华东师范大学1999年数学分析考研试题
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解
目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。
华东师范大学1997-2015年高等代数考研真题及解答完整版
华东师范大学1997年攻读硕士学位研究生入学试题一.(10分)计算下列行列式:11222221122111112211...1(1)(1) (1)(1)(1)...(1)(1)(1)...(1)n n nn n n n n n x x x x x x x x x x x x x x x x x x ------------二.(15分)设5200200000520022A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭,求正交矩阵T,使'1T AT T AT -=为对角形矩阵,并写出这个对角形矩阵.三.(15分)设200201A a b c ⎛⎫⎪= ⎪ ⎪-⎝⎭是复矩阵.1.求出A 的一切可能的Jordan 标准形;2.给出A 可对角化的一个充要条件.四.(15分)已知3阶实数矩阵()ij A a =满足条件(,1,2,3)ij ij a A i j ==,其中ij A 是ij a 的代数余子式,且331a =-,求: 1.A2.方程组123001x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭的解.五.(15分)证明:一个非零复数α是某一有理系数非零多项式的根⇔存在一个有理系数多项式()f x 使得1().f αα=六.(15分)设A 是n 阶反对称阵。
证明:1.当n 为奇数时|A|=0.当n 为偶数时|A|是一实数的完全平方;2.A 的秩为偶数 .七.(15分)设V 是有限维欧氏空间.内积记为(,)αβ.又A 设是V 的一个正交变换。
记{}{}12|,,|V V V V ααααααα=A =∈=-A ∈,求证:1.12,V V 是v 的子空间;2. 12.V V V =⊕八.(15分)设n 阶实数方阵的特征值全是实数且A 的所有1阶主子式之和为0,2阶主子式之和也为0.求证:0n A =九.(15分)设A,B 均是正定矩阵,证明: 1 .方程0A B λ-=的根均大于0; 2 .方程0A B λ-=所有根等于1⇔A=B.华东师范大学1998年攻读硕士学位研究生入学试题一.(10分)计算下列行列式:131********...2223333 (336)...n n n n n n n n n n n n n n-------------二.(10分)证明:方程组111122121122221122...0...0(1) 0n n n ns s sn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解全是方程1122...0(2)n n b x b x b x +++=的解的充分必要条件是:12(,...,)n b b b β=可由向量组12,...,s ααα线性表示,其中12(,,...,)(1,2,...,).i i i in i s αααα==三(15分)设32()f x x ax bx c =+++是整系数多项式,证明:若ac+bc 为奇数,则f(x)在有理数域上不可约.四(15分)设A 是非奇异实对称矩阵,B 是反对称实方阵。
华东师范大学《数学分析》历年考研真题(1997年-2010年)
华东师范大学数学分析历年考研真题(1997年-2010年)华东师范大学1997年攻读硕士学位研究生入学试题一(12分)设f(x)是区间I 上的连续函数。
证明:若f(x)为一一映射,则f(x)在区间I 上严格单调。
二(12分)设1,()0x D x x ⎧=⎨⎩为有理数,为无理数证明:若f(x), D(x)f(x) 在点x=0处都可导,且f(0)=0,则'(0)0f =三(16分)考察函数f(x)=xlnx 的凸性,并由此证明不等式: 2()(0,0)a b a ba b ab a b +≥>>四(16分)设级数1n a∞=∑收敛,试就1n n d ∞=∑为正项级数和一般项级数两种情况分别证明1nn a∞=∑五(20分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数y=f(x)。
