含参不等式的解法
初二-含参不等式以及含参不等式组的解法
![初二-含参不等式以及含参不等式组的解法](https://img.taocdn.com/s3/m/f320b0dd5727a5e9846a614a.png)
35狮子和山羊35狮子和山羊35 狮子和山羊(第一课时)1、在语境中正确认读“狮、央、呆、恭、伐、徒”六个生字;结合字形和字义,重点识记“狮、恭、徒”的字形。
运用各种方法理解并积累“中央、对付、恭敬、信徒” 等词语。
2、正确朗读课文,并根据课文内容,读出狮子和山羊对话时的不同语气。
3、能在老师的引导下边读边思、提出问题,并联系课文内容或课外资料解决问题。
4、能在熟读课文的基础上,同伴合作演一演老山羊智斗狮子的过程,感受山羊的沉着冷静、机智勇敢。
一、训练引入,揭示课题1、拼读词语:shī zi,随机复习整体认读音节,识记“狮”。
2、说话练习,说说狮子和山羊给人的印象①用一个词来说说狮子给你留下的印象。
②板书:山羊说说山羊又给你怎样的印象?3、补齐课题,齐读课题师:看到这样的课题,我们就知道课文讲述的是发生在狮子和山羊之间的故事,这还是一个印度的寓言故事。
二、整体感知课文,理清文章脉络1、出示句子:天渐渐地黑了,一只迷路的老山羊跑到附近的一个山洞去藏身。
(1)指名读句出示词卡:藏身,正音(2)引读,了解故事的起因2、结合课文,说说老山羊遇到的危险(1)交流出示:她刚跑进山洞,就发现有一只狮子正坐在山洞中央。
(2) 借助简笔画理解“中央”,感知老山羊身陷险境师:齐读“中央”。
中央的意思就是——(生:中间),一只迷路的老山羊跑到山洞去藏身(画山洞),没想到刚进洞,就发现(指板书)——狮子正坐在山洞中间,狮子跑得可快了,而且这又是一只——老山羊,根本就——(逃不了)。
师:啊呀,情况危险!(画惊叹号)让我们一起读好这句句子。
3、了解故事的结局师:看来这只老山羊凶多吉少,那么故事的结果是怎样的呢?翻到课文结尾找找。
出示句子:这时候,老山羊快速地溜出山洞,逃出了狮子的爪牙。
★ 正音:爪牙zhǎo(解释为鸟兽的脚趾时念zhǎo)师:最后山羊竟然在狮子的眼皮底下,溜出了山洞,逃出了狮子的爪牙。
板书:溜出逃出4、结合板书,提出问题预设:山羊怎么逃出狮子的爪牙的呢?5、小组形式读课文四人小组合作读,两个小朋友读1-6节,另两个读7-12节,然后小组讨论一下,为什么这么读?6、交流,分清两次遇险的经过第一次是老山羊和狮子,第二次是老山羊、狮子和豺狗。
含参不等式解法
![含参不等式解法](https://img.taocdn.com/s3/m/1c7a2b07b52acfc789ebc9c0.png)
含参不等式题型一:解含参不等式例1解关于x 的不等式)2,1(0)2()1)((≠≠>---a a x x a x 且变式1:解关于x 的不等式)(0)()(2R a a x a x ∈<--例2. 解关于x 的不等式)(12)1(R a x x a ∈>--变式2:解关于x 的不等式0)2)(2(>--ax x题型二:含参不等式与集合运算例1设R B A B A a x x B x x A =∅=≤-=>-= ,},1|2||{},1|12||{,求实数a 的值.变式1:已知集合}02|{2≤--∈=x x R x A ,}3|{+<<∈=a x a R x B 且∅=B A ,则实数a 的取值范围是题型三:不等式的恒成立问题例1若不等式03)1(4)54(22>+---+x a x a a 对一切R x ∈恒成立,求a 的取值范围变式1:设关于x 的不等式04)2(2)2(2<--+-x x x a 的解集为R ,求a 的取值范围例2若a x x >+--|5||2|恒成立,则实数a 的取值范围是____________ _________变式2:若不等式a x x ≤++-|3||4|的解集为空集,则实数a 的取值范围是三、巩固练习1.若不等式)0(02≠<++a a x ax 无解,则a 的取值范围是( )2121.≥-≤a a A 或 21.<a B 2121.≤≤-x C 21.≥a D 2.设集合}044|{},01|{2恒成立对任意实数x mx mxR m Q m m P <-+∈=<<-=,则下列关系式中成立的是( )Q P A ⊂.Q P B =. P Q C ⊂. ∅=Q P D .3.已知0>a ,不等式a x x <-+-|3||4|在实数集R 上的解集不是空集,则正实数a 的取值范围是4.若不等式a x x >++-|3||4|的解集为R ,则实数a 的取值范围是5.设}25|{,},03|{},0325|{2≤<-=∅=≤++=<-+=x x B A B A ax x x B x x x A ,则实数a 的值为6.解关于的不等式01>--x a x7解关于x 的不等式)0(02≠<-a x ax。
含参数的不等式的解法
![含参数的不等式的解法](https://img.taocdn.com/s3/m/1920557e5627a5e9856a561252d380eb629423fc.png)
含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。
常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。
如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。
2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。
对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。
对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。
