北师大版初二数学上册一元一次方程与一次函数的关系(微课)
北师大版八年级数学上册《4.5 一次函数的应用(第1课时)》课件
某植物t天后的高度为ycm,图中的l反映了y与t之间的关系, 根据图象回答下列问题:
y/cm
(1)植物刚栽的时候多高?9cm
24 21
(12,21)l (2)3天后该植物多高?12cm
18
15
(3)几天后该植物高度可达21cm?
12 9
(3,12)
6
12天
3
0 2 4 6 8 10 12 14 t/天
求一元一次方程 kx+b=0的解. 从“函数值”看
一次函数y= kx+b
中y=0时x的值.
求一元一次方程 kx+b=0的解. 从“函数图象”看
求直线y= kx+b 与 x 轴交点的横 坐标.
探究新知
知识点 2 一次函数与一元一次方程
我们先来看下面两个问题: (1)解方程0.5x+1=0. (2)当自变量x为何值时函数y=0.5x+1的值为0? 思考 1.对于0.5x+1=0 和y=0.5x+1,从形式上看,有什么相同和不同? 2.从问题本质上看,(1)和(2)有什么关系?
探究新知
问题(1)解方程0.5x+1=0,得x=-2. 问题(2)就是要考虑当函数y=0.5x+1的值为( 0 )时
变量x等于 2 时的函数值是8.
课堂检测
基础巩固题
3. 直线 y ax b 在坐标系中的位置如图,则
方程 ax b 0 的解是x=_-_2_.
y
2
-2
00
x
课堂检测
基础巩固题
4.根据图象,你能直接说出一元一次方程 x 3 0
的解吗?
y
解:由图象可知x+3=0的
新版北师大版八年级数学上册第四章一次函数全章课件
(2)由圆的面积公式,得y=πx2,y不是x的正比例函数, 也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5x m3水,因 而y=15+5x,y是x的一次函数,但不是x的正比例函数.
二、新课讲解
例2 我国自2011年9月1日起,个人工资、薪金所得税征 收办法规定:月收入不超过3500元的部分不收税;月收 入超过3500元但不超过5000元的部分征收3%的所得 税……如某人月收入3860元,他应缴纳个人工资、薪金 所得税为(3860-3500)×3%=10.8(元). (1)当月收入超过3500元而又不超过5000元时,写出 应缴纳个人工资、薪金所得税y(元)与月收入x(元)之 间的关系式; (2)某人月收入为4160元,他应缴纳个人工资、薪金所 得税多少元? (3)如果某人本月缴纳个人工资、薪金所得税19.2元, 那么此人本月工资、薪金收入是多少元?
吗?
当t>-273时,t+273>0,即T>0,满足T≧0. 故给定一个大于-273℃的t值,能求出相应的T值.
二、新课讲解
在上面各例中,都有两个变量,给定其中某一个变量 的值,相应地就确定了另一个变量的值.
一般地,如果在一个变化过程中有两个变量x和y,并 且对于变量x的每一个值,变量y都有唯一的值与它对应, 那么我们称y是x的函数,其中x是自变量.
温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有 如下数量关系:T=t+273,T≧0.