又设(,)Fx y 具有连续的二阶偏导数。
(1) 求''()f x(2)若0000(,)0,()F x y y f x ==为f(x)的一个极值,试证明:当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,0()f x 为极小值。
(3)对方程2227xxy y ++=,在隐函数形式下(不解出y )求y=f(x)的极值,并用(2)的结论判别极大或极小。
六(12分)改变累次积分4204842(4)x x xI dx y dy --=-⎰⎰的积分次序,并求其值。
七(12分)计算曲面积分222(cos cos cos )sI x y z ds αβγ=++⎰⎰其中s 为锥面z =上介于0z h ≤≤的一块,{}c o s,c o s ,c o s αβγ为s 的下侧法向的方向余弦。
华东师范大学1998年攻读硕士学位研究生入学试题一. 简答题(20分) (1) 用定义验证:22323lim 212n n n n →∞+=++;(2) '2cos ,0(),()ln(1),0x x f x f x x x <⎧=⎨+≥⎩求; (3)计算3.二(12分)设f(x)有连续的二阶导函数,且''0()2,[()()]sin 5,f f x f x xdx ππ=+=⎰求f(0).三(20分)(1)已知1n n a ∞=∑为发散的一般项级数,试证明11(1)n n a n∞=+∑也是发散级数。
华东师范大学数学分析 期末试卷
华东师范大学数分期末试卷(A 卷)2009-2010年第一学期一.(20分)判断下列结论是否成立(若成立,说明理由;若不成立,举出反例)1.设()f x 在(a,b )连续,()f x 在0(,)x a b ∈取极值,则0'()0f x =;2.设()f x 在点0x 可导,则存在0δ>,使得()f x 在00(,)x x δδ-+上连续;3.设数列{}n a ,{}n b 满足1(1,2,)n n a b n ≤≤=…,lim()0n n n b a →∞-=,则极限lim ,lim n n n n a b →∞→∞ 都存在;4.设()f x 是区间(-a,a )上的可导偶函数,则()f x 在x=0取极值。
二.(16分)计算下列极限;1.20arctan limtan x x x x x→-; 2.20ln(1)sin lim x x x x →+-; 三.(16分)计算下列函数的导函数dy dx: 1.1,0,()1,0;x x e x y x e x -⎧≥⎪=⎨⎪+<⎩ 2.()y y x =由极坐标方程2(1cos )(0)a a ρθ=+>所确定。
四.(14分)讨论2x y x e -=的单调性区间,凹凸性区间,极值与拐点。
五.(14分)证明不等式:1.2arctan (0,);12, x x x x π+<∈+∞+ 2.过研究ln ()x f x x =的单调性,证明:e e ππ>. 六.(8分)设()f x 在区间I 上连续但不一致连续,()g x 在(,)-∞+∞上可导且'()0g x k ≥>.证明:复合函数(())g f x 在I 上不一致连续。
七.(12分)设()f x ,()g x 在[,)a +∞上连续可微,且极限()lim ()x f f x →+∞+∞=,()lim ()x g g x →+∞+∞= 存在,证明:1. 若()()f a f =+∞,则:(,)a ξ∃∈+∞,使得'()0f ξ=;2. 若对[,),'()0,x a g x ∈+∞≠则:(,)a ξ∃∈+∞,使得'()()()'()()()f f f ag g g a ξξ+∞-=+∞- 八.(附加题10分)设()f x 在[,)a +∞上二阶可导且''()1f x ≤,又极限lim ()x f x A →+∞=存在。
华东师范大学数学分析考研真题
1 n )an
也是发散级数。
四(12 分)设
D : x2 y 2 z 2 t 2 , F (t) f (x2 y2 z2)dxdydz, 其中 f 为连续
D
函数,f(1)=1.证明 F '(1) 4.
