高二理科数学考试试卷

合集下载

高二数学(理科)期末试卷

高二数学(理科)期末试卷

高二数学(理科)期末试卷
本文档为高二数学(理科)期末试卷的题目和答案。

试卷题目包
括选择题、填空题、计算题和证明题。

试卷内容涵盖了高二数学课
程的各个知识点。

选择题部分包括了多项选择题和单项选择题,考察了学生对数
学概念和定理的理解和应用能力。

填空题部分要求学生填写正确的数值或表达式,考察了学生对
问题的分析和解决能力。

计算题部分要求学生进行具体的计算操作,涉及到数值运算、
代数运算、几何运算等,考察了学生对运算方法和计算规则的掌握。

证明题部分要求学生运用已学的数学理论和方法进行推导和证明,考察了学生的逻辑思维能力和数学推理能力。

试卷内容难度适中,旨在检测学生对高二数学知识的掌握程度
和应用能力。

根据试卷得分,可以评估学生的数学水平,并作出针
对性的教学调整。

希望本次期末试卷能够促进学生对数学学科的兴趣和研究动力,帮助他们提升数学能力和解决问题的能力。

对于学生来说,认真复课堂内容和做好试卷的备考是取得好成
绩的关键。

希望学生们抓住这次机会,全力以赴,取得优秀的成绩。

祝愿每位学生都能在高二数学(理科)期末试卷中取得好成绩!。

高二理科数学测试题及其参考答案

高二理科数学测试题及其参考答案

高二数学练习测试题(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“[]1,0x ∀∈-,2320x x -+>”的否定是( ) A .[]1,0x ∀∈-,2320x x -+< B .[]1,0x ∀∈-,2320x x -+≤ C .[]01,0x ∃∈-,200320x x -+≤D .[]01,0x ∃∈-,200320x x -+<2.已知0,a b <<则下列结论正确的是( ) A .22a b <B .1a b< C .2b aa b+> D .2ab b >3.已知双曲线C :22221x y a b-=(0a >,0b >)的离心率为3,双曲线C 的一个焦点到它的一条渐近线的距离为22,则双曲线C 的方程为( )A .22198x y -=B .2218x y -=C .2218y x -=D .22189x y -=4.下列说法错误的是( ) A .“1a >”是“11a<”的充分不必要条件 B .“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” C .命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥ D .若p q ∧为假命题,则p ,q 均为假命题5.四棱锥P ABCD -中,底面ABCD 是平行四边形,点E 为棱PC 的中点, 若23AE xAB yBC zAP =++,则x y z ++等于( )A .1B .1112C .116D .26.已知0x >,0y >.且211x y+=,若2x y m +≥恒成立,则实数m 的取值范围是( ) A .(,7]-∞B .(7),-∞C .(,9]-∞D .(,9)-∞7.数列{}n a 是等差数列,n S 为其前n 项和,且10a <,202020210a a +<,202020210a a ⋅<,则使0nS <成第5题图立的最大正整数n 是( ) A .2020B .2021C .4040D .40418.在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,AB BC =,22AC =,12AA =,点E 为11AC 的中点,点F 在BC 的延长线上且14CF BC =,则异面直线BE 与1C F 所成的角为( ) A .90°B .60°C .45°D .30°9.椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于P ,Q 两点,若1F PQ ∆为等边三角形,则椭圆的离心率是( )A .22B .23C .32D .3310.我国古代数学名著《孙子算经》载有一道数学问题:“今有物不知其数,三三数之剩二,五五数之剩二,七七数之剩二,问物几何?”根据这一数学思想,所有被3除余2的正整数从小到大组成数列{}n a ,所有被5除余2的正整数从小到大组成数列{}n b ,把数{}n a 与{}n b 的公共项从小到大得到数列{}n c ,则下列说法正确的是( ) A .122a b c +=B .824b a c -=C .228b c =D .629a b c =11.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83 C .5 D .16312.如图,在正方体1111ABCD A BC D -中,M 为线段1C D 上的动点,则下列结论错误的是( ) A .11A M BD ⊥B .三棱锥11M AB D -的体积与点M 的位置有关C .异面直线BM 与1AB 所成角的取值范围是[]60,90︒︒ D .直线1D M 与平面11AB D 所成角的正弦值的最大值为63第11题图第12题图第8题图二、填空题(本大题共4小题,每小题5分,共20分)13.若,x y 满足约束条件20202.x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,,则3z x y =+的最大值为__________.14.设等差数列{}n a 的前n 项和为n S ,若5324a a =+,则13S =________.15.已知椭圆22:1123y x C +=,那么过点()1,2P -且被点P 平分的弦所在直线的方程为__________.16.在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,1PA =,2PB =,且ABC ∆的面积为PC 的长为___________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17(本小题满分10分)已知a R ∈,命题p :[]1,2x ∀∈,2a x ≤;命题q :0x R ∃∈,2002(2)0x ax a +--=. (Ⅰ)若p 是真命题,求a 的最大值;(Ⅱ)若p q ∨是真命题,p q ∧是假命题,求a 的取值范围.18(本小题满分12分)设函数2()(2)3f x ax b x =+-+. (Ⅰ)若不等式()0f x >的解集为()1,1-,求实数,a b 的值;(Ⅱ)若()10f =,且存在x ∈R ,使()4f x >成立,求实数a 的取值范围.19(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且n n S a 和2na 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .20(本小题满分12分)已知抛物线24y x =的焦点为F ,直线l 斜率为1,直线l 与抛物线交于A 、B 两点,与x 轴交于点P(Ⅰ)若8AF BF +=,求直线l 方程; (Ⅱ)若2AP PB =,求AB .21(本小题满分12分)如图,在直四棱柱1111ABCD A BC D -中,四边形ABCD 为平行四边形,1,2BC BD AB ===,直线1CC 与平面1A BD 所成角的正弦值为33. (Ⅰ)求点1C 到平面1A BD 的距离;(Ⅱ)求平面1A BD 与平面1C BD 的夹角的余弦值.22(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右两个焦点分别是1F ,2F ,焦距为2,点M 在椭圆上且满足212MF F F ⊥,123MF MF =. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)点O 为坐标原点,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,证明2211||||OA OB +为定值,并求出该定值.第21题图高二理科数学测试题参考答案1.C解:根据全称命题的否定是特称命题可得,“[]1,0x ∀∈-,2320x x -+>”的否定为“[]01,0x ∃∈-,200320x x -+≤”.故选:C. 2.B解:当2,1a b =-=时,221252,212b a a b a b ->+=-+=-<,则AC 错误; 220,0,ab b ab b <>∴<,则D 错误;01ab<<,则B 正确;故选:B 3.C解:∵3e ==,∴228b a =,设双曲线C 的焦点(),0c ±,其中222c a b =+ 双曲线C :22221x y a b-=的渐近线方程为:0x y a b ±=,即0bx ay ±=b ==21a =,28b =故双曲线C 的方程为:2218y x -=故选:C . 4.D解:对于选项A :1a >可得11a <,但11a <可得1a >或0a <,所以“1a >”是“11a<”的充分不必要条件,所以选项A 说法是正确的,对于选项B :“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” 所以选项B 说法是正确的,对于选项C :命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥, 所以选项C 说法是正确的,对于选项D :若p q ∧为假命题,则p 和q 至少有一个为假命题,不一定都是假命题,所以选项D 说法是错误的, 故选:D.5.B解:因为()AE AB BC CE AB BC EP AB BC AP AE =++=++=++-,所以2AE AB BC AP =++,所以111222AE AB BC AP =++,所以111,2,3222x y z === , 解得111,,246x y z ===,所以11111++24612x y z ++==,故选:B. 6.C 解:因为211x y +=,故()2221225549y x x y y y x x y x ⎛⎫+=++≥+= ⎪⎝⎭+=+, 当且仅当3x y ==时等号成立,故2x y +的最小值为9,故9m ≤, 故选:C. 7.C解:设数列{}n a 的公差为d ,由10a <,202020210a a +<,202020210a a ⋅<, 可知20200a <,20210a >,所以0d >,数列{}n a 为递增数列,()14041404120214041404102a a S a +==>,()()14044020200420102202020200S a a a a +=+<=,所以可知n 的最大值为4040. 故选:C . 8.B解:在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥ 故以1,,BC BA BB 分别为,,x y z 轴建立空间直角坐标系.由AB BC =,AC =1AA ,则2AB BC ==所以((11,A C (E由14CF BC =,则()112,0,0,0,042CF ⎛⎫== ⎪⎝⎭(11110,0,,0,0,0,22C F C C CF ⎛⎫⎛=+=+= ⎪ ⎝⎭⎝(BE =所以11113212cos ,324BE C F BE C F BE C F--⋅====-⋅ 所以向量1,BE C F 夹角为120︒由异面直线BE 与1C F 所成的角的范围是02π⎛⎤⎥⎝⎦,所以异面直线BE 与1C F 所成的角为60︒ 故选:B9.D解:不妨设椭圆的标准方程为()222210x y a b a b+=>>,半焦距为c ,左右焦点为12,F F ,设P 在第一象限,则()2,0F c .令x c =,则22221c y a b +=,解得2P b y a =,故22bPF a=,1F PQ 为等边三角形,则1PF PQ =,即21222b PF PF a==,由椭圆定义得122PF PFa +=,故232b a a⨯=,即()22232a c a -=, 故213e =,解得e =故选:D. 10.C解:根据题意数列{}n a 是首项为2,公差为3的等差数列, 23(1)31n a n n =+-=-,数列{}n b 是首项为2,公差为5的等差数列,25(1)53n b n n =+-=-,数列{}n a 与{}n b 的公共项从小到大得到数列{}n c ,故数列{}n c 是首项为2,公差为15的等差数列,215(1)1513n c n n =+-=-,对于A , 12222539,1521317a b c +=+⨯-==⨯-=, 122a b c +≠,错误; 对于B , 82458332132,1541347b a c -=⨯--⨯+==⨯-=,824b a c -≠,错误; 对于C , 2285223107,15813107b c =⨯-==⨯-=,228b c =,正确;对于D , ()()629361523119,15913122a b c =⨯-⨯⨯-==⨯-=,629a b c ≠,错误. 