(1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热
力学温度T是多少? 根据T=t+273,当t=-43℃时,T=230K;当t=-27℃
时,T=246K;当t=0℃时,T=273K;当t=18℃时, T=291K. (2)给定一个大于-273℃的t值,你都能求出相应的T值
北师大版数学八年级上册第四章《一次函数》第3节《一次函数的图像》第一课时
教学设计4.3 一次函数的图象(第1课时)教材的地位和作用《一次函数的图象》是义务教育课程标准北师大版八年级(上)第四章《一次函数》的第三节.在学习本节课之前,学生已学习了平面直角坐标系、变量与函数、以及一次函数与正比例函数的概念等相关的知识。
学生能在平面直角坐标系中熟练的表示一个点,为画图像做好的充分铺垫作用。
本节课也是后续学习反比例函数、二次函数图像和性质的重要基础。
数形结合的思想是本节课的主要数学思想。
教学目标知识与技能:了解正比例函数的图象是一条直线,能熟练画出正比例函数的图像。
理解正比例函数表达式与图象之间的一一对应关系。
过程与方法:经历正比例函数图像画法的探索过程,体会“数”“形”结合的数学思想在问题解决中的作用,并能运用图像及数形结合的思想解决相关函数问题。
情感态度与价值观:在动手画图过程中,培养学生的合作意识和大胆猜想、乐于探索的学习意志。
体验“数”与“形”的转化过程,让学生感受函数图像的美妙,激发学生学数学的兴趣。
教学重、难点:重点:初步了解作函数图象的一般步骤:列表、描点、连线.会画出正比例函数的图像,正比例函数的图像是一条直线。
难点:理解一次函数的代数表达式与图象之间的一一对应关系,正比例函数的性质以及|k|的大小对正比例函数的影响。
教学过程:一、温故知新1、一次函数和正比例函数的定义是什么?2、表示函数的方法有哪几种?二、探究新知1、函数的图像(1)用图象表示的函数关系举例:摩天轮上一点的高度h与旋转时间t之间函数关系的图像。
(2)函数的图像定义把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象。
(3)举例正比例函数y=2x当自变量x=1时,相应的函数值y=2,我们把1作为点的横坐标,相应y 的值2作为纵坐标,从而得到一个点(1,2)再取一组,当自变量x=2时,相应的函数值y=4,我们把2作为点的横坐标,相应y的值4作为纵坐标,从而得到另一个点(2,4)……这样我们能得到很多的点,所有这些点组成的图形就叫做该函数的图象。
北师大版八年级数学上册第四章一次函数专题一次函数的应用课件
专题课堂 一次函数的应用
北师大版八上教学课件
分段函数(折线函数问题) 根据分段函数图象上点的意义,列出函数表达式,解决实际问题. 例1:某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用 户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示. (1)求y关于x的函数表达式; (2)若某用户二、三月份共用水40 m3(二月份用水量不超过25 m3),缴纳水费 79.8元,则该用户二、三月份的用水量各是多少立方米?
达式为 s=-12t+30,当 s=2 时, t=73 ,73 -1.25=1132 (h)=65 min. 故相遇后,乙又骑行了 15 min 或 65 min 时两人相距 2 km.
4.如图是甲、乙两人行驶路程y(千米)与时间x(时)之间的函数关系的图象, 根(1)据甲图的象速回度答为:______4_90_千__米__/_时_,乙的速度为______47_0_千__米__/时_; (2)后者用了_____3_._5__小时追上前者; (3)追上时他们各走了______2_0_千米.
2.已知一次函数y=kx-4,当x=2时,y= -3. (1)求一次函数的关系式. (2)将该函数的图象向上平行移动6个单位,求平行移 动后的图象与x轴交点的坐标.
【解析】(1)将x=2 , y=-3代入y=kx-4,
得-3=2k-4, 得k = 1 .
2
所以一次函数的关系式为
y 1 x 4.
2.为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费
的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电
量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计
北师版数学八年级上册第2课时 一次函数的图象和性质课件
y=-x+3
y=-x
3 2 -3 -2 -1 1
-1 -2
y=2x+3 -3
y=5x-2
123
( 3) 直线 y=2x+3与 直 线 y=-x+3 有 什 么 共 同 点 ? 一 般地,你能从函数y=kx+b数 y=kx+b 的图象经过点(0,b).当 k>0时,y 的值随着 x 值的增大而增大;当 k<0时,y 的值随着 x 值的增大而减小
y=-x+3
y=-x
3 2 -3 -2 -1 1
-1 -2
y=2x+3 -3
y=5x-2
123
(1)上述四个函数中, 随着 x 值的增大,y 的值 分别如何变化?相应图象 上点的变化趋势如何?
y=-x+3
y=-x
3 2 -3 -2 -1 1
-1 -2
y=2x+3 -3
y=5x-2
123
(2)直线y=-x与y=-x+3的 位置关系如何?你能通过 适当的移动将直线y=-x变 为直线y=-x+3吗?一般地, 直 线 y=kx+b 与 y=kx 又 是 怎 样的位置关系呢?
