2020年安徽省高中数学新课标高考模拟试卷试题(文科,有详细解析)

合集下载

2020届安徽省合肥市高三第二次模拟考试数学(文)试卷及解析

2020届安徽省合肥市高三第二次模拟考试数学(文)试卷及解析

2020届安徽省合肥市高三第二次模拟考试数学(文)试卷★祝考试顺利★(解析版)第Ⅰ卷 (满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{1,3,5,7},|28==>x A B x ,则A B =( )A. {1}B. {1,3}C. {5,7}D. {3,5,7}【答案】C【解析】 求出集合A ,B ,由此能求出A ∩B .【详解】∵集合A ={1,3,5,7},B ={x |2x >8}={x |x >3},∴A ∩B ={5,7}.故选:C .2.欧拉公式i e cos isin θθθ=+把自然对数的底数e ,虚数单位i ,三角函数cos θ和sin θ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”,若复数z 满足()i i i e z π+⋅=,则z =( )A. 1B. 2C. 2【答案】B【解析】由新定义化为复数的代数形式,然后由复数的除法运算求出z 后再求模. 【详解】由题意(1)cos sin 1(1)(1)i ii i i i z e i i i i i i πππ--====+++-+-+--111222i i -+==-,∴2z ==. 故选:B .【点睛】本题考查复数的新定义,考查复数的除法运算和求复数的模,解题关键是由新定义化i e π为代数形式,然后求解.3.若实数x ,y 满足约束条件240403230x y x y x y +-≥⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =-的最小值是( )A. 5-B. 4-C. 7D. 16 【答案】B【解析】作出可行域,作出目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图射线BA ,线段BC ,射线CD 围成的阴影部分(含边界),作直线:20l x y -=,向上平移直线l 时2z x y =-减小,∴当l 过点(0,4)B 时,2z x y =-取得最小值-4. 故选:B .。