五(12 分)设 D 为由两抛物线 y x2 1 与 y x2 1 所围成的闭
的下侧法向的方向余弦。
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
华东师大数学分析习题解答1
《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1Λ==εn n n 相应地S a n ∈∃,使得Λ,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim .(2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取Λ,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1.3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf m in inf =.现证明如下.由假设,B A S ⋃=显然也是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf m in inf ≤.综上,证得结论 {}B A S inf ,inf m in inf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup m in )sup(≤⋂; (2){}B A B A inf ,inf m ax )(inf ≥⋂. 并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥⋂成立.上式中等号不成立的例子确实是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A inf ,inf m ax inf >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x .从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于是结论 B A B A inf inf )(inf +=+ 得证. □5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集{}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于是,}{αn 有上界(β就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a ΛΛΛ.由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf ,sup n n b a .倘若β<α,则有Λ,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因Λ,2,1,=≤β=α≤n b a n n ,所以ξ是一切],[n n b a 的公共点.对于其他任一公共点Λ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集,欲证S 存在上确界.为此构造区间套如下:令 ],[],[011M x b a =,其中M S S x ,)(0∅≠∈Θ为S 的上界.记2111b a c +=,若1c 是S 的上界,则令],[],[1122c a b a =;否则,若1c 不是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令 Λ,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n nn n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不是S 的上界,因此ε-ξ更加不是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理.证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使n a 不是{}n x 的上界,n b 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到Λ,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □ 11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点Λ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不是区间套的公共点.于是,∈∀x ],[11b a ,使,],[n n b a ∃],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}H N i x U U H i x i i ⊂=δ==,,2,1);(~Λ,其中每个邻域N i b a U ii n n i ,,2,1,],[Λ=∅=⋂.若令{}N n n n K ,,,max 21Λ=,则N i b a b a i i n n K K ,,2,1,],[],[Λ=⊂,从而N i U b a i K K ,,2,1,],[Λ=∅=⋂. (Ж) 但是Y Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在Λ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=E sup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫ ⎝⎛ε+ξ2不再是S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η是E 的最小上界,于是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x lim .证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111ο.一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1m in n n x n ,Λο,3,2,);(=⋂εξ∈∃n S U x n n .如此得到的数列{}S x n ⊂必定满足:Λ,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n n x lim )(01||. □ 41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{}Λ,3,2,,,,max 1=>∈∃=-n M x S x x n M n n n n n 使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim ,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim ,ξ=⊂∞→n n n x S x 使.据题设条件,{}n x 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}n n a a ∉ξ=sup ,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1.3 例4,{}{}n n a a k ⊂∃,使ξ=∞→k n n a lim ,这说明ξ是{}n a 的一个聚点.又因ξ又是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n n n; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ;(5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin 12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k ka k k ,故21lim ,21lim -==∞→∞→n n n n a a . (3))(13cos211∞→≤π≤←n n nn, 故 1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n n k n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a . (5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n nn nn nn n a n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn n n a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→nn n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k kn k k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→n n n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3).类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证得(3). □。
考研数学华东师大《626数学分析》考研真题解析
考研数学华东师⼤《626数学分析》考研真题解析考研数学华东师⼤《626数学分析》考研真题解析
⼀、华东师范⼤学数学分析考研真题
⼆、华东师范⼤学数学系《数学分析》
⼀、判断题
1数列{a n}收敛的充要条件是对任意ε>0,存在正整数N,使得当n>N时,恒有|a2n-a n|<ε。
()[华东师范⼤学2008年研]
【答案】错~~
【解析】可举反例加以证明:设数列{a n}收敛,则对任意ε>0,存在正整数N,使得当n>N时,恒有|a2n-a n|<ε。
反之不真,例如设
显然有
但{a n}发散。
2对任意给定的x0∈R,任意给定的严格增加正整数列n k,k=1,2,…,存在定义在R上的函数f(x)使得
f(k)(x0)表⽰f(x)在点x0处的k阶导数)。
()[华东师范⼤学2008年研]
【答案】对~~
【解析】例如函数f(x)=(x-x0)n就满⾜条件。
3设f(x)在[a,b]上连续,且,则f(x)在[a,b]上有零点。
()[华东师范⼤学2008年研]
【答案】对~~
【解析】因为f(x)在[a,b]上连续,所以存在ξ∈(a,b),使得
即f(x)在(a,b)内有零点。
4对数列{a n}和
若{S n}是有界数列,则{a n}是有界数列。
()[北京⼤学研]
【答案】对~~
【解析】设|S n|<M,则|a n|=|S n-S n-1|≤2M。
华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)
续.
