计量经济学计算题
计量经济学练习题完整版
计量经济学试题1一 名词解释(每题5分,共10分) 1. 经典线性回归模型2. 加权最小二乘法(WLS ) 二 填空(每空格1分,共10分)1.经典线性回归模型Y i = B 0 + B 1X i + µi 的最小二乘估计量b 1满足E ( b 1 ) = B 1,这表示估计量b 1具备 性。
2.广义差分法适用于估计存在 问题的经济计量模型。
3.在区间预测中,在其它条件不变的情况下,预测的置信概率越高,预测的精度越 。
4.普通最小二乘法估计回归参数的基本准则是使 达到最小。
5.以X 为解释变量,Y 为被解释变量,将X 、Y 的观测值分别取对数,如果这些对数值描成的散点图近似形成为一条直线,则适宜配合 模型。
6.当杜宾-瓦尔森统计量 d = 4时,ρˆ= ,说明 。
7.对于模型i i i X Y μββ++=10,为了考虑“地区”因素(北方、南方两种状态)引入2个虚拟变量,则会产生 现象。
8. 半对数模型LnY i = B 0 + B 1X i + µI 又称为 模型。
9.经典线性回归模型Y i = B 0 + B 1X i + µi 的最小二乘估计量b 0、b 1的关系可用数学式子表示为 。
三 单项选择题(每个1分,共20分)1.截面数据是指--------------------------------------------------------------( )A .同一时点上不同统计单位相同统计指标组成的数据。
B .同一时点上相同统计单位相同统计指标组成的数据。
C .同一时点上相同统计单位不同统计指标组成的数据。
D .同一时点上不同统计单位不同统计指标组成的数据。
2.参数估计量βˆ具备有效性是指------------------------------------------( ) A .0)ˆ(=βar V B.)ˆ(βarV 为最小 C .0)ˆ(=-ββD.)ˆ(ββ-为最小 3.如果两个经济变量间的关系近似地表现为:当X 发生一个绝对量(X ∆)变动时,Y 以一个固定的相对量(Y Y /∆)变动,则适宜配合的回归模型是------------------------------------------------------------------------------------------- ( )A .i i i X Y μβα++= B.i i i X Y μβα++=ln C .i ii X Y μβα++=1D.i i i X Y μβα++=ln ln 4.在一元线性回归模型中,不可能用到的假设检验是----------( ) A .置信区间检验 B.t 检验 C.F 检验 D.游程检验5.如果戈里瑟检验表明 ,普通最小二乘估计的残差项有显著的如下性质:24.025.1i i X e +=,则用加权最小二乘法估计模型时,权数应选择-------( )A .i X 1 B. 21i X C.24.025.11i X + D.24.025.11i X +6.对于i i i i X X Y μβββ+++=22110,利用30组样本观察值估计后得56.827/)ˆ(2/)ˆ(2=-∑-∑=iiiY Y Y Y F ,而理论分布值F 0.05(2,27)=3.35,,则可以判断( )A . 01=β成立 B. 02=β成立 C. 021==ββ成立 D. 021==ββ不成立7.为描述单位固定成本(Y )依产量(X )变化的相关关系,适宜配合的回归模型是:A .i i i X Y μβα++= B.i i i X Y μβα++=ln C .i ii X Y μβα++=1D.i i i X Y μβα++=ln ln 8.根据一个n=30的样本估计ii i e X Y ++=10ˆˆββ后计算得d=1.4,已知在95%的置信度下,35.1=L d ,49.1=U d ,则认为原模型------------------------( )A .存在正的一阶线性自相关 B.存在负的一阶线性自相关 C .不存在一阶线性自相关 D.无法判断是否存在一阶线性自相关9.对于ii i e X Y ++=10ˆˆββ,判定系数为0.8是指--------------------( ) A .说明X 与Y 之间为正相关 B. 说明X 与Y 之间为负相关 C .Y 变异的80%能由回归直线作出解释 D .有80%的样本点落在回归直线上10. 线性模型i i i i X X Y μβββ+++=22110不满足下列哪一假定,称为异方差现象-------------------------------------------------------------------------------( )A .0)(=j i ov C μμ B.2)(σμ=i ar V (常数) C .0),(=i i ov X C μ D.0),(21=i i ov X X C11.设消费函数i i i X D Y μβαα+++=10,其中虚拟变量⎩⎨⎧=南方北方01D ,如果统计检验表明1α统计显著,则北方的消费函数与南方的消费函数是--( )A .相互平行的 B.相互垂直的 C.相互交叉的 D.相互重叠的12. 在建立虚拟变量模型时,如果一个质的变量有m 种特征或状态,则一般引入几个虚拟变量:----------------------------------------------------------------( )A .m B.m+1 C.m -1 D.前三项均可 13. 在模型i i iX Y μββ++=ln ln ln 10中,1β为---------------------( )A .X 关于Y 的弹性 B.X 变动一个绝对量时Y 变动的相对量 C .Y 关于X 的弹性 D.Y 变动一个绝对量时X 变动的相对量14.对于i i i e X Y ++=10ˆˆββ,以S 表示估计标准误差,iY ˆ表示回归值,则-------------------------------------------------------------------------------------------( )A .S=0时,0)ˆ(=-∑ti Y Y B.S=0时,∑==-ni i i Y Y 120)ˆ( C .S=0时,)ˆ(ii Y Y -∑为最小 D.S=0时,∑=-ni i i Y Y 12)ˆ(为最小 15.经济计量分析工作的基本工作步骤是-----------------------------( )A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应用模型C .理论分析→数据收集→计算模拟→修正模型D .确定模型导向→确定变量及方程式→应用模型16.产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为:X Y5.1356ˆ-=,这说明-----------------------------------------------------------( )A .产量每增加一台,单位产品成本平均减少1.5个百分点B .产量每增加一台,单位产品成本减少1.5元C .产量每增加一台,单位产品成本减少1.5个百分点D .产量每增加一台,单位产品成本平均减少1.5元17.下列各回归方程中,哪一个必定是错误的------------------------( )A .8.02.030ˆ=+=XY i i r X Y B. 91.05.175ˆ=+-=XY i i r X Y C .78.01.25ˆ=-=XY ii r X Y D. 96.05.312ˆ-=--=XY ii r X Y18.用一组有28个观测值的样本估计模型i i i X Y μββ++=10后,在0.05的显著性水平下对1β的显著性作t 检验,则1β显著地不等于0的条件是统计量t 大于-------------------------------------------------------------------------------------( )A .t 0.025(28) B. t 0.05(28) C. t 0.025(26) D. t 0.05(26)19.下列哪种形式的序列相关可用DW 统计量来检验(V t 为具有零均值、常数方差,且不存在序列相关的随机变量)---------------------------------( )A .t t t V +=-1ρμμ B.t t t t V +⋅⋅⋅++=--121μρρμμ C. t t V ρμ= D. ⋅⋅⋅++=-12t t t V V ρρμ20.对于原模型t t t X Y μββ++=10,一阶差分模型是指------------( )A .)()()(1)(1t tt t t t t X f X f X X f X f Y μββ++=B .t t t X Y μβ∆+∆=∆1C .t t t X Y μββ∆+∆+=∆10D .)()()1(11101----+-+-=-t t t t t t X X Y Y ρμμρβρβρ四 多项选择题(每个2分,共10分)1.以Y 表示实际值,Yˆ表示回归值,i e 表示残差项,最小二乘直线满足------------------------------------------------------------------------------------------( )A .通用样本均值点(Y X ,) B.ii Y Y ˆ∑=∑ C .0),ˆ(=i i ov e Y C D.0)ˆ(2=-∑i i Y Y E .0)ˆ(=-∑Y Y i2.剩余变差(RSS )是指--------------------------------------------------( )A .随机因素影响所引起的被解释变量的变差B .解释变量变动所引起的被解释变量的变差C .被解释变量的变差中,回归方程不能作出解释的部分D.被解释变量的总变差与解释变量之差E.被解释变量的实际值与回归值的离差平方和3. 对于经典线性回归模型,0LS估计量具备------------------------()A.无偏性 B.线性特性 C.正确性 D.有效性 E.可知性4. 异方差的检验方法有---------------------------------------------------()A.残差的图形检验 B.游程检验 C.White检验D.帕克检验E.方差膨胀因子检验5. 多重共线性的补救有---------------------------------------------------()A.从模型中删掉不重要的解释变量 B.获取额外的数据或者新的样本 C.重新考虑模型 D.利用先验信息 E. 广义差分法五简答计算题(4题,共50分)1.简述F检验的意图及其与t检验的关系。
计量经济学计算题
1、某农产品试验产量Y (公斤/亩)和施肥量X (公斤/亩)7块地的数据资料汇总如下:∑=255iX ∑=3050i Y∑=71.12172ix∑=429.83712i y ∑=857.3122i i y x后来发现遗漏的第八块地的数据:208=X ,4008=Y 。