3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。
对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。
对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。
步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。
根据参数的不同取值情况,采用不同的解法。
1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。
-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。
2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。
-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。
3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。
步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。
含参不等式的解法教案
![含参不等式的解法教案](https://img.taocdn.com/s3/m/98de2b7b182e453610661ed9ad51f01dc3815703.png)
含参不等式的解法教案一、教学目标1. 让学生掌握含参数的不等式的解法,提高解题能力。
2. 培养学生分析问题、解决问题的能力,提高学生的数学思维水平。
3. 通过教学,使学生能够运用含参数的不等式解法解决实际问题。
二、教学内容1. 含参数不等式的概念及特点。
2. 含参数不等式的解法:图像法、代数法、不等式组法等。
3. 典型例题解析及练习。
三、教学重点与难点1. 教学重点:含参数不等式的解法及应用。
2. 教学难点:含参数不等式解法在实际问题中的应用。
四、教学方法1. 采用讲授法、示范法、练习法、讨论法等相结合的教学方法。
2. 利用多媒体辅助教学,直观展示含参数不等式的解法过程。
3. 组织学生进行小组合作学习,培养学生的团队协作能力。
五、教学过程1. 导入新课:复习相关知识点,如不等式的概念、性质等,引出含参数不等式。
2. 讲解含参数不等式的解法:a) 图像法:通过绘制不等式的图像,找出解集。
b) 代数法:运用不等式的性质,求解含参数的不等式。
c) 不等式组法:将多个含参数的不等式组合起来,求解公共解集。
3. 典型例题解析:分析例题,引导学生运用所学解法解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 总结与反思:对本节课的内容进行总结,提醒学生注意解题中可能出现的问题。
6. 课后作业:布置课后作业,巩固所学知识。
六、教学评价1. 评价目标:检查学生对含参数不等式解法的掌握程度以及解决实际问题的能力。
2. 评价方法:课堂练习、课后作业、小组讨论、个人总结等。
3. 评价内容:a) 学生能理解含参数不等式的概念及特点。
b) 学生能运用图像法、代数法、不等式组法等解法解决含参数不等式问题。
c) 学生能将所学知识应用于实际问题,提高问题解决能力。
七、教学反思1. 教师应在课后对教学效果进行反思,分析学生的反馈意见,调整教学方法及内容。
2. 关注学生在解题过程中的困难,针对性地进行辅导,提高学生的解题技巧。
含参方程与不等式求解
![含参方程与不等式求解](https://img.taocdn.com/s3/m/39297e47eef9aef8941ea76e58fafab069dc440e.png)
含参方程与不等式求解在数学中,含参方程与不等式是常见的数学问题类型,需要通过一定的方法来解决。
本文将介绍含参方程与不等式的求解方法,帮助读者更好地理解和应用这些知识点。
一、含参方程的求解方法含参方程是指方程中含有未知参数的方程,通过改变参数的值可以得到不同的解。
常见的含参方程有一元一次方程、一元二次方程等。
1. 一元一次方程的求解方法一元一次方程的一般形式为ax + b = 0,其中a和b为已知常数,x 为未知数。
将方程进行变形,可得到x = -b/a。
根据这个公式,可以通过给定的参数值计算出方程的解。
举例说明:对于方程3x + 5 = 0,将参数3代入公式中,可得到x = -5/3。
同理,对于参数为2的情况,解为x = -5/2。
2. 一元二次方程的求解方法一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知常数,x为未知数。
通过求解方程的根可以得到方程的解。
常用的求解一元二次方程的方法有公式法和配方法。
公式法:根据一元二次方程的求解公式x = (-b ± √(b^2 - 4ac))/(2a),我们可以通过给定的参数值计算出方程的解。
配方法:对于一些特殊的一元二次方程,可以通过将其转化为完全平方的形式来求解。
具体的配方法需要根据具体的方程形式进行操作。
举例说明:对于方程x^2 + 3x + 2 = 0,根据公式法,可以得到x = -1和x = -2为其解。
二、含参不等式的求解方法含参不等式是指不等式中含有未知参数的不等式,通过改变参数的值可以得到不同的解。
常见的含参不等式有一元一次不等式、一元二次不等式等。
1. 一元一次不等式的求解方法一元一次不等式的一般形式为ax + b > 0(或<、≥、≤),其中a和b为已知常数,x为未知数。
通过确定不等式的区间可以得到不等式的解。
举例说明:对于不等式3x + 5 > 0,当参数3代入时,解为x > -5/3;当参数2代入时,解为x > -5/2。
初一下册不等式含参