19
五、设 f ( x) 在 [a, b] 上二阶可导,且 f ( x) ≥ 0 , f ′′( x) < 0 . 证明: f ( x) ≤
2 b f (t )dt , x ∈ [ a, b] . b − a ∫a
六、设 f ( x , y ) 在 D = [ a, b] × [ c, d ] 上有二阶连续偏导数.
15
六、 ( 15 分)假设 σ 是 n 维欧氏空间 V 的线性变换, τ 是同一空间 V 的变换 . 且对
∀α , β ∈ V , 有 (σα , β ) = (α ,τβ ).
证明: 1) τ 是线性变换, 2) σ 的核等于 τ 的值域的正交补.
七、 (15 分)证明:任意方阵可表为两个对称方阵之积,其中一个是非奇异的。
n →∞ a≤ x≤ b a≤ x≤ b a≤ x≤ b n →∞
八、设 S ⊂ R 2 , P0 ( x0 , y0 ) 为 S 的内点, P 1 ( x1 , y1 ) 为 S 的外点. 证明:直线段 P0 P 1 至少与 S 的边界 ∂S 有一个交点.
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、 (12 分)设 f ( x) 是区间 I 上的连续函数. 证明:若 f ( x) 为一一映射,则 f ( x) 在 区间 I 上严格单调.
二、 (12 分)设
⎧1, x为有理数 D ( x) = ⎨ ⎩0, x为无理数
证明:若 f ( x) , D ( x) f ( x) 在点 x = 0 处都可导,且 f (0) = 0 ,则 f '(0) = 0.
二、(10 分)证明:方程组
⎧ a11 x1 + a12 x2 + ... + a1n xn = 0 ⎪a x + a x + ... + a x = 0 ⎪ 21 1 22 2 2n n ⋯ (1) ⎨ ............ ⎪ ⎪ ⎩ as1 x1 + as 2 x2 + ... + asn xn = 0
华东师范大学2000至2009年数学分析,高等代数试题
华东师范大学2000年攻读硕士学位研究生入学试题考试科目:数学分析一.(24分)计算题: (1)011lim();ln(1)x x x→-+(2)32cos sin ;1cos x xdx x⨯+⎰ (3)设(,)z z x y =是由方程222(,)0F xyz x y z ++=,所确定的可微隐函数,试求grad Z.二.(14分)二、设 n n ne )11(+=,*N n ∈;1)11(++=n n nE ,*N n ∈;证明: (1)}{n e 是严格递增的;(2)}{n E 是严格递减的; (3)用对数函数x ln 的严格递增性质证明:111ln 11n n n⎛⎫<+< ⎪+⎝⎭,对一切n ∈N *成立. 三.(12分)设f 在[],a b 中任意两点之间都具有介值性,而且f在(),a b 内可导,'|()|f x K ≤(正常数), (,).x a b ∈证明f 在点a 右连续(同理在点b 左连续). 四.(14分)设12(1).nn I x dx =-⎰证明:(1)1221n n nI I n -=+,n=2,3…;(2)2,3n I n≥n=1,2,3….五(12分)设S 为一旋转曲面,由平面光滑曲线{(),[,](()0)z y f x x a b f x ==∈≥饶x 轴旋转而成。
试用二重积分计算曲面面积的方法,导出S 的面积公式为'22()1()baA f x fx dx π=+⎰(提示:据空间解几知道S 的方程为222()y z f x +=)六(24分)级数问题:(1)设sin ,0()1,0xx f x x x ⎧≠⎪=⎨⎪=⎩,求()(0)k f。
(2)设1nn n a =∑收敛,lim 0n n na →∞=证明:111()nnn n n n n n a a a +==-=∑∑。
(3)设{()}n f x 为[],a b 上的连续函数序列,且()(),[,]n f x f x x a b ⇒∈证明:若()f x 在[],a b 上无零点。
华东师范大学数学分析试题解答
cos x(1 cos2 x) d (cos x)