故选:C. 11.D解:如图,过点M 做MD 垂直于准线l ,由抛物线定义得M F M D =,因为PF FM =,所以2PM MD =,所以30∠=︒DPM ,则直线MN方程为1)x y =-,联立21)4x y x y ⎧=-⎪⎨=⎪⎩,,消去x 得,231030y y -+=,设()()1122,,,M x y N x y ,所以121210,13y y y y +==,得121016||2233MN y y =++=+=. 故选:D.12.B解:由题意,连接111,AC A D ,在正方体1111ABCD A BC D -中, 可得11111,D A B BD C A D ⊥⊥,又由1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,又由1A M ⊂平面11AC D ,所以11A M BD ⊥,所以A 正确; 在正方体1111ABCD A BC D -中,连接1,BC BD ,可得1111//,//BC AD AB C D ,且11,BC C D ⊂平面1BC D ,11,AD AB ⊂平面1AB D , 可得平面1//BC D 平面1AB D ,所以点M 到平面1AB D 的距离为定值, 所以三棱锥11M AB D -的体积与点M 的位置无关,所以B 不正确; 在正方体1111ABCD A BC D -中,当点M 与点1C (或D )重合时,此时异面直线BM 与1AB 所成角即为直线1BC (或BD )与直线1C D 所以成的角, 在等边三角形1BC D 中,直线1BC (或BD )与直线1C D 所以成的角为60, 当点M 为1C D 中点时,此时直线1AB ⊥平面11BCD A ,所以1AB BM ⊥, 所以异面直线BM 与1AB 所成角为90,所以异面直线BM 与1AB 所成角的取值范围是[]60,90︒︒,所以C 正确; 设正方体1111ABCD A BC D -的棱长为2,由1//C D 平面11AB D ,根据正方体的性质,可求得1C 到平面11AB D的距离为3, 即M 到平面11AB D的距离为d =, 设直线1D M 与平面11AB D 所成角θ,则11sin =3d D M D Mθ=⋅, 又由在等腰直角11C DD 中,当点M 为1C D 的中点时,1D M所以直线1D M 与平面11AB DD 正确. 故错误的选项是:B.13.14解:由线性约束条件作出可行域如图,由3z x y =+可得133z y x =-+,作直线01:3l y x =-,沿可行域的方向平移可知过点A 时,3z x y =+取得最大值,由202x y x -+=⎧⎨=⎩可得24x y =⎧⎨=⎩,所以()2,4A ,所以max 23414z =+⨯=,故答案为:14. 14.52解:原式()55355344a a a a a a =+=+⇒+-=,即524a d +=,得74a =,()1131371313522a a S a +===.故答案为:5215.240x y -+=解:设过点()1,2P -的直线与椭圆交于1122(,),(,)A x y B x y ,则由2222112211123123y x y x +=+=,,两式相减可得12121212()()()()0123y y y y x x x x ----+=,又由点()1,2P -为,A B 的中点,可得12122,4x x y y +=-+=, 所以1212121212()23()AB y y x x k x x y y -+==-=-+,所以过点()1,2P -且被P 平分的弦所在直线的方程为22(1)y x -=+,即240x y -+=.故答案为:240x y -+=.16.2解:依题意建立如图所示的空间直角坐标系,设()0PC m m =>,则()0,1,0A ,()2,0,0B ()0,0,C m ,所以()0,1,AC m =-,()2,1,0AB =-,所以()22211sin 622ABC SAC AB CAB AC AB AC AB =⋅∠=⨯⋅-=12ABC S ==,所以24m =,解得2m = 故答案为:217.(1)1;(2)()()2,11,-⋃+∞.解:(1)若命题p :[]1,2x ∀∈,2a x ≤为真,∴则令()2f x x =,()min a f x ≤, 又∵()min 1f x =,∴1a ≤,∴a 的最大值为1.(2)因为p q ∨是真命题,p q ∧是假命题,所以p 与q 一真一假,当q 是真命题时,()24420a a ∆=--≥,解得2a ≤-或1a ≥, 当p 是真命题,q 是假命题时,有121a a ≤⎧⎨-<<⎩,解得21a -<<;当p 是假命题,q 是真命题时,有121a a a >⎧⎨≤-≥⎩或,解得1a >; 综上,a 的取值范围为()()2,11,-⋃+∞.18.(1)32a b =-⎧⎨=⎩;(2)()(),91,-∞--+∞. 解:(1)由题意可知:方程()2230ax b x +-+=的两根是1-,1 所以21103(1)11b a a-⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩ 解得32a b =-⎧⎨=⎩(2)由()10f =得1b a =--存在x ∈R ,()4f x >成立,即使()2210ax b x +-->成立, 又因为1b a =--,代入上式可得()2310ax a x -+->成立. 当0a ≥时,显然存在x ∈R 使得上式成立;当0a <时,需使方程()2310ax a x -+-=有两个不相等的实根 所以()2340a a ∆=++>即21090a a ++>解得9a <-或10a -<<综上可知a 的取值范围是()(),91,-∞--+∞. 19.(Ⅰ)2n n a =;(Ⅱ)22n n T n =+. 解:(Ⅰ)因为n n S a 和2na 的等差中项为1,所以22n n n S a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n n n a -=⨯=.(Ⅱ)12log 1n n b a n +==+. 则11111(1)(2)12n n b b n n n n +==-++++. 所以111111112334122224n n T n n n n=-+-++-=-=++++. 20.(1)1y x =-;(2).解:(1)由题意,直线l 斜率为1,设直线l 的方程为y x m =+, 联立方程组24y x m y x =+⎧⎨=⎩,整理得()22240x m x m +-+=,则42A B x x m +=- 又由8AF BF +=,可得118A B x x +++=,所以6A B x x +=, 即426m -=,解得1m =-,所以直线l 方程为1y x =-. (2)由24y x m y x=+⎧⎨=⎩,消x 得()240y y m --=,即2440y y m -+=, 则4A B y y +=,① 4A B y y m =②又由2AP PB =,可得(,0)2(,0)P A A B P B x x y x x y --=--, 可得2A B y y -=代入①式,可得8A y =,4B y =-再代入②得8m =-,即20A B x x +=,64A B x x =,所以A B==21.(1)3;(2)13. 解(1)因为1,BC BD AB ===90DBC ∠=︒,所以90ADB ∠=︒如图建立空间直角坐标系,设1DD a =,则()()()()()110,0,0,1,0,,0,1,0,1,1,,1,1,D A a B C a C a -- ()()()111,0,,0,1,0,0,0,DA a DB CC a ===设平面1A BD 的法向量为()1111,,x n y z =则11100n DA n DB ⎧⋅=⎪⎨⋅=⎪⎩,即11100x az y +=⎧⎨=⎩,所以可取()1,0,1n a =-所以11cos ,3n CC ==,解得a =所以()12,0,1n =-,(1DC =- 所以点1C 到平面1ABD的距离为11123DC n n ⋅== (2)设平面1C BD 的法向量为()2222,,n x y z =,则21200n DC n DB ⎧⋅=⎪⎨⋅=⎪⎩,即222200x yy ⎧-++=⎪⎨=⎪⎩,可取())2222,,n x y z == 所以121cos ,3n n ==,由图可得平面1A BD 与平面1C BD 的夹角为锐角 所以平面1A BD 与平面1C BD 的夹角的余弦值为13 22.(Ⅰ)2212x y +=;(Ⅱ)证明见解析,22113||||2OA OB +=. 解:(Ⅰ)依题意1222F F c ==,所以1c =.由123MF MF =,122MFMF a +=,得132MF a =,212MF a =, 于是122F F ====,所以a =所以2221b a c =-=,因此椭圆C 的方程为2212x y +=. (Ⅱ)当直线l 的斜率存在时,设直线:AB y kx m =+,()11,A x y ,()22,B x y , 由2222,x y y kx m⎧+=⎨=+⎩消去y 得()222124220k x kmx m +++-=,由题意,0∆>,则12221224,1222,12km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩因为OA OB ⊥,所以12120x x y y +=,即()()12120x x kx m kx m +++=,整理得()22321m k =+. 而22222222211||||||||||||||||||OA OB AB OA OB OA OB OA OB ++==, 设h 为原点到直线l 的距离,则OA OB AB h =⋅, 所以222111||||OA OB h+=,而h =,所以22221113||||2k OA OB m ++==. 当直线l 的斜率不存在时,设()11,A x y ,则有1OA k =±,不妨设1OA k =,则11x y =, 代入椭圆方程得2123x =,所以224||||3OA OB ==, 所以22113||||2OA OB +=.综上22113||||2OA OB +=.。

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。

A。

5+2i B。

5-2i C。

-5+2i D。

-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。

A。

1/3+cos1 B。

11/3sin1+cos1 C。

3sin1-cos1 D。

sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。

A。

0 B。

1 C。

2 D。

-14.定积分∫1x(2x-e)dx的值为()。

A。

2-e B。

-e C。

e D。

2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。

A。

1项 B。

k项 C。

2k-1项 D。

2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。

A。

40/3 B。

13 C。

25/2 D。

157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。

A。

(3,-3) B。

(-4,11) C。

(3,-3)或(-4,11) D。

不存在8.函数f(x)=x^2-2lnx的单调减区间是()。

A。

(0,1] B。

[1,+∞) C。

(-∞,-1]∪(0,1] D。

[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。

A。

f(x)=4/(2x+2) B。

f(x)=2^(12/(x+1)) C。

f(x)=(x+1)/2 D。

f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。

A。

[-1,+∞) B。

(-1,+∞) C。

2023年年高二下学期数学(理)期末试卷(附答案)