![初一下册不等式含参](https://img.taocdn.com/s3/m/418f9425a31614791711cc7931b765ce05087ab9.png)
初一下册不等式含参初一下册不等式含参一、引言不等式是数学中的一个重要概念,通过不等式我们可以研究数的大小关系。
在初一下册数学学习中,我们接触到了不等式含参这个新的概念。
不等式含参的学习,不仅可以提高我们的逻辑思维能力,还能够帮助我们理解和解决实际问题。
二、基本概念不等式含参是指在不等式中含有带有参数的表达式。
参数是不确定的数,可以取不同的值,从而使得不等式的解集发生变化。
例如,不等式 |2x - 3| > a 可以称为一个不等式含参,其中 x 是参数,a是给定常数。
当我们确定了不同的 a 值时,不等式的解集也会随之改变。
三、解决方法解决不等式含参的问题,一般需要进行以下几个步骤:1. 化简:首先,我们需要对不等式进行化简,将其转化为简洁的形式。
例如,使用绝对值不等式的性质,可以将 |2x - 3| > a 化简为 2x - 3 > a 或者 2x - 3 < -a。
2. 分类讨论:根据化简得到的不等式,我们可以将其分成几种情况进行讨论。
例如,当 a > 0 时,将 2x - 3 > a 分成 x > (a+3)/2 和 x < (3-a)/2 两种情况。
3. 求解:接下来,我们需要解决每个分类讨论中的不等式。
通过运用代数运算和性质,将不等式化简为 x 的区间表示形式。
例如,在第一种情况 x > (a+3)/2 中,可以化简为 x > (a+3)/2。
4. 综合解集:最后,我们需要将每个分类的解集综合起来,得到不等式含参的解集。
综合解集时,需要考虑各个分类的交集或并集。
四、应用示例不等式含参可以帮助我们解决许多实际问题。
例如,在经济学中,我们可以利用不等式含参来分析商品价格的涨跌幅度。
在生活中,我们可以通过不等式含参来研究食品或药品的安全问题。
五、总结初一下册不等式含参是一个重要的数学概念,在我们的学习中扮演着重要的角色。
通过学习不等式含参,我们可以锻炼逻辑思维能力,理解和解决实际问题。
解答含参不等式问题常用的几种方法
![解答含参不等式问题常用的几种方法](https://img.taocdn.com/s3/m/8dd6278209a1284ac850ad02de80d4d8d15a0116.png)
考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。
求解含参不等式恒成立问题的几个“妙招”
![求解含参不等式恒成立问题的几个“妙招”](https://img.taocdn.com/s3/m/6fde562b59fafab069dc5022aaea998fcd224057.png)
乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸思路探寻含参不等式恒成立问题的常见命题形式有:(1)证明含参不等式恒成立;(2)在确保某个含参不等式恒成立的情况下,求参数的取值范围;(3)在已知变量的约束条件的情况下,求含参不等式中参数的取值范围.含参不等式恒成立问题具有较强的综合性,其解法灵活多变,常常令考生头疼不已.对此,笔者将结合实例,介绍求解含参不等式恒成立问题的几个“妙招”.一、分离参数分离参数法是求解含参不等式恒成立问题的常用方法,该方法适用于求参数和变量可分离的情形.运用分离参数法解题的一般步骤为:1.根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;2.将含有变量一侧的式子当成一个函数,判断出函数的单调性,并根据函数的单调性求出函数在定义域内的最值;3.将问题进行等价转化,建立新的不等式,如将a ≥f (x )恒成立转化为a ≥f (x )max ;将a ≤f (x )恒成立转化为a ≤f (x )min .例1.已知函数f (x )=1+ln xx,当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围.解:由f (x )≥k x +1,得1+ln x x ≥k x +1,将其变形可得(x +1)(1+ln x )x≥k ,设g (x )=(x +1)(1+ln x )x,则g ′(x )=[(x +1)(1+ln x )]′·x -(x +1)(1+ln x )x 2=x -ln xx 2,令h (x )=x -ln x ,则h ′(x )=1-1x,当x ≥1时,h ′(x )≥0,所以函数h (x )在[)1,+∞上单调递增,所以h (x )min =h (1)=1>0,从而可得g ′(x )>0,故函数g (x )在[)1,+∞上单调递增,所以g (x )min =g (1)=2,因此k 的取值范围为k ≤2.观察不等式1+ln x x ≥k x +1,发现参数k 可以从中分离出来,于是采用分离参数法,先将参数、变量分离,使不等式变形为(x +1)(1+ln x )x≥k ;再构造函数g (x ),对其求导,根据导函数与函数的单调性判断出函数的单调性,即可求出g (x )在x ∈[)1,+∞上的最小值,使k ≤g (x )min ,即可得到实数的取值范围.通过分离参数,便将含参不等式恒成立问题转化为函数最值问题来求解,这样便可直接利用函数的单调性来解题.二、数形结合数形结合法是解答数学问题的重要方法.在解答含参不等式问题时,将数形结合起来,可有效地提升解题的效率.有些含参不等式中的代数式为简单基本函数式、曲线的方程、直线的方程,此时可根据代数式的几何意义,画出相应的几何图形,通过研究函数图象、曲线、直线、点之间的位置关系,确定临界的情形,据此建立新不等式,从而求得参数的取值范围.例2.已知f (x )=ìíî3x +6,x ≥-2,-6-3x ,x <-2,若不等式f (x )≥2x -m 恒成立,求实数m 的取值范围.