课后作业
布置作业:习题4.4 1、2、3、4 。 完成练习册中本课时的习题。
►If I had not been born Napoleon, I would have liked to have been born Alexander. 如果今天我不是拿破仑的话,我想成为亚历山大。
►Never underestimate your power to change yourself! 永远不要低估你改变自我的能力!
初中数学北师大八年级上册第四章一次函数一次函数的图像() -课件
123 x
y 1 x 2
y4x yx
k 越大函数图象越靠近y轴
练习3
1、关于函数y= -3x,图象经过
象限,y随x的增
大而 ,函数的图像 (经过,不经过)点(-1,-3)
2、关于函数y= 2x,图象经过 象限,y随x的增而 ,
函数的图像 (经过,不经过)点(-1,2)
3 、正比例函数的图像经过点(2,4),那么这个正比
( 2 ) 正比例函数y=-2x的图象 上的点(x,y)都满足它的关系 式吗?
y=-2x y
5
•
4
3
•2
•1
( 3 ) 正比例函数y=kx的图象有什
么特点?
-2 -1
01 2 3
-•1
x
-2
-3 •
总结
正比例函数y=kx的图象是一条经过原点的直线。
因此,画正比例函数图象时,只要再确定一 个点,过这点与原点画直线就可以了(两点 法)。
y=-2x … 4 2 0 -2 -4 …
⑵再描点连线
y
5
•
4
1. 列表
作函数图 象的步骤
3
•2 •1
2. 描点 3. 连线
-2 -1
01 2 3
-•1
x
-2
-3 •
归纳
为三步:
画图象的步骤可以概括.
( 1 ) 满足关系式y=-2x的x,y所对应的点(x,y)是 否都在它的图象上?
练习2 下列各点哪些在函数y=4x的图象上?
( C) A (-1, -2)
B ( 3, 2 )
C ( 1, 4)
D (0, 1)
在同一直角坐标系 y 内画出y=2x,y=x, y 1 x 的图象。
北师大版八年级数学上册《一次函数》教案
北师大版八年级数学上册《一次函数》教案一、教学目标首先我们希望同学们能够理解一次函数的基本概念,对于八年级的学生来说,我们不仅仅是记住这个概念,更希望同学们能真正明白一次函数是什么,它的特点是什么。
我们希望同学们能够主动思考,从实际生活中找到一次函数的例子,真正体会到数学与实际生活的联系。
1. 知识与技能:本节课我们将要学习一次函数,提到函数大家可能会觉得是个听起来很高大上的内容。
但实际上函数与我们日常的生活息息相关,这次我们要深入了解一次函数的基础知识,为后续的数学学习打下坚实的基础。
一次函数是数学中的基础概念之一,通过本节学习,学生应明确掌握一次函数的定义和表现形式。
简单来说一次函数就是自变量和因变量之间呈现一种线性关系的函数。
这种线性关系可以通过一个方程式来表示,例如大家熟悉的ykx+b。
其中k是斜率,表示函数的增减性;b是截距,表示函数与y轴的交点。
掌握了这两个要素,就等于掌握了理解一次函数的关键。
学习一次函数,不仅仅是记住定义和公式那么简单。
更重要的是,要掌握函数的性质和应用。
通过本章节的学习,学生将了解一次函数的单调性、图象(是一条直线)等关键特性。
这些都是在解决实际问题时会用到的关键知识点,掌握了这些性质,就意味着具备了利用数学工具解决实际问题的能力。
同学们将会发现,数学原来可以这么有趣和实用!学习的最终目的是应用,在本节课的最后阶段,我们将通过一些具体的例子,让学生尝试将所学知识应用到实际问题中去。
比如日常生活中的距离、速度和时间的关系问题,或者是更为复杂的实际应用场景,比如水电费的计算等。
通过这些实际应用,让学生更加深刻地理解一次函数的重要性和实用性。
相信同学们一定能在实践中感受到数学的魅力!2. 过程与方法:我们先来回顾一下之前学过的知识,比如线性方程,这样可以帮助我们更好地理解一次函数的概念。
通过实例引出一次函数,让学生感受到一次函数在生活中的实际应用,增加学生的学习兴趣。
北师大版数学八年级上册 4.4 一次函数的应用
t(s)
典例精析
例1 求正比例函数 y (m 4)xm215 的表达式.
