(新教材)人教A版高中数学必修第二册学案:8.3 第2课时 球的体积和表面积 Word版含答案

合集下载

8.3 第2课时球的表面积和体积-人教A版(2019)高中数学必修第二册课件

8.3 第2课时球的表面积和体积-人教A版(2019)高中数学必修第二册课件

| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第八章 立体几何初步
2.已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面 得到圆M.若圆M的面积为3π,则球O的表面积等于________.
【答案】16π 【解析】如图,圆 M 面积为 3π,则圆 M 半径 MB
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第八章 立体几何初步
错解:2
如图,设球的大圆为圆 O,C,D 分别为两截面圆的圆心,AB 为经
(2)已知球的体积为5300π,求它的表面积. 素养点睛:本题考查了数学运算的核心素养.
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第八章 立体几何初步
解:(1)设球的半径为 r,则由已知得 4πr2=64π,r=4.所以球的体积 V=43πr3=2356π.
的体积为
()
A.43π
B.
2π 3
C.
3π 2
D.π6
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第八章 立体几何初步
【答案】A 【解析】由题意知,此球是正方体的内切球,根据其几何特征知, 此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1, 其体积是43×π×13=43π.
(1)正方体的内切球 球与正方体的六个面都相切,称球为正方体的内切球,此时球的半 径为 r1=a2,过在一个平面上的四个切点作截面如图 1.

新教材高中数学第八章立体几何初步8.3.2圆柱、圆锥、圆台、球的表面积和体积课件新人教A版必修第二册

新教材高中数学第八章立体几何初步8.3.2圆柱、圆锥、圆台、球的表面积和体积课件新人教A版必修第二册

4πr′2=2×4πr2.∴r′= 2r,V′=4πr3′3=2 2×4π3r3.
(2)S
表=πr2+2πr2=1,∴r=
3π 3π .
答案:(1)B (2)C
先根据球的表面积的关系,得出半径之比,再求出体积之比.
题型三 旋转体的综合应用[教材 P119 例 4] 例3
如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体 积之比.
体积公式
圆柱
底面半径为 r,高为 h,V=_π_r_2h_
圆锥 圆台

底面半径为 r,高为 h,V=__13_π_r_2_h__
上底半径为 r,下底半径为 R,高为 h,V=13π(r2 +rR+R2)h
V=43πR3
状元随笔 (1)求旋转体的表面积时,要清楚常见旋转体的侧面展开图是什 么,关键是求其母线长与上、下底面的半径. (2)柱体、锥体、台体体积之间的关系 柱体、锥体、台体的关系如下:
解析:设圆锥的母线长为 l,高为 h,底面半径为 r,由底面周 长为 2πr=6π,得 r=3,所以 h= l2-r2= 82-32= 55.由圆锥的 体积公式可得 V=13πr2h=3 55π.
答案:C
3.若球的表面积为 4π,则体积为( )
4 A.3π
B.4π
8π C. 3
D.6π
解析:∵S=4πR2=4π,∴R2=1
方法归纳
1.旋转体中,求面积应注意侧面展开图,上下面圆的周长是 展开图的弧长.圆台通常还要还原为圆锥.
2.求旋转体的体积,关键找准半径和母线长,利用公式求体 积.
跟踪训练 1 如图,过圆柱的两条母线 AA1和 BB1的截面 A1ABB1 的面积为 S,母线 AA1 的长为 l,∠A1O1B1=90°,求此圆柱的体积.

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

8.3。

2圆柱、圆锥、圆台、球的表面积和体积课后篇巩固提升基础达标练1。

(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A。

圆柱的侧面积为2πR2B.圆锥的侧面积为2πR2C。

圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2R,则圆柱的侧面积为2πR×2R=4πR2,∴A错误;圆锥的侧面积为πR×R=πR2,∴B错误;球的表面积为4πR2,∵圆柱的侧面积为4πR2,∴C正确;∵V圆柱=πR2·2R=2πR3,V圆锥=πR2·2R=πR3,V球=πR3,∴V圆柱∶V圆锥∶V球=2πR3∶πR3∶πR3=3∶1∶2,∴D正确.2.若一个正方体内接于表面积为4π的球,则正方体的表面积等于()A.4 B。

8 C。

8 D.8x,球半径为R,则S球=4πR2=4π,∴R=1。

∵正方体内接于球,∴x=2R=2,∴x=,∴S正=6x2=6×=8。

3。

(2019广东高二期末)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D—ABC体积的最大值为()A。

12 B.18C.24D.54点M为三角形ABC的中心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC的体积最大,此时,OD=OB=R=4.∵S△ABC=AB2=9,∴AB=6.∵点M为△ABC的中心,∴BM=BE=2。

∴Rt△OMB中,有OM==2。

∴DM=OD+OM=4+2=6。

∴(V D—ABC)max=×9×6=18。

故选B。

4。

《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A。

2021年高中数学新人教A版必修第二册 8.3简单几何体的表面积与体积 教案(4)

2021年高中数学新人教A版必修第二册 8.3简单几何体的表面积与体积 教案(4)

中学教案学科:数学年级:高一教师:授课时间:教学内容8.3.2 球的表面积和体积教学目标四基:1.掌握球体的表面积和体积公式;2.掌握简单组合体的表面积和体积的计算方法;3.通过球体体积公式的推导,使学生了解极限的思想方法四能:通过对球体体积公式的推导,使学生体会“分割、求近似值、再由近似和转化为球体的体积”的极限思想方法;通过对组合体的表面积和体积求法的分析,提高分析问题解决问题的能力。

数学核心素养:通过球体体积公式的推导,使学生体会用数学的思维理解世界的数学素养。

教材分析地位:三中几何体的表面积和体积的计算,是描述几何体的两个量。

重点:球的表面积和体积公式的运用,求组合体表面积和体积的方法难点:球体体积公式的推导学情分析初中学习过投影是化立体图形直观图的学习基础。

教法模式以学生为主体,采用诱思探究式教学,让学生独立思考,合作学习。

媒体运用多媒体展台,实物模型备注教 学 过 程知 识师生活动 设计意图一、课前小测(检测上节课所学的内容)1. 用一个边长分别为4,6矩形围成一个圆柱面,则这个圆柱的体积是2.用一个半径为6,圆心角为120°的扇形围成一个圆锥,则圆锥的体积为3. 圆台上底半径r 1=1,下底半径r=3,高h=3,求母线长l侧面积s,全面积s 24. 棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm ,求这个棱台的体积。