2023年年高二下学期数学(理)期末试卷(附答案)

年高二下学期数学(理)期末试卷考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数z 满足()543=-z i ,则z 的虚部为 A. i 54- B.54- C. i 54 D.542. 命题“0232,2≥++∈∀x x R x ”的否定为A.0232,0200<++∈∃x x R xB. 0232,0200≤++∈∃x x R xC. 0232,2<++∈∀x x R xD. 0232,2≤++∈∀x x R x3. 已知随机变量ξ服从正态分布2(1,)N σ,且(2)0.6P ξ<=,则(01)P ξ<<= A. 0.4 B. 0.3 C. 0.2 D. 0.14. 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.()()q p ⌝∨⌝ B.()q p ⌝∨ C.()()q p ⌝∧⌝ D.q p ∨5. 某校从高一中随机抽取部分学生,将他们的模块测试成绩分成6组:[)[),60,50,50,40[)[),80,70,70,60 [)[)100,90,90,80加以统计,得到如图所示的频率分布直方图.已知 高一共有学生600名,据此 统计,该模块测试成绩不少于60分的学生人数为A.588B.480C.450D.120 6. 若不等式62<+ax 的解集为()2,1-,则实数a 等于A.8B.2C.4-D.8- 7. 在极坐标系中,圆2cos 2sin ρθθ=+的圆心的极坐标是A. (1,)2πB. (1,)4πC. (2,)4πD. (2,)2π8. 已知2=x 是函数23)(3+-=ax x x f 的极小值点, 那么函数)(x f 的极大值为 A. 15 B. 16 C. 17 D. 189. 阅读如下程序框图, 如果输出5=i ,那么在空白矩形框中应填入的语句为 A. 22-*=i S B. 12-*=i S C. i S *=2 D. 42+*i10. 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. 若η2-=ξa ,1)(=ηE , 则a 的值为0,1==S i1+=i i 输出i结束开始i 是奇数12+*=i S10<S是否否 是第9题图A. 2B.2-C. 5.1D. 311. 观察下列数的特点:1,2,2,3,3,3,4,4,4,4,… 中,第100项是A .10 B. 13 C. 14 D.100 12. 若函数x x f a log )(=的图象与直线x y 31=相切,则a 的值为 A. 2ee B. e3e C. e e5D. 4ee第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13. 曲线⎩⎨⎧==ααsin 4cos 6y x (α为参数)与曲线⎩⎨⎧==θθsin 24cos 24y x (θ为参数)的交点个数 为__________个.14. 圆222r y x =+在点()00,y x 处的切线方程为200r y y x x =+,类似地,可以求得椭圆183222=+y x 在()2,4处的切线方程为________.15. 执行右面的程序框图,若输入的ε的 值为25.0,则输出 的n 的值为_______.16. 商场每月售出的某种商品的件数X 是一个随机变量, 其分布列如右图. 每售出一件可 获利 300元, 如果销售不出去, 每件每月需要保养费100元. 该商场月初进货9件这种商品, 则销售该商品获利的期望为____.X1 2 3···12P121 121 121 ···121三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 在平面直角坐标系xOy 中,直线l 的参数方程为232252x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在极坐标系(与直角坐标系xOy 取相同的单位长度,且以原点O 为极点,以x 轴正半轴 为极轴)中,圆C 的方程为25sin ρθ=. (I )求圆C 的直角坐标方程;(II )设圆C 与直线l 交于,A B 两点,若点P 坐标为(3,5),求PB PA ⋅的值.18. 目前四年一度的世界杯在巴西举行,为调查哈三中高二学生是否熬夜看世界杯用简单随机抽样的方法调查了110名高二学生,结果如下表:男 女 是 40 20 否2030(I )若哈三中高二共有1100名学生,试估计大约有多少学生熬夜看球; (II )能否有99%以上的把握认为“熬夜看球与性别有关”? 2()P K k ≥0.050 0.010 0.001 k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++性别是否熬夜看球19. 数列{}n a 中,11=a ,且12111+=++n a a nn ,(*∈N n ). (Ⅰ) 求432,,a a a ;(Ⅱ) 猜想数列{}n a 的通项公式并用数学归纳法证明.20. 已知函数x x f ln )(=,函数)(x g y =为函数)(x f 的反函数.(Ⅰ) 当0>x 时, 1)(+>ax x g 恒成立, 求a 的取值范围; (Ⅱ) 对于0>x , 均有)()(x g bx x f ≤≤, 求b 的取值范围.21. 哈三中高二某班为了对即将上市的班刊进行合理定价,将对班刊按事先拟定的价格进行单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (元)908483807568(I )求回归直线方程y bx a =+;(其中121()(),()n i i i ni i x x y y b a y bx x x ==∑--==-∑-)(II )预计今后的销售中,销量与单价服从(I )中的关系,且班刊的成本是4元/件,为了获得最大利润,班刊的单价定为多少元?22. 已知函数a x f -=)(x2ex a e )2(-+x +,其中a 为常数.(Ⅰ) 讨论函数)(x f 的单调区间; (Ⅱ) 设函数)e 2ln()(x ax h -=2e 2--+x a x (0>a ),求使得0)(≤x h 成立的x 的最小值;(Ⅲ) 已知方程0)(=x f 的两个根为21,x x , 并且满足ax x 2ln 21<<. 求证: 2)e e (21>+x x a .数学答案一. 解答题:22. (Ⅰ) 因为)1)(12()(+-+='xxae e x f ,所以, 当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数; 当0>a 时, 函数)(x f 在)1ln,(a-∞上为单调递增, 在).1(ln ∞+a 上为单调递减函数.(Ⅲ) 由(Ⅰ)知当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数, 方程至多有一根,所以0>a , 211ln,0)1(ln x ax af <<>, 又因为 =--)())2(ln(11x f e a f x 022)2ln(111>--+-x ae e a xx ,所以0)())2(ln(11=>-x f e a f x , 可得2)2ln(1x e ax<-.即212xx e e a<-, 所以2)(21>+x x e e a .。

高二理科数学上学期期末原创卷02(人教必修2+选修2-1)

高二理科数学上学期期末原创卷02(人教必修2+选修2-1)

高二理科数学(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.对于命题:p x ∃∈R ,使得210x x ++<,则p ⌝是 A .:p x ⌝∀∈R ,210x x ++> B .:p x ⌝∃∈R ,210x x ++≠ C .:p x ⌝∀∈R ,210x x ++≥D .:p x ⌝∃∈R ,210x x ++<2.已知点(1,2,1)A -,点C 与点A 关于平面xOy 对称,点B 与点A 关于x 轴对称,则||BC =A .B .C .D .43.过点(2,0)且与直线230x y -+=垂直的直线方程是 A .220x y --= B .220x y +-= C .240x y +-= D .220x y +-=4.已知双曲线22116y x m-=的离心率为2,则双曲线的渐近线方程为A .y x =B .y x =C .y =D .y =5.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是A .若,m αββ⊥⊥,则//m αB .若//,m n m α⊥,则n α⊥C .若//,//,,m n m n ααββ⊂⊂,则//αβD .若m ∥β,m ⊂α,α⋂β=n ,则//m n 6.设x ∈R ,若“2)og (l 11x -<”是“221x m >-”的充分不必要条件,则实数m 的取值范围是A .[B .(1,1)-C .(D .[1,1]-7.若圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为 A .22230x y x +--= B .2240x y x ++= C .2240x y x +-=D .22230x y x ++-=8.已知F 是椭圆C :22195x y +=的左焦点,P 为C 上一点,4(1,)3A ,则||||PA PF +的最小值为 A .10B .11C .4 D .139.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A .4π643-B .64-4πC .64-6πD .64-8π10.已知直线3y kx =+与圆22(2)(3)4x y -+-=相交于M N 、两点,若||MN ≥k 的取值范围是A .3[,0]4-B .3(,][0,)4-∞-+∞C .[D .2[,0]3-11.如图,在直三棱柱111ABC A B C -中,∠BAC =90°,AB =AC =2,AA 1,则AA 1与平面AB 1C 1所成的角为A .π6B .π4C .π3D .π212.已知抛物线22(0)y px p =>的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF =,则AFK △的面积为A .4B .8C .16D .32第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.命题“若实数a 、b 满足5a b +≤,则2a ≤或3b ≤”是________命题(填“真”或“假”).14.若1a >,则双曲线22213x y a -=的离心率的取值范围是___________. 15.已知四棱锥-P ABCD 的顶点都在球O 的球面上,底面ABCD 是边长为2的正方形,且PA ⊥平面ABCD ,四棱锥-P ABCD 的体积为163,则该球的体积为___________. 16.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=的周长,则22(2)(2)a b -+-的最小值为___________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知命题p :二次函数2()76f x x x =-+在区间[,)m +∞上是增函数;命题q :双曲线22141x y m m -=--的离心率的取值范围是)+∞.(1)分别求命题p ,命题q 均为真命题时,m 的取值范围;(2)若“p 且q ” 是假命题,“p 或q ”是真命题,求实数m 的取值范围.18.(本小题满分12分)已知圆C 经过原点O (0,0)且与直线y =2x ﹣8相切于点P (4,0). (1)求圆C 的方程;(2)已知直线l 经过点(4, 5),且与圆C 相交于M ,N 两点,若|MN|=2,求出直线l 的方程. 19.(本小题满分12分)已知直线:2l y x b =+与抛物线21:2C y x =. (1)若直线与抛物线相切,求实数b 的值.(2)若直线与抛物线相交于A 、B 两点,且|AB |=10,求实数b 的值.20.(本小题满分12分)在平面直角坐标系xOy 中,∆ABC 顶点的坐标分别为A (−1,2)、B (1,4)、C(3,2).(1)求∆ABC 外接圆E 的方程;(2)若直线l 经过点(0,4),且与圆E 相交所得的弦长为l 的方程;(3)在圆E 上是否存在点P ,满足22||2||PB PA =12,若存在,求出点P 的坐标;若不存在,请说明理由.21.(本小题满分12分)如图,已知四棱锥S -ABCD ,底面梯形ABCD 中,BC ∥AD ,平面SAB ⊥平面ABCD ,SAB △是等边三角形,已知AC =2AB =4,BC =2AD =2DC =(1)求证:平面SAB ⊥平面SAC ; (2)求二面角B-SC-A 的余弦值.22.(本小题满分12分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0),右顶点是A(2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于两点,M N (,M N 不同于点A ),且AM ⃑⃑⃑⃑⃑⃑ ∙AN ⃑⃑⃑⃑⃑⃑ =0,求证:直线l 过定点,并求出定点坐标.。