解:由正比例函数的定义知 m2-15=1 且 m-4≠0, ∴ m=-4. ∴ y=-8x.
方法总结:利用正比例函数的定义确定表达式: 自变量的指数为 1,系数不为 0,常数项为 0.
想一想:确定正比例函数的表达式需要几个条件? 一个
北师大版数学八年级上册
第四章 一次函数
4.4 一次函数的应用
第3课时 两个一次函数图象的应用
观察与思考
y
观察下图,你能发现它们三条函数直 线之间的差别吗?
O
x
两个一次函数的应用
引例:l1 反映了某公司产品的销售收入与销售量的关系,
根据图意填空:当销售量为 2 吨时,销售收入=2000元,
y/元
∴在弹性限度内,y = 0.5x + 14.5. 当 x = 4 时,y = 0.5×4+14.5 = 16.5(厘米). 故当所挂物体的质量为 4 千克时弹簧的长度为 16.5 厘米.
归纳总结
解此类题要根据所给的条件建立数学模 型,得出变化关系,并求出函数的表达式, 根据函数的表达式作答.
正比例函数 y = kx(k≠0)
典例精析 例1 某种摩托车加满油后,油箱中的剩余 油量 y (升)与摩托车行驶路程 x (千米)之间的关系如 图所示: y/升
10 8 6 4 2
0 100 200 300 400 500 x/千米
根据图象回答下列问题:
y/升 (1)油箱最多可储油多少升?
10
8 6
解:当 x = 0 时,y = 10.
应用与延伸
试问: (2)加油前每 100 千米耗油多 少升? 加油后每 100 千米耗油多少升?
新北师大版数学八年级上《4.4一次函数的应用》精品教案
4.4 一次函数的应用(第1课时)一、学生起点分析本节课之前,学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。
在此基础上引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.二、教学任务分析本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念---基本量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于k、b的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.本节课的教学目标是:①了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.②经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;③经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.三、教学过程设计本节课设计了六个教学环节:本节课设计了六个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.第二环节初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结。
北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT精品课件
零.
样
式
2200232/35//45/4
9
•
•
•
• •
例典单1例:精击写析此出处下编列各辑题母中版y与标题x之样间式的三级关二级 单击此处系式,并判断单击此
:•y单是击否此为处编x的辑母一版次文函本样数式?是否为五 四级正比编辑例函数? (1)• 二汽•级三车级 以60km/h的速度匀速级行驶,行母版 驶路程为
击 此 处 编
但m-1• ≠三0•级,四即级 m≠1,
版 文
辑
• 五级
所以m=-1.
本
母
样 式
版
4.若函数y=(m-3)x+m2-9是正比例函数,求m的值. 标
解:根据题意,得m2-9=0,
题
解得m=±3,
样 式
但m-3≠0,即m≠3,
所以m=-3.