解:由题意可设g (x )=2x -m ,则函数g (x )、f (x )的图象如图所示.要使对任意x ,f (x )≥g (x )恒成立,则需使函数f (x )的图象恒在g (x )图象的上方,由图可知,当x =-2时,f (x )的图象与g (x )的图象有交点,而此时函数f (x )取最小值,即f (-2)=0,因此,只需使g (-2)=-4-m ≤0,解得m ≥-4.故实数m 的取值范围为m ≥-4.函数f (x )与g (x )都是常见的函数,容易画出其图象,于是采用数形结合法,画出两个函数的图象,将问题转化为函数f (x )的图象恒在g (x )图象的上方时,求参数的取值范围.运用数形结合法求解含参不等式恒成立问题,需将数形结合起来,将问题进行合理的转化,如若对∀x ∈D ,f (x )<g (x )恒成立,则需确保函数f (x )的图象始终在g (x )的下方;若对∀x ∈D ,f (x )>g (x )恒成47立,则确保函数f(x)的图象始终在的上方即可.三、变更主元我们常常习惯性地将x看成是主元,把参数看成辅元.受定式思维的影响,在解题的过程中,我们有时会陷入解题的困境,此时不妨换一个角度,将参数视为主元,将x看作辅元,通过变更主元,将问题转化为关于新主元的不等式问题,这样往往能够取得意想不到的效果.例3.对任意p∈[-2,2],不等式(log2x)2+p log2x+1> 2log2x+p恒成立,求实数x的取值范围.解:将不等式(log2x)2+p log2x+1>2log2x+p变形,得:p(log2x-1)+(log2x)2-2log2x+1>0,设f(p)=p(log2x-1)+(log2x)2-2log2x+1,则问题等价于对任意p∈[-2,2],f(p)>0恒成立,由于f(p)是关于p的一次函数,所以要使不等式恒成立,只需使ìíîf(-2)=-2(log2x-1)+(log2x)2-2log2x+1>0, f(2)=2(log2x-1)+(log2x)2-2log2x+1>0,解得:x>8或0<x<12,故实数x的取值范围为x>8或0<x<12.若将x当成主元进行求解,那么解题的过程将会非常繁琐.由于已知p的取值范围,要求满足不等式条件的实数x的取值范围,所以考虑采用变更主元法,将p看成是主元,构造关于p的一次函数,根据函数的图象建立使不等式恒成立的不等式组,即可求出实数x的取值范围.通过变更主元,便可从新的角度找到解题的思路,从而化难为易.四、分类讨论当不等式左右两边的式子较为复杂,且含有较多的不确定因素时,就需采用分类讨论法来解题.用分类讨论法求解含参不等式恒成立问题,需先确定哪些不确定因素会对参数的取值有影响;然后将其作为分类的对象,并确定分类的标准,对每一种情形进行分类讨论;最后综合所有的结果,就可以得到完整的答案.例4.已知f(x)=x|x-a|-2,若当x∈[0,1]时,恒有f(x)<0成立,求实数a的取值范围.解:①当x=0时,f(x)=-2<0,不等式显然成立,此时,a∈R;②当x∈(0,1]时,由f(x)<0,可得x-2x<a<x+2x,令g(x)=x-2x,h(x)=x+2x,则g′(x)=1+2x2>0,可知g(x)为单调递增函数,因此g(x)max=g(1)=-1;则h′(x)=1-2x2<0,可知h(x)为单调递减函数,因此h(x)min=h(1)=3,此时-1<a<3.综上可得,实数a的取值范围为-1<a<3.本题的函数式中含有绝对值,需对x的取值进行分类讨论,即分为x=0和x∈(0,1]这两种情况进行讨论,建立使不等式恒成立的关系,如当x∈(0,1]时,需使æèöøx-2x max<a<æèöøx+2x min,即可解题.五、利用判别式法判别式法通常只适用于求解二次含参数不等式恒成立问题.运用该方法解题的一般步骤为:首先根据不等式的特点构造一元二次方程;然后运用一元二次方程的判别式对不等式恒成立的情形进行讨论、研究;最后得出结论.一般地,对于二次函数f(x)=ax2+bx+c (a≠0,x∈R),有:(1)若对任意x∈R,f(x)>0恒成立,则ìíîa>0,Δ=b2-4ac<0;(2)对任意x∈R,f(x)<0恒成立,则{a<0,Δ=b2-4ac<0.例5.设f(x)=x2-2mx+2,当x∈[-1,+∞)时,f(x)≥m 恒成立,求实数m的取值范围.解:设F(x)=x2-2mx+2-m,令x2-2mx+2-m=0,则Δ=4m2-4(2-m),当Δ≤0,即-2≤m≤1时,F(x)≥0显然恒成立;当Δ=4m2-4(2-m)>0时,F(x)≥0恒成立的充要条件为:ìíîïïïïΔ>0,F(-1)≥0,--2m2<-1,解得:-3≤m<-2,所以实数m的取值范围为-3≤m≤1.运用判别式法求解含参二次不等式恒成立问题,关键是确保在定义域范围内,二次函数F(x)的图象恒在x轴的上方或下方,根据方程F(x)=0无解,建立关于判别式的关系式.本文介绍了几种求解含参不等式恒成立问题的方法,这些方法的适用情形各不相同.但不论采用何种方法,都要对问题进行具体的分析,针对实际情况,选用最恰当的方法,才能达到事半功倍的效果.(作者单位:广东省东莞市第一中学)思路探寻48。
含参不等式以及含参不等式组的解法知识分享
![含参不等式以及含参不等式组的解法知识分享](https://img.taocdn.com/s3/m/877a9c670066f5335a8121ef.png)
含参不等式以及含参不等式组的解法
含参不等式以及含参不等式组的解法
不等式在中考中的运用,往往掺杂参数来增加难度,我们只要读清楚题目找到解题思路便能迎刃而解了。
本节课我们就重点讲讲如何读题去寻找解题思路。
含参不等式:
解不等式5(x-1)<3x+1
通过去括号、移项、合并同类项等一系列运算可以求出解为:x<3 求不等式57x -<3
2-x 的最小整数解. 通过去括号、移项、合并同类项等一系列运算可以求出解为:x>
831,故可以得出最小整数为4.