2020年高考模拟试卷安徽省名校高考冲刺(文科)数学模拟测试试卷 解析版

2020年高考模拟试卷安徽省名校高考冲刺(文科)数学模拟测试试卷 解析版

2020年安徽省高考冲刺数学模拟试卷(文科)一、选择题1.已知集合A={x|x2﹣2x≥3},B={x|0<x<4},则A∩B=()A.(﹣1,4)B.(0,3]C.[3,4)D.(3,4)2.已知复数z=m﹣1+(m﹣3)i(m∈Z)在复平面内对应的点在第四象限,则=()A.B.C.1D.3.“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,A为OB的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是()A.B.C.D.4.设a=,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c5.已知向量、,若=4,且⊥,则与的夹角是()A.B.C.πD.6.函数在[﹣π,0)∩(0,π]的图象大致为()A.B.C.D.7.已知.则下列结论不正确的是()A.B.C.D.8.已知函数,则下列说法正确的是()A.f(x)的最小正周期为2πB.f(x)的最大值为C.f(x)在上单调递增D.f(x)的图象关于直线x=对称9.运行如图所示的程序框图,若输出的S的值为111,则判断框中可以填()A.i≥221?B.i>222?C.i>223D.i>224?10.已知双曲线的一条渐近线的倾斜角为,则双曲线的离心率为()A.B.C.D.211.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A﹣a cos B=2b﹣c,则A=()A.B.C.D.12.已知椭圆C:x2+=1,直线l:y=x+m,若椭圆C上存在两点关于直线l对称,则m的取值范围是()A.B.C.D.二、填空题(共4小题)13.函在x=0处的切线方程为.14.若实数x、y满足,则z=3x+2y的最大值为.15.已知数列{a n}的前n项和为S n,且满足a1+3a2+…+3n﹣1a n=n,则S4=.16.已知正三棱锥S﹣ABC的侧棱长为,底面边长为6,则该正三棱锥外接球的表面积是.三、解答题(共70分.解答时应写出必要的文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答)(一)必考题:共60分17.已知{a n}是公差不为零的等差数列,a4=26,且a1,a2,a7成等比数列.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T511.18.如图所示,四棱锥P﹣ABCD的底面ABCD是正方形,O是正方形的中心.PO⊥底面ABCD,底面边长为a,E是PC的中点,连接BE,DE.(1)证明:PA∥平面BDE,平面PAC⊥平面BDE;(2)若∠COE=60°,求四棱锥P﹣ABCD的体积19.为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.(1)求a的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);(2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”?优秀非优秀合计男生40女生50合计100参考公式及数据:.P(K2≥k0)0.050.010.0050.001k0 3.841 6.6357.87910.82820.已知函数.(1)若a=1,求f(x)的单调区间;(2)若x=1是f(x)的唯一极值点,求a的取值范围.21.已知抛物线y2=﹣2px(p>0)的焦点为F,x轴上方的点M(﹣2,m)在抛物线上,且|MF|=,直线l与抛物线交于A,B两点(点A,B与M不重合),设直线MA,MB的斜率分别为k1,k2.(Ⅰ)求抛物线的方程;(Ⅱ)当k1+k2=﹣2时,求证:直线l恒过定点并求出该定点的坐标.(二)选考题:共10分请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分[选修4一4:坐标系与参数方程]22.以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l的极坐标方程为,曲线C的参数方程为(θ为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)以曲线C上的动点M为圆心、r为半径的圆恰与直线l相切,求r的最小值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+|2x﹣4|.(1)求不等式f(x)≤5的解集;(2)若函数y=f(x)图象的最低点为(m,n),正数a,b满足ma+nb=6,求的取值范围.参考答案一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.已知集合A={x|x2﹣2x≥3},B={x|0<x<4},则A∩B=()A.(﹣1,4)B.(0,3]C.[3,4)D.(3,4)【分析】先求出集合A,B,由此能求出A∩B.解:∵集合A={x|x2﹣2x≥3}={x|x≤﹣1或x≥3},B={x|0<x<4},∴A∩B={x|3≤x<4}=[3,4).故选:C.2.已知复数z=m﹣1+(m﹣3)i(m∈Z)在复平面内对应的点在第四象限,则=()A.B.C.1D.【分析】由已知列式求得m,再由商的模等于模的商求解.解:由题意可得,,解得1<m<3.又∵m∈Z,∴m=2,则z=1﹣i,∴=.故选:A.3.“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,A为OB的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是()A.B.C.D.【分析】利用扇形的面积计算公式即可得出.解:不妨设OA=1,扇形中心角为θ.∴此点取自扇面(扇环)部分的概率==.故选:C.4.设a=,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c【分析】由指数函数、对数函数的单调性,并与0,1比较可得答案.【解答】解析:∵由指数、对数函数的性质可知:,,∴有a<b<c故选:A.5.已知向量、,若=4,且⊥,则与的夹角是()A.B.C.πD.【分析】设向量、的夹角为θ,由平面向量的数量积运算求出cosθ与θ的值.解:设向量、的夹角为θ,由=4,且⊥,得(+)•(﹣2)=﹣﹣2=16﹣4×4×cosθ﹣2×16=0,解得cosθ=﹣1,又θ∈[0,π],所以与的夹角是θ=π.故选:C.6.函数在[﹣π,0)∩(0,π]的图象大致为()A.B.C.D.【分析】由函数的奇偶性及特殊点,观察选项即可得解.解:∵,∴函数f(x)为奇函数,又∵,∴选项D符合题意.故选:D.7.已知.则下列结论不正确的是()A.B.C.D.【分析】由题意利用同角三角函数的基本关系求得cosα、tanα的值,再利用两角差的余弦公式求得cos(α+)、cos(α﹣)的值,可得结论.解:∵已知,∴cosα=﹣=﹣,故A正确;∴tanα===﹣,故B正确;cos(α+)=cosαcos﹣sinαsin=﹣﹣=﹣,故C正确;cos(α﹣)=cosαcos+sinαsin=﹣+=,故D不正确,故选:D.8.已知函数,则下列说法正确的是()A.f(x)的最小正周期为2πB.f(x)的最大值为C.f(x)在上单调递增D.f(x)的图象关于直线x=对称【分析】利用三角恒等变换花简函数的解析式,再利用正弦函数的图象和性质,得出结论.解:∵函数=+sin2x=sin(2x﹣)+,故f(x)的最小正周期为=π,故排除A.故f(x)的最大值为1+=,故B正确.在上,2x﹣∈(,),函数f(x)单调递减,故排除C.当x=时,f(x)=不是最值,故f(x)的图象关不于直线x=对称,故排除D,故选:B.9.运行如图所示的程序框图,若输出的S的值为111,则判断框中可以填()A.i≥221?B.i>222?C.i>223D.i>224?【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:程序的功能是计算S=1sin+3sin+5sin+7sin+…=1﹣3+5﹣7+…,而由题意可知:111=1+55×2=1﹣3+5﹣7+9+…﹣219+221,i=221+2=223,故条件为”i>222?“,故选:B.10.已知双曲线的一条渐近线的倾斜角为,则双曲线的离心率为()A.B.C.D.2【分析】根据渐近线的倾斜角求出渐近线方程,结合题意求出a、c的值,再计算双曲线的离心率.解:双曲线的一条渐近线的倾斜角为,则tan=,所以该条渐近线方程为y=x;所以=,解得a=;所以c===2,所以双曲线的离心率为e===.故选:A.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A﹣a cos B=2b﹣c,则A=()A.B.C.D.【分析】直接利用三角函数关系式的恒等变换和正弦定理的应用求出结果.解:在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A﹣a cos B=2b ﹣c,利用正弦定理得:,整理得,由于sin B≠0,所以,即,所以sin(A+)=1,由于0<A<π,解得,故选:C.12.已知椭圆C:x2+=1,直线l:y=x+m,若椭圆C上存在两点关于直线l对称,则m的取值范围是()A.B.C.D.【分析】利用对称关系,求得对称点M,N的方程,代入椭圆方程,利用△>0,求得n 的取值范围,并且线段MN的中点在直线l上,求得m和n的关系,即可求得m的取值范围.解:设椭圆上存在关于直线y=x+m对称的两点为M(x1,y1)、N(x2,y2),根据对称性可知线段MN被直线y=x+m垂直平分,且MN的中点T(x0,y0)在直线y =x+m上,且k MN=﹣1,故可设直线MN的方程为y=﹣x+n,联立,整理可得:3x2﹣2nx+n2﹣2=0,所以x1+x2=,y1+y2=2n﹣(x1+x2)=2n﹣=,由△=4n2﹣12(n2﹣1)>0,可得﹣<n<,所以x0==,y0==,因为MN的中点T(x0,y0)在直线y=x+m上,所以=+m,m=,﹣<m<,故选:C.二、填空题(共4小题,每小题5分,共20分)13.函在x=0处的切线方程为y=2x.【分析】求出原函数的导函数,得到函数在x=0处的导数,再求出f(0),利用直线方程的点斜式得答案.