2200232/35//45/4
18
•
•
•
• •
样 式
y=60-0.12x
2200232/35//45/4
6
•
•
•
• •
单
单
上单•(1单面)•击y击二=的此级3此+处两0处编.个5辑x编函母版数辑文关母本系样版式式标: 题样五级大两有式四级个家什三级讨么函二级论关数击此处编辑母关一系?系下,式这
击 此 处 编
(2) y=• 三60级-0.12x • 四级
辑
• 五级
本
母
一次 函数
正比例函数的概样式念
版 标
题
函数关系式的确定
样
式
2200232/35//45/4
23
5 kg 时• 三的•级四级长度,并填入下表:
一次函数与一元一次方程之间的关系
一次函数与一元一次方程之间的关系1. 概述一次函数与一元一次方程是初等数学中的重要概念,它们之间存在着密切的通联。
通过研究一次函数与一元一次方程之间的关系,可以帮助我们更好地理解数学概念,提升解决实际问题的能力。
2. 一次函数的定义一次函数是指形式为y=ax+b的函数,其中a和b是常数且a不等于零。
一次函数的图像是一条直线,因此也称为线性函数。
一次函数的特点是经过点(0,b),斜率为a。
3. 一元一次方程的定义一元一次方程是指形式为ax+b=0的方程,其中a和b是已知常数且a不等于零。
一元一次方程的解是使得等式成立的未知数的值。
4. 一次函数与一元一次方程的关系一次函数与一元一次方程之间有着密切的通联。
通过一次函数的表达式y=ax+b,我们可以得到一元一次方程ax+b=0。
而通过一元一次方程ax+b=0,我们也可以得到一次函数的表达式y=ax+b。
5. 一次函数的斜率与一元一次方程的解一次函数的斜率a代表了直线的倾斜程度,而一元一次方程的解x就是使得方程成立的值。
通过一次函数的斜率a,我们可以判断直线的走势,而通过一元一次方程的解x,我们可以得到使得等式成立的值。
6. 一次函数的图像与一元一次方程的解一次函数的图像是一条直线,而一元一次方程的解对应了直线与x 轴的交点。
通过一次函数的图像,我们可以直观地看出直线与x轴的交点坐标,而通过一元一次方程的解,我们可以计算出交点的具体数值。
7. 解一元一次方程画一次函数的图像通过解一元一次方程来画一次函数的图像是一种常见的方法。
首先根据一元一次方程ax+b=0,求出未知数x的值,然后将这些值代入一次函数的表达式y=ax+b,得到对应的y值,最后用这些点画出一次函数的图像。
8. 画一次函数的图像解一元一次方程通过画一次函数的图像来解一元一次方程也是一种常见的方法。
首先根据一次函数的表达式y=ax+b,画出函数的图像,然后找到直线与x轴的交点坐标,即为一元一次方程的解。
八年级数学上册4.4一次函数的应用一次函数与一元一次方程有怎样的关系素材北师大版(new)
【问题】二、一次函数与一元一次方程有怎样难易度:★★★关键词:关系答案:一次函数的函数值为某一数值时,相应的自变量为方程的解。
【举一反三】典题:已知一次函数y=3x—1经过点(1,2),则方程3x—1=2的解是__。
思路导引:本题可直接解一元一次方程得出结果;也可根据一次函数与一元一次方程的关系,直接得出x=1.标准答案:x=1.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
北师大版数学八年级上册4.一次函数的应用(第3课时)课件
y/元
6000 5000 4000 3000 2000 (0,2000)
l1
y=1000x
关系式设为y1=k1x,
l2
y=500x+2000 只需要一个点的坐标.
y=k1x 4000=4k, k=1000
(4,4000)
l2的图不过原点
y=1000x (0,2000)(4,4000)
1000 O
1 23
O
l2 A l1 B
2 4 6 8 10
t /分
即10分钟内,A行 驶了2海里,B行
P94例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶, 边防局迅速派出快艇B追赶(如图).
快艇
海
B
岸
A 可疑船
公
海
下图中 l1 ,l2 分别表示两船相对于海岸的距离s与追赶时间t之间
的关系.根据图象回答下列问题:
(1)哪条线表示快艇B到海岸的距离与追赶时间之间的关系?