1 cos2 x
t(t 2 1) dt
1t2
t
2t 1 t2
dt
= 1 cos2 x ln(1 cos2 x) C 2
yzF1 2xF2 xyF1 2zF 2
zxF1 2 yF2 xyF1 2zF2
,证明:
绕 x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出 S
的面积公式为:
A
2
b
a
f
(x)
1 f '(x)2 dx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
华南师范大学1999-2000,2002-2011,2013-2014年数学分析考研真题
1999年华南师范大学数学分析一、计算1、已知极限lim x→0∫u 2du √β+3uαx−sin x =2,其中α,β为非零常数,求α,β的值;2、求积分∫ln(x +√1+x 2)dx ;3、函数u=u(x)由方程组u=f(x,y,z),g(x,y,z)=0,h(x,y,z)=0所确定,求dudx 4、求积分I=∬√x 2+y 2+(z+a)2∑其中a>0, ∑是以原点为中心,a 为半径的上半球面。
二、1、设数列{x n }收敛且x n >0(n =1,2,·····),求证:lim n→∞√x 1x 2···x n n =lim n→∞x n ;2、若x n >0(n =1,2,····),且lim n→∞x n+1x n存在,求证:lim n→∞√x n n =limn→∞x n+1x n;3、求lim√n !n。
三.计算函数z =1−(x 2a 2+y 2b 2)在点P (√2√2)沿曲线x 2a 2+y 2b 2=1在此点的内法线方向上的导数。
四、设f (x )在[a,b]上具有二阶连续导数,且f (a )=f (b )及|f’’(x)|≤M 对xϵ[a,b ],证明对一切x ∈[a,b ]有|f’(x)|≤M 2(b −a)。
五、若f x ,(x,y )在点(x 0,y 0)处存在,f y ,(x,y )在点(x 0,y 0)处连续,证明f (x,y )在(x 0,y 0)处可微。
六、证明∑x n ∞n=1(1−x)2在[0,1]上一致收敛。
七、设C 为位于平面x cos α+y cos β+z cos γ−1=0(cos α,cos β,cos γ 为平面之法线的方向余弦)上并包围面积为S 的按段光滑封闭曲线,求∮(z cos β−ycos γ)dx +(x cos γ−z cos α)dy +C (y cos α−x cos β)dz,其中C 是依正方向进行的。
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题
有界,由Dirichlet判别法,知 二、解答题
收敛.
1.设 ,求级数
的和.[苏州大学2004研]
解:设
, 的收敛区间为
,
,
令
,则
;
令
,则
则
从而
2.
.[武汉大学2004研]
解:原式 3.判断下列级数是绝对收敛、条件收敛还是发散:
(1)
;
(2)
.[北京科技大学2011研]
解:(1)因为
且
收敛,
所以由级数的比较判别法知,级数
上逐
点收敛,即由Osgood定理,得
上一致收敛.
(Osgood定理)设函数列 在有限闭区间 上连续, 在 上等 度连续,如果
则
(1)
上连续;
(2)
上一致收敛于 [哈尔滨工业大学2009研]
证明:(1)由 在 上等度连续,得
对
,当
成立;
时,不等式
令 取极限得,
由此得
上连续;
,对所有
(2)由 时,有
,
;对于任意的
目 录
第一部分 名校考研真题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续 第17章 多元函数微分学 第18章 隐函数定理及其应用 第19章 含参量积分
第20章 曲线积分 第21章 重积分 第22章 曲面积分 第23章 向量函数微分学 第二部分 课后习题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续
闭区间的性质可知,存在
即 这里
,由比值判别法知
绝对收敛.