那么含参不等式如下:
在这些需要讨论的情况下,等号最后讨论才方便,不会讨论重合。
例题:1、求不等式kx+2>2x-3的解集
移项、合并同类项、讨论取值
2、(1)求不等式解集mx+a>nx+b
移项、合并同类项、讨论取值
(2)(m-1)x>a2+1对于任意x都成立,则参数m的值为
2、解关于x 的不等式组⎩
⎨⎧+->+-<-8)21(563x m x mx mx mx
3、如果一元一次不等式组⎪⎩⎪⎨⎧≥≤≤-a
x x 432
(1)有解,求a 的取值范围。
(2)无解,求a 的取值范围。
(3)有且只有一个解,求a 的取值范围。
(4)只有两个整数解,求a 的取值范围。
含参不等式的解法教案
![含参不等式的解法教案](https://img.taocdn.com/s3/m/53b160d3cd22bcd126fff705cc17552707225ee9.png)
一、教学目标:1. 让学生掌握含参不等式的解法,能够独立解决相关问题。
2. 培养学生的逻辑思维能力和解决实际问题的能力。
3. 通过对含参不等式的解法的学习,使学生体会数学与实际生活的联系。
二、教学内容:1. 含参不等式的定义及其性质。
2. 含参不等式的解法:图像法、代入法、不等式法等。
3. 含参不等式在实际问题中的应用。
三、教学重点与难点:1. 教学重点:含参不等式的解法及其应用。
2. 教学难点:含参不等式解法的选择和运用。
四、教学方法:1. 采用讲授法,讲解含参不等式的定义、性质和解法。
2. 利用案例分析法,分析含参不等式在实际问题中的应用。
3. 组织学生进行小组讨论和练习,巩固所学知识。
五、教学过程:1. 引入:通过生活中的实例,引导学生关注含参不等式的问题。
2. 讲解:讲解含参不等式的定义、性质和解法。
3. 案例分析:分析含参不等式在实际问题中的应用。
4. 练习:布置相关的练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调重点和难点。
6. 作业布置:布置适量的作业,巩固所学知识。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。
2. 练习完成情况:检查学生练习题的完成质量,评估学生对含参不等式解法的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作意识、交流能力和解决问题能力。
七、教学资源:1. PPT课件:制作含参不等式解法的PPT课件,用于讲解和展示相关内容。
2. 练习题:准备适量的练习题,用于巩固学生对含参不等式解法的掌握。
3. 案例素材:收集一些与含参不等式相关的实际问题,用于案例分析。
八、教学进度安排:1. 第一课时:讲解含参不等式的定义、性质和解法。
2. 第二课时:分析含参不等式在实际问题中的应用,进行案例分析。
3. 第三课时:进行练习和总结,布置作业。
九、课后反思:1. 回顾本节课的教学内容,评估学生对含参不等式解法的掌握情况。
含参不等式的解法教案
![含参不等式的解法教案](https://img.taocdn.com/s3/m/3ec7e637cbaedd3383c4bb4cf7ec4afe04a1b1c6.png)
一、教学目标1. 让学生掌握含参数的不等式的解法,提高他们的数学解题能力。
2. 通过解决实际问题,培养学生运用不等式解决问题的意识。
3. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 含参数不等式的基本概念。
2. 含参数不等式的解法:图像法、代数法、分析法。
3. 实际问题中的应用案例。
三、教学重点与难点1. 教学重点:含参数不等式的解法。
2. 教学难点:如何运用不同的解法解决实际问题。
四、教学方法1. 采用案例教学法,让学生在解决实际问题的过程中掌握含参数不等式的解法。
2. 运用分组讨论法,培养学生的团队协作能力和逻辑思维能力。
3. 利用多媒体教学,直观地展示含参数不等式的解法过程。
五、教学过程1. 导入:通过一个实际问题引入含参数不等式的概念。
2. 基本概念:讲解含参数不等式的定义和性质。
3. 解法讲解:a. 图像法:通过绘制函数图像,分析不等式的解集。
b. 代数法:运用代数运算,求解不等式的解集。
c. 分析法:从不等式的性质出发,推导出解集。
4. 案例分析:运用不同的解法解决实际问题,巩固所学知识。
5. 课堂练习:布置相关练习题,检测学生对含参数不等式解法的掌握程度。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评估1. 课堂练习:通过课堂练习题,及时了解学生对知识的掌握情况,针对性地进行讲解和辅导。
2. 课后作业:布置适量作业,要求学生在规定时间内完成,以检验他们对知识的掌握程度。
3. 小组讨论:观察学生在分组讨论中的表现,了解他们的团队协作能力和逻辑思维能力。
4. 期中期末考试:通过考试全面评估学生对含参数不等式解法的掌握情况。
七、教学资源1. 教材:选用权威、实用的教材,为学生提供系统的学习资源。
2. 教案:制定详细的教学计划和教案,确保教学目标的实现。
3. 课件:制作生动、直观的课件,帮助学生更好地理解含参数不等式的解法。
4. 练习题:收集和编写各类练习题,巩固学生所学知识。
破解含参不等式恒成立的5种常用方法
![破解含参不等式恒成立的5种常用方法](https://img.taocdn.com/s3/m/f35b5a8cc281e53a5802ff99.png)
破解含参不等式恒成立的5种常用方法含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。
对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。
一 分离参数法分离参数法是解决含问题的基本思想之一。
对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。
例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。
分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。
解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,即⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。
)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。
于是工的取值范围为43-≥a 。
【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。
如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。
解这类问题时一定要注意区间的端点值。
二 数形结合法数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。
破解含参不等式问题的几个“妙招”
![破解含参不等式问题的几个“妙招”](https://img.taocdn.com/s3/m/c02732b09f3143323968011ca300a6c30c22f1cd.png)