要求汇总全部8块地数据后进行以下各项计算,并对计算结果的经济意义和统计意义做简要的解释。
(1)该农产品试验产量对施肥量X (公斤/亩)回归模型Y a bX u =++进行估计; (2)对回归系数(斜率)进行统计假设检验,信度为; (3)估计可决系数并进行统计假设检验,信度为。
解:首先汇总全部8块地数据:87181X X X i i i i +=∑∑== =255+20 =275 n X X i i ∑==81)8(375.348275==2)7(7127127Xx Xi i i i+=∑∑== =+7⨯27255⎪⎭⎫ ⎝⎛=1050728712812X X Xi i i i+=∑∑== =10507+202 = 109072)8(8128128XX xi ii i+=∑∑== = 10907-8⨯28275⎪⎭⎫⎝⎛=87181Y Y Y i i i i +=∑∑===3050+400=3450 25.4318345081)8(===∑=n Y Y i i 2)7(7127127Y y Y i ii i+=∑∑== =+7⨯273050⎪⎭⎫ ⎝⎛=1337300 28712812Y YY i ii i +=∑∑== =1337300+4002 = 14973002)8(8128128Y Y y i i i i +=∑∑== =1497300 -8⨯(83450)2== )7()7(71717Y X y x Y X i i i i i i +=∑∑== ==+7⎪⎭⎫ ⎝⎛7255⨯⎪⎭⎫⎝⎛73050=114230 887181Y X YX Y X i ii i ii +=∑∑== =114230+20⨯400 =122230)8()8(81818Y X YX y x i ii i ii -=∑∑== =⨯⨯ =(1)该农产品试验产量对施肥量X (公斤/亩)回归模型u bX a Y ++=进行估计5011.288.145325.3636ˆ2===∑∑iii xyx b28.3455011.2*375.3425.431ˆˆ=-=-=X b Y aX X b a Y 5011.228.345ˆˆˆ+=+= 统计意义:当X 增加1个单位,Y 平均增加个单位。
计量经济学计算题
计量经济学计算题例题 0626一元线性回归模型相关例题1.假定在家计调查中得出一个关于 家庭年收入X 和每年生活必须品综合支出 Y 的横截面样根据表中数据: (1) 用普通最小二乘法估计线性模型Y t0 1 X t u t(2) 用G — Q 检验法进行异方差性检验(3) 用加权最小二乘法对模型加以改进答案:(1)丫=+( 2)存在异方差(3)丫=+2 •已知某公司的广告费用 X 与销售额(Y )的统计数据如下表所示:(1) 估计销售额关于广告费用的一元线性回归模型 (2) 说明参数的经济意义(3) 在 0.05的显著水平下对参数的显著性进行 t 检验答案:(1) 一元线性回归模型 Y t 319.086 4 185X i(2) 参数经济意义:当广告费用每增加 1万元,销售额平均增加万元(3)t=> t o.025(10),广告费对销售额有显著影响3.:根据表中数据: (1) 求Y 对X 的线性回归方程;(2) 用t 检验法对回归系数进行显著性检验(a =);(3) 求样本相关系数r;答案:Y =+用t 检验法对回归系数进行显著性检验(a =); 答案:显著2 2假设y 对x 的回归模型为% b o biX u ,,且Var (uJ x ,,试用适当的方法估计此回归模型。
2 2解:原模型:y b 0 b 1x 1 U i , Var (u ,)为模型存在异方差性为消除异方差性,模型两边同除以 X ,,得:bo — a u._ (2分)X ,X x ,* y , *1u ,令: y,x ,■,v ,xxX ,得: * y ,*b box '(2分)u.此时 Var (v i ) Var ( L)X i由已知数据,得(2分)X i 25 10 4 10*X iy i4 7 4 59* y i2**根据以上数据, 对y ia b o X V i 进行普通最小—.乘估计得:* * * *1.77n x Ci y iX iy ib o0.54 3.28b、八2n(Xi ) ( X ) 解得5.951.15(3分)b 1*Y ib o X i*b53.2850.44回归分析表格1.有10户家庭的收入(X ,元)和消费(丫,百元)数据如下表:若建立的消费丫对收入X 的回归直线的Eviews 输出结果如下:Depe ndent Variable: 丫 Variable Coefficie ntStd. ErrorX C R-squared . depe ndent var Adjusted F-statisticR-squared-4( 2X i 2) X i2新模型不存在异方差性 (1分)Durbi n-Watson statProb (F-statistic )(1) 说明回归直线的代表性及解释能力。
计量经济学题库(判断题简答题计算题)
2
52. 53. 虚拟变量是用来表示数量差异的变量() 54. 杜宾沃森检验在某些期数据缺失的情况下特别有用。 55. 假设检验可以告诉我们只有那个样本数据与我们的猜想一致或者相容。 56. 杜宾沃森(Durbin-Watson)检验是用来检验一阶自相关的。( ) 57. 改变解释变量或者是被解释变量的单位,对 t 统计量和 R2 没有影响 58. 当存在异方差时,最小二乘估计是有偏的。( ) 59. 最小二乘估计量是确定的数。 60. 在存在自相关时,最小二乘估计是有偏的。( ) 61. 模型的拟合优度不是判断模型质量的唯一标准,为了追求模型的经济 意义,可以牺牲一点拟合优度。 () 62. 在 Y 对 X 的标准线性回归中,回归线和 X 的值的水平距离被极小 化了。 63. 样本平均值点在拟合回归线上 64. 模型中没有常数项时,对于 m 个类别的定性变量可以引入 m 个虚拟 变量。 () 65. 滞后变量的长期效应等于滞后变量的各期滞后值的系数之和。( ) 66.Goldfeld−Quandt 检验在检验自相关时很有用 67. 正自相关在经济时序数据中是不常见的。 68. 如果存在异方差,通常用的 t 检验和 F 检验是无效的() 69.OLS 法不适用于估计联立方程模型中的结构方程。 () 70. 联立方程中一个方程具有唯一的统计形式,则它是可识别的。( ) 71. 一个结构方程中包含的变量越多,则越有助于它的识别。( ) 72. 如果存在异方差通常用的 t检验和 F检验是无效的。 73. 如果某一辅助回归的 R2 较高,则表明一定存在高度共线性。 74. 异方差性使得模型的最小二乘估计是有偏的。( ) 75. 模型为 Yi = α0 + α1 Xi + α2 Di + ui ,其中 D 在选举年等于 1,否则 等于 0。如果 α2 显著地区别于零,那么选举年和其他年份比有显著的差异。 76. 异方差性在使用时间序列数据的模型中最普遍 77. 模型的拟合优度不是判断模型质量的唯一标准,为了追求模型的经济 意义,可以牺牲一点拟合优度。 78. 存在异方差时,假设检验是不可靠的 79. 如果给定解释变量值,根据模型就可以得到被解释变量的预测值。 80. 复相关系数 R2 可以取任意非负实数。( ) 81. 最小二乘估计的残差平方和小于任何其他线性估计的残差平方和。( ) 82. 求参数的区间估计就是要找一个未知参数肯定落入的区间。 () 83. 尽管有完全的多重共线性,OLS 估计量仍然是 BLUE。 () ¯ −ˆ ¯ ,其中,上加一杠表示样本平均值。 84. 截距项的估计量是 a ˆ=Y bX
计量经济学习题含答案
计量经济学习题含答案第1章绪论习题一、单项选择题1•把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为(B )A. 横截面数据B.时间序列数据C.面板数据D.原始数据2 •同一时间、不同单位按同一统计指标排列的观测数据称为(B )A. 原始数据B?截面数据C. 时间序列数据D ?面板数据3•用计量经济学研究问题可分为以下四个阶段( B )A.确定科学的理论依据、建立模型、模型修定、模型应用B ?建立模型、估计参数、检验模型、经济预测C?搜集数据、建立模型、估计参数、预测检验D. 建立模型、模型修定、结构分析、模型应用4 •下列哪一个模型是计量经济模型(C )A.投入产出模型B.数学规划模型C.包含随机变量的经济数学模型D.模糊数学模型二、问答题1 •计量经济学的定义2•计量经济学的研究目的3•计量经济学的研究内容1 •答:计量经济学是统计学、经济学、数学相结合的一门综合性学科,是一门从数量上研究物质资料生产、交换、分配、消费等经济尖系和经济活动规律及其应用的科学2•答:计量经济学的研究目的主要有三个:(1 )结构分析。
指应用计量经济模型对经济变量之间的尖系作出定量的度量。
(2 )预测未来。
指应用已建立的计量经济模型求因变量未来一段时期的预测值。
(3)政策评价。
指通过计量经济模型仿真各种政策的执行效果,对不同的政策进行比较和选择。
3•答:计量经济学在长期的发展过程中逐步形成了两个分支:理论计量经济学和应用计量经济学。
理论计量经济学主要研究计量经济学的理论和方法。
应用计量经济学将计量经济学方法应用于经济理论的特殊分支,即应用理论计量经济学的方法分析经济现象和预测经济变量2一元线性回归模型习题、单项选择题1 •最小二乘法是指(D )A.使达到最小值B.使达到最小值C.使达到最小值D.使达到最小值2 •在一元线性回归模型中,样本回归方程可表示为(C )C • D.3?线设OLS 法得到的样本回归直线为,以下说法不正确的是A-B • D.在回归直线上4•对样本的相尖系数,以下结论错误的是(A )A. 越接近0,与之间线性相矢程度高B. 越接近1,与之间线性相尖程度高C.D ,则与相互独立二、多 项选择题1 ■最小二乘估计量的统计性质有(A.无偏性B. C.不一致性 E.2. 利用普通最小二乘法求得的样本回归直线的特点(ACD )A.必然通过点B.可能通过点C. 残差的均值为常数D.的平均值与的平均值相等C. 残差与解释变量之间有一定的相尖性3. 随机变量(随机误差项)中一般包括那些因素(ABCDE )C. ABC )线性性C.最小方差性有偏性A回归模型中省略的变量B人们的随机行为C建立的数学模型的形式不够完善。
计量经济学题库(超完整版)及答案.详解
40
15
13
26
38
35
43
Y798源自11548
10
9
10
若建立的消费Y对收入X的回归直线的Eviews输出结果如下:
Dependent Variable: Y
Variable
Coefficient
Std. Error
X
0.202298
0.023273
C
2.172664
0.720217
R-squared
12.根据对某企业销售额Y以及相应价格X的11组观测资料计算:
(1)估计销售额对价格的回归直线;
(2)当价格为X1=10时,求相应的销售额的平均水平,并求此时销售额的价格弹性。
13.假设某国的货币供给量Y与国民收入X的历史如系下表。
某国的货币供给量X与国民收入Y的历史数据
年份
X
Y
年份
X
Y
年份
X
Y
1985
30.指出下列假想模型中的错误,并说明理由:
(1)
