.用配方法解方程2
410x x ++=,经过配方得:_____________
6.对于二次三项式2
1036,x x -+小明同学得出如下的结论:无论x 取何值什么实数时,它的值
都不可能等于11。
你是否同意他的说法?并说明你的理由。
7.已知实数x 满足2
4410x
x -+=,则代数式1
22x x
+
的值为:_____________. 8.等腰三角形的底和腰是方程2
680x x -+=的两根,则这个三角形的周长是:_________. 9.已知下列n(n 为整数)个关于x 的一元二次方程:
()
()
()
222
2102012302(1)0x x x x x x n x n n -=+-=+-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+--=
(1) 请解上述一元二次方程(1),(2),….(n );
(2) 请你指出这个n 个方程的根具有什么共同特点,写出一条即可。
10.已知关于x 的一元二次方程2
(1)20x
m x m --++=,
(1)若方程有两个相等的实数根,求m 的值。
(2)若方程的两实数根之和等于2
92m
m -+
的值。
11.若一元二次方程2
0(0)ax bx c a ++=≠有一个根是1,则a b c ++=_____ 12.请你写出一个根x=2,另一个根满足11x -<<的一元二次方程:_____________
13.如果关于x 的一元二次方程2
0x px q ++=的两根为:123,1x x ==那么这个一元二次方程是
( )
A. 2
340x
x ++= B. 2430x x -+= C. 2430x x +-= D. 2340x x +-=
14.如果关于x 的一元二次方程2
690kx x -+=有两个不相等的实数根,那么k 的取值范围
是:________
15.解方程(1) 2
42560x
-= (2)26100x x --= (3) 2541x x -=-
16.求证:不论x 取任何实数,代数式2
485x x ++的值总大于零.
17.关于x 的一元二次方程2
0x px q ++=的两根122,1x x ==,则分解因式的结果
为:______________
九年级(上)数学复习3 第二十三章 旋转
∙知识网络图表∙
(1)
(2) ,这两个
图形中的对应点关于这一点对称. (3) 中心对称图形: ∙习题练习∙
1.如图,将正方形图案绕中心O 旋转180°后,得到的图案是 ( )
2.下列命题中的真命题是 ( )
(A)全等的两个图形是中心对称图形. (B)关于中心对称的两个图形全等. (C)中心对称图形都是轴对称图形. (D)轴对称图形都是中心对称图形. 3.点(2,-3)关于原点对称的点的坐标是______.
4.如图,△ABC ,△ACD ,△ADE 是三个全等的正三角形, 那么△ABC 绕着顶点A 沿逆时针方向至少旋转______度, 才能与△ADE 完全重合.
5. 一个正方形要绕它的中心至少旋转______度,才能与原来的图形重合.
6. 如图,A点坐标为(3,3)将△ABC先向下移动4个单位得△A′B′C′,再将△A′B′C′绕点O逆时
针旋转180°得△A′′B′′C′′,请你画出△A′B′C′和△A′′B′′C′′,并写出点
A′′的坐标.
复习4第二十四章圆
∙知识网络图表∙
(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.
(2)垂径定理的推论:平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧.
(3)圆中最长弦和最短弦问题
(4)弧、弦、弦心距、圆心角关系定理:在等圆或同圆中,相等圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.
(5)弧、弦、弦心角、圆心角关系定理推论:在等圆或同圆中,如果两个圆心角,两条弧,两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.
(6)圆周角定理:在等圆或同圆中 ,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.
(7)切线的判定定理:经过半径的外端点且垂直于这条半径的直线是圆的切线.
(8)切线的性质定理:圆的切线垂直于过切点的半径.
(9)在等圆或同圆中 ,同弦所对的圆周角相等或者互补.
(10)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
∙习题练习∙
1.过o内一点M的最长的弦为10cm,最短的弦长为8cm,求OM的长?
2.若两圆的半径分别为3cm 和4 cm,则这两个圆相切时圆心距为
3.如图,已知A、B、C是⊙O上的三点,若∠ACB=44°,则∠AOB的度数为
4.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点
处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为cm。
5. 如图,矩形ABCD中,BC= 2 , DC = 4.以AB为直径的半圆O与DC相切于点E,则阴影部
分的面积为 (结果保留л)
6. 林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工
作原理如图所示.现已知∠BAC=60°,AB=0.5米,则这棵大树的直径为
_________米.
7.在o中,90的圆心角所对的弧长是2πcm,则o的半径是________cm.
复习5第二十五章概率的初步
∙知识网络图表∙
1. “明天的太阳从西边升起”这个事件属于:_________(用“必然”, “不可能”, “不确定”填)
2.在一个不透明的口袋里,有大小、形状完全相同,颜色不的球15个,从中摸出红色球的概率
为1
3
,那么口袋红球的个数是几?
3.口袋里有红、绿、黄三种不同颜色的球,除颜色外其余都相同,其中红球有4个,绿球有5
个,任意摸1个绿球的概率是1
3。
求(1)口袋里黄球的个数是多少?
(2)任意摸一个红球的概率?。