含参不等式恒成立问题具有较强的综合性,且难度一般较大,通常会综合考查方程、函数、导数、不等式等知识点的应用.解答这类问题,可以从不同的角度入手,寻找到不同的解题思路.下面介绍几个破解含参不等式问题的“妙招”,以帮助大家提升解题的效率.一、数形结合数形结合法是解答数学问题的常用方法.通过数与形之间的相互转化,将不等式恒成立问题转化为函数图象的交点、位置关系问题,即可通过研究图形,破解不等式恒成立问题.在研究图形时,要特别关注临界的情形,如有1个交点、有2个交点、相切等情形.例1.若当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值范围.解:设f 1(x )=(x -1)2,f 2(x )=log a x ,在同一个平面直角坐标系中画出两个函数的图象,如图所示.要使不等式(x -1)2<log a x 在x ∈(1,2)上恒成立,需使f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方,即使a >1,由图可知,在x ∈(1,2)上,f 1(x )∈()0,4,且f 1(x )=(x -1)2的最高点为(2,4),当x =2时,由f 2(x )=log a x =4得a =2,所以a 的取值范围为(1,2].不等式两边的式子都是简单基本函数,于是分别画出两个函数的图象,将不等式恒成立问题转化为f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方的位置关系问题.结合图形来分析f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方的临界情形:两个图象的最高点在同一个位置,即可解题.二、分离参数对于含有参数的不等式恒成立问题,通常需将参数与变量分离,可先将不等式化为一边有参数、另一边无参数的形式;再根据已知条件,讨论不含有参数的式子的取值范围,进而确定参数的取值范围.例2.已知函数f ()x =ax -4x -x 2,当x ∈(0,4]时,f ()x <0恒成立,求实数a 的取值范围.解:由f ()x =ax -4x -x 2<0可得a<,因为函数g ()x在x ∈(0,4]上为减函数,所以在x ∈(0,4]上,函数g ()x>g ()4=0,故a <0,即实数a 的取值范围为(-∞,0).解答本题,要先将实数a 与变量x 分离开;再根据g ()x 的单调性求得当x ∈(0,4]时g ()x 的值域,进而求出实数a 的取值范围.在分离参数时,要注意判断参数的正负值是否会对不等式的符号产生影响.三、分类讨论由于参数的取值往往不确定,所以在解答不等式恒成立问题时,我们通常需要对参数或某些变量进行分类讨论.确定分类讨论的标准和对象是用分类讨论法解题的关键.例3.设f ()x =x 2-2mx +2,当x ∈[-1,+∞)时,f ()x =x 2-2mx +2≥0恒成立,求参数m 的取值范围.解:设F ()x =x 2-2mx +2-m ,则问题就转化为当x ∈[-1,+∞)时,F ()x =x 2-2mx +2-m ≥0恒成立.①当△=4()m -1()m -2<0,即-2<m <1时,F ()x =x 2-2mx +2-m >0恒成立;②当△=4()m -1()m -2≥0时,ìíîïïïï△≥0,F ()-1≥0,--2m 2≤-1,即ìíîïïïï4()m -1()m +2≥0,m +3≥0,--2m 2≤-1,解得-3≤m ≤-2.综上所述,参数m 的取值范围为[-3,1).该不等式为二次式,且二次项的系数大于0,但方程的判别式对函数F ()x 和m 的取值有影响.于是采用分类讨论法,分△≥0和△<0两种情况讨论F ()x ≥0时m 的取值.虽然不等式恒成立问题的难度较大,但是我们只要掌握了解答此类问题的几个“妙招”,就能在解题时做到游刃有余.(作者单位:华东师范大学盐城实验中学)O47Copyright ©博看网. All Rights Reserved.。
含参不等式的解法
![含参不等式的解法](https://img.taocdn.com/s3/m/07544f40581b6bd97e19ea0d.png)
不等式(3)----含参不等式的解法当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。
我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。
解参数不等式一直是高考所考查的重点内容。
(一)几类常见的含参数不等式一、含参数的一元二次不等式的解法:例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。
⑵当-1<m<3时,⊿=4(3-m )>0, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。
⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。
⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为∅。
解:11,|;4m x x ⎧⎫=-≥⎨⎬⎩⎭当时原不等式的解集为 ⎭⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭⎬⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当m>3时, 原不等式的解集为∅。
含参不等式组的解法
![含参不等式组的解法](https://img.taocdn.com/s3/m/605afdde846a561252d380eb6294dd88d0d23de5.png)
含参不等式组的解法在数学中,含参不等式组是一类常见的数学问题。
含参不等式组中含有未知数,并且不等式中的不等式常数(即系数和常数项)均含有参数,因此需要通过对参数的不同取值进行分析,得到不等式组的解。
在解决含参不等式组的问题时,需要掌握一些重要的技巧和方法,下面我们就来详细了解一下。
首先,对于含参不等式组,我们需要对其进行分类讨论。
一般情况下,含参不等式组可以分为两类:一类是一元不等式组,即只含有一个未知数的不等式组,另一类是多元不等式组,即含有多个未知数的不等式组。
对于不同类型的含参不等式组,需要采用不同的方法进行解答。
对于一元不等式组,我们常用的解题方法有以下几种:代数法、图像法、函数法、极值法等。
其中代数法是最常用的方法。
我们可以通过变量替换、置换、解方程等代数方法来找到解题的思路。
对于一元不等式组,我们还可以通过图像法来得到解的范围。
将不等式中的各项表示成两条直线,然后找到两条直线的交点,直线上方的部分即为不等式解的范围。
函数法是在原函数图像变形后的函数图像进行判断解的范围,其计算方法较为简单;而极值法则是通过对函数的一阶导数和二阶导数进行判定,得出函数的极值,从而确定不等式的解。
对于多元不等式组,我们需要采用代数法、几何法、线性规划、拉格朗日乘数法等方法进行解决。
代数法仍然是最常用的方法。
我们需要采用类似于一元不等式组的代数方法,通过消元、替换、解方程等技巧,将多元不等式组转化为一元或二元不等式组,进而得到其解的范围。
几何法则是通过对多元不等式组中各项函数的几何特性进行分析。