华东师范大学数学分析历年真题(1997年-) 2
1
大量名纳%义税以对人上万外游以元经纳离大挂,营税于家靠2,人征0查共经1并单管5着 询同营年向位范这 分探为1报被2-围一 析87讨主告挂流月户之系 、。, 靠域实,外列 下 挂 人综现小。问 户 靠交上合税规原以题 调一人通缴治款模则X对 查、(道运管X理2企.X走.2.县X车护输理6实业X等 体1X访万0为辆县岸业费施2(县级 布师合的元2全例所对工是。户方三交: 置专治方;部,有交是程国 ,案)通X与业理法我为截人通X学.民 客设监运、措.论的.。县准道至)输9校经1运计测输教施文(任、一并交考路2,运实济3范业育设0五务纳、对通户工证作对1将业现的围税以计5)目税高调业,种号者年国车税社传与收及.林标.人提校查主货:.6内辆收会统7月时征为研草与户出行的要运X(培的登政功行底段管衡究X措规数教了政情以运一训一记策时能业,.基量。.施模题增学现管况自输).单念些在执间的,1共本一高设.目加在理进1主4设位.也高被.行(:浅前实6有情所校6计:,户标一的行经计:在校(挂情四X谈提施登况高在.以但。活些基一营原.X发的一.靠况)新。营记 校实9X摘X远据把动高本般和则生行四)人和监鉴形自改的X 是现要低统思,校概性挂.针着政、治.(X征测定式2增.交X否教:1于7计想配行念分靠河、巨管水理货X管世(内单级下后通治具学小地,和合政析经为县政大理土任运情纪二容位领高,一输理备和流税2行高管内,营例共策的具保务企况以)0方:导校如、运论竞科域1移教动校理容提为浅有,变有持.业4开后总法X.安行何强业学争研.年综交育统的 出主谈交6X这提化一监)展,体与排政加化纳(习力两交日…前活一学弊 加,小通两高,定测名了随布频,各管强理税二,的项通期…移动到生端国强我流运个政大的.下专着局.次扎项理交论人).帮全一重运:县交、全更,外税分域输1中治学借,题社.实任的通能0X治.助面个要输X.交的两军好并知收局综企(心敏校鉴以X8调1会工务创运X力理下武重职6(企1通户项和地在名征管合业一任锐园意-被研的履作新输2提目,装要能目三业运数重公完以教管理,治04)务性的义挂以。飞作 职,同路业19高标在自指是 )现输,4大安成上育工户企理监,和陈。靠X调速、为 。严时径的,.我全己标建 帮工税.行教现基学作,X业实.测内鉴旧 人研发…一 我格, 税6始队的。立县录助程款业政育役学础家的(其9施目抓别的 主展…名 大按不 收0终官头本在X一工措3税治等部目之乌建三中方的、管能行关7要X,中消 量照断摘管坚兵脑论行、3作施收上一队标申议)案.河实理力政键.采我队建防 阅部提要理.持的,文政项实设征的系政。,斯1建般设为践、。管词取国政0设监 读队高 ?讲学共提,管目践计管(坚列治新着基与设计例执外在理:数高治、督 和的自 笔话习同高对理区 .情二任定工形重提规.浅法树改模高.据校指坚执 学条身随者精者努党高的8概姓 况)期性作式阐出模谈为形革式校(的导持法 习令政着带神强力性校基况名通调情监以和。会下述学.小民象强已行四.教员.全干 了条治社,下修行础.:过研况6测来思下议,了校.节、,警经政).三育2面部 公例觉会3加积学,养政之X任)0,想面上高要看二。坚扎和很管河1、事X协, 安和悟的工极习我,管上职6障我上是来校有,、身持实两难理年总业现调只 部各,不环参者以进理,以四通的我,行三养小份严开学管;述也将可有 1项自断节加胜对一的也畜来1个过纯任深政要殖流证格展一理创职9在本持自规觉发看讲的工步基就牧的、方认洁职刻管素成域号执、做好新报发人续身章学展,党观作坚本说业学1个面真性以领理,本综:法部两当路告2生任发业制习和产性念高定概行习0指看学。