5. 圆台的上、下底面半径分别为2,4,母线长为,则这个圆台的体积V= 。

ππ3624huo ;3216π;(=)(=)(=);(答案:2325cm 3);二、进行新课(一)情景设置,引入新课前面学习了圆柱、圆锥、圆台的表面积和体积的求法。

除了上述三个旋转体之外还有一个什么旋转体?那么它的表面积和体积又是怎样计算?今天我们就研究这两个内容(二)数学本质,深入理解问题1: 阅读教材117页,回答:球的半径为R ,则球的表面积为?跟踪训练:(教材118页例3)如图8.3-4,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m,圆柱高0.6m.如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(x取3.14)解:一个浮标的表面积为2πX0.15×0.6+4π×0.152=0.8478(m2),所以给1000个这样的浮标涂防水漆约需涂料0.8478×0.5×1000=423.9(kg).图8.3-4问题2:(1)在小学,我们学习了圆的面积公式,你还记得是如何求得的吗?类比这种方法,你能由球的表面积公式推导出球的体积公式吗?学生独立完成,而后教师组织评价教师设计问题,学生回答教师引导,学生回答教师组织,学生回顾且回答考查上节课内容的掌握情况回顾旋转体的类型,引出新课直接给出表面积公式组合体表面积的求法以及求表面积公式的运用(2)阅读教材118页。

8.3.2球的体积与表面积+教学设计2023-2024学年高一下学期数学人教A版(2019)必修二

8.3.2球的体积与表面积+教学设计2023-2024学年高一下学期数学人教A版(2019)必修二

8.3.2 球的体积与表面积教学设计-人教A版高中数学(2019)必修第二册一、教学内容分析本节课的主要教学内容是球的体积与表面积,这是人教A版高中数学(2019)必修第二册第8章第3节的内容。

这部分内容主要涉及球体体积和表面积的计算方法。

球的体积可以通过球体的半径和体积公式来计算,表面积可以通过球体的表面积公式来计算。

这部分内容与学生已有的知识有关联。

首先,学生需要了解球的体积和表面积的概念,这是计算的前提。

其次,学生需要掌握球的半径与体积、表面积之间的关系。

这部分内容涉及到球体的几何属性,与学生已有的几何知识有关联。

此外,球的体积和表面积的计算方法也涉及到一些代数知识,如幂的运算、开方运算等,这需要学生有一定的代数基础。

因此,在教学过程中,教师需要引导学生回顾已有的几何和代数知识,以便更好地理解和掌握球的体积和表面积的计算方法。

同时,教师还可以通过实际例子来帮助学生理解这部分内容,如计算篮球、足球等常见球体的体积和表面积,让学生能够将理论知识应用于实际问题中。

二、教学目标本节课的教学目标主要是让学生掌握球的体积和表面积的计算方法,能够运用这些方法来解决实际问题。

具体目标如下:1. 学生能够理解球的体积和表面积的概念,了解它们在实际生活中的应用。

2. 学生能够掌握球的体积和表面积的计算公式,并能够正确地进行计算。

3. 学生能够运用球的体积和表面积的计算方法来解决实际问题,如计算篮球、足球等常见球体的体积和表面积。

4. 学生能够通过实际例子来加深对球的体积和表面积的理解,提高应用能力。

5. 学生能够通过小组合作和讨论来提高解决问题的能力,培养团队协作精神。

为了达到这些目标,教师需要设计一些有针对性的教学活动,如讲解球的体积和表面积的概念,演示如何进行计算,提供实际例子让学生进行练习,组织小组合作和讨论等。

同时,教师还需要关注学生的学习进度,及时给予指导和帮助,确保每个学生都能够掌握球的体积和表面积的计算方法,并能够运用这些方法来解决实际问题。

人教A版高中数学必修二招远第二全册教案球的体积和表面积人教

人教A版高中数学必修二招远第二全册教案球的体积和表面积人教

§1.3.2 球的体积和表面积一. 教学目标1. 知识与技能错误!未找到引用源。

通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。

错误!未找到引用源。

能运用球的面积和体积公式灵活解决实际问题。

错误!未找到引用源。

培养学生的空间思维能力和空间想象能力。

2. 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。

3. 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。

二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。

难点:推导体积和面积公式中空间想象能力的形成。

三. 学法和教学用具1. 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值 的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。

2. 教学用具:投影仪四. 教学设计(一) 创设情景错误!未找到引用源。

教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。

错误!未找到引用源。

教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。

(二) 探究新知(三) 错误!未找到引用源。

.球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于 “小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。

2022版人教A版高中数学必修第二册--圆柱、圆锥、圆台、球的表面积和体积

2022版人教A版高中数学必修第二册--圆柱、圆锥、圆台、球的表面积和体积

提示:易知长方体的体对角线是外接球的直径,若长方体中过同一顶点的三条棱
长分别为a,b,c,则外接球的半径r2=
1 2
×
a2 b2 c2 ,如图所示.
第1讲 描述运动第的八基章本概念立体几何初步
球与其他几何体的组合问题的解决方法 1.解决与球有关的组合体问题,其关键是作出适当的球的截面: (1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题. (2)解题时要注意利用以球的半径R,截面圆的半径r,球心到截面的距离d为三边长 的直角三角形,即R2=d2+r2. 2.球与其他几何体经常通过内切、外接等方式构成组合体,主要有球与柱、锥、 台体的组合,即球内切于柱、锥、台体或球外接于柱、锥、台体.作出适当的轴 截面,利用轴截面探究基本量的关系是解题的要点. 3.几个与球有关的切、接问题的常用结论 (1)正方体的棱长为a,球的半径为R,若球为正方体的外接球,则2R= 3a;若球为正 方体的内切球,则2R=a;若球与正方体的各棱相切,则2R= 2a. (2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R= a2 b2 c2. (3)正多面体的内切球和外接球的球心重合,正棱锥的内切球和外接球球心都在 高线上,但不重合.正四面体的外接球与内切球的半径之比为3∶1.
提示:旋转得到的几何体为圆柱,该圆柱的底面半径r=1,高h=1,所以其侧面积为 2πrh=2π.
第1讲 描述运动第的八基章本概念立体几何初步
探究与球有关的切、接问题 如图,一个水平放置的无盖正方体容器高为8 cm,将一个球放在容器口,再向容器 内注水,当球面恰好接触水面时测得水深为6 cm,若不计容器的厚度,如何求出球 的体积?
第1讲 描述运动第的八基章本概念立体几何初步

数学人教A版必修第二册8.3第2课时球的表面积与体积

数学人教A版必修第二册8.3第2课时球的表面积与体积

故球的表面积 S 表=4πR2=16π.
答案:B
2.若球的大圆周长是 C,则这个球的表面积是(

A.