利用二维平面或三维空间中的图像,可以清晰地表示出函数之间的关系,从而得到不等式的解。
线性规划是一种常用的数学方法,它可以找到满足约束条件的最优解,常用于工程、经济、管理等领域。
拉格朗日乘数法则是通过对函数的一阶偏导数等条件进行分析,并添加拉格朗日乘数来解决多元不等式组的问题。
总之,解决含参不等式组的问题需要掌握一些基本的解题方法和技巧,同时需要对数学知识有一定的理解和掌握。
不等式组含参问题解法口诀
![不等式组含参问题解法口诀](https://img.taocdn.com/s3/m/7839c5de846a561252d380eb6294dd88d0d23d04.png)
不等式组含参问题解法口诀不等式组含参问题是初中数学中比较重要和难点的一部分内容,不等式组含参有多种解法,这里介绍一些方法及其口诀。
一、图像法通过画出不等式组所对应的直线,在图像上判断交点位置的方法称为图像法。
步骤:1、根据不等式求出直线方程。
2、将直线画出。
3、根据问题中的参数值或限制条件,逐一判断交点位置。
4、找出合法的参数范围,即可得到不等式组的解。
口诀:直线而行,标志清晰。
参数解,交点全描。
于原点,交点证。
或无限,一致性。
例如:解不等式组x+y≥2k2x-y≤3k1、由不等式x+y≥2k 可得直线方程y≥-x+2k ,将其画出。
2、由不等式 2x-y≤3k 可得直线方程 2x-3k≤y,将其画出。
图像如下:3、根据参数k的取值,判断交点位置。
当k=0时,两条直线的交点为(0,2),满足不等式组。
当k=1时,两条直线的交点为(1,1),满足不等式组。
当k=2时,两条直线的交点为(2,0),不满足不等式组。
4、所以,该不等式组的解为0≤k<2 。
二、代入法将一部分不等式中的变量用其他变量表示出来,然后代入另一不等式中去,消去被替换的变量,可以得到只含一个变量的不等式,从而求出参数的范围。
步骤:1、将其中一个不等式中的变量用另一个不等式中的变量表示出来。
2、将代入后的不等式化简,得到只含一种变量的不等式。
3、根据这个变量的取值范围,推出原来不等式组的解。
口诀:解纠结,化简薄。
一变化,再推进。
终得范,系统定。
例如:解不等式组m+n≥203m-2n≤151、将第二个不等式中的 n 用第一个不等式中的式子代入,得到 3m-2(m+n)≤15 。
化简得 m-2n+20≤0 。
2、得到只含 m 的一元一次不等式m≤2n-20 。
3、根据该不等式即可推出原来不等式组的解为n≤10,m≤0 或n≥10,m≥0 。
三、函数法通过将不等式中的变量用函数表达式表示出来,然后研究函数的性质,从而得到参数的取值范围。
含参不等式的解题方法与技巧
![含参不等式的解题方法与技巧](https://img.taocdn.com/s3/m/73f1ce32e97101f69e3143323968011ca300f7bb.png)
含参不等式的解题方法与技巧
1、含参不等式的解题方法与技巧
一、等式的转换
1、将含参不等式化简成两端同乘的等式:用一次列式,将参数移至另一边;
2、将等式乘上一个不含参数的正数k:让参数消去;
3、将等式乘以参数的简单函数^a、^(1/2)、1/x:让参数变成另一个函数或消去;
4、将等式乘以参数的幂函数x^a、x^(1/2):让参数变成另一个函数或消去。
二、不等式的转换
1、将含参不等式化简成两端同乘的不等式:用一次列式,将参数移至另一边;
2、将不等式乘上一个不含参数的正数k:让参数消去;
3、将不等式乘以参数的简单函数^a、^(1/2)、1/x:让参数变成另一个函数,这时一般要保留不等式的方向;
4、将不等式乘以参数的幂函数x^a、x^(1/2):让参数变成另一个函数。
三、解题方法
1、先求出不含参数的区间:让参数的系数取已知值,把不等式化为等式,解出已知系数的不含参数的解;
2、在不含参数的区间内求参数的区间:把不等式再化为等式,
分别令不含参数的解取已知系数的区间的上下两端的值,解出参数的区间;
3、再求参数的解:在参数的区间内分别求解参数的解,得到参数的解。
四、解题技巧
1、确定不等式的方向:通过乘以系数,把等式变为不等式;
2、选择合适的参数:选择不含参数的系数,以使参数的系数取一个易于使用的值;
3、求解参数的解:根据不等式的方向,在参数的区间内,用二分法或牛顿迭代法求解参数的解。
不等式组的含参问题
![不等式组的含参问题](https://img.taocdn.com/s3/m/e69ef9af5ff7ba0d4a7302768e9951e79b89691c.png)
不等式组的含参问题不等式组的含参问题是指在一组不等式中,存在一个或多个参数(未知数),需要求出这些参数的取值范围。
这类问题常见于代数与数学分析课程,对于学生来说是一个重要的考察对象。
在解决含参不等式组的问题时,我们可以考虑以下几个主要的思路和方法:1.图形法:将不等式转化为几何图形,在图形上找出参数的取值范围。
在平面直角坐标系上绘制不等式的图形,通过分析图形的位置、形状和交点等特征,确定参数的取值范围。
这种方法适用于一些简单的不等式组,例如线性不等式组或二次不等式组。
例如,考虑如下不等式组:{x + y ≤ 2,x² + y² ≥ k,x ≥ 0,y ≥ 0}将这些不等式转化为图形,可以发现参数k对应的图形是一个闭合的圆,而x + y ≤ 2确定了圆的位置。
因此,根据参数k的取值,圆可以与直线x + y = 2相交或相切。
2.代数方法:通过运用代数的方法进行计算和推导,求出参数的取值范围。
这种方法通常需要借助不等式之间的关系,推导出参数的上界和下界。
一般来说,在解决含参不等式组的问题时,我们需要考虑以下几种可能的情况:-不等式存在等号的情况:将不等式转化为等式,求出参数的值。
-含有分式的不等式:进行分式的乘法或约分,使得不等式中的分式被消去,然后根据参数的范围,确定解的取值。
-多个不等式的组合:通过将不等式进行叠加或相减,确定参数的范围。
例如,考虑如下不等式组:{x + 2y ≤ n,x - y ≥ n,y ≥ 0}我们可以将第一个不等式左右两边同时减去2y,得到x ≤ n -2y;然后将这个结果代入第二个不等式,得到n - 2y - y ≥ n,即-y ≥ 0,由此得出y ≤ 0。
因此,参数y的取值范围是y ≤ 0。
-不等式的相乘:通过乘法,将一个不等式转化为另一个不等式,然后根据参数的范围,确定解的取值。
例如,考虑如下不等式组:{x + y ≤ a,x - y ≤ a,a > 0,x ≥ 0,y ≥ 0}将这两个不等式相乘,得到(x + y)(x - y) ≤ a²,再根据x ≥ 0和y ≥ 0,可以得到x² - y² ≤ a²,即|x| ≤ a,从而x的取值范围是-x ≤ a且x ≥ 0,即0 ≤ x ≤ a。
不等式含参题型及解题方法初一下册
![不等式含参题型及解题方法初一下册](https://img.taocdn.com/s3/m/0724c02a49d7c1c708a1284ac850ad02de8007dd.png)
不等式含参题型及解题方法初一下册一、不等式含参题型介绍不等式含参题型是初中数学中的重要知识点,通常在初一下册的数学教学中进行学习和训练。
不等式含参题型是指含有未知数的不等式,通过对不等式进行变形求解未知数的取值范围。
二、不等式含参题型的解题方法1.确定不等式的类型和形式在解不等式含参题型时,首先要确定不等式的形式,包括一元一次不等式、一元二次不等式等等。
根据不等式形式的不同,采取相应的解题方法。