s /海里
8 6 4 2
北师大版 数学 八年级上册
第四章 一次函数
4.4.3 一次函数的应用
第3课时 复杂一次函数的应用
学习目标
1.进 一 步 训 练 识 图 能 力 , 通 过 函 数 图 象 获 取 信 息 , 解 决 简单的实际问题。
2.在 函 数 图 象 信 息 获 取 过 程 中 , 进 一 步 培 养 数 形 结 合 意 识,发展形象思维。
该公司盈利(收入大于成 6000
本); 当销售量 小于4吨 时,
5000
该公司亏损(收入小于成 4000
本) ;
3000
2000
1000
O
销售收入
一元一次不等式和一次函数关系
一次函数与一元一次方程教学目标①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题.②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想.③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想. 教学重点与难点重点:一次函数与一元一次方程的关系的理解.难点:一次函数与一元一次方程的关系的理解.教学设计导语前面我们学习了一次函数.实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存.它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系.这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题.这是我们学习数学的一种很好的思想方法.注:点明学习本节内容的必要性:(1)函数与方程、方程组、不等式有着必然的联系;(2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法.给学生一个本节内容的大致框架.引入新课我们先来看下面的两个问题有什么关系:(1)解方程2x+20=0.(2)当自变量为何值时,函数y=2x+20的值为零?问题:①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?②从问题本质上看,(1)和(2)有什么关系?③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?注:用具体问题作对比,帮助学生理解.在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题.探讨归纳从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致.你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)师生共同归纳(教科书39页)(略)让学生在探究过程中理解两个问题的同一性.练习巩固1.以下的一元一次方程问题与一次函数问题是同一个问题解:(略)注:第4题为开放题,鼓励学生有自己的想法与见解.如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等2.根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?解:5x=0的解是x=0;x+2=0的解是x=-2;-3x+6=0的解是x=2;由图象可得函数关系式是y=x-1,从而得出x-1=0的解是x=1.注:此处练习为补充.可以帮助学生在积累了一些理性认识的基础上,增加更多的形象了解.综合应用教科书P.39 例1(略)解法1(略)解法2(略)对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值.鼓励学生进一步思考.注:例1可看成是一次函数与一元一次方程关系的一个直接应用.归纳提高框图化小结:从数的角度看:求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0从形的角度看:求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标从数和形两方面总结,帮助学生建立数形结合的观念.布置作业1.必做题:(1)教科书P.45 习题11.3第1、2题.(2)根据下列图象你能写出哪些一元一次方程的解?(3)某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高多少km时,他们所在位置的气温是-3℃?教科书上练习题量可能不足,必做题(2)、(3)为补充题.2.选做题(1)把一个长10cm,宽5cm的矩形的长减少,宽不变.当长减少多少cm时,矩形的面积为30cm2?(2)已知方程ax+b=0的解是-2,下列图象肯定不是直线y=ax+b的是( )A.B.C.D.3.备选题(1)从A地向B地打长途电话,通话3分钟以内收费2.4元,3分钟后每增加通话时间1分钟加收1元.通话半小时需要多少费用? (答案:29.4元)(2)如右图,利用直线y=x+1,你能求出哪些方程的近似解?清写出五个方程及对应的解.设计思想用函数的观点看方程,是学生应该学会的一种数学思想方法.与老教材相比,这种观点的形成与确立,明显前移.本节课的设计,考虑到了学生形成观点的需要,更考虑到了学生对函数与方程之间的关系的理解.因而在具体的教学过程中,应当侧重帮助学生形成观点,忽略画图象等已会环节,并通过较多的补充例题及课后练习,帮助学生抓住重点,理解函数与方程之间关系的本质所在.