C.

B.

D.2πC2



解析:由 2πR=C,得 R= ,故 S 球面=4πR2= .


答案:C
)
3.已知三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和
答案:A
(2)已知火星的半径约是地球半径的一半,则地球的体积是火星体积的
)


()


解析:设火星半径为 r,则地球半径为 2r, = =8.



答案:8
倍.
(3)已知球的直径为2,求它的表面积和体积.
解:∵直径为 2,∴半径 r=1,
故表面积 S 球=4πr =4π×1
2
3 3
=R2-(x+1)2 且 π=π[R2-(x+1)2]=5π,
即π(R2-x2)-π[R2-(x+1)2]=8π-5π,
即R2-x2-R2+x2+2x+1=3,∴2x=2,即x=1.
∵π(R2-x2)=8π,∴R2-1=8,R2=9,∴R=3.
球的表面积为S=4πR2=4π×32=36π.
即这个正四棱柱的表面积为 576.
(3)有一种空心钢球,质量为142 g,测得外径(直径)等于5 cm,求它的内径(钢的密度为7.9
g/cm3,精确到0.1 cm).
解:设空心球内径(直径)为 2x cm,

则钢球质量为 7.9× · -
=142,

2022年高中数学第八章立体几何初步圆柱圆锥圆台球的表面积和体积1教案新人教A版必修第二册

2022年高中数学第八章立体几何初步圆柱圆锥圆台球的表面积和体积1教案新人教A版必修第二册

18.3.2 圆柱、圆锥、圆台、球的表面积和体积本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A 版)第八章《立体几何初步》,本节课是第2课时,本节课主要学习圆柱、圆锥、圆台、球的表面积和体积公式。

本节课从圆柱、圆锥、圆台的展开图推出它们的表面积,然后比较它们的表面积公式, 让学生更容易记忆公式。

类比棱台的体积公式,进而得到圆台的体积公式,再进一步比较圆柱、圆锥、圆台、棱柱、棱锥、棱台的体积公式,找到它们公式之间的关系。

类比初中圆的面积公式的推导,从而推导球的体积公式。

1.教学重点:圆柱、圆锥、圆台、球的表面积与体积;2.教学难点:与圆柱、圆锥、圆台、球有关的组合体的表面积与体积会解决球的切、接问题。

多媒体23一、复习回顾,温故知新 1.学生回答棱柱、棱锥、棱台、圆柱、圆锥的体积公式 二、探索新知思考1:圆柱的展开图是什么?怎么求它的表面积? 【答案】圆柱的侧面展开图为矩形)(2222l r r rl r S +=+=πππ圆柱表面积思考2:圆锥的展开图是什么?怎么求它的表面积? 【答案】圆锥的侧面展开图是扇形)(2l r r rl r S +=+=πππ圆锥表面积思考3:参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么 ,它的表面积是什么? 【答案】圆台的侧面展开图是扇环4)(22rl l r r r S +'++'=π圆台表面积思考4:圆柱、圆锥、圆台三者的表面积公式之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗? 【答案】思考5:根据圆台的特征,如何求圆台的体积?由于圆台是由圆锥截成的,因此可以利用两个锥体的体积差.得到圆台的体积公式(过程略).hS S S S V )(31+'+'=其中S ,S '分别为上、下底面面积,h 为圆台(棱台)的高.思考6:圆柱、圆锥、圆台的体积公式之间有什么关系?结合棱柱、棱锥、棱台的体积公式,你能将它们统一成柱体、锥体、台体的体积公式吗?柱体、椎体、台体的体积公式之间又有什么关系?51.球的表面积公式:24S R π=球(R 为球的半径)例1.如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m ,圆柱高0.6m ,如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?解:一个浮标的表面积为)(8478.015.046.015.0222m =⨯+⨯⨯ππ所以给1000个这样的浮标涂防水漆约需涂料)(9.42310005.08478.0kg =⨯⨯思考7:在小学,我们学习了圆的面积公式,你记得是如何求得的吗?类比这种方法,你能由球的表面积公式推导出球的体积吗? 【分析】第一步,分割球面被分割成n 个网格,连接球心O 和每个 小网格的顶点。

人教A版高中数学必修二蓝山二中球的体积和表面积教案

人教A版高中数学必修二蓝山二中球的体积和表面积教案

教学要求:了解球的表面积和体积计算公式;能运用柱锥台球的表面积公式及体积公式进行计算和解决有关实际问题.教学重点:运用公式解决问题.教学难点:运用公式解决问题.教学过程:一、复习准备:问题1:柱、锥、台的体积计算公式?问题2:圆柱、圆锥的侧面积、表面积计算公式?二、讲授新课:1.创设情景问题3:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?问题4:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?2. 讲授新知给出公式:24R S π=球面,334R V π=球(R 为球的半径) 如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。

球的表面积是球的表面大小的度量,它也是球半径R 的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。

3. 巩固新知练习1:一个气球的半径扩大2倍,那么它的表面积、体积分别扩大多少倍?例1:圆柱的底面直径与高都等于球的直径.(1) 求球的体积与圆柱体积之比;(2) 证明球的表面积等于圆柱的侧面积.例2:一种空心钢球的质量是142g ,外径是5.0cm ,求它的内径. (钢密度7.9g/cm3) 问题4:如何求空心钢球的体积?例3:正方体的内切球和外接球的体积的比为 ,表面积比为 。

问题5: 正方体的棱长与球的半径有何关系? (答案:1:33 ; 3 :1)⑵在球心同侧有相距9cm 的两个平行截面,它们的面积分别为49πcm 2和400πcm 2,求球的表面积。