2.移项变形对于一元一次不等式,通常采用移项变形的方法进行求解。
通过在不等式两边进行加减运算,将含有未知数的项移到一边,将常数项移到另一边,从而得到未知数的取值范围。
3.化简并求解对于一元二次不等式,通常需要先将不等式进行化简,然后再通过代数方法或图像法求解。
化简包括合并同类项、配方等步骤,通过化简后的形式求解未知数的取值范围。
4.运用不等式性质在解不等式含参题型时,还可以运用不等式的性质进行求解。
常用的不等式性质包括加法性质、乘法性质等,通过这些性质对不等式进行变形和运算,从而得到未知数的取值范围。
5.综合运用在实际的不等式含参题型中,通常需要综合运用以上的方法进行求解。
需要根据具体的不等式形式和题目要求,选择合适的解题方法进行求解,从而得到正确的结果。
三、不等式含参题型的典型例题及解析题目一:已知不等式2x + 3 < 7,求x的取值范围。
解析:首先将不等式进行移项变形,得到2x < 4。
然后将不等式两边都除以2,得到x < 2。
所以不等式2x + 3 < 7的解集为x < 2。
题目二:已知不等式x^2 - 3x + 2 > 0,求x的取值范围。
解析:首先将不等式进行化简,得到(x-1)(x-2) > 0。
然后通过代数方法或图像法对不等式进行求解,得到x < 1或x > 2。
所以不等式x^2 - 3x + 2 > 0的解集为x < 1或x > 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数的一元二次不等式的解法
含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。
一. 二次项系数为常数
例1、解关于x 的不等式:0)1(2>--+m x m x
解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)
(1)当1<-m 即m<-1时,解得:x<1或x>-m
(2)当1=-m 即m=-1时,不等式化为:0122
>+-x x ∴x ≠1
(3)当1>-m 即m>-1时,解得:x<-m 或x>1
综上,不等式的解集为:
(){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当
(){}1-|,13><->x m x x m 或时当
例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解) 解:()a a 422--=∆ (方程有没有根,取决于谁?)
()()R a a a 时,解集为即当32432404212+<<-<--=∆
()()32432404222+=-==--=∆a a a a 或时当
(i )13324-≠-=x a 时,解得:当
(ii )13-324-≠+=x a 时,解得:当
()()时或即当32432
404232+>-<>--=∆a a a a 两根为()242)2(21a
a a x --+-=,()242)2(22a a a x ----=
. ()()242)2(242)2(22a a a x a
a a x --+->----<或此时解得:
综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,2
48)2(2a a a ); 二.二次项系数含参数
例3、解关于x 的不等式:.01)1(2<++-x a ax
解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式a
x x a x 1
0)1)(1(<⇔>--⇔或.1>x
若0>a ,原不等式.0)1)(1(<--⇔x a
x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;
(2)当1>a 时,式)(*11<<⇔
x a
; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为:
①当0<a 时,{11
><x a x x 或};
②当0=a 时,{1>x x };
③当10<<a 时,{a x x 1
1<<};
④当1=a 时,φ;
⑤当1>a 时,{11
<<x a x }.
例4、解关于x 的不等式:.012<-+ax ax
解:.012<-+ax ax
(1)当0=a 时,.01R x ∈∴<-原式可化为
(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,a a
a a x 2422+--=.
解得:a a
a a 242+--a a
a a x 242++-<<
(3)当a<0时, 原式可化为:01
2>-+a x x
a a 4
+=∆此时
①当0<∆即04<<-a 时,解集为R ;
②当0=∆即4-=a 时,解得:21
-≠x ;
③当0>∆即4-<a 时解得:或a a a a x 242+-->a
a
a a x 242
++-<
综上,(1)当0>a 时,解集为(a a a a 242+--,a a
a a 242++-);
(2)当04≤<-a 时,解集为R ;
(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,2
1);
(4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242a a a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如:
解关于x 的不等式:033)1(22>++-ax x a
解:033)1(22>++-ax x a )(*
1012=⇒=-a a 或1-=a ;
203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;
∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;
当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);
当12-<<-a 时,012>-a 且0>∆,
)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);
当11<<-a 时,012<-a 且0>∆,
)(*解集为(22312322----a a a ,2
2312322
--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);
当21<<a 时,012>-a 且0>∆,
)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);
当2>a 时,012>-a 且0<∆,)(*解集为R .
综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1); 当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,2
2312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).
通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。