解:∵,∴f′(x)=,则f′(0)=,即k=2.当x=0时,f(0)=,即切点坐标为(0,0),∴切线方程为y=2x.故答案为:y=2x.14.若实数x、y满足,则z=3x+2y的最大值为10.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.解:由实数x、y满足,作出可行域如图,联立,解得A(4,﹣1),化目标函数z=3x+2y为y=﹣x+,由图可知,当直线y=﹣x+过A时,直线在y轴上的截距最大,z有最大值为z=3×4﹣2×1=10.故答案为:10.15.已知数列{a n}的前n项和为S n,且满足a1+3a2+…+3n﹣1a n=n,则S4=.【分析】利用已知条件求出首项,推出数列的通项公式,判断数列是等比数列,然后求解数列的和.解:,可得n=1时,a1=1,n≥2时,,又,两式相减可得3n﹣1a n=1,即,上式对n=1也成立,可得数列{a n}是首项为1,公比为的等比数列,可得.故答案为:.16.已知正三棱锥S﹣ABC的侧棱长为,底面边长为6,则该正三棱锥外接球的表面积是64π.【分析】正棱锥的外接球的球心在顶点向底面做投影所在的直线上,先求底面外接圆的半径,再由勾股定理求锥的高,由勾股定理求出外接球的半径,由球的表面积公式求出表面积.解:如图所示:由正棱锥得,顶点在底面的投影是三角形ABC的外接圆的圆心O',外接圆的半径r,正三棱锥的外接球的球心在高SO'所在的直线上,设为O,连接OA得:r=,所以r=2,即O'A=2,所以三棱锥的高h===6,由勾股定理得,R2=r2+(R﹣h)2,解得:R=4,所以外接球的表面积S=4πR2=64π.故答案为:64π.三、解答题(共70分.解答时应写出必要的文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答)(一)必考题:共60分17.已知{a n}是公差不为零的等差数列,a4=26,且a1,a2,a7成等比数列.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T511.【分析】(1)设{a n}的公差为d,d≠0,由已知列方程组求解首项与公差,则通项公式可求;(2)b n=(﹣1)n+1a n=(﹣1)n+1(8n﹣6),再由数列的分组求和得答案.解:(1)设{a n}的公差为d,d≠0.因为a1,a2,a7成等比数列,所以a22=a1a7,即(a1+d)2=a1(a1+6d),整理得d2﹣4da1=0.又d≠0,所以d=4a1,①又a4=a1+3d=26,②联立①②,得,解得.所以a n=2+8(n﹣1)=8n﹣6.(2)因为b n=(﹣1)n+1a n=(﹣1)n+1(8n﹣6),T511=b1+b2+…+b511=2﹣10+18﹣26+…+4066﹣4074+4082=(2﹣10)+(18﹣26)+…+(4066﹣4074)+4082=(﹣8)×255+4082=2042.18.如图所示,四棱锥P﹣ABCD的底面ABCD是正方形,O是正方形的中心.PO⊥底面ABCD,底面边长为a,E是PC的中点,连接BE,DE.(1)证明:PA∥平面BDE,平面PAC⊥平面BDE;(2)若∠COE=60°,求四棱锥P﹣ABCD的体积【分析】(1)连结OE,推导出OE∥PA,从而PA∥平面BDE,推导出PO⊥BD,BD ⊥AC,从而BD⊥平面PAC,由此能证明平面PAC⊥平面BDE.(2)由PO⊥平面ABCD,得PO⊥AC,推导出EF∥PO,从而EF⊥AC,由此能求出四棱锥P﹣ABCD的体积.解:(1)证明:连结OE,∵O,E分别为AC,PC的中点,∴OE∥PA,∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE,∵PO⊥平面ABCD,∴PO⊥BD,在正方形ABCD中,BD⊥AC,又∵PO∩AC=O,PO⊂平面PAC,AC⊂平面PAC,∴BD⊥平面PAC,∵BD⊂平面BDE,∴平面PAC⊥平面BDE.(2)解:取OC的中点F,连结EF,由题意得OF=,∵PO⊥平面ABCD,∴PO⊥AC,∵E,F分别是PC,OC的中点,∴EF∥PO,∴EF⊥AC,∴∠OFE=90°,在Rt△OFE中,∠COE=60°,∴EF=OF•tan60°=,∴PO=2EF=a,∴四棱锥P﹣ABCD的体积V P﹣ABCD==.19.为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.(1)求a的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);(2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”?优秀非优秀合计男生40女生50合计100参考公式及数据:.P(K2≥k0)0.050.010.0050.001k0 3.841 6.6357.87910.828【分析】(1)利用频率和为1求解a值,再由矩形中点的横坐标乘以频率作和可得这100名学生的平均成绩;(2)由频率分布直方图填写2×2列联表,求出K2的观测值,结合临界值表得结论.解:(1)由题可得(0.005+0.010+0.020+0.030+a+0.010)×10=1,解得a=0.025.∵45×0.05+55×0.1+65×0.2+75×0.3+85×0.25+95×0.1=74,∴估计这100名学生的平均成绩为74;(2)由(1)知,在抽取的100名学生中,比赛成绩优秀的有100×(0.25+0.1)=100×0.35=35人,由此可得完整的2×2列联表:优秀非优秀合计男生10 4050女生252550合计3565100∵K2的观测值,∴有99%的把握认为“比赛成绩是否优秀与性别有关”.20.已知函数.(1)若a=1,求f(x)的单调区间;(2)若x=1是f(x)的唯一极值点,求a的取值范围.【分析】(1)把a=1代入后求导,然后结合导数与单调性的关系即可求解;(2)先对函数求导,由题意可得f′(x)=0有唯一的变号零点1,问题可转化为不等式的恒成立问题,可求.解:(1)a=1时,函数定义域(0,+∞),=(1﹣x)(+),当x∈(0,1)时,f′(x)>0,函数单调递增,当x∈(1,+∞)时,f′(x)<0,函数单调递减,(2)∵f′(x)=(1﹣x)(),由x=1是f(x)的唯一极值点可知,f′(x)=(1﹣x)()=0有唯一的变号零点1,∵x>0,则≥0或0在x>0时恒成立,即a≥﹣或a≤﹣在x>0时恒成立,令g(x)=﹣,x>0,则,当x>1时,g′(x)<0,g(x)单调递减,当0<x<1时,g′(x)>0,g(x)单调递增,故当x=1时,g(x)取得最大值g(1)=﹣e,a≤﹣不恒成立,所以a≥﹣e.故a的范围[﹣e,+∞)21.已知抛物线y2=﹣2px(p>0)的焦点为F,x轴上方的点M(﹣2,m)在抛物线上,且|MF|=,直线l与抛物线交于A,B两点(点A,B与M不重合),设直线MA,MB的斜率分别为k1,k2.(Ⅰ)求抛物线的方程;(Ⅱ)当k1+k2=﹣2时,求证:直线l恒过定点并求出该定点的坐标.【分析】(Ⅰ)利用抛物线的定义以及性质,列出方程求出p,即可求抛物线的方程;(Ⅱ)当k1+k2=﹣2时,设出直线方程与抛物线联立,利用韦达定理转化求解直线l恒过定点并求出该定点的坐标.解:(Ⅰ)由抛物线的定义可以,∴p=1抛物线的方程为y2=﹣2x;(Ⅱ)证明:由(1)可知,点M的坐标为(﹣2,2)当直线l斜率不存在时,此时A,B重合,舍去.当直线l斜率存在时,设直线l的方程为y=kx+b设A(x1,y1),B(x2,y2),将直线l与抛物线联立得:k2x2+(2kb+2)x+b2=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①又,即(kx1+b﹣2)(x2+2)+(kx2+b﹣2)(x1+2)=﹣2(x1+2)(x2+2)2kx1x2+2k(x1+x2)+b(x1+x2)﹣2(x1+x2)+4b﹣8=﹣2x1x2﹣4(x1+x2)﹣8将①带入得,b2﹣b﹣2﹣2k(b+1)=0即(b+1)(b﹣2﹣2k)=0得b=﹣1或b=2+2k.当b=﹣1时,直线l为y=kx﹣1,此时直线恒过(0,﹣1)当b=﹣2﹣2k时,直线l为y=kx+2k+2=k(x+2)+2,此时直线恒过(﹣2,2)(舍去)所以直线l恒过定点(0,﹣1).(二)选考题:共10分请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分[选修4一4:坐标系与参数方程]22.以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l的极坐标方程为,曲线C的参数方程为(θ为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)以曲线C上的动点M为圆心、r为半径的圆恰与直线l相切,求r的最小值.【分析】(1)由ρsin(θ+)=2,得ρsinθ+ρcosθ=2,将ρsinθ=y,ρcosθ=x 代入上式,得直线l的直角坐标方程为x+﹣4=0.由曲线C的参数方程(θ为参数),得曲线C的普通方程为+=1(2)利用点到直线的距离以及三角函数性质可得.解:(1)由ρsin(θ+)=2,得ρsinθ+ρcosθ=2,将ρsinθ=y,ρcosθ=x代入上式,得直线l的直角坐标方程为x+﹣4=0.由曲线C的参数方程(θ为参数),得曲线C的普通方程为+=1.(2)设点M的坐标为(2cosθ,sinθ),则点M到直线l:x+﹣4=0的距离为d==,其中tanφ=.当d=r时,圆M与直线l相切,故当sin(θ+φ)=1时,取最小值,且r的最小值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+|2x﹣4|.(1)求不等式f(x)≤5的解集;(2)若函数y=f(x)图象的最低点为(m,n),正数a,b满足ma+nb=6,求的取值范围.【分析】(1)先将f(x)写为分段函数的形式,然后根据f(x)≤5分别解不等式即可;(2)先求出f(x)的最小值,然后根据f(x)图象的最低点为(m,n),求出m和n 的值,再利用基本不等式求出的取值范围.解:(1)f(x)=|x+1|+|2x﹣4|=,∵f(x)≤5,∴或或,∴或x∈[0.2)或x∈∅,∴,∴不等式的解集为.(2)∵,∴当x=2时,f(x)取得最小值3.∴函数y=f(x)的图象的最低点为(2,3),即m=2,n=3.∵ma+nb=6,∴2a+3b=6,∴,∴,当且仅当,即a=1,时取等号,∴.。