(答案:2500πcm 2)练习2:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是 。

新人教版高中数学必修第二册《圆柱、圆锥、圆台、球的表面积和体积》教学设计

新人教版高中数学必修第二册《圆柱、圆锥、圆台、球的表面积和体积》教学设计

【新教材】8.3.2圆柱、圆锥、圆台、球的表面积和体积教学设计(人教A版)本节是在学生已从圆柱、圆锥、圆台、球的结构特征和直观图两个方面认识了旋转体的基础上,进一步从度量的角度认识圆柱、圆锥、圆台、球,主要包括表面积和体积.课程目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.数学学科素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.重点:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;难点:圆台的体积公式的理解.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入前面已经学习了三种多面体的表面积与体积公式,那么如何求圆柱、圆锥、圆台、球的表面积与体积公式?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本116-119页,思考并完成以下问题1.圆柱、圆锥、圆台、的侧面积、底面积、表面积公式各是什么?2.圆柱、圆锥、圆台的体积公式各是什么?3.球的表面积与体积公式各式什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究(一)圆柱、圆锥、圆台的表面积圆柱(底面半径为r,母线长为l)圆锥(底面半径为r,母线长为l)圆台(上、下底面半径分别为r′,r,母线长为l)侧面展开图底面积S底=2πr2S底=πr2S底=π(r′2+r2)侧面积S侧=2πrl S侧=πrl S侧=π(r′+r)l表面积S表=2πr(r+l) S表=πr(r+l) S表=π(r′2+r2)+ π(r′+r)l(二) 棱柱、棱锥、棱台的表面积1.棱柱:柱体的底面面积为S,高为h,则V=Sh.2.棱锥:锥体的底面面积为S,高为h,则V=13 Sh.3.棱台:台体的上、下底面面积分别为S′、S,高为h,则V=13(S′+S′S+S)h.(三) 球的体积公式与表面积公式 1.球的体积公式V=43πR3(其中R为球的半径).2.球的表面积公式S=4πR2.四、典例分析、举一反三题型一圆柱、圆锥、圆台的表面积例1 若一个圆锥的轴截面是边长为4 cm的等边三角形,则这个圆锥的侧面积为________cm2,表面积为________cm2.【答案】8π 12π.【解析】如图所示,∵轴截面是边长为4 cm的等边三角形,∴OB=2 cm,PB=4 cm,∴圆锥的侧面积S侧=π×2×4=8π (cm2),表面积S表=8π+π×22=12π (cm2).解题技巧(求旋转体表面积注意事项)旋转体中,求面积应注意侧面展开图,上下面圆的周长是展开图的弧长.圆台通常还要还原为圆锥. 跟踪训练一1.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( )A.81πB.100πC.168πD.169π【答案】C【解析】选C 先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.题型二 圆柱、圆锥、圆台的体积例2 如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m ,圆柱高0.6m 如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(π取3.14)【答案】423.9kg【解析】一个浮标的表面积是()2220.150.640.150.8478mππ⨯⨯+⨯=,所以给1000个这样的浮标涂防水漆约需涂料0.84780.51000423.9(kg)⨯⨯=.解题技巧(求几何体积的常用方法)(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的几何体即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.跟踪训练二1.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.【答案】10π.【解析】用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.2. 梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内过点C作l⊥BC,以l为轴将梯形ABCD旋转一周,求旋转体的表面积和体积.【答案】见解析【解析】由题意知以l为轴将梯形ABCD旋转一周后形成的几何体为圆柱中挖去一个倒置的且与圆柱等高的圆锥,如图所示.在梯形ABCD中,∠ABC=90°,AD∥BC,AD=a,BC=2a,∠DCB=60°,∴CD=BC-ADcos60°=2a,AB=CD sin60°=3a,∴DD′=AA′-2AD=2BC-2AD=2a,∴DO=12DD′=a.由上述计算知,圆柱的母线长为3a,底面半径为2a;圆锥的母线长为2a,底面半径为a.∴圆柱的侧面积S1=2π·2a·3a=43πa2,圆锥的侧面积S2=π·a·2a=2πa2,圆柱的底面积S3=π(2a)2=4πa2,圆锥的底面积S4=πa2,∴组合体上底面面积S5=S3-S4=3πa2,∴旋转体的表面积S=S1+S2+S3+S5=(43+9)πa2.又由题意知形成的几何体的体积为圆柱的体积减去圆锥的体积,且V柱=π·(2a)2·3a=43πa3,V锥=13·π·a2·3a=33πa3.∴旋转体的体积V=V柱-V锥=43πa3-33πa3=1133πa3.题型三球的表面积与体积例3 如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比.【答案】23【解析】 设球的半径为R ,则圆柱的底面半径为R ,高为2R .球的体积3143V R π=,圆柱的体积23222V R R R ππ=⋅=,123342::233V V R R ππ∴==.例4 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46π D .63π【答案】B【解析】如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1.∴OM =(2)2+1=3.即球的半径为3.∴V =43π(3)3=43π.解题技巧(与球有关问题的注意事项)1.正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图(1).2.球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=2a2,如图(2).3.长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=a 2+b 2+c 22,如图(3).4.正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a .5.正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为:2R =62a .6、有关球的截面问题常画出过球心的截面圆,将问题转化为平面中圆的有关问题解决.跟踪训练三1、将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【答案】A.【解析】由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是V 球=43×π×13=4π3.2.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2【答案】B.【解析】选B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,P 为三棱柱上底面的中心,O 为球心,易知AP =23×32a =33a ,OP =12a ,所以球的半径R =OA 满足R 2=(33a)2+(12a)2=712a 2,故S 球=4πR 2=73πa 2.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本119页练习,119页习题8.3的剩余题.本节课的重点是掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用,通过本节课的例题及练习,学生基本掌握.须注意的是:①求面积时看清求的是侧面积,还是底面积,还是表面积;②对本节课的难点的理解类比棱台与棱锥、棱锥的联系;③解决实际问题时先抽象出几何图形,再利用相关公式解决.3、球的表面积与体积公式。