高二数学期末试卷(理科)及答案

高二数学期末试卷(理科)及答案

高二数学期末考试卷(理科)一、选择题(本大题共11小题,每小题3分,共33分) 1、与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31,1,1) B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .33、“a >b >0”是“ab <222b a +”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、椭圆1422=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或85、已知空间四边形OABC 中,c OC b OB a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+- B .c b a 212132++-C .212121-+D .213232-+6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716 B .1516 C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )A.5或54 或 C. D.5或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥39、已知),,2(),,1,1(t t t t t =--=,则||-的最小值为 ( )A .55 B .555 C .553 D .51110、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( )A .椭圆B .双曲线C .抛物线D .无法确定11、已知P 是椭圆192522=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(21+=4||=,则点P 到该椭圆左准线的距离为( ) A.6 B.4 C.3 D.25高二数学期末考试卷(理科)答题卷一、选择题(本大题共11小题,每小题3分,共33分)二、填空题(本大题共4小题,每小题3分,共12分)12、命题:01,2=+-∈∃x x R x 的否定是13、若双曲线 4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 .14、若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 . 15、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k +=,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=. 其中真命题的序号为 _________.三、解答题(本大题共6小题,共55分)16、(本题满分8分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.17、(本题满分8分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,试用向量法求平面A 1B C 1与平面AB CD 所成的锐二面角的余弦值。

高二理科数学试卷(林老师、苏老师、秦老师)

高二理科数学试卷(林老师、苏老师、秦老师)

考试时间:2019.5.27下午2:30-4:30
绝密★启用前 试卷类型:A
高二第二次月考质量检测试卷
理 科 数 学
命题人:林老师、杨老师、殷老师
注意:1.本试卷共4页,22小题,满分150分.考试用时120分钟.
2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.正确粘贴条形码.
3.作答选择题时,用2B 铅笔在答题卡上对应答案的选项涂黑.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上;不准使用涂改液.
4.考试结束后,考生上交答题卡.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一
项符合题目要求.
1.已知命题p :0x ∀>,21x >,则p ⌝为
A .0x ∀>,21x ≤
B .0x ∀≤,21x ≤
C .00x ∃>,021x ≤
D .00x ∃>,021x ≥ 2.已知:2p x >-,:21q x -<<,则p 是q 成立的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
3. 已知函数1()+=f x ax x
,)(x f '是它的导函数,若(1)2'=f ,则=a A. 1 B. 2 C. 3 D. 4
4. 双曲线22
143
-=x y 的焦点到渐近线的距离为 A.
1
4
5.设函数()f x 的导函数为()f x ',若()y f x '=的图象如图所示,。

高二 理科数学测试卷及答案

高二 理科数学测试卷及答案

高二理科数学测试卷一、选择题(本大题共12小题,每小题5分,共60分;) 1.复数ii 212+-等于( ) A.i B.-i C.-54-53i D.- 54+53i 2.函数31()3f x x =的斜率等于1的切线有( ) A .1条B .2条C .3条D .不确定3.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除4.由①y =2x +5是一次函数;②y =2x +5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )A .②①③B .③②①C .③①②D .①②③ 5.曲线y =4x -x 3在点(-1,-3)处的切线方程是( )A .y =7x +4B .y =x -4C .y =7x +2D .y =x -2 6.曲线y =x 3-3x 和y =x 围成图形的面积为( )A .4B .8C .10D .9 7.i 是虚数单位,复平面内,复数7+i3+4i对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.在长方体ABCD ­A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( )A.83B.38C.43D.349.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,-3)∪(3,+∞)B .(-3,3)C .[-3,3]D .(-∞,-3)∪[3,+∞)10.观察(x 2)′=2x ,(x 4)′=4x 3,…,y=f(x),由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.g(x)B.-g(x)C.f(x)D.-f(x)11.点P 是曲线x x ln y 2-=上任意一点,则点P 到直线3-=x y 的最小距离为( )A .223 B .2 C .22 D .2 12.在正四棱柱1111D C B A ABCD -中,AB AA 21=,则CD 与平面1BDC 所成角的正弦值为( ) A .31 B .32 C .33 D .32 二、填空题(本大题共4小题,每小题5分,共20分;)13若复数z =21+3i,其中i 是虚数单位,则|z -|=_____________14. 计算定积分dx x x )2(1+⎰=_________.15.函数f(x)=3x -32x -9x+k 在区间[-4,4]上的最大值为10,则其最小值为________.16.在长方体1111D C B A ABCD -中,2==BC AB ,1AC 与平面C C BB 11所成的角为︒30,则该长方体的体积为________________三、解答题(本大题共6小题,共70分.)17.(本小题满分10分)已知m ∈R ,i 是虚数单位,复数222(1)i z m m m =+-+-.(Ⅰ)若222(1)i z m m m =+-+-是纯虚数,求m 的值;(Ⅱ)若复数z 对应的点位于第二象限,求m 的取值范围.18.(本小题满分12分)平面直角坐标系xoy 中,直线l 的参数方程为⎪⎩⎪⎨⎧+=-=t y t x 3323(t为参数),圆C 的参数方程为⎩⎨⎧==θθsin 2cos 2y x (θ为参数),以坐标原点O 为极点,轴的非负半轴为极轴建立极坐标系. (Ⅰ)求直线l 和圆C 的极坐标方程;(Ⅱ)设直线l 和圆C 相交于A,B 两点,求弦AB 与其所对劣弧所围成的图形面积.19. (本小题满分12分)已知函数321()33f x x ax x =+-,当1x =时,函数()f x 取得极值. (Ⅰ)求实数a 的值;(Ⅱ)方程()20f x m-=有3个不同的根,求实数m 的取值范围.20.(本小题满分12分)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值. 21.(本小题满分12分)已知函数21()2ln 22f x x a x x =+-()a ∈R .(Ⅰ)若函数)(x f 在区间(12),上不单调,求a 的取值范围; (Ⅱ)令()()F x f x ax =-,当0a >时,求()F x 在区间[]12,上的最大值. 22.(本小题满分12分)已知函数()e 1x f x ax a =-+-.(Ⅰ)若()f x 的极值为e 1-,求a 的值;(Ⅱ)若[),x a ∈+∞时,()0f x ≥恒成立,求a 的取值范围.高二 理科数学测试卷(参考答案)一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的)12.【解析】设,建立空间直角坐标系,求出向量坐标,平面的一个法向量,设与平面所成角为,利用向量的夹角公式求出即可.【详解】建立如图所示空间直角坐标系,设,则,,,, 故,,,设平面的法向量为,则即令,则,,即平面的一个法向量为,设直线与平面所成的角为,则,故选D.【点睛】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.二、填空题 13. 1 14.3515. -71 16.【答案】【解析】分析:首先画出长方体,利用题中条件,得到,根据,求得,可以确定,之后利用长方体的体积公式详解:在长方体中,连接,根据线面角的定义可知,因为,所以,从而求得, 所以该长方体的体积为,故选C.点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.解(Ⅰ)i m m m z )1(222-+-+= 是纯虚数,⎪⎩⎪⎨⎧≠-=-+∴010222m m m , 2-=∴m .(Ⅱ) 复数i m m m z )1(222-+-+=对应的点位于第二象限⎪⎩⎪⎨⎧>-<-+∴010222m m m12-<<-∴m18.【答案】(Ⅰ); (Ⅱ).【解析】 【分析】(Ⅰ)运用代入法将直线参数方程转化为普通方程,代入极坐标与普通坐标的转化公式,即可得直线l的极坐标方程;利用得圆的普通方程,进而可得圆C 的极坐标方程;(Ⅱ)将圆C的极坐标方程代入直线的极坐标方程,求得θ=0或,由扇形和三角形的面积公式,计算即可得到所求面积【详解】(Ⅰ)求直线l的普通方程为(1)将代入(1)得化简得直线l的方程为,圆C的极坐标方程为.(Ⅱ)解得:A(2,0) , B(2, ),∴,∴,∴【点睛】本题考查了极坐标方程和参数方程、直角坐标方程的互化,考查了曲线的交点、扇形与三角形面积计算公式;在极坐标和参数方程中,常将极坐标方程和参数方程转化为直角坐标解决,以减少对极坐标和参数方程理解不到位造成的错误;也可直接通过极坐标和参数方程来解决,更为简捷方便.19.解:(Ⅰ)由x ax x x f 331)(23-+=,则32)(2-+='ax x x f 因为在1=x 时,)(x f 取得极值所以0321)1(=-+='a f 解得,1=a经验证1=a 时满足条件。