安徽省2020年高考文科数学模拟试题及答案(一)

安徽省2020年高考文科数学模拟试题及答案(一)
(2)记 的最小值是 ,正实数 满足 ,求 的最小值.
参考答案
一、选择题
1.A 2.A3.B 4.A5.C 6.D 7.B 8.B 9.D 10.C 11.B 12.A
二、填空题
13. 14. 15. 16.
三、解答题
17.解:(1)由已知及余弦定理得2c× =2a+b,
整理得a2+b2-c2=-ab,
A.命题“若 ,则 ”的否命题为“若 ,则 ”
B.命题“存在 ,使得 ”的否定是:“任意 ,都有 ”
C.若命题“非 ”与命题“ 或 ”都是真命题,那么命题 一定是真命题
D.命题“若 ,则 ”的逆命题是真命题
6.三个数 的大小顺序是
A. B.
C. D.
7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为
所以△ABC为等腰三角形,且BC=AC= .
所以△ABC的面积
S= BC·AC·sin = × × × = .
18.(1)估计本市一个18岁以上青年人每月骑车的平均次数为
.
(Ⅱ)根据题意,得出如下 列联表
骑行爱好者
非骑行爱好者
总计
青年人
700
100
800
非青年人
800
200
1000
总计
1500
300
在四边形 中, ,及(1) 为 中点, ,得 为等腰三角形,
故 ,

20.(1)由题设 , ,
所以 .又 ,
所以 . 的方程为 .
(2)由题设 不平行于 轴,设 : ,联立 ,
得 . , .
因为 ,所以四边形 为平行四边形,
四边形 面积

2020年安徽省高考数学(文科)模拟试卷(8)

2020年安徽省高考数学(文科)模拟试卷(8)

三棱锥 P﹣ ABC 的外接球表面积为

16.( 5 分)设
F 1,F 2 分别是双曲线
??:
??2 ??2
-
??2 ??2
=
1(??> 0,??>0) 的左、右焦点,
A 是双曲
3 √3
线的左顶点, 点 P 在过点 A 且斜率为
的直线上, 若△ PF1F 2 为等腰三角形, 且∠ F1F2P
7
= 120°,则双曲线 C 的离心率为
19.( 12 分)如图所示,在三棱锥 P﹣ABC 中,△ PAB,△ ABC 均是等边三角形, PA⊥ AC.
( 1)证明: AB⊥ PC;
( 2)若 PC= 2,求三棱锥 P﹣ ABC 的体积.
20.( 12 分)设函数 f( x)= x+axlnx ( a∈R ).
(Ⅰ)讨论函数 f( x)的单调性;
m 的取值范围.
第 5页(共 20页)
2020 年安徽省高考数学(文科)模拟试卷( 8)
参考答案与试题解析
一.选择题(共 12 小题,满分 60 分,每小题 5 分)
1.( 5 分)已知全集 U= R, A={ x|x﹣ 4>0} , B= { x|x<2} ,则 A∪( ?UB)=(

A .[2, +∞)
(Ⅱ)若函数 f( x)的极大值点为 x= 1,证明: f( x)≤ e﹣x+x2.
21.( 12 分)动点 P 在抛物线
x2= 2y 上,过点 P 作 PQ 垂直于
x 轴,垂足为

Q,设 ????=
1 2

???.?
(Ⅰ)求点 M 的轨迹 E 的方程;
(Ⅱ)设点 S(﹣ 4, 4),过 N( 4, 5)的直线 l 交轨迹 E 于 A, B 两点,设直线 SA, SB

2020年高考模拟试卷安徽省六安一中高考数学第六次模拟测试试卷(文科)(解析版)

2020年高考模拟试卷安徽省六安一中高考数学第六次模拟测试试卷(文科)(解析版)