人教A版高中数学必修二新课标优秀教案示范教案球的体积和表面积

人教A版高中数学必修二新课标优秀教案示范教案球的体积和表面积

1.3.2 球的体积和表面积整体设计教学分析本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点. 三维目标掌握球的表面积和体积公式,并能应用其解决有关问题,提高学生解决问题的能力,培养转化与化归的数学思想方法. 重点难点教学重点:球的表面积和体积公式的应用. 教学难点:关于球的组合体的计算. 课时安排 约1课时教学过程导入新课思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11 380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积. 推进新课 新知探究球的半径为R ,它的体积和表面积只与半径R 有关,是以R 为自变量的函数.事实上,如果球的半径为R ,那么S=4πR 2,V=334R .注意:球的体积和表面积公式的证明以后证明. 应用示例思路1例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的32; (2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R ,则圆柱的底面半径为R ,高为2R. 则有V 球=334R π,V 圆柱=πR 2·2R=2πR 3,所以V 球=圆柱V 32.(2)因为S 球=4πR 2,S 圆柱侧=2πR·2R=4πR 2,所以S 球=S 圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征. 变式训练1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R ,正四棱柱底面边长为a,则轴截面如图2(2),所以AA′=14,AC=a 2,又∵4πR 2=324π,∴R=9. ∴AC=28''22=-CC AC .∴a=8.∴S 表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g,测得外径(直径)等于5 cm ,求它的内径(钢的密度为7.9 g/cm 3,精确到0.1 cm ).解:设空心球内径(直径)为2x cm,则钢球质量为7.9·[3334)25(34x ππ-∙]=142, ∴x 3=14.349.73142)25(3⨯⨯⨯-≈11.3,∴x≈2.24,∴直径2x≈4.5.答:空心钢球的内径约为4.5 cm.例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积. 解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2),半球形物体的表面积为S 2≈2×3.1×(21)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2). 10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力. 变式训练有一个轴截面为正三角形的圆锥容器,内放一个半径为R 的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决. 解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r=R R330tan =︒,圆锥母线l=2r=R 32,圆锥高为h=r 3=3R , ∴V 水=334332πππ=-R h r ·3R 2·3R 333534R R ππ=-,球取出后,水形成一个圆台,下底面半径r=R 3,设上底面半径为r′, 则高h′=(r -r′)tan60°=)'3(3r R -, ∴'3353h R ππ=(r 2+r′2+rr′),∴5R 3=)3'3')('3(322R Rr r r R ++-, ∴5R 3=)'33(333r R -,解得r′=6331634R R =, ∴h′=(3123-)R.答:容器中水的高度为(3123-)R.思路2例1 (2006广东高考,12)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.活动:学生思考长方体和球的结构特征.教师可以借助于信息技术画出图形. 分析:画出球的轴截面可得,球的直径是正方体的对角线,所以球的半径R=233,则该球的表面积为S=4πR 2=27π. 答案:27π点评:本题主要考查简单的组合体和球的表面积.球的表面积和体积都是半径R 的函数.对于和球有关的问题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关键. 变式训练1.(2006全国高考卷Ⅰ,理7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π分析:由V=Sh ,得S=4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以,球的半径为R=642221222=++,所以球的表面积为S=4πR 2=24π. 答案:C2.(2005湖南数学竞赛,13)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为_____________.分析:把正四面体补成正方体的内接正四面体,此时正方体的棱长为a 22,于是球的半径为a 42,V=3242a π. 答案:3242a π 3.(2007天津高考,理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为___________.分析:长方体的对角线为14321222=++,则球的半径为214,则球的表面积为4π(214)2=14π. 答案:14π例2 图5是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?图5活动:学生思考杯里的水将下降的原因,通过交流和讨论得出解题思路.因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 cm 的圆,它的体积正好等于圆锥形铅锤的体积,这个小圆柱的高就是水面下降的高度.解:因为圆锥形铅锤的体积为2)26(31⨯⨯π×20=60π(cm 3), 设水面下降的高度为x ,则小圆柱的体积为x 2)220(π=100πx ( cm 3). 所以有60π=100πx ,解此方程得x=0.6( cm ). 答:杯里的水下降了0.6 cm.点评:本题主要考查几何体的体积问题,以及应用体积解决实际问题的能力.明确几何体的形状及相应的体积公式是解决这类问题的关键.解实际应用题的关键是建立数学模型.本题的数学模型是下降的水的体积等于取出的圆锥形铅锤的体积.明确其体积公式中的相关量是列出方程的关键. 变式训练1.一个空心钢球,外直径为12 cm ,壁厚0.2 cm ,问它在水中能浮起来吗?(钢的密度为7.9 g/cm 3)和它一样尺寸的空心铅球呢?(铅的密度为11.4 g/cm 3)分析:本题的关键在于如何判断球浮起和沉没,因此很自然要先算出空心钢球的体积,而空心钢球的体积相当于是里、外球的体积之差,根据球的体积公式很容易得到空心钢球的体积,从而算出空心钢球的质量,然后把它与水的质量相比较即可得出结论,同理可以判断铅球会沉没.解:空心钢球的体积为V 钢=348.53463433πππ=⨯-⨯×20.888≈87.45(cm 3), ∴钢的质量为m 钢=87.45×7.9=690.86(g). ∵水的体积为V 水=34π×63=904.32(cm 3), ∴水的质量为m 水=904.32×1=904.32(g)>m 钢. ∴钢球能浮起来,而铅球的质量为m 铅=87.45×11.4=996.93(g)>m 水. ∴同样大小的铅球会沉没.答:钢球能浮起来,同样大小的铅球会沉没.2.(2006全国高中数学联赛试题第一试,10)底面半径为1 cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水使水面恰好浸没所有铁球,则需要注水___________cm 3.分析:设四个实心铁球的球心为O 1、O 2、O 3、O 4,其中O 1、O 2为下层两球的球心,A 、B 、C 、D 分别为四个球心在底面的射影,则ABCD 是一个边长为22cm 的正方形,所以注水高为(1+22) cm.故应注水π(1+22)-4×)2231()21(343+=ππ cm 3. 答案:(31+22)π 知能训练1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( ) A.1倍 B.2倍 C.59倍 D.47倍分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r ,则另两个为2r 、3r ,所以各球的表面积分别为4πr 2、16πr 2、36πr 2,5916436222=+r r r πππ(倍).答案:C2.(2006安徽高考,理9)表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( ) A.32π B.3π C.32π D.322π 分析:此正八面体是每个面的边长均为a 的正三角形,所以由8×32432=a 知,a=1,则此球的直径为2.答案:A3.(2007北京西城抽样,文11)若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________. 分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为2234+=5,所以球的表面积是4π×52=100π. 答案:100π4.某街心花园有许多钢球(钢的密度是7.9 g/cm 3),每个钢球重145 kg,并且外径等于50 cm,试根据以上数据,判断钢球是实心的还是空心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm ).解:由于外径为50 cm 的钢球的质量为7.9×3)250(34⨯π≈516 792(g), 街心花园中钢球的质量为145 000 g,而145 000<516 792,所以钢球是空心的.设球的内径是2x cm ,那么球的质量为7.9·[3334)250(34x ππ-∙]=145 000, 解得x 3≈11 240.98,x≈22.4,2x≈45(cm).答:钢球是空心的,其内径约为45 cm.5.(2007海南高考,文11)已知三棱锥S —ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC=r 2,则球的体积与三棱锥体积之比是( ) A.π B.2π C.3π D.4π 分析:由题意得SO=r 为三棱锥的高,△ABC 是等腰直角三角形,所以其面积是21×2r×r=r 2,所以三棱锥体积是33132r r r =⨯⨯,又球的体积为343r π,则球的体积与三棱锥体积之比是4π.答案:D点评:面积和体积往往涉及空间距离,而新课标对空间距离不作要求,因此在高考试题中其难度很低,属于容易题,2007年新课标高考试题就体现了这一点.高考试题中通常考查球、三棱锥、四棱锥、长方体、正方体等这些简单几何体或它们的组合体的面积或体积的计算.我们应高度重视这方面的应用.拓展提升问题:如图6,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A—BEFD与三棱锥A—EFC的表面积分别是S1,S2,则必有()图6A.S1<S2B.S1>S2C.S1=S2D.S1,S2的大小关系不能确定探究:如图7,连OA、OB、OC、OD,则V A—BEFD=V O—ABD+V O—ABE+V O—BEFD+V O—ADF,V A—EFC=V O—AFC+V O—AEC+V O—EFC,又V A—BEFD=V A—EFC,而每个小三棱锥的高都是原四面体的内切球的半径,故S△ABD+S△ABE+S BEFD+S△ADF=S△AFC+S△AEC+S△EFC,又面AEF是公共面,故选C.图7答案:C课堂小结本节课学习了:1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是:柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高;锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高;台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.作业课本本节练习1、2、3.设计感想本节教学结合高考要求,主要是从组合体的角度来讨论球的表面积和体积.值得注意的是其中的题目没有涉及球的截面问题(新课标对球的截面不要求),在实际教学中,教师不要增加球的截面方面的练习题,那样会增加学生的负担.。