其中, 为第 年社会消费品零售总额(亿元), 为第 年居民收入总额(亿元)(城镇居民可支配收入总额与农村居民纯收入总额之和), 为第 年全社会固定资产投资总额(亿元)。
(2) 其中, 、 分别是城镇居民消费支出和可支配收入。
(3) 其中, 、 、 分别是工业总产值、工业生产资金和职工人数。
, , , ,
假定满足所有经典线性回归模型的假设,求 , 的估计值;
16.根据某地1961—1999年共39年的总产出Y、劳动投入L和资本投入K的年度数据,运用普通最小二乘法估计得出了下列回归方程:
(0.237) (0.083) (0.048)
计量经济学计算题试题库
五、简答题: 1.给定一元线性回归模型:t t t X Y μββ++=10 n t ,,2,1Λ=(1)叙述模型的基本假定;(2)写出参数0β和1β的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。
2.对于多元线性计量经济学模型:t kt k t t t X X X Y μββββ+++++=Λ33221 n t ,,,Λ21=(1)该模型的矩阵形式及各矩阵的含义; (2)对应的样本线性回归模型的矩阵形式; (3)模型的最小二乘参数估计量。
6.线性回归模型的基本假设。
违背基本假设的计量经济模型是否可以估计五、简答题:1.答:(1)零均值,同方差,无自相关,解释变量与随机误差项相互独立(或者解释变量为非随机变量)(2)∑∑===nt tnt tt xyx 1211ˆβ,X Y 10ˆˆββ-= (3)线性即,无偏性即,有效性即(4)2ˆ122-=∑=n ent tσ,其中∑∑∑∑∑=====-=-=nt t t n t t n t tn t tn t ty x y x y e 111212211212ˆˆββ2. 答: (1)N XB Y+=;121⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n Y Y Y Y M)1(212221212111111+⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k n kn n n k k X X X X X X X X X X ΛMM M M ΛΛ1)1(210⨯+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k n B ββββM 121⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n N μμμM (2)E B X Y+=ˆ; (3)()YX X X B''=-1ˆ。
6.答:(1)随机误差项具有零均值。
即 E(i μ)=0 i=1,2,…n(2)随机误差项具有同方差。
即 Var(i μ)=2μσ i=1,2,…n(3)随机误差项在不同样本点之间是独立的,不存在序列相关。
计量经济学计算题及答案讲解
1、根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立了如下回归模型x y6843.1521.2187ˆ+-= se=(340.0103)(0.0622)6066.733,2934.0,425.1065..,9748.02====F DW E S R试求解以下问题:(1)取时间段1978——1985和1991——1998,分别建立两个模型。
模型1:x y3971.04415.145ˆ+-= 模型2:x y 9525.1365.4602ˆ+-= t=(-8.7302)(25.4269) t=(-5.0660)(18.4094) ∑==202.1372,9908.0212eR ∑==5811189,9826.0222e R计算F 统计量,即∑∑===9370.4334202.137258111892122eeF ,对给定的05.0=α,查F 分布表,得临界值28.4)6,6(05.0=F 。
请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?(2)根据表1所给资料,对给定的显著性水平05.0=α,查2χ分布表,得临界值81.7)3(05.0=χ,其中p=3为自由度。
请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么? 表1F-statistic 6.033649 Probability 0.007410 Obs*R-squared10.14976 Probability0.017335Test Equation:Dependent Variable: RESID^2 Method: Least SquaresDate: 06/04/06 Time: 17:02 Sample(adjusted): 1981 1998Included observations: 18 after adjusting endpoints Variable Coefficie ntStd. Error t-Statistic Prob. C244797.2 373821.3 0.654851 0.5232 RESID^2(-1)1.226048 0.3304793.7099080.0023RESID^2(-2) -1.405351 0.379187 -3.706222 0.0023 R-squared 0.563876 Mean dependent var 971801.3 Adjusted R-squared 0.470421 S.D. dependent var 1129283. S.E. of regression 821804.5 Akaike info criterion 30.26952 Sum squared resid 9.46E+12 Schwarz criterion 30.46738 Log likelihood -268.4257 F-statistic6.033649 Durbin-Watson stat 2.124575 Prob(F-statistic) 0.0074101、(1)解:该检验为Goldfeld-Quandt 检验。
计量经济学习题及答案
计量经济学习题及答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】期中练习题1、回归分析中使用的距离是点到直线的垂直坐标距离。
最小二乘准则是指( )A .使∑=-n t tt Y Y 1)ˆ(达到最小值 B.使∑=-nt t t Y Y 1达到最小值 C. 使∑=-nt t tY Y12)(达到最小值 D.使∑=-nt tt Y Y 12)ˆ(达到最小值 2、根据样本资料估计得出人均消费支出 Y 对人均收入 X 的回归模型为ˆln 2.00.75ln i iY X =+,这表明人均收入每增加 1%,人均消费支出将增加 ( )A. B. % C. 2 D. %3、设k 为回归模型中的参数个数,n 为样本容量。
则对总体回归模型进行显着性检验的F 统计量与可决系数2R 之间的关系为( )A.)1/()1()/(R 22---=k R k n F B. )/(1)-(k )R 1/(R 22k n F --= C. )/()1(22k n R R F --= D. )1()1/(22R k R F --=6、二元线性回归分析中 TSS=RSS+ESS 。
则 RSS 的自由度为( )9、已知五个解释变量线形回归模型估计的残差平方和为8002=∑te,样本容量为46,则随机误差项μ的方差估计量2ˆσ为( ) 1、经典线性回归模型运用普通最小二乘法估计参数时,下列哪些假定是正确的( )A.0)E(u i =B. 2i )V ar(u i σ= C. 0)u E(u j i ≠ D.随机解释变量X 与随机误差i u 不相关 E. i u ~),0(2i N σ2、对于二元样本回归模型ii i i e X X Y +++=2211ˆˆˆββα,下列各式成立的有( ) A.0=∑ieB. 01=∑ii Xe C. 02=∑iiXeD.=∑ii Ye E.21=∑i iX X4、能够检验多重共线性的方法有( )A.简单相关系数矩阵法B. t 检验与F 检验综合判断法C. DW 检验法 检验法 E.辅助回归法 计算题1、为了研究我国经济发展状况,建立投资(1X ,亿元)与净出口(2X ,亿元)与国民生产总值(Y ,亿元)的线性回归方程并用13年的数据进行估计,结果如下:=2R = F=582 n=13问题如下:①从经济意义上考察模型估计的合理性;(3分) ②估计修正可决系数2R ,并对2R 作解释;(3分)③在5%的显着性水平上,分别检验参数的显着性;在5%显着性水平上,检验模型的整体显着性。
(完整)计量经济学计算题
1、某农产品试验产量Y (公斤/亩)和施肥量X (公斤/亩)7块地的数据资料汇总如下:∑=255iX ∑=3050i Y∑=71.12172ix∑=429.83712i y ∑=857.3122i i y x后来发现遗漏的第八块地的数据:208=X ,4008=Y 。
要求汇总全部8块地数据后进行以下各项计算,并对计算结果的经济意义和统计意义做简要的解释。
(1)该农产品试验产量对施肥量X(公斤/亩)回归模型Y a bX u =++进行估计; (2)对回归系数(斜率)进行统计假设检验,信度为0.05; (3)估计可决系数并进行统计假设检验,信度为0。
05。
解:首先汇总全部8块地数据:87181X X X i i i i +=∑∑== =255+20 =275 n X X i i ∑==81)8(375.348275==2)7(7127127Xx Xi i i i+=∑∑== =1217.71+7⨯27255⎪⎭⎫⎝⎛=1050728712812X X Xi i i i+=∑∑== =10507+202= 109072)8(8128128XX xi ii i+=∑∑== = 10907-8⨯28275⎪⎭⎫⎝⎛=1453.8887181Y Y Y i i i i +=∑∑===3050+400=3450 25.4318345081)8(===∑=n Y Y i i 2)7(7127127Y y Y i ii i +=∑∑== =8371.429+7⨯273050⎪⎭⎫⎝⎛=1337300 28712812Y YY i ii i +=∑∑== =1337300+4002= 14973002)8(8128128Y Y y i i i i +=∑∑== =1497300 -8⨯(83450)2== 9487。
5 )7()7(71717Y X yx Y X i iii ii +=∑∑== ==3122.857+7⎪⎭⎫ ⎝⎛7255⨯⎪⎭⎫⎝⎛73050=114230 887181Y X YX Y X i ii i ii +=∑∑== =114230+20⨯400 =122230)8()8(81818Y X YX y x i ii i ii -=∑∑== =122230-8⨯34。
计量经济学分析计算题
计量经济学分析计算题(每小题10分)1.下表为日本的汇率与汽车出口数量数据,X:年均汇率(日元/美元) Y:汽车出口数量(万辆) 问题:(1)画出X 与Y 关系的散点图。
(2)计算X 与Y 的相关系数。