2020年高考模拟高考数学模拟试卷(文科)一、选择题1.已知集合,B={x∈N|x2﹣12x+11<0},则A∩B=()A.{2,3,4}B.{2,3,4,5}C.{5,6,7,8,9,10}D.{6,7,8,9,10}2.已知实数a,b满足(a+bi)(2+i)=3﹣5i(其中i为虚数单位),则复数z=b﹣ai的共轭复数为()A.﹣+i B.﹣﹣i C.+i D.﹣i3.已知命题,2x0﹣3sin x0<0,则命题p的真假以及命题p的否定分别为()A.真,¬p:,2x﹣3sin x>0B.真,¬p:,2x﹣3sin x≥0C.假,¬p:,2x0﹣3sin x0>0D.假,¬p:,2x0﹣3sin x0≥04.已知向量=(﹣2,m),=(1,n),若(﹣)∥,且||=,则实数m的值为()A.2B.4C.﹣2或2D.﹣4或45.运行如下程序框图,若输出的k的值为6,则判断框中可以填()A.S<30B.S<62C.S≤62D.S<1286.cos240°sin30°﹣sin(﹣60°)sin120°+=()A.+B.﹣C.﹣+D.﹣﹣7.已知函数f(x)=ln+x3+3x2+3x,则下列说法正确的是()A.函数f(x)的图象关于x=﹣1对称B.函数f(x)的图象关于y=﹣1对称C.函数f(x)的图象关于(﹣1,0)中心对称D.函数f(x)的图象关于(﹣1,﹣1)中心对称8.将函数f(x)=sin(ωx﹣)(ω>0)的图象向右平移个单位后.得到的函数图象关于x=对称,则当ω取到最小值时.函数f(x)的单调增区间为()A.[﹣+kπ,+kπ](k∈z)B.[+kπ,+kπ](k∈z)C.[﹣+kπ,+kπ](k∈z)D.[+kπ,+kπ](k∈z)9.已知实数x,y满足,若z=mx﹣y﹣3,且z≥0恒成立,则实数m的取值不可能为()A.7B.8C.9D.1010.已知某几何体的三视图如图所示,若网格纸上小正方形的边长为1,则该几何体的最短棱长为()A.1B.C.D.211.已知椭圆C:+=1的离心率为,且M,N是椭圆C上相异的两点,若点P (2,0)满足PM⊥PN,则•的取值范围为()A.[﹣25,﹣]B.[﹣5,﹣]C.[﹣25,﹣1]D.[﹣5,﹣1] 12.已知关于x的不等式1+2xlnx≤mx2在[1,+∞)上恒成立,则m的最小值为()A.1B.2C.3D.4二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.杨辉,字谦光,南宋时期杭州人,在他1261年所著的一书中,辑录了如图所示的角形数表,称之为“开方作法本源”图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》并绘画了“古法七乘方图”,故此,杨辉三角又被称为“贾宪三角”,杨辉三角是一个由数字排列成的三角形数表,一般形式如图:基于上述规律,可以推测,当n=23时,从左往右第22个数为.14.已知双曲线的右焦点到渐近线的距离为3.现有如下条件:①双曲线C的离心率为;②双曲线C与椭圆共焦点;③双曲线右支上的一点P到F1,F2的距离之差是虚轴长的倍.请从上述3个条件中任选一个,得到双曲线C的方程为.(注:以上三个条件得到的双曲线C的方程一致)15.已知四棱锥P﹣ABCD中,底面四边形ABCD为等腰梯形,且AB∥CD,AB=CD,PA=PB=AD,PA+AD=CD=4,若平面PAB⊥平面ABCD,则四棱锥P﹣ABCD外接球的表面积为.16.如图所示,四边形MNQP被线段NP切割成两个三角形分别为△MNP和△QNP,若MN⊥MP,,QN=2QP=2,则四边形MNQP面积的最大值为.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知正项数列{a n}的前n项和为S n,若数列{a n}是公差为﹣1的等差数列,且a2+2是a1,a3的等差中项.(1)证明数列{a n}是等比数列,并求数列{a n}的通项公式;(2)若T n是数列{}的前n项和,若T n<M恒成立,求实数M的取值范围.18.某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙同学从四种比赛中任选两种参与.(1)求甲参加围棋比赛的概率;(2)求甲、乙两人参与的两种比赛都不同的概率.19.已知四棱锥E﹣ABCD中,底面ABCD是直角梯形,∠ABC=90°,且AD∥BC,BC =2AD=,F为AC,BD的交点,点E在平面ABCD内的投影为点F.(1)AF⊥ED;(2)若AF=EF,求三棱锥D﹣ABE的体积.20.已知椭圆的左、右焦点分别为F1,F2,上、下顶点分别为A,B,若|AF1|=2,点关于直线y=x的对称点在椭圆C上.(1)求椭圆C的方程与离心率;(2)过点(0,2)做直线l与椭圆M相交于两个不同的点M,N;若恒成立,求实数λ的取值范围.21.已知函数.(1)当p>0时,求函数f(x)的极值点;(2)若p>1时,证明:.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在平面直角坐标系xOy中曲线C的参数方程为(θ为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcos(θ+)+=0(1)求曲线C的普通方程以及直线l的直角坐标方程(2)将曲线C向左平移2个单位,再将曲线C上的所有点横坐标缩短为原来的,得到曲线C1,求曲线C1上的点到直线l的距离的最小值.[选修4-5不等式选讲]23.已知函数f(x)=|x﹣m|.(1)当m=2时,求不等式的解集;(2)若不等式恒成立,求实数m的取值范围.参考答案一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,B={x∈N|x2﹣12x+11<0},则A∩B=()A.{2,3,4}B.{2,3,4,5}C.{5,6,7,8,9,10}D.{6,7,8,9,10}【分析】先分别求出集合A,B,由此能求出A∩B.解:依题意,集合A={x|}={x|}={x|x>},B={x∈N|x2﹣12x+11<0}={x∈N|1<x<11}={2,3,4,5,6,7,8,9,10},∴A∩B={5,6,7,8,9,10}.故选:C.2.已知实数a,b满足(a+bi)(2+i)=3﹣5i(其中i为虚数单位),则复数z=b﹣ai的共轭复数为()A.﹣+i B.﹣﹣i C.+i D.﹣i【分析】利用复数的运算法则、共轭复数的定义即可得出.解:实数a,b满足(a+bi)(2+i)=3﹣5i(其中i为虚数单位),∴(a+bi)(2+i)(2﹣i)=(3﹣5i)(2﹣i),∴a+bi=﹣i,∴a=,b=﹣,则复数z=b﹣ai=﹣﹣i的共轭复数为=﹣+i.故选:A.3.已知命题,2x0﹣3sin x0<0,则命题p的真假以及命题p的否定分别为()A.真,¬p:,2x﹣3sin x>0B.真,¬p:,2x﹣3sin x≥0C.假,¬p:,2x0﹣3sin x0>0D.假,¬p:,2x0﹣3sin x0≥0【分析】取时,2x0﹣3sin x0=,即可判断命题p为真,根据特称命题的否定为全称命题得¬p.解:不妨取,此时2x0﹣3sin x0=,故命题p为真;特称命题的否定为全称命题,故¬p:,2x﹣3sin x≥0,故选:B.4.已知向量=(﹣2,m),=(1,n),若(﹣)∥,且||=,则实数m的值为()A.2B.4C.﹣2或2D.﹣4或4【分析】先求出=(﹣3,m﹣n),再由向量平行和向量的模列出方程组,由此能求出实数m.解:∵向量=(﹣2,m),=(1,n),(﹣)∥,且||=,∴=(﹣3,m﹣n),,解得m=±2.故选:C.5.