人教A版高中数学必修二导学案球的体积和表面积

人教A版高中数学必修二导学案球的体积和表面积

凡事豫(预)则立,不豫(预)则废。

1.3.2球的体积和表面积一、学习目标:知识与技能:⑴通过对球的体积公式的推导,了解推导过程中所用的基本数学思想方法,知道祖暅原理。

⑵能运用球的公式灵活解决实际问题。

培养空间想象能力。

过程与方法:通过球的体积公式的推导,从而得到一种推导球体积公式的方法,情感与价值观:通过学习,使我们对球的表面积、体积公式的推导方法有了一定的了解,提高空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。

二、学习重难点:学习重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。

学习难点:推导体积和面积公式中空间想象能力的形成。

三、使用说明及学法指导:1、限定45分钟完成,认真阅读教材内容,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。

3、小班完成A,B,C 全部内容;实验班完成B 级以上;平行班完成A~B.(其中A 、B 级问题自主完成;C 级问题可由合作探究方式完成)四、知识链接:什么是球?球的半径?球的直观图怎样画?球的半径,截面圆的半径,球心与截面圆心的距离间有何关系?五、学习过程:B 问题1:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?(阅读32页了解球的体积的推导即可,球的表面积的推导不要求了解)B 问题2:球的表面积的公式怎样?球的体积怎样?A 例1:圆柱的底面直径与高都等于球的直径。

求证:(1)球的体积等于圆柱的体积的32;(2)球的表面积等于圆柱的侧面积;A 例2:已知:钢球直径是5cm,求它的体积.B (变式1)一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm2)六、达标训练一、选择题A1一个正方体的顶点都在球面上,此球与正方体的表面积之比是( )A. 3πB. 4πC. 2πD. πB2.在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )A B C DB3正方体的全面积为a ,它的顶点都在球面上,则这个球的表面积是:( )A.3aπ; B.2aπ; C.a π2; D.a π3.B4已知正方体外接球的体积是323π,那么正方体的棱长等于 ( )(A)(B(C(D二、填空题A5、球的直径伸长为原来的2倍,体积变为原来的倍.B6、一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为cm3.B7、长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是。

球的表面积和体积(第2课时) 课件-高中数学人教A版(2019)必修第二册

球的表面积和体积(第2课时) 课件-高中数学人教A版(2019)必修第二册
A.64
64
B.
3
C.32
).
32
D.
3
答案:D.
解:设球的半径为,则由题意可知42 = 16,故 = 2.
4
3
所以球的体积 = 3 =
32
.故选D.
3
练习
例1.(2)已知球的体积为
500
,则它的表面积为_____.
3
答案:100.
4
解:设球的半径为,由已知得 3
如图所示.在∆1 中,1 = 5 ,1 = 2 ,
∴球的半径 = =
4
3
22 + ( 5)2 = 3(),
∴球的体积 = × 33 = 36(3 ).故选B.
练习
例2.(2)已知一个球内有相距9 的两个平行截面,它们的面积分别为49 2 和
性质知1 //2 ,且1 ,2 为两截面圆的圆心,则1 ⊥ 1 ,
2 ⊥ 2 .设球的半径为,
∵ ∙ 2 2 = 49,∴2 = 7 .同理,得1 = 20 .
设1 = ,则2 = (9−) .
在∆1 中,2 = 2 + 400.在∆2 中,2 = (9−)2 +49,
2
=
3