高二数学试题参考答案及评分标准(理科)

高二数学试题参考答案及评分标准(理科)

高二数学试题参考答案及评分标准(理科)一、选择题:(每小题5分,满分50分)CDBAD CBDCA二、填空题:(每小题5分,满分25分)11.真 12.90 13.③④三、解答题(本大题共6小题,满分75分)16.解:∵直线3470x y +-=的斜率为34-,∴直线l 的斜率为34-. ………(3分)设直线l 的方程为34y x b =-+,令0y =,得43x b =;令0x =,得y b =. ………(7分)由于直线l 与两坐标轴围成的三角形的面积是24,∴142423S b b =⋅||⋅||=,解得6b =±, ………(10分)∴直线l 的方程是364y x =-±(或34240x y +±=). ………(12分)17.证明:⑴(必要性)∵⊿ABC 三个内角成等差数列,不妨设这三个内角依次为B B B αα-+,,,由()()180B B B αα-+++= ,得60B = ,∴⊿ABC 有一个内角等于60 . …………(5分)⑵(充分性)若ABC ∆有一个内角为60 ,不妨设60B = ,则180601202A C B +=-== , ∴A B B C -=-,∴三个内角A B C ,,成等差数列. …………(10分) 综合⑴⑵得,⊿ABC 三个内角成等差数列的充要条件是有一个内角等于60 . …………(12分) (说明:混淆了必要性与充分性,或未注明必要性与充分性,扣4分) 18.证明:⑴∵BC ABE ⊥平面,AE ABE ⊂平面,∴AE BC ⊥.又∵BF ACE ⊥平面,AE ACE ⊂平面,∴AE BF ⊥. …………(3分) ∵BF BC B = , ∴AE BCE ⊥平面.又∵BE BCE ⊂平面,∴AE BE ⊥. …………(6分) ⑵取DE 的中点P ,连接PA PN ,.∵点N 为线段CE 的中点,∴PN ∥DC ,且12P N D C =. …………(8分)又∵四边形A B C D 是矩形,点M 为线段AB 的中点,∴AM ∥DC ,且12AM DC =,∴PN ∥AM ,且P N A M =, ∴四边形A M N P 是平行四边形,∴MN ∥AP . …………(10分) ∵AP ⊂平面D A E ,M N ⊄平面D A E ,∴MN ∥平面D A E . …………(12分) 19.解:∵O M O N C M C N ==,,∴OC 垂直平分线段MN . ……………(4分)∵2MN k =-,∴12OC k =,∴直线OC 的方程是12y x =,∴212t t =,解得2t =或2t =-. ……………(8分)⑴当2t =时,圆心C 的坐标为(2,1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==<C 相交,符合题意.⑵当2t =-时,圆心C 的坐标为(-2,-1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==>直线与圆C 相离,不符合题意.………………(11分)综合⑴⑵得,圆C 的方程为22(2)(1)5x y -+-=. ………………(12分) 20.解:⑴如图,取AB 的中点E ,则//DE BC . ∵BC AC ⊥,∴DE AC ⊥.∵1A D ⊥平面ABC ,∴分别以1DE DC DA ,,所在直线为x y z ,,轴建立空间直角坐标系,得()01 0A -,,,()0 1 0C ,,,()2 1 0B ,,,()10 0 A t ,,,()10 2 C t ,,.由21130AC BA t ⋅=-+=,得t =…………(3分)设平面1A AB 的法向量为()1111n x y z =,,.∵(10 1AA = ,,()2 2 0AB = ,,,∴11111110220n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩. 设11z =,可得)1n =……………(5分)∴点1C 到平面1A AB的距离111AC n d n ⋅==||||. ……………(7分)(2)再设平面1ABC 的法向量为()2222n x y z =,,.∵(10 1CA =- ,,()2 0 0CB = ,,,∴212222020n CA y n CB x ⎧⋅=-=⎪⎨⋅==⎪⎩. 设21z =,可得()20n =, ……………(9分)∴121212cos ||||n n n n n n ⋅<>==⋅ ,……………(11分)根据法向量的方向可知,二面角1A ABC --. …………(13分) 21.解:⑴根据题意得22121914ab =⎨⎪+=⎪⎩,解得2243.a b ⎧=⎨=⎩,. …………(2分)∴椭圆C 的方程为 22143x y +=. …………(5分)⑵由22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 并整理,得 222(34)84120k x kmx m +++-=.∵直线l 与椭圆C 交于两点,∴0∆>,得22430k m -+> (*)设点A 、B 的坐标分别为1122()()A x y B x y ,,,, 则212122284123434km m x x x x k k -+=-⋅=++,. ………………(8分) ∵11A A AB ⊥,∴110A A A B ⋅=. 又∵点1A 的坐标为1(2 0)A ,,∴1212(2)(2)0x x y y --+=, 即1212(2)(2)()()0x x kx m kx m --+++=,221212(1)(2)()40k x x km x x m ++-+++=, ∴222224128(1)(2)()403434m km k km m k k-+⋅+--++=++,化简并整理得2271640m km k ++=, 解得2m k =-,或27m k =-,均满足条件(*). ………………(12分)当2m k =-时,:(2)l y k x =-,所过的定点为(2,0),与1A 重合,不合题意.当27m k=-时,2:()7l y k x=-,所过的定点为(27,0),符合题意.综上所述,直线l经过定点(27,0). ………………(14分)命题人:和县一中贾相伟含山二中王冲审题人:庐江中学汪京怀。

高二理科数学综合测试题(含参考答案)演示教学

高二理科数学综合测试题(含参考答案)演示教学
联系网站删除
所以11,3,0n是平面1AAM的一个法向量. 设平面1AMN的法向量为2222,,xyzn, 则212,,AMNMuuuuuruuuuurnn 即2120,0,AMNM??uuuuruuuurnn 故有22222231,,,,10,22,,3,0,00.xyzxyz?? 从而2222310,2230.xyzx 取22y,则21z, 所以20,2,1n是平面1AMN的一个法向量. 设二面角1AAMN的平面角为,又为锐角, 则1212cos??nnnn 1,3,00,2,115525??. 故二面角1AAMN的余弦值为155. 21.【解析】(1)依题意,42c,椭圆的焦点为1(2,0)F,2(2,0)F,………………1分 2222122||||(22)(2)(22)(2)42aPFPF,………………2分 ∴2224bac,椭圆的方程为22184xy.………………3分 (2)根据椭圆的对称性,直线AB与x轴不垂直, 设直线AB:mkxy, 由mkxyyx14822,得0824)12(222mkmxxk,………………4分 设11(,)Axy,22(,)Bxy,则122421kmxxk,21222821mxxk,………………5分 2222122211682||1||21kkmABkxxk,………………6分 O到直线AB的距离2||1mdk, ………………7分
联系网站删除
2017学年高二第1次月考------数学(理科)答案 一、选择题:本大题共l2小题,每小题5分,满分60分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C D A B D D B C A B A 二、填空题:本大题共4小题,每小题5分,满分20分 13、e2 14、),0(e 15、97 16、)3,0()3,( 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过1 C.310 D.45 9.直线1:(1)30lkxky和2:(1)(23)20lkxky互相垂直,则k=( ) A. 1 B. -3 C. -3或1 D. 54 10.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为2的正方形,俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( ) A. 83 B. 48 C. 348 D. 34 11.若实数,xy满足约束条件220,240,2,xyxyy 则xy的取值范围是( ) A. 2,23 B.13,22 C.3,22 D.1,2 12.若实数xaxxxfcos2sin61)(在44,单调递增,则a的取值范围是( ) A.3232, B.3131, C.6161, D.22, 二、填空题:本大题共4小题,每小题5分,满分20分 13.定积分dxexx10)2(的值为____________ 14.函数xxxfln)(的单调增区间 15.已知1cos3,则sin22 . 16.设(),()fxgx分别是R上的奇函数和偶函数, 当0x<时,0)()()()(xgxfxgxf,且0)3(g,则不等式()()0fxgx<解集是

高二第二学期理科数学期末考试试卷-附答案

高二第二学期理科数学期末考试试卷-附答案

高二第二学期期末考试试卷数学(理科)一、选择题(每小题4分,共40分)请将正确选项填入答题纸选择题答题栏....... 1.从甲地到乙地,每天有直达汽车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地不同的乘车方法有( )A .19种B .12种C .32种D .60种2.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A .B .C .D .3.甲、乙两工人在同样的条件下生产某种产品,日产量相等,每天出废品的情况为下表所示,则有结论( )A .甲的产品质量比乙的产品质量好一些;B .两人的产品质量一样好;C .乙的产品质量比甲的产品质是好一些;D .无法判断谁的质量好一些.3题表 4题图6.设随机变量ξ服从正态分布ξ~N (0,1),,则=( )A .B .C .D .7.的展开式中x 3的系数为( )A .﹣84B .84C .﹣36D .368.有6个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为( )A .24B .72C .144D .2889.对同一目标进行两次射击,第一、二次射击命中目标的概率分别为0.5和0.7,则两次射击中至少有一次命中目标的概率是( )A .0.15B .0.35C .0.42D .0。

85 10.已知随机变量ξ的分布列为右表所示,若, 则( )A .B .C .1D .二、填空题.(每小题4分,共16分)11.观察下面四个图:① ② ③ ④其中两个分类变量x ,y 之间关系最强的是 .(填序号) 12.如果随机变量X 服从二项分布X ~,则的值为 . 13.对具有线性相关关系的变量x 和y ,测得一组数据如下表:若已求得它们的回归直线的斜率为6。