其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,()()X X Y Y ∑--=16195.4 (3)采用直线回归方程拟和出的模型为ˆ81.72 3.65YX =+ t 值 1.2427 7.2797 R 2=0.8688 F=52.99 解释参数的经济意义。
2.已知一模型的最小二乘的回归结果如下:i i ˆY =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2=0.31其中,Y :政府债券价格(百美元),X :利率(%)。
回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是i ˆY 而不是i Y ;(3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。
3.估计消费函数模型i i i C =Y u αβ++得i i ˆC =150.81Y + t 值 (13.1)(18.7) n=19 R 2=0.81 其中,C :消费(元) Y :收入(元)已知0.025(19) 2.0930t =,0.05(19) 1.729t =,0.025(17) 2.1098t =,0.05(17) 1.7396t =。
问:(1)利用t 值检验参数β的显著性(α=0.05);(2)确定参数β的标准差;(3)判断一下该模型的拟合情况。
4.已知估计回归模型得i i ˆY =81.7230 3.6541X + 且2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=, 求判定系数和相关系数。
5.有如下表数据日本物价上涨率与失业率的关系(1)设横轴是U ,纵轴是P ,画出散点图。
根据图形判断,物价上涨率与失业率之间是什么样的关系?拟合什么样的模型比较合适? (2)根据以上数据,分别拟合了以下两个模型: 模型一:16.3219.14P U=-+ 模型二:8.64 2.87P U =- 分别求两个模型的样本决定系数。
计量经济学习题及答案
计量经济学习题及答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】期中练习题1、回归分析中使用的距离是点到直线的垂直坐标距离。
最小二乘准则是指( )A .使∑=-n t tt Y Y 1)ˆ(达到最小值 B.使∑=-nt t t Y Y 1达到最小值 C. 使∑=-nt t tY Y12)(达到最小值 D.使∑=-nt tt Y Y 12)ˆ(达到最小值 2、根据样本资料估计得出人均消费支出 Y 对人均收入 X 的回归模型为ˆln 2.00.75ln i iY X =+,这表明人均收入每增加 1%,人均消费支出将增加 ( )A. B. % C. 2 D. %3、设k 为回归模型中的参数个数,n 为样本容量。
则对总体回归模型进行显着性检验的F 统计量与可决系数2R 之间的关系为( )A.)1/()1()/(R 22---=k R k n F B. )/(1)-(k )R 1/(R 22k n F --= C. )/()1(22k n R R F --= D. )1()1/(22R k R F --=6、二元线性回归分析中 TSS=RSS+ESS 。
则 RSS 的自由度为( )9、已知五个解释变量线形回归模型估计的残差平方和为8002=∑te,样本容量为46,则随机误差项μ的方差估计量2ˆσ为( ) 1、经典线性回归模型运用普通最小二乘法估计参数时,下列哪些假定是正确的( )A.0)E(u i =B. 2i )V ar(u i σ= C. 0)u E(u j i ≠ D.随机解释变量X 与随机误差i u 不相关 E. i u ~),0(2i N σ2、对于二元样本回归模型ii i i e X X Y +++=2211ˆˆˆββα,下列各式成立的有( ) A.0=∑ieB. 01=∑ii Xe C. 02=∑iiXeD.=∑ii Ye E.21=∑i iX X4、能够检验多重共线性的方法有( )A.简单相关系数矩阵法B. t 检验与F 检验综合判断法C. DW 检验法 检验法 E.辅助回归法 计算题1、为了研究我国经济发展状况,建立投资(1X ,亿元)与净出口(2X ,亿元)与国民生产总值(Y ,亿元)的线性回归方程并用13年的数据进行估计,结果如下:=2R = F=582 n=13问题如下:①从经济意义上考察模型估计的合理性;(3分) ②估计修正可决系数2R ,并对2R 作解释;(3分)③在5%的显着性水平上,分别检验参数的显着性;在5%显着性水平上,检验模型的整体显着性。
计量经济学计算题
计量经济学计算题例题0626一元线性回归模型相关例题1.假定在家计调查中得出一个关于 家庭年收入X 和每年生活必须品综合支出Y 的横截面样本,数据如下表: X 1 1.2 1.4 1.6 1.82.0 2.2 2.4 2.73.0 3.3 3.5 3.84.0Y 0.8 0.8 0.9 1.2 1.4 1.2 1.7 1.5 2.1 2.4 2.2 2.1 2.3 3.2根据表中数据:(1) 用普通最小二乘法估计线性模型t t u X ++=t 10Y ββ (2) 用G —Q 检验法进行异方差性检验 (3) 用加权最小二乘法对模型加以改进答案:(1)Y ∧=0.0470+0.6826X (2)存在异方差(3)Y ∧=0.0544+0.6794X2.已知某公司的广告费用X 与销售额(Y )的统计数据如下表所示:X (万元) 40 25 20 30 40 40 25 20 50 20 50 50 Y (万元)490395420475385525480400560365510540(1) 估计销售额关于广告费用的一元线性回归模型 (2) 说明参数的经济意义(3) 在05.0=α的显著水平下对参数的显著性进行t 检验 答案:(1)一元线性回归模型319.086 4.185t i X Y ∧=+(2)参数经济意义:当广告费用每增加1万元,销售额平均增加4.185万元 (3)t=3.79>0.025(10)t ,广告费对销售额有显著影响3.某市居民货币收入X(单位/亿元)与购买消费品支出Y(单位:亿元)的统计数据如下表:X 11.6 12.9 13.7 14.6 14.4 16.5 18.2 19.8 Y10.411.512.413.113.214.515.817.2根据表中数据:(1) 求Y 对X 的线性回归方程;(2) 用t 检验法对回归系数进行显著性检验(α=0.05); (3) 求样本相关系数r; 答案:i Y ∧=1.2200+0.8301X用t 检验法对回归系数进行显著性检验(α=0.05); 答案:显著 求样本相关系数r; 答案:0.99694.现有x 和Y 的样本观测值如下表:x 2 5 10 4 10 y47459假设y 对x 的回归模型为01i i i y b b x u =++,且22()i i Var u x σ=,试用适当的方法估计此回归模型。
计量经济学习题及全部答案
计量经济学习题一一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法; 2.最小二乘法进行参数估计的基本原理是使残差平方和最小;3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1; 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0; 5.总离差平方和TSS 可分解为残差平方和ESS 与回归平方和RSS 之和,其中残差平方和ESS 表示总离差平方和中可由样本回归直线解释的部分; 6.多元线性回归模型的F 检验和t 检验是一致的;7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差; 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关;9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果; 10...DW 检验只能检验一阶自相关; 二、单选题1.样本回归函数方程的表达式为 ;A .i Y =01i i X u ββ++B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是 ;A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示 ;A .当X 增加一个单位时,Y 增加1β个单位B .当X 增加一个单位时,Y 平均增加1β个单位C .当Y 增加一个单位时,X 增加1β个单位D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指 ;A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为 ;A .B .40C .D .6.设k 为回归模型中的参数个数不包括截距项,n 为样本容量,ESS 为残差平方和,RSS 为回归平方和;则对总体回归模型进行显着性检验时构造的F 统计量为 ;A .F =RSSTSSB .F =/(1)RSS k ESS n k --C .F =/1(1)RSS k TSS n k --- D .F =ESSTSS7.对于模型i Y =01ˆˆi iX e ββ++,以ρ表示i e 与1i e -之间的线性相关系数2,3,,t n =,则下面明显错误的是 ;A .ρ=,..DW =B .ρ=-,..DW =-C .ρ=0,..DW =2D .ρ=1,..DW =08.在线性回归模型 011...3i i k ki i Y X X u k βββ=++++≥;如果231X X X =-,则表明模型中存在 ;A .异方差B .多重共线性C .自相关D .模型误设定9.根据样本资料建立某消费函数 i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为 ;A .2B .4C .5D .610.某商品需求函数为ˆi C =100.5055.350.45i i D X ++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,所有参数均检验显着,则城镇家庭的消费函数为 ;A .ˆi C =155.850.45i X +B .ˆiC =100.500.45i X + C .ˆi C =100.5055.35i X +D .ˆiC =100.9555.35i X + 三、多选题1.一元线性回归模型i Y =01i i X u ββ++的基本假定包括 ;A .()i E u =0B .()i Var u =2σ常数C .(,)i j Cov u u =0 ()i j ≠D .(0,1)iu NE .X 为非随机变量,且(,)i i Cov X u =02.由回归直线ˆi Y =01ˆˆi X ββ+估计出来的ˆiY ; A .是一组平均数 B .是实际观测值i Y 的估计值 C .是实际观测值i Y 均值的估计值 D .可能等于实际观测值i Y E .