3
=
1
,所以球的半径
2
3
1
7 2
2
2
) +( ) = ,故球
3
2
12
=
42
=
= 满足
7
2 .故选B.
3
练习
例3.(2)球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该
圆锥的体积和此球体积的比值为________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 球的体积和表面积问题导学预习教材 P117-P119 的内容,思考以下问题: 1.球的表面积公式是什么? 2.球的体积公式什么?1.球的表面积设球的半径为R ,则球的表面积S =4πR 2. 2.球的体积设球的半径为R ,则球的体积V =43πR 3.■名师点拨对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R 都有唯一确定的S 和V 与之对应,故表面积和体积是关于R 的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.判断(正确的打“√”,错误的打“×”) (1)决定球的大小的因素是球的半径.( )(2)球面被经过球心的平面截得的圆的半径等于球的半径.( ) (3)球的体积V 与球的表面积S 的关系为V =R3S .( )答案:(1)√ (2)√ (3)√半径为 3 的球的体积是( ) A .9π B .81π C .27πD .36π解析:选 D. V =43π×33=36π.若一个球的直径为 2,则此球的表面积为( ) A .2π B .16π C .8πD .4π解析:选 D .因为球的直径为 2,所以球的半径为 1,所以球的表面积 S =4πR 2=4π.把球的表面积扩大到原来的 2 倍,那么体积扩大到原来的( ) A .2 倍 B .22倍 C.2倍D.32倍解析:选 B .设原球的半径为 R ,表面积扩大 2 倍,则半径扩大2倍,体积扩大 22倍.如果三个球的半径之比是 1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的________倍.解析:设小球半径为 1,则大球的表面积 S 大=36π,S 小+S 中=20π,36π20π=95.答案:95球的表面积与体积(1)已知球的体积是32π3,则此球的表面积是( )A .12πB .16π C.16π3D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π【解析】 (1)设球的半径为R ,则由已知得V =43πR 3=32π3,解得R =2.所以球的表面积S =4πR 2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r , 故78×43πr 3=283π, 所以r =2,表面积S =78×4πr 2+34πr 2=17π,选A.【答案】 (1)B (2)A球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R 或者通过条件能求出半径R ,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.1.若一个球的表面积与其体积在数值上相等,则此球的半径为________. 解析:设此球的半径为 R ,则 4πR 2=43πR 3,R =3.答案:32.两个球的半径相差 1,表面积之差为 28π,则它们的体积和为________. 解析:设大、小两球半径分别为 R ,r ,则⎩⎪⎨⎪⎧R -r =1,4πR 2-4πr 2=28π,所以⎩⎪⎨⎪⎧R =4,r =3.所以体积和为 43πR 3+43πr 3=364π3.答案:364π3球的截面问题如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =12×8=4(cm).设球的半径为R cm ,则 R 2=OM 2+MB 2 =(R -2)2+42, 所以R =5,所以V 球=43π×53=5003π (cm 3).【答案】 A球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46πD .63π解析:选B.如图,设截面圆的圆心为O ′,M 为截面圆上任一点, 则OO ′=2,O ′M =1. 所以OM =(2)2+1= 3. 即球的半径为 3. 所以V =43π(3)3=43π.与球有关的切、接问题 角度一 球的外切正方体问题将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( ) A.4π3B.2π3C.3π2 D.π6【解析】 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】 A角度二 球的内接长方体问题一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.【解析】 长方体外接球直径长等于长方体体对角线长,即 2R =12+22+32=14, 所以球的表面积 S =4πR 2=14π. 【答案】 14π角度三 球的内接正四面体问题若棱长为 a 的正四面体的各个顶点都在半径为 R 的球面上,求球的表面积. 【解】 把正四面体放在正方体中,设正方体棱长为 x ,则 a =2x ,由题意 2R =3x =3×2a 2=62a , 所以 S 球=4πR 2=32πa 2.角度四 球的内接圆锥问题球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】 ①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为 r ,则球心到该圆锥底面的距离是r2,于是圆锥的底面半径为r 2-⎝⎛⎭⎫r 22=3r 2,高为3r 2.该圆锥的体积为 13×π×⎝⎛⎭⎫3r 22×3r 2=38πr 3,球体积为43πr 3,所以该圆锥的体积和此球体积的比值为38πr 343πr 3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332. 【答案】932或332角度五 球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2【解析】 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝⎛⎭⎫33a 2+⎝⎛⎭⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2. 【答案】 B(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12a 2+b 2+c 2,如图(2).(3)正四面体的外接球正四面体的棱长 a 与外接球半径 R 的关系为:2R =62a .一个高为16的圆锥内接于一个体积为972π的球,在圆锥里又有一个内切球.求:(1)圆锥的侧面积; (2)圆锥里内切球的体积.解:(1)如图所示,作出轴截面,则等腰△SAB 内接于⊙O ,而⊙O 1内切于△SAB .设⊙O 的半径为R , 则有43πR 3=972π,所以R 3=729,R =9. 所以SE =2R =18.因为SD =16,所以ED =2. 连接AE ,又因为SE 是直径,所以SA ⊥AE ,SA 2=SD ·SE =16×18=288, 所以SA =12 2. 因为AB ⊥SD ,所以AD 2=SD ·DE =16×2=32, 所以AD =4 2.所以S 圆锥侧=π×42×122=96π. (2)设内切球O 1的半径为r ,因为△SAB 的周长为2×(122+42)=322, 所以12r ×322=12×82×16.所以r =4.所以内切球O 1的体积V 球=43πr 3=2563π.1.直径为 6 的球的表面积和体积分别是( ) A .36π,144π B .36π,36π C .144π,36πD .144π,144π解析:选 B .球的半径为 3,表面积 S =4π·32=36π,体积 V =43π·33=36π.2.一个正方体的表面积与一个球的表面积相等,那么它们的体积比是( ) A.6π6 B.π2C.2π2D.3π2π解析:选 A .设正方体棱长为 a ,球半径为 R ,由 6a 2=4πR 2 得aR =2π3,所以V 1V 2=a 343πR 3=34π⎝ ⎛⎭⎪⎫2π33=6π6. 