5,则这条回归直线的方程为 .根据表中的数据,得到K 2=错误!≈10。

653,因为K 2〉7.879,所以产品的颜色接受程度与性别有关系,那么这种判断出错的可能性为 .三、解答题(共44分)解答应写出文字说明,证明过程或演算步骤.15.(本小题满分10分)某班从6名班干部(男生4人,女生2人)中,任选3人参加学校的义务劳动;(1)共有多少种不同的选法; (2)求选中的3人都是男生的概率;(3)求男生甲.和女生乙.至少有一个被选中的概率. 16.(本小题满分10分)某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X 名男同学.(1)求去执行任务的同学中有男有女的概率; (2)求X 的分布列和数学期望.17.(本小题满分12分)某电脑公司有六名产品推销员,其工作年限与年推销金额数据如下表:(1)画出y 关于x 的散点图.(2)求年推销金额y 关于工作年限x 的线性回归方程,若第六名推销员的工作年限为10年,试估计他的年推销金额;(3)计算R 2的值,并说明回归模型拟合程度的好坏. 参考公式:(参考数据:x -=6,错误!=3.4,错误!错误!=200,错误!错误!=63,错误!i y i =112,错误!(y i -错误!i )2=0。

高二理科数学第二学期期末考试试卷(含答案)

高二理科数学第二学期期末考试试卷(含答案)

高二数学第二学期期末考试(理科)试题(含答案)一、选择题:(每题5分,共60分)1.若将复数表示为、是虚数单位)的形式,则()A.0 B.-1 C.1D.22。

在的展开式中的常数项是()A。

B.C.D.3。

函数的定义域为,导函数在内的图象如图所示,则函数在内有极大值点()A.1个B.2个C.3个D.4个4.已知曲线,其中x∈[—2,2],则等于( )A.B.C.D.-45.设随机变量X~B(3,),随机变量Y=2X+3,则变量Y的期望和方差分别为()A.7,B.7,C.8, D.8,6.给出下列四个命题,其中正确的一个是()A.在线性回归模型中,相关指数,说明预报变量对解释变量的贡献率是B.在独立性检验时,两个变量的列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大C.相关指数用来刻画回归效果,越小,则残差平方和越大,模型的拟合效果越好D.随机误差e是衡量预报精确度的一个量,它满足E(e)=07.在平面上,若两个正三角形的边长之比1:2,则它们的面积之比为1:4,类似地,在空间中,若两个正四面体的棱长之比为1:2,则它的体积比为()A.1:4 B.1:6 C.1:8 D.1:98.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种9.一个电路如图所示,A、B、C、D、E、F为6个开关,其闭合的概率都是错误!,且是相互独立的,则灯亮的概率是()A.错误!B.错误!C.错误!D.错误!10.函数的最小值是()A.10 B. 9 C.8 D.711.f′(x)是f(x)的导函数,f′(x)的图象如下面右图,则f(x)的图象只可能是( )A.B.C.D.12.已知函数f(x)=x3-3x2-9x+3,若函数g(x)=f(x)-m在x∈[-2,5]上有3个零点,则m 的取值范围为()A.(-24,8)B.(-24,1] C.[1,8)D.[1,8]二、填空题(每题5 分,共20分)13.如果随机变量,且,则_ _ __14.已知,那么等于________________15。

高二下学期期末考试理科数学试题 (含答案)

高二下学期期末考试理科数学试题 (含答案)

高二下学期期末考试理科数学试题(含答案)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合A=﹛-2,0,2﹜,B=﹛x |x 2-x -2=0﹜,则A∩B= ( )(A) ∅ (B ){2} (C ){0} (D) {-2}2.复数的共轭复数是( )A .2+iB .2-iC .-1+iD .-1-i3.已知命题p :∃x 0∈R ,lg x 0<0,那么命题 ⌝p 为A. ∀x ∈R ,lg x >0B. ∃x 0∈R ,lg x 0>0C. ∀x ∈R ,lg x ≥0D. ∃x 0∈R ,lg x 0≥04.已知向量(2,1)a =,(3,)b m =,若(2)//a b b +,则m 的值是( )A .32B .32-C .12D .12- 5.已知实数,x y 满足3141y x x y y ≤-⎧⎪+≤⎨⎪≥⎩,则目标函数z x y =-的最大值为( )A .-3B .3C .2D .-26.钝角三角形ABC 的面积是12,AB=1,,则AC=( ) (A ) 5 (B(C ) 2 (D ) 17.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )(A )1727 (B ) 59 (C )1027 (D) 13 8.若21()nx x -展开式中的所有二项式系数之和为512,则该开式中常数项为( ) A. 84- B. 84 C. 36- D. 369.已知三棱锥P ABC -的三条棱PA ,PB ,PC 长分别是3、4、5,三条棱PA ,PB ,PC 两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是 ( )A .25π B.50π C. 125π D.都不对10.已知ω>0,函数f(x)=sin(ωx +4π)在(2π,π)上单调递减,则ω的取值范围是( ) (A )[21,45] (B )[21,43] (C )(0,21] (D )(0,2] 11.已知双曲线2222:1x y C a b-=(0a >,0b >)的左顶点为M ,右焦点为F ,过左顶点且斜率为l 的直线l 与双曲线C 的右支交于点N ,若MNF ∆的面积为232b ,双曲线C 的离心率为( ) A . 3 B .2 C. 53 D .4312.若存在实数[ln3,)x ∈+∞,使得(3)21x a e a -<+,则实数a 的取值范围是( )A .(10,+∞)B .(-∞,10) C. (-∞,3) D .(3,+∞)二、填空题(本题共4道小题,每小题5分,共20分)13.已知向量()1,3a =-,()3,b t =,若a b ⊥,则2a b += .14.已知3()5sin 8f x x a x =+-,且(2)4f -=-,则(2)f = .15.函数)sin()(ϕ+=x x f —2ϕsin x cos 的最大值为_________.16.定义: 区间[](),c d c d <的长度为d c -. 已知函数3log y x =的定义域为[],a b , 值域为[]0,2,则区间[],a b 长度的最大值与最小值的差等于________.三、解答题(本题共6道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,共0分)17.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,且()2cos cos a b C c B -⋅=⋅.(1)求角C 的大小;(2)若2c =,ABC ∆.18.设数列{}n a 的前n 项和为n S ,满足112n n a S -=,又数列{}n b 为等差数列,且109b =,2346b b b ++=. (1)求数列{}n a 的通项公式;(2)记112n n n a c b b ++=,求数列{}n c 的前n 项和n T .19.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值. 附:相关系数公式∑∑∑===----=n i i n i in i ii y y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,,//AD CD AB CD ⊥,122AB AD CD ===,点M 是线段EC 的中点.(1)求证://BM 面ADEF ;(2)求平面BDM 与平面ABF 所成锐二面角的余弦值.21.已知椭圆C :12222=+by a x (a >b >0)的焦点在圆x 2+y 2=3上,且离心率为23. (Ⅰ)求椭圆C 的方程;(Ⅱ)过原点O 的直线l 与椭圆C 交于A ,B 两点,F 为右焦点,若△F AB 为直角三角形,求直线l 的方程.22.已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间;(2)证明:当2a e≥时, ()x f x e ->.试卷答案1.BB=﹛-1,2﹜,故A B=﹛2﹜.2.D略3.C4.A5.C6.BAC=1,但ABC ∆为直角三角形不是钝角三7.C该零件是一个由两个圆柱组成的组合体,其体积为π×32×2+π×22×4=34π(cm 3),原毛坯的体积为π×32×6=54π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故所求的比值为ππ5420=2710. 8.B略9.B10.A 592()[,]444x πππωω=⇒+∈ 不合题意 排除()D 351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C 另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂得:315,2424224πππππωπωω+≥+≤⇔≤≤11.B12.B13.14.-1215.1(x )=sin(x +φ)-2sin φcos x =sin x cos φ-sin φcos x =sin(x -φ),故其最大值为1.16.817.(1)由()2cos cos a b C c B -⋅=⋅得2sin sin cos AcosC BcosC BsinC =+∴2sin cos sin A C A = ∴1cos 2C =∵0C π<< ∴3C π=(2)∵1sin 2ABC S ab C ∆=∴4ab = 又2222()23c a b abcosC a b ab =+-=+-∴2()16a b += ∴4a b += ∴周长为6.18.(1)设{}n b 的公差为d ,则1199366b d b d +=⎧⎨+=⎩ ∴101b d =⎧⎨=⎩∴1n b n =-当1n =时,11112a S -=,∴12a =当2n ≥时,()111222222n n n n n n n a S S a a a a ---=-=---=-∴12n n a a -= ∴2n n a =(2)由(1)知 11,2n b n a =-=,()211211n c n n n n ⎛⎫==- ⎪++⎝⎭ ∴1211111212231n n T c c c n n ⎛⎫=+++=-+-++- ⎪+⎝⎭122111n n n ⎛⎫=-= ⎪++⎝⎭ 19.(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分 因为51()()(3)(1)000316i i i x x y y =--=-⨯-++++⨯=∑, …………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分==…………………………4分所以相关系数()()0.95n i i x x y y r --===≈∑.………5分 因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.……………6分(2)记商家周总利润为Y 元,由条件可得在过去50周里:当70X >时,共有10周,此时只有1台光照控制仪运行,周总利润Y =1×3000-2×1000=1000元.…………8分当5070X ≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y =2×3000-1×1000=5000元. ……………………………9分当50X <时,共有5周,此时3台光照控制仪都运行,周总利润Y =3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元, 所以商家在过去50周周总利润的平均值为4600元. ………………………12分20.(1)证明:取DE 中点N ,连,MN AN 则//MN AB ,且MN AB =∴ABMN 是平行四边形,∴//BM AN∵BM ⊄平面ADEF ,AN ⊂平面ADEF ,∴//BM 平面ADEF(2)如图,建立空间直角坐标系,则()()()()()2,0,0,2,2,0,0,4,0,0,0,0,0,0,2A B C D E因为点M 是线段EC 的中点,则()0,2,1M ,()0,2,1DM =,又()2,2,0DB =.设()111,,n x y z =是平面BDM 的法向量,则1111220,20DB n x y DM n y z ⋅=+=⋅=+=.取11x =,得111,2y z =-=,即得平面BDM 的一个法向量为()1,1,2n =-.由题可知,()2,0,0DA =是平面ABF 的一个法向量.设平面BDM 与平面ABF 所成锐二面角为θ,因此,cos 2DA n DA n θ⋅===⨯⋅. 21.解:(Ⅰ)因为椭圆的焦点在x 轴上,所以焦点为圆x 2+y 2=3与xa=2.分 (Ⅱ)当△FAB 为直角三角形时,显然直线l 斜率存在,可设直线l 方程为y=kx ,设A(x 1,y 1),B(x 2,y 2).(ⅰ)当FA ⊥FB消y 得(4k 2+1)x 2-4=0.则x 1+x 2=0此时直线l 分 (ⅱ)当FA 与FB此时直线l综上,直线l 分 22.(1)函数()ln a f x x x =+的定义域为()0,+∞. 由()ln a f x x x =+,得()221a x a f x x x x ='-=-.………1分 ①当0a ≤时, ()0f x '>恒成立, ()f x 递增,∴函数()f x 的单调递增区间是()0,+∞ ………2分②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分(2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln x a x e x-+>,………5分 即ln x x x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+, 当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e =时, ()min 1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()x x xe φ-=,则()()1x x x x e xe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<.所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max 1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e ≥时, (f x )x e ->.………12分。