与实际观测值i Y 之差的代数和等于零 3.异方差的检验方法有A .图示检验法B .Glejser 检验C .White 检验D ...DW 检验E .Goldfeld Quandt -检验4.下列哪些非线性模型可以通过变量替换转化为线性模型 ;A .i Y =201i i X u ββ++B .1/i Y =01(1/)i i X u ββ++C .ln i Y =01ln i i X u ββ++D .i Y =iui i AK L e αβE .i Y =1122012iiX X i e e u ββααα+++5.在线性模型中引入虚拟变量,可以反映 ;A .截距项变动B .斜率变动C .斜率与截距项同时变动D .分段回归E .以上都可以 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;3.简述序列相关性检验方法的共同思路; 五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,并写出过程保留3位小数;Dependent Variable: Y Method: Least Squares Included observations: 132.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;F 分布百分位表α=3.有人用广东省1978—2005年的财政收入AV 作为因变量,用三次产业增加值作为自变量,进行了三元线性回归;第一产业增加值——1VAD ,第二产业增加值——2VAD ,第三产业增加值——3VAD ,结果为:AV =12335.1160.0280.0480.228VAD VAD VAD +-+2R =,F =- ..DW =试简要分析回归结果; 五、证明题求证:一元线性回归模型因变量模拟值ˆi Y 的平均值等于实际观测值i Y 的平均值,即ˆiY =i Y ; 计量经济学习题二一、判断正误正确划“√”,错误划“×” 1.残差剩余项i e 的均值e =()i e n ∑=0;2.所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自的真值; 3.样本可决系数高的回归方程一定比样本可决系数低的回归方程更能说明解释变量对被解释变量的解释能力;4.多元线性回归模型中解释变量个数为k ,则对回归参数进行显着性检验的t 统计量的自由度一定是1n k --;5.对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值; 6.若回归模型存在异方差问题,可以使用加权最小二乘法进行修正;7.根据最小二乘估计,我们可以得到总体回归方程;8.当用于检验回归方程显着性的F 统计量与检验单个系数显着性的t 统计量结果矛盾时,可以认为出现了严重的多重共线性9.线性回归模型中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;10.一般情况下,用线性回归模型进行预测时,单个值预测与均值预测相等,且置信区间也相同; 二、单选题1.针对同一经济指标在不同时间发生的结果进行记录的数据称为A .面板数据B .截面数据C .时间序列数据D .以上都不是 2.下图中“{”所指的距离是A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在模型i Y =01ln i i X u ββ++中,参数1β的含义是A .X 的绝对量变化,引起Y 的绝对量变化B .Y 关于X 的边际变化C .X 的相对变化,引起Y 的平均值绝对量变化D .Y 关于X 的弹性4.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=90,估计用的样本容量为19,则随机误差项i u 方差的估计量为A .B .6C .D .55.已知某一线性回归方程的样本可决系数为,则解释变量与被解释变量间的相关系数为A .B .0.8C .D .6.用一组有20个观测值的样本估计模型i Y =01i i X u ββ++,在的显着性水平下对1β的显着性作t 检验,则1β显着异于零的条件是对应t 统计量的取值大于 A .0.05(20)t B .0.025(20)t C .0.05(18)t D .0.025(18)t7.对于模型i Y =01122ˆˆˆˆi ik ki iX X X e ββββ+++++,统计量22ˆ()/ˆ()/(1)ii i Y Y kY Y n k ----∑∑服从A .()t n k -B .(1)t n k --C .(1,)F k n k --D .(,1)F k n k --8.如果样本回归模型残差的一阶自相关系数ρ为零,那么..DW 统计量的值近似等于 ;A .1B .2C .4D .9.根据样本资料建立某消费函数如下i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为A .2B .4C .5D .610.设消费函数为i C =012i i i i X D X u βββ+++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭具有同样的消费行为A .1β=0,2β=0B .1β=0,2β≠0C .1β≠0,2β=0D .1β≠0,2β≠0 三、多选题1.以i Y 表示实际观测值,ˆiY 表示用OLS 法回归后的模拟值,i e 表示残差,则回归直线满足A .通过样本均值点(,)X YB .2ˆ()i iY Y -∑=0 C .(,)i i Cov X e =0 D .i Y ∑=ˆiY ∑ E .i i e X ∑=0 2.对满足所有假定条件的模型i Y =01122i i i X X u βββ+++进行总体显着性检验,如果检验结果显示总体线性关系显着,则可能出现的情况包括A .1β=2β=0B .10β≠,2β=0C .10β≠,20β≠D .1β=0,20β≠E .1β=2β≠0 3.下列选项中,哪些方法可以用来检验多重共线性 ;A .Glejser 检验B .两个解释变量间的相关性检验C .参数估计值的经济检验D .参数估计值的统计检验E ...DW 检验 4.线性回归模型存在异方差时,对于回归参数的估计与检验正确的表述包括A .OLS 参数估计量仍具有线性性B .OLS 参数估计量仍具有无偏性C .OLS 参数估计量不再具有效性即不再具有最小方差D .一定会低估参数估计值的方差5.关于虚拟变量设置原则,下列表述正确的有A .当定性因素有m 个类型时,引入1m -个虚拟变量B.当定性因素有m个类型时,引入m个虚拟变量会产生多重共线性问题C.虚拟变量的值只能取0和1D.在虚拟变量的设置中,基础类别一般取值为0E.以上说法都正确四、简答题1.简述计量经济学研究问题的方法;2.简述异方差性检验方法的共同思路;3.简述多重共线性的危害;五、计算分析题1.下表是某次线性回归的EViews输出结果,被略去部分数值用大写字母标示,根据所学知识解答下列各题计算过程保留3位小数;本题12分Dependent Variable: YMethod: Least SquaresIncluded observations: 181求出A 、B 的值;2求TSS2.有人用美国1960-1995年36年间个人实际可支配收入X 和个人实际消费支出Y 的数据单位:百亿美元建立收入—消费模型 i Y =01i i X u ββ++,估计结果如下:ˆiY =9.4290.936i X -+ t :2R = ,F = ,..DW =1检验收入—消费模型的自相关状况5%显着水平; 2用适当的方法消除模型中存在的问题; 五、证明题证明:用于多元线性回归方程显着性检验的F 统计量与可决系数2R 满足如下关系: 计量经济学习题三 一、判断对错1、在研究经济变量之间的非确定性关系时,回归分析是惟一可用的分析方法;2、对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值;DW 检验临界值表α=3、OLS 回归方法的基本准则是使残差平方和最小;4、在存在异方差的情况下,OLS 法总是高估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1;6、线性回归分析中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;7、当我们说估计的回归系数在统计上是显着的,意思是说它显着异于0; 8、总离差平方和TSS 可分解为残差平方ESS 和与回归平方和RSS,其中残差平方ESS 表示总离差平方和可由样本回归直线解释的部分;9、所谓OLS 估计量的无偏性,是指回归参数的估计值与真实值相等; 10、当模型中解释变量均为确定性变量时,则可以用DW 统计量来检验模型的随机误差项所有形式的自相关性;二、单项选择1、回归直线t ^Y =0ˆβ+1ˆβX t 必然会通过点 A 、0,0; B 、_X ,_Y ;C 、_X ,0;D 、0,_Y ;2、针对经济指标在同一时间所发生结果进行记录的数据列,称为 A 、面板数据;B 、截面数据;C 、时间序列数据;D 、时间数据;3、如果样本回归模型残差的一阶自相关系数ρ接近于0,那么DW 统计量的值近似等于 A 、0 B 、1 C 、2 D 、44、若回归模型的随机误差项存在自相关,则参数的OLS 估计量A 、无偏且有效B 、有偏且非有效C 、有偏但有效D 、无偏但非有效 5、下列哪一种检验方法不能用于异方差检验A、戈德菲尔德-夸特检验;B、DW检验;C、White检验;D、戈里瑟检验;6、当多元回归模型中的解释变量存在完全多重共线性时,下列哪一种情况会发生A、OLS估计量仍然满足无偏性和有效性;B、OLS估计量是无偏的,但非有效;C、OLS估计量有偏且非有效;D、无法求出OLS估计量;7、DW检验法适用于的检验A、一阶自相关B、高阶自相关C、多重共线性 D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则可决系数R2A、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,回归平方和为40,则回归方程的拟合优度为A、 B、 C、 D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、计量经济模型中的随机误差项主要包含哪些因素3、简答经典单方程计量模型的异方差性概念、后果以及修正方法;4、简述方程显着性检验F检验与变量显着性检验t检验的区别;5、对于一个三元线性回归模型,已知可决系数R2=,方差分析表的部份结果如下:1样本容量是多少2总离差平方和TSS为多少3残差平方和ESS为多少4回归平方和RSS和残差平方和ESS的自由度各为多少5求方程总体显着性检验的F统计量;四、案例分析下表是中国某地人均可支配收入INCOME与储蓄SAVE之间的回归分析结果单位:元:Dependent Variable: SAVEMethod: Least SquaresSample: 1 31Included observations: 31Variable CoefficientStd.Errort-Statistic