3.若两球的体积之和是 12π,经过两球球心的截面圆周长之和为 6π,则两球的半径之差为( )A .1B .2C .3D .4解析:选 A .设两球的半径分别为 R ,r (R >r ),则由题意得⎩⎪⎨⎪⎧4π3R 3+4π3r 3=12π,2πR +2πr =6π,解得⎩⎪⎨⎪⎧R =2,r =1.故 R -r =1. 4.已知棱长为 2 的正方体的体积与球 O 的体积相等,则球 O 的半径为________. 解析:设球 O 的半径为 r ,则43πr 3=23,解得 r =36π.答案:36π5.已知过球面上 A ,B ,C 三点的截面和球心的距离为球半径的一半,且 AB =BC =CA =2,求球的表面积.解:设截面圆心为O ′,球心为 O ,连接 O ′A ,OA ,OO ′, 设球的半径为 R .因为O ′A =23×32×2=233.在 Rt △O ′OA 中,OA 2=O ′A 2+O ′O 2, 所以 R 2=⎝⎛⎭⎫2332+14R 2,所以 R =43,所以 S 球=4πR 2=649π.[A 基础达标]1.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C.2∶ 3D.8∶27解析:选B.设两个球的半径分别为r ,R , 则⎝⎛⎭⎫43πr 3∶⎝⎛⎭⎫43πR 3=r 3∶R 3=8∶27, 所以r ∶R =2∶3,所以S 1∶S 2=r 2∶R 2=4∶9.2.已知球的表面积为16π,则它的内接正方体的表面积S 的值是( ) A .4π B .32 C .24D .12π解析:选B.设球的内接正方体的棱长为a ,由题意知球的半径为2,则3a 2=16,所以a 2=163,正方体的表面积S =6a 2=6×163=32. 3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.32π3B.8π3 C .82πD.82π3解析:选D.设截面圆的半径为r ,则πr 2=π,故r =1, 由勾股定理求得球的半径为1+1=2, 所以球的体积为43π(2)3=82π3,故选D.4.把一个铁制的底面半径为r ,高为h 的实心圆锥熔化后铸成一个铁球,则这个铁球的半径为( )A.r h2B.r 2h 4C. 3r 2h 4D.r 2h 2解析:选C.设铁球的半径为 R ,因为13πr 2h =43πR 3,所以R = 3r 2h4.5.已知A ,B 是球O 的球面上两点,且球的半径为3,∠AOB =90°,C 为该球面上的动点.当三棱锥O -ABC 的体积取得最大值时,则过A ,B ,C 三点的截面的面积为 ( )A .6πB .12πC .18πD .36π解析:选A.因为O 为球心,∠AOB =90°,所以截面AOB 为球大圆,所以当动点C 满足OC ⊥平面OAB 时, 三棱锥O -ABC 的体积最大, 此时,OA =OB =OC =R =3, 则AB =AC =BC =32,所以截面ABC 的圆心O ′为△ABC 的中心,所以圆O ′的半径r =O ′C =32×33=6, 所以截面ABC 的面积为π×(6)2=6π,故选A.6.已知球面上的四点P 、A 、B 、C ,P A 、PB 、PC 的长分别为3、4、5,且这三条线段两两垂直,则这个球的表面积为______.解析:球面上的四点P 、A 、B 、C ,P A 、PB 、PC 的长分别为3、4、5,且这三条线段两两垂直,是长方体的一个角,扩展为长方体,两者的外接球相同,长方体的对角线长为32+42+52=52,外接球的半径为522.外接球的表面积为4π⎝⎛⎭⎫5222=50π.答案:50π7.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S 1、S 2,则S 1S 2=________.解析:由题意可得圆柱的底面直径和高都与球的直径相等,设球的半径为1,则S 1=6π,S 2=4π.所以S 1S 2=6π4π=32.答案:328.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析:设球的半径为x cm ,由题意得πx 2×8=πx 2×6x -43πx 3×3,解得x=4.答案:49.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π, 该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3.10.若一个底面边长为62,侧棱长为6的正六棱柱的所有顶点都在一个球面上,求该球的体积和表面积.解:如图,在底面正六边形ABCDEF 中,连接BE ,AD 交于O ,连接BE 1,则BE =2OE =2DE ,所以BE =6,在Rt △BEE 1中,BE 1=BE 2+E 1E 2=23,所以2R =23,则R =3,所以球的体积V 球=43πR 3=43π, 球的表面积S 球=4πR 2=12π.[B 能力提升]11.若等边圆柱(轴截面是正方形)、球、正方体的体积相等,则它们的表面积的大小关系是( )A .S 球<S 圆柱<S 正方体B .S 正方体<S 球<S 圆柱C .S 圆柱<S 球<S 正方体D .S 球<S 正方体<S 圆柱解析:选A.设等边圆柱底面圆半径为r ,球半径为R ,正方体棱长为a ,则πr 2·2r =43πR 3=a 3,⎝⎛⎭⎫R r 3=32,⎝⎛⎭⎫a r 3=2π, S 圆柱=6πr 2,S 球=4πR 2,S 正方体=6a 2,S 球S 圆柱=4πR 26πr 2=23·⎝⎛⎭⎫R r 2= 323<1, S 正方体S 圆柱=6a 26πr 2=1π·⎝⎛⎭⎫a r 2= 34π>1.故选A. 12.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为323π,那么这个正三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3 解析:选D.由题意可知正三棱柱的高等于球的直径,从棱柱中间平行棱柱底面截得球的大圆内切于正三角形,正三角形与棱柱底的三角形全等,设三角形边长为a ,球半径为r ,由V 球=43πr 3=323π,得r =2.由S 柱底=12a ×r ×3=34a 2,得a =23r =43,所以V 柱=S 柱底·2r =48 3.13.如图,ABCD 是正方形,BD ︵是以 A 为圆心、AB 为半径的弧,将正方形 ABCD 以 AB为轴旋转一周,则图中 Ⅰ、Ⅱ、Ⅲ 三部分旋转所得旋转体的体积之比为________.解析:Ⅰ生成圆锥,Ⅱ生成的是半球去掉圆锥Ⅰ,Ⅲ生成的是圆柱去掉扇形 ABD 生成的半球.设正方形的边长为 a ,则Ⅰ、Ⅱ、Ⅲ 三部分旋转所得旋转体的体积分别为 V Ⅰ、V Ⅱ、V Ⅲ,则 V Ⅰ=13πa 3,V Ⅱ=43πa 3÷2-13πa 3=13πa 3,V Ⅲ=πa 3-43πa 3÷2=13πa 3. 所以三部分所得旋转体的体积之比为 1∶1∶1.答案: 1∶1∶114.将一个底面圆的直径为2、高为1的圆柱截成横截面为长方形的棱柱(如图),设这个长方形截面的一条边长为x ,对角线长为2,截面的面积为A .(1)求面积A 以x 为自变量的函数关系式;(2)求出截得棱柱的体积的最大值.解:(1)横截面如图长方形所示,由题意得A =x ·4-x 2(0<x <2).(2)V =1·x 4-x 2=-(x 2-2)2+4,由上述知0<x <2,所以当x =2时,V max =2.即截得棱柱的体积的最大值为2.[C 拓展探究] 15.如图是某几何体的三视图.(1)求该几何体外接球的体积;(2)求该几何体内切球的半径.解:(1)由三视图可知,该几何体是三条侧棱两两垂直的三棱锥,如图,以DC ,DB ,DA 为长、宽、高构造一个长方体,则该长方体的外接球就是该三棱锥的外接球,即外接球的半径R =1222+22+12=32, 所以该几何体外接球的体积V =43πR 3=92π. (2)设内切球的球心为O ,半径为r ,则V A ­BCD =V O ­ADB +V O ­ADC +V O ­DCB +V O ­ABC .即13×12×2×2×1 =13×12×2×2r +13×12×2×r +13×12×2×r +13×12×22×3r , 得r =24+6=4-65. 所以该几何体内切球的半径为4-65.。

相关文档
最新文档