运行如下程序框图,若输出的k的值为6,则判断框中可以填()A.S<30B.S<62C.S≤62D.S<128【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出变量k的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:运行该程序,第一次,S=2,k=2;第二次,S=6,k=3;第三次,S=14,k=4;第四次,S=30,k=5;第五次;S=62,k=6;第六次,S=126,k=7;观察可知,判断框中可以填“S<62?”.故选:B.6.cos240°sin30°﹣sin(﹣60°)sin120°+=()A.+B.﹣C.﹣+D.﹣﹣【分析】利用诱导公式,两角差的正切函数公式,特殊角的三角函数值即可化简求值得解.解:cos240°sin30°﹣sin(﹣60°)sin120°+=(﹣)×﹣(﹣)×+tan(75°﹣45°)=(﹣)×﹣(﹣)×+=+.故选:A.7.已知函数f(x)=ln+x3+3x2+3x,则下列说法正确的是()A.函数f(x)的图象关于x=﹣1对称B.函数f(x)的图象关于y=﹣1对称C.函数f(x)的图象关于(﹣1,0)中心对称D.函数f(x)的图象关于(﹣1,﹣1)中心对称【分析】首先考查函数向右平移1个单位长度,然后向上平移1个单位长度后图象的特征,然后结合题意考查所给函数的特征即可求得最终结果.解:将函数图象向右平移1个单位长度,然后向上平移1个单位长度,所得函数的解析式为:f(x﹣1)+1=ln+(x﹣1)3+3(x﹣1)2+3(x﹣1)+1=ln+x3,则函数g(x)=f(x﹣1)+1的定义域为(﹣2,2),且g(﹣x)=﹣g(x),即函数g(x)是奇函数,关于坐标原点中心对称,则函数f(x)的图象关于(﹣1,﹣1)中心对称.故选:D.8.将函数f(x)=sin(ωx﹣)(ω>0)的图象向右平移个单位后.得到的函数图象关于x=对称,则当ω取到最小值时.函数f(x)的单调增区间为()A.[﹣+kπ,+kπ](k∈z)B.[+kπ,+kπ](k∈z)C.[﹣+kπ,+kπ](k∈z)D.[+kπ,+kπ](k∈z)【分析】根据函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得ω的值,可得函数f(x)的解析式,再利用正弦函数的单调性,从而求得f(x)的单调增区间.解:将函数f(x)=sin(ωx﹣)(ω>0)的图象向右平移个单位后,可得y=sin(ωx﹣﹣)的图象,再根据得到的函数图象关于x=对称,可得ω•﹣﹣=kπ+,k∈Z,即ω=4k+,则当k=0时,ω取到最小值为,此时,函数f(x)=sin(x﹣),令2kπ﹣≤x﹣≤2kπ+,求得π﹣≤x≤+,故函数f(x)的增区间为[﹣+kπ,+kπ],k∈z,故选:C.9.已知实数x,y满足,若z=mx﹣y﹣3,且z≥0恒成立,则实数m的取值不可能为()A.7B.8C.9D.10【分析】画出约束条件的可行域,利用目标函数的范围,转化求解m的范围,判断选项即可.解:实数x,y满足的可行域如图:由,解得B(5,2),由,解得A(1,).z=mx﹣y﹣3,且z≥0恒成立,可知目标函数z=mx﹣y﹣3,经过A时取得最小值,m ﹣≥0,可得m≥.则实数m的取值不可能为:7.故选:A.10.已知某几何体的三视图如图所示,若网格纸上小正方形的边长为1,则该几何体的最短棱长为()A.1B.C.D.2【分析】根据三视图,将该几何体的立体图还原回来,即可根据棱长的大小,比较得出最小值.解:根据题给的三视图,将其嵌入到某长方体中,还原路径如下图所示,红线为俯视图四个顶点有可能出现的棱,蓝线为主视图三个顶点有可能出现的棱,绿线为侧视图四个顶点有可能出现的棱,可得四个点A、B、C、D,而四个点恰好不多不少为空间几何体的顶点个数,所以此时立体体还原完毕,由图可知,该三棱锥最短的棱长为BC,且BC=1.故选:A.11.已知椭圆C:+=1的离心率为,且M,N是椭圆C上相异的两点,若点P (2,0)满足PM⊥PN,则•的取值范围为()A.[﹣25,﹣]B.[﹣5,﹣]C.[﹣25,﹣1]D.[﹣5,﹣1]【分析】椭圆C:+=1的离心率为,可得=,解得b2.可得椭圆的标准方程.设M(x,y),x∈[﹣3,3].可得•===﹣,再利用两点之间的距离公式、二次函数的单调性即可得出.解:椭圆C:+=1的离心率为,∴=,解得b2=1.∴椭圆的标准方程为:=1.设M(x,y),x∈[﹣3,3].则•===﹣=﹣[(x﹣2)2+y2]=﹣=﹣=f(x),x=时,f(x)取得最大值﹣;x=﹣3时,f(x)取得最小值﹣25.∴•∈.故选:A.12.已知关于x的不等式1+2xlnx≤mx2在[1,+∞)上恒成立,则m的最小值为()A.1B.2C.3D.4【分析】依题意,,令,则m≥[g (x)]max,利用导数求出函数g(x)在[1,+∞)的最大值即可.解:依题意,,令,故,令h(x)=x﹣xlnx﹣1,则h'(x)=﹣lnx,故当x∈[1,+∞)时,h'(x)=﹣lnx≤0,h(x)在[1,+∞)上单调递减,∴h(x)≤h(1)=0,∴g'(x)≤0,故在[1,+∞)上单调递减,故m≥[g(x)]max=g(1)=1,故m的最小值为1,故选:A.二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.杨辉,字谦光,南宋时期杭州人,在他1261年所著的一书中,辑录了如图所示的角形数表,称之为“开方作法本源”图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》并绘画了“古法七乘方图”,故此,杨辉三角又被称为“贾宪三角”,杨辉三角是一个由数字排列成的三角形数表,一般形式如图:基于上述规律,可以推测,当n=23时,从左往右第22个数为253.【分析】根据每行数字的个数可得从左往右第22个数为该行的倒数第3个数字,且与该行的第3个数字相等,把每行的第三个数字(从第3行,n=2开始),所组成的数列为1,3,6,10,15,…,即可找到规律,求出即可.解:由图表可得,第n行有n+1个数字,当n=23时,即第23行有24个数字,则从左往右第22个数为该行的倒数第3个数字,且与该行的第3个数字相等,把每行的第三个数字(从第3行,n=2开始),所组成的数列为1,3,6,10,15,…,即为,,,,…,,则当n=23时,从左往右第22个数为=253,故答案为:25314.已知双曲线的右焦点到渐近线的距离为3.现有如下条件:①双曲线C的离心率为;②双曲线C与椭圆共焦点;③双曲线右支上的一点P到F1,F2的距离之差是虚轴长的倍.请从上述3个条件中任选一个,得到双曲线C的方程为.(注:以上三个条件得到的双曲线C的方程一致)【分析】依题意可求出b=3,选条件①,双曲线C的离心率为,故,又b=3,且a2+b2=c2,即可求出a,b,c的值,从而求出双曲线方程.解:依题意,双曲线的渐近线方程为,即bx±ay=0,故,即b=3,选条件①,解析如下:∵双曲线C的离心率为,故,又b=3,且a2+b2=c2,故a=4,c=5,故双曲线C的方程为,故答案为:.15.已知四棱锥P﹣ABCD中,底面四边形ABCD为等腰梯形,且AB∥CD,AB=CD,PA=PB=AD,PA+AD=CD=4,若平面PAB⊥平面ABCD,则四棱锥P﹣ABCD外接球的表面积为52π.【分析】作出图形,确定球心的位置,利用勾股定理建立方程,即可得出结论.解:由题意,PA=AD=2,PF=FG=3,球心O在平面ABCD中的射影为CD的中点,如图所示,设OG=d,则,∴d=1,,∴四棱锥P﹣ABCD外接球的表面积为4π•13=52π,故答案为52π.16.如图所示,四边形MNQP被线段NP切割成两个三角形分别为△MNP和△QNP,若MN⊥MP,,QN=2QP=2,则四边形MNQP面积的最大值为.【分析】结合已知可求∠MPN,结合余弦定理可求NP,然后结合三角形的面积可表示四边形MNPQ的面积,结合辅助角公式及正弦函数性质即可求解.