高二理科数学综合测试题及参考答案

高二理科数学综合测试题及参考答案

高二理科数学综合测试题一、选择题:每小题5分,共50 分1集合{}|20A x x =+=,集合{}2|40B x x =-=,则AB =( )A .{}2-B .{}2C .{}2,2-D .∅2双曲线2228x y -=的实轴长是( )A .2B .2 2C .4D .4 2 3向量(1,0)a =,11,22b ⎛⎫= ⎪⎝⎭,则下列结论中正确的是( ) A .a b = B .2a b ⋅=C .//a bD .a b -与b 垂直 4了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为0m ,平均值为x ,则( )A .e m =0m =xB .e m =0m <xC .e m <0m <xD .0m <e m <x5设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件 C.既不充分也不必要条件63),若2z x y =+的最小值为1,则a =( ).1 D .2 7且|a 7|=|a 8|,则使S n >0的最大正整数n 是( ) A C .14 D .15 8a >b D 、b >a >c9 )A 、44+πB 、40+4πC 、44+4πD 、44+2π10A ,B 均在双曲线C:22221y x a b-=(a >0,b >0)的右支上,点O 为坐标原点,双曲线C 的离心率为e .( )A .若eOA OB ⋅存在最大值 B .若1<e OA OB ⋅存在最大值 C .若e OA OB ⋅存在最小值 D .若1<e OA OB ⋅存在最小值二、填空题.(每小题5分,满分30分)11序框图如图所示,该程序运行后输出的值是 .12等比数列{a n },a 2+a 3=32,a 4+a 5=6,则a 8+a 9= .13已知24(,)x y x y R ++=∈,则21x y+的最小值为 . 14224(0)()0(0)4(0)x x x f x x x x x ⎧->⎪==⎨⎪--<⎩,则不等式()f x x >的解集为 .15ABC ∆中,角,A B 所对的边长分别为a16项等比数列{}n a 中,1212n n a a a a a a +++>⋅⋅⋅三、解答题:本大题共6小题,满分80骤. 16.(本题满分12分) 设向量()3sin ,sin a x x =,(cos ,sin b x x =(1)若a b =,求x 的值;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.18.(本题满分14分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB =,1AD =,PD ⊥底面ABCD . (1)证明:PA BD ⊥;(2)若PD AD =,求二面角A PB C --的余弦值. 19.(本题满分14分) 设数列{}n a 的前n 项和为n S ,已知11a =(1)求数列{}n a 的通项公式; (2)证明:对一切正整数n ,有1211174a a a +++<20(本小题满分14分)已知函数f(x)是定义在[-1,1]上的函数,若对于任意x ,y ∈[-1,1],都有f(x +y)=f(x)+f(y),且x>0时,有f (x )>0. (1)求f(0)的值;(2)判断函数的奇偶性;(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.21(本题满分14分)如图,已知椭圆C :22221x y a b+=,其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E两点,且1AF 、12F F 、2AF 构成等差数列.(1)求椭圆C 的方程;(2)记△1GF D 的面积为1S ,△OED (O 为原点)的面积为2S .试问:是否存在直线AB ,使得12S S =?说明理由.参考答案11.5 12.96 13.2 14由()f x x >,可得240x x x x ⎧->⎨>⎩或240x x xx ⎧-->⎨<⎩,解得550x x ><<或-,所以原不等式的解集为(5,0)(5,)-+∞.15由正弦定理得,2sin a B b =可化为2sin sin sin A B B =,又sin 0B ≠,所以1sin 2A =,又ABC ∆为锐角三角形,得6A π=.16由5671,3,2a a a =+=可得21()3,2q q +=即260,q q +-=所以2q =,所以62n n a -=,数列{}n a 的前n 项和5522n n S --=-,所以()(11)221212n n n n n a aa a a-==,由1212n n a a a a a a +++>⋅⋅⋅可得(11)552222n n n ---->,由(11)5222n n n -->,可求得n 的最大值为12,而当13n =时,8513222-->不成立,所以n 的最大值为12.三、解答题:(3sin a =, (cos 1b x ==, 及a b =,得s ,从而1sin 2x =,所以6x π=(2)2113sin sin 2cos 2222a b x x x x =⋅=+=-+ = 当0,x ∈⎢⎣,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦ 所以当2x 1 所以()f x 的最大值为32.50; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==;18解:(1)证明:因为60DAB ∠=︒,2AB AD =,由余弦定理得BD . ........... 从而222BD AD AB +=,故B D A D ⊥. PD ⊥面,ABCD BD ⊂面ABCD ,PD BD ∴⊥ 又,AD PD D ⋂= 所以BD ⊥平面PAD . .. 故PA BD ⊥. .............(6分)(2)如图,以D 为坐标原点,射线DA ,DB ,DP 分别为x ,y,z 的正半轴建立空间直角坐标系D -xyz , 则(1,0,0),(0,3,0),(13,0),(0,0,1)A B C P -.(1AB =-(0,3,1)PB =-,(1,0,0)BC =-.........(8分)设平面PAB 的法向量为(,,)n x y z =,则00n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩ 即00x z ⎧-+=⎪-= 因此可取(3,1n =. .............(10分) 0m PB m BC ⎧⋅=⎪⎨⋅=⎪⎩(12分)4,m n -=故钝二面角A -PB -(14分)11a =,所以24a = ………(2分) 3211233n n n n +---,321122(1)(1)(1)(1)33n n S n a n n n -=------- ,两式相减得3232112122()((1)(1)(1)(1))3333n n n a na n n n n a n n n +=-----------整理得 1(1)(1)n n n a na n n ++=-+,即111n n a an n+-=+, ………(6分)又21121a a -=,故数列n a n ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列, 所以11(1),n an n n=+⨯-=所以2n a n = ………(8分)(解法二) 2121233n n S a n n n +=---, 11=a ,得9432==a a ,, .......(2分) 猜想=S n (1)当n = (24分)当=n 1213k k S a k +=+(5分)(1)(2)(23)6k k k +++==(62n a n = .........………(9分)当1221444n a a =+=+=<时,; ………(10分)当2111113(1)1n n a n n n n n ≥=<=---时,, ………(12分) 此时22221211111111234n a a a n+++=+++++11111111117171()()()14233414244n n n n <++-+-++-=++-=-<- 综上,对一切正整数n ,有1211174n a a a +++< ……………(14分)20【解析】 (1)令x =y =0,则f(0+0)=f(0)+f(0),∴f(0)=0(2)令y =-x ,∴f(x -x)=f(x)+f(-x),∴f(x)+f(-x)=0,f(-x)=-f(x), ∴f(x)为奇函数. (3)f(x)为增函数.证明:令-1≤x 1<x 2≤1,∴x 2-x 1>0,∴f(x 2-x 1)>0.又∵f(x 2-x 1)=f(x 2)+f(-x 1)=f(x 2)-f(x 1),∴f(x 2)-f(x 1)>0,∴f(x 2)>f(x 1), ∴f(x)在[-1,1]上是增函数. 20.解:(1)因为1AF 、12F F 、2AF 构成等差数列 所以4222121==+=F F AF AF a ,所以2a =.……(2分)又因为1c =,所以23b =, ……(3分)所以椭圆C 的方程为22143x y +=. ……(4分)(2)假设存在直线AB ,使得 12S S =,显然直线AB 不能与,x y 轴垂直.设AB 方程为(1)y k x =+ …(5分)将其代入22143x y +=,整理得 2222(43)84120k x k x k +++-= …(6分) 23)43kk +.……(8分) 2243D k k -=+, ……(10分)Rt GDF ∆OD = ……(11分) 224343k k --+……(12分) 整理得 2890k +=. ……(13分)因为此方程无解,所以不存在直线AB ,使得 12S S =. ……(14分)。