同时也应重视教科书上例1那样的完整示例.本节课的设计,旨在让学生在理解数学本质的基础上,学得形象,学得轻松;既能规范地解决本节课的有关习题,又有数学观点上的升华.背景资料函数思想与方程思想函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点构造数学对象,抽象其数学特征,建立函数关系.在解决某些数字问题时,先设定一些未知数,然后把它们当作已知数,根据题设本身各量间的制约,列出等式;所设未知数沟通了变量之间的关系;这就是方程的思想.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数若有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数.一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数相等时自变量的取值.因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题也可以用方程的方法解决.。
新北师版初中数学八年级上册4.3第2课时一次函数的图象和性质.ppt2公开课优质课教学设计
43 一次函数的图象第2课时一次函数的图象和性质一、学生起点分析八年级学生已初步认识了变量之间的相依关系,积累了研究变量之间关系以及图象的一些方法和初步经验在此基础上,学生能在“引导——探究——发现”式的课堂教学中积极参与讨论问题,大胆发表自己的见解和看法但由于初中学生的年龄特点,他们借助直观、具体的图象更容易理解抽象的一次函数图象的变化规律及其性质二、教学任务分析《一次函数的图象》是义务课程标准北师大版实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时完成第1课时让学生了解了作正比例函数图象的方法,并通过作图的操作过程,明确正比例函数的图象性质本节课为第2课时,主要是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质与原传统教材相比,新教材更注重借助感性材料,让学生在具体操作中获得有关一次函数图象的变化规律以及在具体图象中函数值的增减性和增减速度、具体直线之间的平行、相交等位置关系,实际上,这一过程,也是培养学生数形结合的意识和能力的好机会,并为今后继续学习一次函数的应用以及一次函数与二元一次方程的关系打下基础为此,本节课的教学目标是:1了解一次函数两个变量之间的变化规律在认识一次函数图象的基础上,掌握一次函数图象及其简单性质;2经历对一次函数图象变化规律的探究过程,学会解决一次函数问题的一些基本方法和策略;3在结合图象探究一次函数性质的过程中,增强学生数形结合的意识,渗透分类讨论的思想;4通过对一次函数图象及性质的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力三、 教学过程设计本节课设计了六个教学环节:第一环节: 图片展示;第二环节:复习引入;第三环节:活动探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置第一环节:创设情境内容:展示一些与实际生活息息相关的图片说明在我们生活中,有许许多多这样的图案,这些图象当中蕴含着某些规律,人们利用这些规律,能更合理地作出决策或预测目的:通过富有现实意义的图片展示,引入生活中熟悉的图片,使学生感受到图象里蕴含的某些规律可以使人们作出合理、科学的决策,激发学生的求知欲望,感受图象的实用价值说明:通过欣赏这些生活中的图象,学生感受到图象中所蕴含的规律,激发了学生的好奇心和求知欲第二环节:复习引入内容:在前面,我们已经学会了绘制正比例函数图象,明确了正比例函数图像的有关性质,那么一次函数图象中又蕴含着什么规律,这节课我们就研究一次函数图象的性质首先,我们复习一下上节课所学习的知识复习提问:(1)作函数图象有几个主要步骤?(2)上节课中我们探究得到正比例函数图象有什么特征?目的:学生回顾上节课学习的内容,为进一步研究一次函数的图象和性质做好铺垫在上节课的探究中我们得到正比例函数图象是过原点的一条直线本节课主要内容是对一次函数y kx b =+中常数k 、b 对图象的影响进行探究本节课也可从第二环节复习引入开始,直接进入本课题的学习说明:学生通过知识回顾,再次明确正比例函数图象的一些特征,为学习本节课在知识上作好准备第三环节: 活动探究1、合作探究,发现规律内容:观察在同一直角坐标系内的下列一次函数的图象2,5,621-==+=x y x y x y )(;.321,2,6)2(--=-=+-=x y x y x y 得出结论:一次函数图像是一条直线因此作一次函数图像时,只要确定两个点,再过这两个点作直线就可以了一次函数y kx b =+的图像也称为直线y kx b =+议一议:(1)观察图象,它们分别分布在哪些象限(2)观察每组三个函数的图象,随着值的变化,y 的值在怎样变化?(3)从以上观察中,你发现了什么规律?归纳出一次函数图象的特点:在一次函数y kx b =+中当0k >时,y 随的增大而增大,当b >0时,直线必过一、二、三象限; 当b <0时,直线必过一、三、四象限;当0k <时,y 随的增大而减小,当b >0时,直线必过一、二、四象限;当b <0时,直线必过二、三、四象限目的:归纳出一次函数图象中系数,b 对函数图象的影响。