解:因为,故,故,故△MPN是等腰直角三角形;在△QNP中,QN=2,QP=1,由余弦定理,NP2=5﹣4cos Q,=,S△NPQ==sin Q,所以S MNQP==;易知当Q=时,四边形MNPQ的面积有最大值,最大值为.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知正项数列{a n}的前n项和为S n,若数列{a n}是公差为﹣1的等差数列,且a2+2是a1,a3的等差中项.(1)证明数列{a n}是等比数列,并求数列{a n}的通项公式;(2)若T n是数列{}的前n项和,若T n<M恒成立,求实数M的取值范围.【分析】(1)数列{a n}是公差为﹣1的等差数列,可得a n=a1﹣(n ﹣1),可得=3n﹣1.即可证明数列{a n}是以3为公比的等比数列.由a2+2是a1,a3的等差中项,可得2(a2+2)=a1+a3,解得a1.(2)由(1)可得:=.可得T n,进而得出M的取值范围.【解答】(1)证明:∵数列{a n}是公差为﹣1的等差数列,∴a n=a1﹣(n﹣1),∴=3n﹣1.∴n≥2时,==3,数列{a n}是以3为公比的等比数列.∴a2=3a1,a3=9a1.∵a2+2是a1,a3的等差中项,∴2(a2+2)=a1+a3,∴2(3a1+2)=a1+9a1,解得a1=1.∴数列{a n}是以3为公比,1为首项的等比数列.∴a n=3n﹣1.(2)解:=.∴T n==.∵T n<M恒成立,∴.∴实数M的取值范围是.18.某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙同学从四种比赛中任选两种参与.(1)求甲参加围棋比赛的概率;(2)求甲、乙两人参与的两种比赛都不同的概率.【分析】(1)依题意,甲同学必选“中国象棋”,不选“国际象棋”,由此能求出甲参赛的概率.(2)记“中国象棋”、“围棋”、“五子棋”、“国际象棋”分别为1,2,3,4,利用列举法能求出甲、乙两人参与的两种比赛都不同的概率.解:(1)依题意,甲同学必选“中国象棋”,不选“国际象棋”,故甲参加围棋比赛的概率为.(2)记“中国象棋”、“围棋”、“五子棋”、“国际象棋”分别为1,2,3,4,则所有的可能为:(1,2,1,2),(1,2,1,3),(1,2,1,4),(1,2,2,3),(1,2,2,4),(1,2,3,4),(1,3,1,2),(1,3,1,3),(1,3,1,4),(1,3,2,3),(1,3,2,4),(1,3,3,4),其中满足条件的有(1,2,3,4),(1,3,2,4)两种,故所求概率p=.19.已知四棱锥E﹣ABCD中,底面ABCD是直角梯形,∠ABC=90°,且AD∥BC,BC =2AD=,F为AC,BD的交点,点E在平面ABCD内的投影为点F.(1)AF⊥ED;(2)若AF=EF,求三棱锥D﹣ABE的体积.【分析】(1)依题意,△AFD∽△CBF,则,结合已知求得AD=,AC=,求解三角形证明AC⊥BD;再由已知得AC⊥EF;利用线面垂直的判定可得AC⊥平面BDE,进一步得到AF⊥ED;(2)直接利用等积法求三棱锥D﹣ABE的体积.【解答】(1)证明:依题意,△AFD∽△CBF,则,又∵AB=1,BC=,∴AD=,AC=,在Rt△BDA中,,∴AF=,在△ABF中,∵,∴∠AFB=90°,即AC⊥BD;∵EF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥EF;又∵BD∩EF=F,BD⊂平面BDE,EF⊂平面BDE,∴AC⊥平面BDE,∵ED⊂平面BDE,故AC⊥ED,即AF⊥ED;(2)解:依题意,.20.已知椭圆的左、右焦点分别为F1,F2,上、下顶点分别为A,B,若|AF1|=2,点关于直线y=x的对称点在椭圆C上.(1)求椭圆C的方程与离心率;(2)过点(0,2)做直线l与椭圆M相交于两个不同的点M,N;若恒成立,求实数λ的取值范围.【分析】(1)依题意求出a=2,再结合点在椭圆上,即可求出b的值,从而得到椭圆C的方程以及离心率;(2)队直线l的斜率分情况讨论,当直线l的斜率不存在时,M(0,1),N(0,﹣1),所以,当直线l的斜率存在时,设直线l的方程为y=kx+2,与椭圆方程联立,利用韦达定理得到=,所以,从而求得实数λ的取值范围.解:(1)依题意,点关于直线y=x的对称点为,因为|AF1|=2,故,故椭圆,将代入椭圆中,解得b=1,所以椭圆C的方程为故离心率;(2)当直线l的斜率不存在时,M(0,1),N(0,﹣1),所以.当直线l的斜率存在时,设直线l的方程为y=kx+2,M(x1,y1),N(x2,y2),联立,消去y整理得(1+4k2)x2+16kx+12=0,由△>0,可得4k2>3,且,所以=,所以,故,综上实数λ的取值范围为.21.已知函数.(1)当p>0时,求函数f(x)的极值点;(2)若p>1时,证明:.【分析】(1)利用导函数即可求出函数f(x)的极值点;(2))p>1,令,利用导数可得g(x)在x =1时取得极大值,并且也是最大值,即,又2p,设,利用导数得到h(p)的单调递增区间为,单调递减区间为,所以,从而证得.【解答】解(1)依题意,,故,可知,当时,f'(x)<0;时,f'(x)>0,故函数f(x)的极小值点为,无极大值点;(2)∵p>1,令,故,可得函数g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞),∴g(x)在x=1时取得极大值,并且也是最大值,即,又2p﹣1>0,∴,设,则,所以h(p)的单调递增区间为,单调递减区间为,所以,∵,∴,∴h(p)<3,又e p ﹣3>0,∴,即.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在平面直角坐标系xOy中曲线C的参数方程为(θ为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcos(θ+)+=0(1)求曲线C的普通方程以及直线l的直角坐标方程(2)将曲线C向左平移2个单位,再将曲线C上的所有点横坐标缩短为原来的,得到曲线C1,求曲线C1上的点到直线l的距离的最小值.【分析】(1)消去参数θ,把曲线C的参数方程化为普通方程;利用极坐标公式,把直线l的极坐标方程化为普通方程;(2)根据坐标平移与伸缩变换,得到曲线C1的标准方程;设出曲线C1上点的参数方程,求出点到直线l的距离,计算最小值即可.解:(1)曲线C的参数方程为(θ为参数),消去参数θ,得C的普通方程为+=1,即(x﹣2)2+y2=4;直线l的极坐标方程为ρcos(θ+)+=0,即ρcosθ•﹣ρsinθ•+=0,化为普通方程是x﹣y+2=0;(2)将曲线C向左平移2个单位,得x2+y2=4再将曲线C上的所有点横坐标缩短为原来的,得到曲线C1,∴C1的标准方程为:+y2=1;设曲线C1上的点的坐标为P(2cosα,sinα),其中α∈[0,2π),∴P到直线l的距离为d==,当cos(α+β)=﹣1时,d取得最小值为=.[选修4-5不等式选讲]23.已知函数f(x)=|x﹣m|.(1)当m=2时,求不等式的解集;(2)若不等式恒成立,求实数m的取值范围.【分析】(1)当m=2时,原不等式可化为x﹣2>2(x﹣3),从而可解得答案;(2)通过对x范围的讨论去掉绝对值符号,化为分段函数,求得需要的最小值,解相应的不等式即可求得实数m的取值范围.解:(1)由,知x>3;故m=2时,,故当m=2时,不等式的解集为(3,4);(2)依题意,当m≥﹣2,f(x)+|x+1|=,故,解得m≥2;当m≤﹣2时,f(x)+|x+1|=,故,解得m≤﹣6;综上所述,实数m的值为(﹣∞,﹣6]∪[2,+∞).。