Prob.CINCOME――――R-squared Mean dependent var AdjustedR-squared. dependent var. of regression Akaike info criterionSum squared resid1778097Schwarz criterion.Log likelihood F-statisticDurbin-Watsonstat ProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 29=;4、下表给出了White异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题四一、判断对错1、一般情况下,在用线性回归模型进行预测时,个值预测与均值预测结果相等,且它们的置信区间也相同;2、对于模型Yi =β+β1X1i+β2X2i+……+βkXki+μi,i=1,2, ……,n;如果X2=X5+X6, 则模型必然存在解释变量的多重共线性问题;3、OLS回归方法的基本准则是使残差项之和最小;4、在随机误差项存在正自相关的情况下,OLS法总是低估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n-1;6、一元线性回归模型的F检验和t检验是一致的;7、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;8、在近似多重共线性下,只要模型满足OLS的基本假定,则回归系数的最小二乘估计量仍然是一BLUE估计量;9、所谓参数估计量的线性性,是指参数估计量是解释变量的线性组合;10、拟合优度的测量指标是可决系数R2或调整过的可决系数,R2越大,说明回归方程对样本的拟合程度越高;二、单项选择1.在多元线性回归模型中,若两个自变量之间的相关系数接近于1,则在回归分析中需要注意模型的问题;A、自相关;B、异方差;C、模型设定偏误;D、多重共线性;2、在异方差的众多检验方法中,既能判断随机误差项是否存在异方差,又能给出异方差具体存在形式的检验方法是A、图式检验法;B、DW检验;C、戈里瑟检验;D、White检验;3、如果样本回归模型残差的一阶自相关系数ρ接近于1,那么DW统计量的值近似等于A、0B、1C、2D、44、若回归模型的随机误差项存在异方差,则参数的OLS估计量A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效5、下列哪一个方法是用于补救随机误差项自相关问题的A、OLS;B、ILS;C、WLS;D、GLS;6、计量经济学的应用不包括:A、预测未来;B、政策评价;C、创建经济理论;D、结构分析;7、LM检验法适用于的检验A、异方差;B、自相关;C、多重共线性; D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则调整可决系数2RA、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,总离差平方和为100,则回归方程的拟合优度为A、;B、;C、;D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、简述计量经济研究的基本步骤3、简答经典单方程计量模型自相关概念、后果以及修正方法;4、简述对多元回归模型01122...i i i k ki i Y X X X u ββββ=+++++进行显着性检验F 检验的基本步骤5、对于一个五元线性回归模型,已知可决系数R 2=,方差分析表的部份结果如下:1样本容量是多少2回归平方和RSS 为多少3残差平方和ESS 为多少 4回归平方和RSS 和总离差平方和TSS 的自由度各为多少 5求方程总体显着性检验的F 统计量;四、实验下表是某国1967-1985年间GDP 与出口额EXPORT 之间的回归分析结果单位:亿美元:Dependent Variable: EXPORT Method: Least Squares Sample: 1967 1985Included observations: 19VariableCoefficientStd. Errort-Statist icProb. CGDP――――R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared residSchwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t 检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 17=;4、下表给出了White 异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM 序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题五一、判断正误正确划“√”,错误划“x ”1、最小二乘法进行参数估计的基本原理是使残差平方和最小;2、一般情况下,用线性回归模型进行预测时,个值预测与均值预测相等,且置信区间也相同;3、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;4、若回归模型存在异方差问题,应使用加权最小二乘法进行修正;5、多元线性回归模型的F 检验和t 检验是一致的;6、DW 检验只能检验随机误差项是否存在一阶自相关;7、总离差平方和TSS 可分解为残差平方RSS 和与回归平方和ESS,其中残差平方RSS 表示总离差平方和可由样本回归直线解释的部分;8、拟合优度用于检验回归方程对样本数据的拟合程度,其测量指标是可决系数或调整后的可决系数;9、对于模型011... 1,2,...,i i n ni i Y X X u i n βββ=++++=;如果231X X X =-,则模型必然存在解释变量的多重共线性问题;10、所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自真值; 二、单项选择1、回归直线01ˆˆˆi iY X ββ=+必然会通过点A、0,0B、_X,_YC、_X,0D、0,_Y2、某线性回归方程的估计的结果,残差平方和为20,回归平方和为80,则回归方程的拟合优度为A、 B、C、 D、无法计算3、针对经济指标在同一时间所发生结果进行记录的数据列,称为A、面板数据B、截面数据C、时间序列数据D、时间数据4、对回归方程总体线性关系进行显着性检验的方法是A、Z检验B、t检验C、F检验D、预测检验5、如果DW统计量等于2,那么样本回归模型残差的一阶自相关系数ρ近似等于A、0B、-1C、1D、6、若随机误差项存在异方差,则参数的普通最小二乘估计量A、无偏且有效B、有偏且非有效C、有偏但有效D、无偏但非有效7、下列哪一种方法是用于补救随机误差项的异方差问题的A、OLS;B、ILS;C、WLSD、GLS8、如果某一线性回归方程需要考虑四个季度的变化情况,那么为此设置虚拟变量的个数为A、1B、2C、3D、49、样本可决系数R2越大,表示它对样本数据拟合得A、越好B、越差C、不能确定D、均有可能10、多元线性回归模型中,解释变量的个数越多,可决系数R2A、越大;B、越小;C、不会变化;D、无法确定三、简答题1、简述计量经济学的定义;2、多元线性回归模型的基本假设有哪些3、简答异方差概念、后果以及修正方法;4、简述t检验的目的及基本步骤;四、计算对于一个三元线性回归模型,已知可决系数20.8R ,方差分析表的部份结果如下:变差来源平方和自由度源于回归ESS 200源于残差RSS总变差TSS 221样本容量是多少2总变差TSS为多少3残差平方和RSS为多少4ESS和RSS的自由度各为多少5求方程总体显着性检验的F统计量值;计量经济学习题六-案例题一、根据美国各航空公司航班正点到达的比率X%和每10万名乘客投诉的次数Y 进行回归,EViews输出结果如下:Dependent Variable: YMethod: Least SquaresSample: 1 9Included observations: 91对以上结果进行简要分析包括方程显着性检验、参数显着性检验、DW值的评价、对斜率的解释等,显着性水平均取;2按标准书写格式写出回归结果;二、以下是某次线性回归的EViews输出结果,部分数值已略去用大写字母标示,但它们和表中其它特定数值有必然联系,分别据此求出这些数值,并写出过程;保留3位小数Dependent Variable: YMethod: Least SquaresSample: 1 13Included observations: 131求A 的值; 2求B 的值; 3求C 的值;三、用1970-1994年间日本工薪家庭实际消费支出Y 与实际可支配收入X 单位:103日元数据估计线性模型Y =01X u ββ++,然后用得到的残差序列t e 绘制以下图形; 1试根据图形分析随机误差项之间是否存在自相关若存在,是正自相关还是负自相关答:图形显示,随机误差项之间存在着相关性,且为正的自相关; 2此模型的估计结果为 试用DW 检验法检验随机误差项之间是否存在自相关;四、用一组截面数据估计消费Y —收入X 方程Y =01X u ββ++的结果为1根据回归的残差序列et 图分析本模型是否存在异方差注:abset 表示et 的绝对值;2其次,用White 法进行检验;EViews 输出结果见下表:附表:DW 检验临界值表α=White Heteroskedasticity Test:Dependent Variable: RESID^2 Method: Least Squares Sample: 1 60Included observations: 60若给定显着水平0.05α=,以上结果能否说明该模型存在异方差查卡方分布临界值的自由度是多少五、下图描述了残差序列{}t e 与其滞后一期值1{}t e -之间的散点图,试据此判断随机误差项之间是否存在自相关若存在,则是正自相关还是负自相关六、在一多元线性回归模型中,为检验解释变量之间是否存在多重共线性问题,以解释变量1x 作为被解释变量,对其余解释变量进行辅助回归,得到可决系数20.95R =;试计算变量1x 的方差扩大因子1VIF ,并根据经验判断解释变量间是否存在多重共线性问题七、下表是中国某地人均可支配收入INCOME 与储蓄SAVE 之间的回归分析结果单位:元:Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-Statist ic Prob.CINCOME--R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared resid 1778097. Schwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量INCOME 回归系数的经济含义2、解释可决系数的含义3、若给定显着性水平5%α=,试对自变量INCOME 的回归系数进行显着性检验已知0.025(29) 2.045t =4、在5%α=的显着性水平下,查31n =的DW 临界值表得 1.363L d =, 1.496U d =,试根据回归结果判断随机误差项是否存在一阶自相关5、下表为上述回归的White 检验结果,在5%α=的显着性水平下,试根据P 值检验判断随机误差项是否存在异方差 White Heteroskedasticity Test:F-statisticProbabilityObsR-squaredProbability计量经济学习题一答案一、判断正误1. × 2. √ 3. √ 4. √ 5. × 6. × 7. ×8. × 9. √ 10. √ 二、单选题每小题分,共15分1. D ;2. B ;3. B ;4. C ;5. B ; 6. B ;7. B ;8. B ;9. B ;10. A ; 三、多选题1. ABCE 2. BCDE 3. ABCE 4. ABCD 5. ABCDE ; 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么答:随机干扰项包括的主要因素有:1众多细小因素的影响;2未知因素的影响;3数据测量误差或残缺;4模型形式不完善;5变量的内在随机性;随机误差项羽残差不同,残差是样本观测值与模拟值的差,即i e =ˆi iY Y -;残差项是随机误差项的估计;2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;答:最小二乘法得到的回归直线是对因变量与自变量关系的一种描述,但它是不是恰当的描述呢一般会用与样本点的接近程度来判别这种描述的优劣,而当获得以上问题的肯定判断之后,还需要确定每一个参数的可靠程度,即参数本身以及对应的变量该不该保留在方程里,这就有必要进行参数的显着性检验;这种检验是确定各个参数是否显着地不等于零;检验分为三个步骤:①提出假设:原假设0:0i H β=;备择假设1:0i H β≠ ②在原假设成立的前提下构造统计量:()ˆ~(1)ˆiit t n k Se ββ=--③给定显着性水平α,查t 分布表求得临界值/2(1)t n k α--,把根据样本数据计算出的t 统计量值t *与/2(1)t n k α--比较:若/2(1)t t n k α*>--,则拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量有显着影响;若/2(1)t t n k α*<--,则不能拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量没有显着影响.3.简述序列相关性检验方法的共同思路;答:由于自相关性,使得相对于不同的样本点,随机干扰项之间存在相关关系,那么检验自相关性,首先根据OLS 法估计残差,将残差作为随机干扰项的近似估计值,然后检验这些近似估计值之间的相关性以判定随机干扰项是否存在序列相关;各种检验方法就是在这个思路下发展起来的;五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,Dependent Variable: Y Method: Least Squares Included observations: 13解:A=ˆ()Se β=ˆt β=7.10604.3903=;B=2R =211(1)1n R n k -----=1311(10.8728)1321-----=由公式2ˆσ=21ien k --∑,得C=2ie ∑=2ˆ(1)n k σ--=21.1886(1321)--=; 2.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;α。
计量经济学习题及答案
计量经济学各章习题第一章绪论1.1 试列出计量经济分析的主要步骤。
1.2 计量经济模型中为何要包括扰动项?1.3 什么是时间序列和横截面数据? 试举例说明二者的区别。
1.4 估计量和估计值有何区别?第二章计量经济分析的统计学基础2.1 名词解释随机变量概率密度函数抽样分布样本均值样本方差协方差相关系数标准差标准误差显著性水平置信区间无偏性有效性一致估计量接受域拒绝域第I类错误2.2 请用例2.2中的数据求北京男生平均身高的99%置信区间。
2.3 25个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体?2.4 某月对零售商店的调查结果表明,市郊食品店的月平均销售额为2500元,在下一个月份中,取出16个这种食品店的一个样本,其月平均销售额为2600元,销售额的标准差为480元。
试问能否得出结论,从上次调查以来,平均月销售额已经发生了变化?第三章双变量线性回归模型3.1 判断题(判断对错;如果错误,说明理由)(1)OLS 法是使残差平方和最小化的估计方法。
(2)计算OLS 估计值无需古典线性回归模型的基本假定。
(3)若线性回归模型满足假设条件(1)~(4),但扰动项不服从正态分布,则尽管OLS 估计量不再是BLUE ,但仍为无偏估计量。
(4)最小二乘斜率系数的假设检验所依据的是t 分布,要求βˆ的抽样分布是正态分布。
(5)R 2=TSS/ESS 。
(6)若回归模型中无截距项,则0≠∑t e 。
(7)若原假设未被拒绝,则它为真。
(8)在双变量回归中,2σ的值越大,斜率系数的方差越大。
3.2 设YX βˆ和XYβˆ分别表示Y 对X 和X 对Y 的OLS 回归中的斜率,证明 YX βˆXYβˆ=2r r 为X 和Y 的相关系数。
3.3 证明:(1)Y 的真实值与OLS 拟合值有共同的均值,即 Y nY nY ==∑∑ˆ;(2)OLS 残差与拟合值不相关,即0ˆ=∑tt eY 。
计量经济学期末考试题库(完整版)及答案
计量经济学题库五、计算与分析题(每小题10分)1X:年均汇率(日元/美元) Y:汽车出口数量(万辆) 问题:(1)画出X 与Y 关系的散点图。
(2)计算X 与Y 的相关系数。
其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,()()X X Y Y ∑--=16195.4 (3)采用直线回归方程拟和出的模型为ˆ81.72 3.65YX =+ t 值 1.2427 7.2797 R 2=0.8688 F=52.9930040050060070080100120140160180XY(2)()()XY X X Y Y r --===0.9321(3分)(3)截距项81.72表示当美元兑日元的汇率为0时日本的汽车出口量,这个数据没有实际意义;(2分)斜率项3.65表示汽车出口量与美元兑换日元的汇率正相关,当美元兑换日元的汇率每上升1元,会引起日本汽车出口量上升3.65万辆。
(3分)解释参数的经济意义。
2.已知一模型的最小二乘的回归结果如下:i i ˆY =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2=0.31 其中,Y :政府债券价格(百美元),X :利率(%)。
回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是iˆY 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么(1)系数的符号是正确的,政府债券的价格与利率是负相关关系,利率的上升会引起政府债券价格的下降。
(2分)(2)i Y 代表的是样本值,而i ˆY 代表的是给定i X 的条件下i Y 的期望值,即ˆ(/)i i i Y E Y X =。
此模型是根据样本数据得出的回归结果,左边应当是i Y 的期望值,因此是iˆY 而不是i Y 。
(3分)(3)没有遗漏,因为这是根据样本做出的回归结果,并不是理论模型。
计量经济学题库(超完整版)及答案.详解
计量经济学题库计算与分析题(每小题10分)1X:问题:(1)画出X 与Y 关系的散点图。
(2)计算X 与Y 的相关系数。
其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,()()X X Y Y ∑--=16195.4 (3)采用直线回归方程拟和出的模型为t 值 1.2427 7.2797 R 2=0.8688 F=52.99解释参数的经济意义。
2.已知一模型的最小二乘的回归结果如下:i iˆY =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2=0.31 其中,Y :政府债券价格(百美元),X :利率(%)。
回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是iˆY 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。
3.估计消费函数模型i i i C =Y u αβ++得i i ˆC =150.81Y + t 值 (13.1)(18.7) n=19 R 2=0.81其中,C :消费(元) Y :收入(元)已知0.025(19) 2.0930t =,0.05(19) 1.729t =,0.025(17) 2.1098t =,0.05(17) 1.7396t =。
问:(1)利用t 值检验参数β的显著性(α=0.05);(2)确定参数β的标准差;(3)判断一下该模型的拟合情况。
4.已知估计回归模型得i i ˆY =81.7230 3.6541X + 且2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=, 求判定系数和相关系数。
5.有如下表数据(1关系?拟合什么样的模型比较合适? (2)根据以上数据,分别拟合了以下两个模型:模型一:16.3219.14P U=-+ 模型二:8.64 2.87P U =- 分别求两个模型的样本决定系数。
7.根据容量n=30的样本观测值数据计算得到下列数据:XY 146.5=,X 12.6=,Y 11.3=,2X 164.2=,2Y =134.6,试估计Y 对X 的回归直线。
《计量经济学》习题(简答题、分析与计算题)
⑥
yt
=
1
+
b0
(1
−
x b1 t
)
+
ut
⑦ yt = b0 + b1x1t + b2 x2t /10 + ut
(6)常见的非线性回归模型有几种情况? (7)√指出下列模型中所要求的待估参数的经济意义:
①食品类需求函数:lnY = α0 + α1 ln I + α2 ln P1 + α3 ln P2 + u 中的α1,α2,α3 (其中 Y
(8)假设 A 先生估计的消费函数(用模型 Ct = b0 + b1 yt + ut 表示,其中,C 表示消费
支出,y 表示收入)获得下列结果:
2
《计量经济学》习题(简答题、分析与计算题)
请回答下列问题:
Cˆt = 15 + 0.81yt
t = (3.1) (18.7)
R 2 =0.98 n=19
验、参数的显著性检验);
④若 2012 年国内生产总值为 529238.4 亿元,求 2012 年财政收入预测值及预测区间
(α = 0.05 )。
(16)表 5 是 1960-1981 年间新加坡每千人电话数 y 与按要素成本 x 计算的新加坡元人
均国内生产总值。这两个变量之间有何关系?你怎样得出这样的结论?