高二数学理科测试卷含答案

高二数学理科测试卷含答案

高二理科测试卷(摸底)一 单项选择(本大题12小题,每小题5分,计60分)1.对于命题p 和q ,若p 且q 为真命题,则下列四个命题: ① p 或q ⌝是真命题 ② p 且q ⌝是真命题 ③ ⌝p 且q ⌝是假命题 ④ ⌝p 或q 是假命题其中真命题是( )A. ①②B. ③④C. ①③D.②④ 2. 已知命题p :存在,Z x ∈使2220x x ++≤ , 则p ⌝:( )A.存在,Z x ∈使2220x x ++> B.不存在,Z x ∈使2220x x ++> C.对任意,Z x ∈都有2220x x ++≤ D.对任意,Z x ∈都有2220x x ++>3. 若不重合的两个平面,αβ的法向量分别为,u v r r且u r ∥v r ,则α与β的位置关系是( )A.垂直B.平行C.相交D.不确定 4.已知:12,:(3)0p x q x x <<-<,则P 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知(1,0,2),(6,21,2),//,a b a b λλμλμ=+=-r r r r若则与的值分别为( )A .21,51 B .5,2 C .11,52--D .-5,-2 6. 已知椭圆的两个焦点分别为F 1(0, -4), F 2(0, 4), F 1到椭圆上点的最短距离是2, 则这个椭圆的方程为( )A.2213620x y += B.2212036x y +=C .2213616x y += D .2211636x y +=. 7. 已知方程22141x y m m +=-+表示双曲线,则m 的取值范围是( ) A . m<-1 B . m>4 C .m<-1或m>4 D .-1<m<48. 在同一坐标系中,方程22221a x b y +=与20ax by +=(a >b>0)的曲线大致是( )9. 在下列等式中,使M 与A ,B ,C 一定共面的是( )A.2OM OA OB OC =--u u u u r u u u r u u u r u u u rB.111532OM OA OB OC =++u u u u r u u u r u u u r u u u rC.0MA MB MC ++=u u u r u u u r u u u u r rD.0OM OA OB OC +++=u u u u r u u u r u u u r u u u r r10. 已知S 是ABC ∆所在平面外一点, 0,90SA ABC BAC ⊥∠=平面,2SA AB AC ==, E 、F 分别是SB 、AB 的中点,则异面直线AE 与CF 所成角的大小是( ) A. 030 B. 060 C. 0120 D. 015011.在正方体1111ABCD A B C D -中,点P 是面11BB C C 内一动点,若点P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线12.椭圆()222210x y a b a b+=>>上一点P,若01260F PF ∠=,则这个椭圆的离心率的取值范围是( )A .1(0,]2B .1[,1)2C .3D .3[二填空题(本大题4小题,每小题4分,计16分)13. .已知直线l 的方向向量为(1,1,1)s =-r ,平面π的法向量为(1,3,3)n x x =+-r ,若l ∥π,则x =________.14. 已知抛物线212y x a=-的通径长为2,则a =_______. 15.已知下列命题: (1)若a r ∥,b b r r ∥,0c b ≠r r r 且,则a r ∥c r;(2)若⋅=⋅,则=;(3) )()(⋅=⋅.则假命题的序号为__________.16.P 是双曲线221916x y -=的右支上一点, 1F 、2F 分别为左、右焦点,则12PF F ∆的内切圆的圆心横坐标为________.二解答题(本大题共6小题,计74分)17.(12分)已知原命题P:若03,a b a ==且则+b=3(1)写出P 的逆命题、否命题、逆否命题; (2)判断P 的否命题的真假,并说明理由.18. (12分)如图:空间四边形OABC 中,点,M G 分别是,BC AM 的中点.设,,OA a OB b OC c ===u u u r r u u u r r u u u r r(1)用,,a bc v v v表示向量OG u u u r .(2)若||||||a b c ===r r r 且a r 与b r 、c r 夹角的余弦值均为13,b r 与c r 夹角为600,求OG u u u u r19.(12分)已知抛物线的顶点在坐标原点,焦点F 在x 轴的正半轴上,且F 到抛物线的准线的距离为p.(1) 求出这个抛物线的方程; (2)若直线l 过抛物线的焦点F ,交抛物线与A 、B 两点, 且AB =4p ,求直线l 的方程.20.(12分)如图已知正四棱柱ABCD----A 1B 1C 1D 1,AB=1,AA 1=2,点E 为CC 1的中点,点F 为BD 1的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岳阳县一中2015级高二期末考试试卷理科数学时量:120分钟 总分:150分 命题:岳阳县一中 命题人:周军才一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.i 为虚数单位,则2013i = ( )A.i -B.1-C. iD.12. 若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3. 已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A. 34y x =±B. 43y x =±C. 3y x =±D. 4y x =±4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行.其中正确的个数是 ( ) A.0个 B.1个 C.2个 D.3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有 ( ) A.7个 B.12个 C.24个 D.35个6. 下列推理中属于归纳推理且结论正确的是( )A.设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B.由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C.由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D.由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7. 已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为 ( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8. 抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值 为( )A.B.C. 1D.二、 填空题:本大题共7小题,每小题5分,共35分.9.24sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是11. 曲线C :ln xy x=在点(1,0)处的切线方程是 .12. 棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14. 椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = .15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.17. (本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18. (本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 1CA B C 1A 1B19. (本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20. (本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>离心率为2,且椭圆的长轴比焦距长2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由.21. (本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.岳阳县一中2015级高二期末考试试卷理科数学时量:120分钟 总分:150分 命题:岳阳县一中 命题人:周军才一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.i 为虚数单位,则2013i = ( )A.i -B.1-C. iD.1答案:C解析: 201345031i i i ⨯+==2. 若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.3. 已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A. 34y x =±B. 43y x =±C. 3y x =±D. 4y x =±答案:B解析:知双曲线2219x y m-=的焦点在x 轴,且0,3m c >,又一个焦点是()5,0,5,16m = 双曲线的渐近线方程为43y x =±4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行.其中正确的个数是 ( ) A.0个 B.1个 C.2个 D.3个 答案:B解析:①正确,②③错误.5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A.7个B.12个C.24个D.35个答案:D6. 下列推理中属于归纳推理且结论正确的是( )A.设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B.由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C.由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D.由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>答案:A解析:选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7. 已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)[解析] f ′(x )=3x 2-6x -9=3(x +1)·(x -3), 令f ′(x )=0,得x =-1或x =3.当x ∈[-2,-1)时,f ′(x )>0,函数f (x )单调递增;当x ∈(-1,3)时,f ′(x )<0,函数f (x )单调递减;当x ∈(3,5]时,f ′(x )>0,函数f (x )单调递增.所以函数f (x )的极小值为f (3)=-24,极大值为f (-1)=8;而f (-2)=1,f (5)=8,函数图象大致如图所示.故要使方程g (x )=f (x )-m 在x ∈[-2,5]上有3个零点,只需函数f (x )在[-2,5]内的函数图象与直线y=m 有3个交点.故⎩⎪⎨⎪⎧m <8,m ≥1,即m ∈[1,8).[答案] D8. 抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90.过弦MN AB的最大值为3三、 填空题:本大题共7小题,每小题5分,共35分.9.24sin xdx π=⎰答案:4解析:22004sin 4cos |4xdx x ππ=-=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是答案:(解析:∵01a <<,∴(OZ = 11. 曲线C :ln xy x=在点(1,0)处的切线方程是 . 答案:1y x =-解析:设f(x)=ln xx ,则f′(x)=1-ln x x 2.所以f′(1)=1.所以所求切线方程为y =x -1.12. 棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .解析:∵SC z SB y SA x SP ++=)1(=++z y x ,∴,,,A B C P 的最小值即为点S 到底面ABC 的高h =13. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 . 答案:24解析:分三步:把甲、乙捆绑为一个元素A ,有A 22种方法;A 与戊机形成三个“空”,把丙、丁两机插入空中有A 23种方法;考虑A 与戊机的排法有A 22种方法.可知共有A 22A 23A 22=24种不同的着舰方法.14. 椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 答案:-34则k PA1k PA2=y 0x 0+2·y 0x 0-2=y 20x 20-4,而x 204+y 203=1,即y 20=34(4-x 20),所以k PA1k PA2=-3415.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是答案:10,2⎛⎫ ⎪⎝⎭解析:()f x 定义域为(1,)-+∞()21a f x x x '=++,令()0f x '=,则201a x x +=+在(1,)-+∞内有两个不同的实数根 2(1)a x x =-+,结合图象知102a <<三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分 由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……………4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<. ……………6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则A B ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x ≥4或x ≤2},……………10分则02a <≤,且34a ≥ 所以实数a 的取值范围是423a ≤≤……………12分 17. (本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===.1CC1A1B(1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小. 解::方法一:(1)∵11,AC BC AC CC BC CC C ⊥⊥=且 ∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面 ∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C HHQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又11C H A AB HQ ==内,解得∴111tan 60C HC QH C QH HQ∠==∠=︒ ∴二面角111C AB A --为60°.18. (本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19. (本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明. 解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1, 于是(a 1-1)2-a 1(a 1-1)-a 1=0, 解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……………5分(2)由题设(S n -1)2-a n (S n -1)-a n =0, 即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1, 代入上式得S S -2S +1=0.①由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分 (ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立, 即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分20. (本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>离心率为2,且椭圆的长轴比焦距长2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a 1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-,将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y k x =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--=设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21. (本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+. 解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。

相关文档
最新文档