来会的即高X的队项今径、…期展务度政进 3品、,度理念政值锻X标,习 的质创行8,重正快;规1…以、知管治步0 加守把负想进管2的炼之仍党 主总量新政0人要规大节举1模来2建构识理,工党加责信行理号1和头一然的二要书路管自才意化教奏措8的设建水和论人粗规强的念简令.工,6;存十、工记高径理任技义建育的 、%履全社平约,们放、学精,单以作…同全在八强作系低和中术,设中校 。产职们省会过束认的,严习神进概及实肉比县困大化,列举队不坚、的园 业情养肉主硬部真生我缺党,一述新.践牛增牛难、学特讲已3指足持精所师 化况吨育牛义,队贯活知乏纪强团…,发,产长期存和全习向话经导。执细学生虽为述,之养和才彻方识品反化结…布我业3曾栏问军,各精成员 的法化、日然方0职占恩殖谐能紧执式、牌腐素和实尽.情经6题和提位神以开5各为管所常X向如6全发的基社适紧行和4教带倡质施职况5X教,公高领%来发位民理得,4下县期言:地会应围党观的给动廉作领尽,5调过主安自导通,区老、工推头:肉以,一县的当绕肉我;教为中《责达查的我要现身汇过在消师服作所动, 类来为是的深前灭路牛做从育长队建的到与问的表役知报政支防,务获肉同 产关我父目刻消火线养人市等期支筑完了思候老现部识如队大我人三,牛比一量心们母标内防救、殖尊的场活坚部设成省考和师在队储下代的民严生增个、的支上,涵工援方呈敬道环动持一计了级 崇,:政备大表心的三产长无加1持了父把,作和现的理节,班防上肉 3生高脑从治和 队市中思实持3愧.强我生母发更的执5出各,看使一人火4牛观的海养工 党长%务委充想专.续于政市动给展加需勤3蓬位让,我项务规基,%、敬中殖作委述近的、满得题发党治真教的了肉清要训勃老我市深工实范;地出价意浮环会能的职年思市感到展、学育一我牛醒,练的师在受场刻作求》肉县栏值!现节议力领述来想人慨进。无习事课们产地才发,实益范认来真G牛“肉,观向出看精 导廉,大一 …,B党业生认能展同际无围识抓出要牛提,今他神 报5X学端、思步 …坚纪发听命作识更0势志工穷较到。栏X求产高坚天们发和任0告一正市绪提积一市定政展后和为到好1县头们作。窄加我3肉值自持受熟展习期 做思政又高4极、2正纪的很血调强立,:中人强深9牛0达身人到悉方近以专想府回,2参发1 确条社受肉结化足但 0更的营党知6存2终的民表式平来头题作、到增年加展.的规会启之构服丰 6是加一销的栏以思利彰面落总,亿,教风市了强庆消各现政,各发躯、务富 从在一明生模执1高想益的孔后书元同育,政自了祝防项状0治始界、;转意的述养这、确最式政万标觉第“和,记比。提协己教中政 方终人深一识饲职殖美不方难陈能头准悟一十表科占增在升,的师队治 向坚士受是式草人、好断向忘旧力和严和;佳情技系长学思向童节副教2 持表教老、资:加的,、;0能格道保”,含列1习想辛年大中育 为示育师促源(0工金强更最从5繁基要德持教正量.年中境勤和会9队理人衷。,增和、秋学加需保%母本求水思师是较末,界工学上长论民心今老收悠;市九习自要障牛自准想和这低,以作生的2学服的天师久牛场月,觉感环03己。道中些;全学切在时1万讲习务感参给着的肉和,努地念6,通德小扶从年县以实教代头话,的谢加了力养产保我力按的踏过的学我度能致做育,”认宗!全我点 殖量们提照是实学纯名一述繁用到战想中真旨 市们,传5欢高科养工习洁师路1职母为线起的完。 庆知以让3统聚自学育3作,性、成报牛主民的了两成进刚祝识标教,一身发之,政名长告达,、广小各一才教和准师提堂素展恩较治正校的 到将务大学类步,师灵化成出,质观好觉确长老 理实教、学加X节魂、为了共 的而地悟对表师今X论、师中习强大。X同 要给分完、待示们年与清、学X笔了会…庆一求予别大成理权热,以实廉教、记世,祝是去我作地了论力烈教来际。育大界见第加思了上各水、的给,相牢工学一观到3强考非最项平金祝2在结固作时年的在个基问常受工得钱贺各合树者来改座教础题好尊作到、!级,立致,造重师理,的重任提名向领注科以,点节论谋的务高利长导重学节牢学。的划神。,的学日固习首学工圣现党努关习世树了先习作职就性�
华东师范大学1998年数学分析考研试题
∞
n =1
1 ) a n 也是发散级数。 n
(2)证明
∑
n =1
∞
2 n s in
1 3n x
在 ( 0 , + ∞ ) 上处处收敛,而不一致收敛。
四(12 分)设
D : x 2 + y 2 + z 2 ≤ t 2 , F (t ) = ∫∫∫ f ( x 2 + y 2 + z 2 )dxdydz , 其
D
中 f 为连续函数,f(1)=1.证明 F' (1) = 4π.抛物线
2 y = x 2 − 1 与 y = − x + 1 所围成的闭域。
x2 y2 试在 D 内求一椭圆, 2 + 2 = 1, 使其面积为最大。 a b
六(12 分)设 u ( x , 满足
y)
华东师范大学 1998 年攻读硕士学位研究生入学试题
一. (1) 简答题(20 分) 用定义验证: lim
n→ ∞
3n 2 + 2 3 = ; 2 2n + n + 1 2
(2)
cos x, x < 0 f ( x) = , 2 ln(1 + x ), x ≥ 0
求f ( x) ;
'
(3)
) 上连续,则 f ( x ) ≡ 常数。
4
计算 ∫
x3 1 + x2
d x.
二 ( 12
π
分 ) 设
f(x) 有 连 续 的 二 阶 导 函 数 , 且
f ( π ) = 2 , ∫ [ f ( x ) + f '' ( x ) ] s in x d x = 5 , 求 f(0).
华东师范大学1999数学分析考研试卷
华东师大1999年数学分析试卷一. (15分)设110,0,(2),n n n x a x a x x n a +><<=-∈ .证明:{}n x 收敛,并求其极限。
二. (10分)证明:若函数f 在区间I 上处处连续,且为一一映射,则f 在I 上必为严格单调。
三. (15分)用条件极值方法证明不等式:22221212,(0,1,2,,)nn k x x x x x x x k n n n +++++⎛⎫≥>= ⎪⎝⎭ 四.(15分)设()f x 在(),a +∞上可导,且'lim ()x f x →∞=+∞。
证明:()f x 在(),a +∞上比一致连续。
五.(15分)设()f x 在[],a b 上二阶可导,且''()0,()f x f x ≥<0. 证明:[]2()(),,ba f x f t dt x ab b a ≤∈-⎰.六.(15分)设(,)f x y 在[][],,D a b c d =⨯上有二阶连续偏导数。
(1)通过计算验证:''''(,)(,),xy yx D D f x y dxdy f x y dxdy =⎰⎰⎰⎰ (2)利用(1)证明''''(,)(,),(,)xy yx f x y f x y x y D =∈。
注意:学科教学论专业的考生可以在以下七八两题中任选一题(且只选一题),其它专业的考生只限于做第七题(第八题不必做)七.(15分)设对每一n ,()f x 在[],a b 上有界,且当n →∞时,在[],a b 上()n f x 一致收敛于()f x .证明:(1)()f x 在[,]a b 上有界;(2)lim sup ()sup ()n n a x b a x bf x f x →∞≤≤≤≤= 八.(15分)设2000,(,)S P x y ∈ 为S的内点,111(,)P x y 为S 的外点。