5
《计量经济学》习题(简答题、分析与计算题)
第 3 章 多元线性回归模型
习题
五、简答题、分析与计算题
(1)√给定二元回归模型: yt = b0 + b1x1t + b2 x2t + ut (t=1,2,…n)
① 叙述模型的古典假定;②写出总体回归方程、样本回归方程与样本回归模型;③写 出回归模型的矩阵表示;④写出回归系数及随机误差项方差的最小二乘估计量,并叙述参数 估计量的性质;⑤试述总离差平方和、回归平方和、残差平方和之间的关系及其自由度之间 的关系。
计量经济学习题
计量经济学习题第3章多元线性回归模型⼀、单项选择题1.在由30n =的⼀组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为()A. 0.8603B. 0.8389C. 0.8655D.0.83272.下列样本模型中,哪⼀个模型通常是⽆效的()A. i C (消费)=500+0.8i I (收⼊)B. d i Q (商品需求)=10+0.8i I (收⼊)+0.9i P (价格)C. s i Q (商品供给)=20+0.75i P (价格)D. i Y (产出量)=0.650.6i L (劳动)0.4i K (资本)3.⽤⼀组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性⽔平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t ⼤于等于()A. )30(05.0tB. )28(025.0tC. )27(025.0tD. )28,1(025.0F4.模型t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是()A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在()A.异⽅差性B.序列相关C.多重共线性D.⾼拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所⽤的统计量服从( )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数与多重判定系数之间有如下关系( ) A.2211n R R n k -=-- B. 22111n R R n k -=--- C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进⾏预测出现误差的原因,正确的说法是()。
计量经济学计算题2
五、计算与分析题(每小题10分)1X:年均汇率(日元/美元) Y:汽车出口数量(万辆) 问题:(1)画出X 与Y 关系的散点图。
(2)计算X 与Y 的相关系数。
其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,()()X X Y Y ∑--=16195.4 (3)采用直线回归方程拟和出的模型为 ˆ81.72 3.65YX =+ t 值 1.2427 7.2797 R 2=0.8688 F=52.99 解释参数的经济意义。
2.已知一模型的最小二乘的回归结果如下:i iˆY =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2=0.31 其中,Y :政府债券价格(百美元),X :利率(%)。
回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是i ˆY 而不是iY ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。
3.估计消费函数模型i i iC =Y u αβ++得i iˆC =150.81Y + t 值 (13.1)(18.7) n=19 R 2=0.81其中,C :消费(元) Y :收入(元)已知0.025(19) 2.0930t =,0.05(19) 1.729t =,0.025(17) 2.1098t =,0.05(17) 1.7396t =。
问:(1)利用t 值检验参数β的显著性(α=0.05);(2)确定参数β的标准差;(3)判断一下该模型的拟合情况。
4.已知估计回归模型得i iˆY =81.7230 3.6541X + 且2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=, 求判定系数和相关系数。
5.有如下表数据(1拟合什么样的模型比较合适? (2)根据以上数据,分别拟合了以下两个模型: 模型一:16.3219.14P U=-+ 模型二:8.64 2.87P U =-分别求两个模型的样本决定系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学计算题例题0626
一元线性回归模型相关例题
1.假定在家计调查中得出一个关于 家庭年收入X 和每年生活必须品综合支出Y 的横截面样本,数据如下表:
根据表中数据:
(1) 用普通最小二乘法估计线性模型t t u X ++=t 10Y ββ
(2) 用G —Q 检验法进行异方差性检验 (3) 用加权最小二乘法对模型加以改进
答案:(1)Y ∧
=0.0470+0.6826X (2)存在异方差(3)Y ∧
=0.0544+0.6794X
2.已知某公司的广告费用X 与销售额(Y )的统计数据如下表所示:
(1) 估计销售额关于广告费用的一元线性回归模型 (2) 说明参数的经济意义
(3) 在05.0=α的显著水平下对参数的显著性进行t 检验 答案:
(1)一元线性回归模型319.086 4.185t i X Y ∧
=+
(2)参数经济意义:当广告费用每增加1万元,销售额平均增加4.185万元 (3)t=3.79>0.025(10)t ,广告费对销售额有显著影响
根据表中数据:
(1) 求Y 对X 的线性回归方程;
(2) 用t 检验法对回归系数进行显著性检验(α=0.05); (3) 求样本相关系数r; 答案:i Y ∧
=1.2200+0.8301X
用t 检验法对回归系数进行显著性检验(α=0.05); 答案:显著 求样本相关系数r; 答案:0.9969
4.现有x 和Y 的样本观测值如下表: 假设y 对x 的回归模型为01i i i y b b x u =++,且22()i i Var u x σ=,试用适当的
方法估计此回归模型。
解:原模型:
011i i y b b x u =++ , 221()i Var u x σ=模型存在异方差性
为消除异方差性,模型两边同除以i x , 得:
011
i i i i i
y u b b x x x =++ (2分)
令*
*1
,,i i i i i i i i
y u y x v x x x =
==
得:
**10i i i y b b x v =++ (2分)
此时22221
()(
)()i i i i i
u Var v Var x x x σσ===新模型不存在异方差性 (1分) 由已知数据,得(2分)
根据以上数据,对
**10i i i y b b x v =++进行普通最小二乘估计得:
****0*2*2**
10()()i i i i i i i i n x y x y b n x x b y b x ⎧-=
⎪-⎨⎪=-⎩
∑∑∑∑∑解得01
1.77 3.280.54
5.95 1.153.280.4455b b ⎧
==⎪⎪⎨⎪=-⨯=⎪⎩
(3分)
回归分析表格
1.有10户家庭的收入(X ,元)和消费(Y ,百元)数据如下表:
10户家庭的收入(X )与消费(Y )的资料 X 20 30 33 40 15 13 26 38 35 43 Y 7 9 8 11 5 4 8 10 9 10
若建立的消费Y 对收入X 的回归直线的Eviews 输出结果如下:
Dependent Variable: Y var 2
Adjusted R-squared 0.892292 F-statistic 75.55898 Durbin-Watson 2.077648 0.00002(1(2)在95%的置信度下检验参数的显著性。
(0.025(10) 2.2281t =,0.05(10) 1.8125t =,
0.025(8) 2.3060t =,0.05(8) 1.8595t =)
(3)在95%的置信度下,预测当X =45(百元)时,消费(Y )的置信区间。
(其中29.3x =,2()992.1x x -=∑)
答:(1)回归模型的R 2
=0.9042,表明在消费Y 的总变差中,由回归直线解释的部分占到90%以上,回归直线的代表性及解释能力较好。
(2分)
(2)对于斜率项,11ˆ0.20238.6824ˆ0.0233()b t s b ===>0.05(8) 1.8595t =,即表明斜率项显著不为0,
家庭收入对消费有显著影响。
(2分)对于截距项,00
ˆ
2.1727
3.0167ˆ0.7202()b t s b ===>
0.05(8) 1.8595t =,即表明截距项也显著不为0,通过了显著性检验。
(2分)
(3)Y f =2.17+0.2023×45=11.2735(2分)
0.025(8) 1.8595 2.2336 4.823t σ⨯=⨯=(2分) 95%置信区间为(11.2735-4.823,11.2735+4.823),即(6.4505,16.0965)。
(2分)
2.假设某国的货币供给量Y 与国民收入X 的历史如系下表。
出结果为:
Dependent Variable: Y Variable Coeffici Std. t-Statist Prob.
var 3
Adjusted R-squared 0.950392 S.D. dependent var 2.292858 S.E. of regression 0.510684 F-statistic 211.7394 Sum squared resid 2.607979 0.00000
问:(1 (2)解释回归系数的含义。
(2)如果希望1997年国民收入达到15,那么应该把货币供给量定在什么水平?
答:(1)回归方程为:ˆ0.353 1.968Y
X =+,由于斜率项p 值=0.0000<0.05α=,表明斜率项显著不为0,即国民收入对货币供给量有显著影响。
(2分)截距项p 值=
0.5444>0.05α=,表明截距项与0值没有显著差异,即截距项没有通过显著性检验。
(2分)
(2)截距项0.353表示当国民收入为0时的货币供应量水平,此处没有实际意义。
斜率项1.968表明国民收入每增加1元,将导致货币供应量增加1.968元。
(3分)
(3)当X =15时,ˆ0.353 1.9681529.873Y
=+⨯=,即应将货币供应量定在29.873的水平。
(3分)
3.下表给出三变量模型的回归结果:
方差来源 平方和(SS ) 自由度(d.f.) 平方和的均值
(MSS)
来自回归(ESS) 65965 来自残差(RSS) _— (4)求2R 和2
R ?
解答:(1)总离差(TSS)的自由度为n-1,因此样本容量为15;(2分) (2)RSS=TSS-ESS=66042-65965=77;(2分) (3)ESS 的自由度为2,RSS 的自由度为12;(2分) (4)2
R =ESS/TSS=65965/66042=0.9988,
2
2114
1(1)1(10.9988)0.9986112
n R R n k -=-
-=--=--(4分)
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。