2020年安徽省六安一中高考数学模拟试卷(文科)(六)(有解析)

2020年安徽省六安一中高考数学模拟试卷(文科)(六)(有解析)

2020年安徽省六安一中高考数学模拟试卷(文科)(六)一、单项选择题(本大题共12小题,共60.0分)1.若集合A={x|−1<2−x≤1},B={x∈N|−x2+3x+4>0},则A∩B=()A. {2,3}B. {0,1}C. {1,2,3}D. {1,2}2.已知复数z(1−i)2=2+2i(i为虚数单位),则z+|z|2=()A. 1+3iB. 3+iC. 1+iD. 1−i3.已知命题p:∃x0∈R,sinx0≤1,则命题p的否定是()A. ∀x∈R,sinx>1B. ∃x∈R,sinx≥1C. ∃x∈R,sinx≥1D. ∀x∈R,sinx>14.已知向量a⃗=(2,1),b⃗ =(x,−2),若|a⃗+b⃗ |=|2a⃗−b⃗ |,则实数x的值为()A. 49B. 12C. 94D. 25.运行程序框图,则输出的结果是().A. 14B. 15C. 30D. 316.sin15°−cos15°=()A. √22B. 12C. −√22D. −127.函数y=2xln|x|的图象大致为()A.B.C.D.8.函数y=cosωx(ω>0)的图象向右平移π3个单位长度后与函数y=sinωx图象重合,则ω的最小值为()A. 12B. 32C. 52D. 729.若变量x,y满足约束条件{x+2y≥0x−y≤0x−2y+2≥0,则z=2x−y的最小值等于()A. −52B. −2 C. −32D. 210.如图,小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的棱长不可能为()A. 2√5B. 4√3C. 4√2D. 2√211.椭圆x26+y22=1的离心率为()A. 23B. 13C. √63D. 2√2312.已知函数f(x)=3+xln2x则f(x)在(0,+∞)的最小值是()A. 3+12e B. 3−12eC. 3+1eD. 3−1e二、填空题(本大题共4小题,共20.0分)13.将正奇数按下表的规律填在5列的数表中,则第20行第3列的数字与第20行第2列数字的和为__________.14.设双曲线y2a2−x2b2=1(a>0,b>0)的离心率是3,则其渐近线的方程为______.15.如图,四棱锥E−ABCD的五个顶点都在同一个球的球面上,且EA⊥平面ABCD,AB⊥BC,AB=3,BC=4,EA=5,则这个球的表面积为______.16.已知△ABC中,AC=4,BC=2√7,∠BAC=π3,则AB的长为______ .三、解答题(本大题共7小题,共82.0分)17.已知函数f(x)=log√2x,且数列{f(a n)}是首项为2,公差为2的等差数列.(1)求证:数列{a n}是等比数列;(2)设b n=a n⋅f(a n),求数列{b n}的前n项和T n.18.在甲、乙两位选手以往的比赛中随机抽取10局比赛,胜负情况依次如表:(1)从表中第5局到第10局的六局比赛中任选两局,求甲至少有一局获胜的概率;(2)甲、乙两位选手将要进行一场比赛,赛制为三局两胜(当一方赢得两局胜利时,该方获胜,比赛结束),比赛每局均分出胜负.若以甲、乙两位选手表中10局比赛的结果作为样本,视样本频率为概率,求甲2︰0获胜的概率.19.已知四棱锥P−ABCD,底面ABCD为菱形,∠ABC=60°,△PAB是等边三角形,AB=2,PC=√6,AB的中点为E(1)证明:PE⊥平面ABCD;(2)求三棱锥D−PBC的体积.20. 已知点P(0,2),点A ,B 分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线BP 交C 于点Q ,△ABP 是等腰直角三角形,且PQ ⃗⃗⃗⃗⃗=35PB ⃗⃗⃗⃗⃗ . (1)求C 的方程;(2)设过点P 的动直线l 与C 相交于M ,N 两点,O 为坐标原点.当∠MON 为直角时,求直线l 的斜率.21. 已知函数f(x)=xlnx .(1)若函数g(x)=f(x)x 2−1x ,求g(x)的极值;(2)证明:f(x)+1<e x−x2.(参考数据:ln2≈0.69,ln3≈1.10,e32≈4.48,e2≈7.39)22.在直角坐标系xOy中,曲线C的参数方程为{x=2cosθy=sinθ,在以坐标原点为极点,x轴正半轴)=a.为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ−π4(1)若a=√2,求直线l的参数方程与C的直角坐标方程;(2)若直线l与C交于不同两点,求原点到直线l距离的取值范围.23.已知函数f(x)=|x−1|+2|x+1|.(1)求不等式f(x)≤5的解集;(2)若不等式f(x)≥x−m的解集为R,求m的取值范围【答案与解析】1.答案:D解析:本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.分别求出集合A,B,利用交集定义能求出A∩B.解:∵集合A={x|−1<2−x≤1}={x|1≤x<3},B={x∈N|−x2+3x+4>0}={x∈N|−1<x<4}={0,1,2,3},∴A∩B={1,2}.故选D.2.答案:D解析:本题考查复数的四则运算,共轭复数,以及复数的模,属基础题目.解:因为z(1−i)2=2+2i,所以z=2+2i(1−i)2=2(1+i)−2i=−1+i.所以z=−1−i ,|z|2=(−1)2+12=2.则z+|z|2=1−i.故选D.3.答案:D解析:本题主要考查命题的否定.解:已知已知命题p:∃x0∈R,sinx0⩽1,对命题进行否定:∃x0∈R的否定为∀x∈R,sinx0⩽1的否定为sinx>1,所以命题p的否定是∀x∈R,sinx>1.故选D.4.答案:C解析:本题考查了向量的模和平面向量的坐标运算,属于基础题.先得出a⃗+b⃗ ,2a⃗−b⃗ 的坐标,由|a⃗+b⃗ |=|2a⃗−b⃗ |,得出方程,解出x即可.解:由a⃗=(2,1),b⃗ =(x,−2),得a⃗+b⃗ =(2+x,−1),2a⃗−b⃗ =(4−x,4),由|a⃗+b⃗ |=|2a⃗−b⃗ |,得√(2+x)2+(−1)2=√(4−x)2+42,解得x=9,4故选C.5.答案:A解析:本题考查程序框图的应用,属于基础题.根据程序框图,依次计算,即可得到结论.解:根据程序框图得出整数t>3时,输出S,故当t=4时输出,输出的结果是S=2+22+23=14.故选A.6.答案:C,解析:解:sin15°−cos15°=√2sin(15°−45°)=√2sin(−30°)=−√22故选:C.利用两角和差的正弦公式,进行化简即可.本题主要考查三角函数值的计算,利用两角和差的正弦公式以及辅助角公式是解决本题的关键.7.答案:B解析:本题考查利用函数的性质确定函数的图象,利用奇偶性和函数值的符号是解题的关键.解:函数定义域为{x|x ≠0},y =f(x)=2x ln |x|, f(−x)=−2x ln |−x |=−2x lnx =−f(x), 故函数y =2x ln |x|是奇函数,故排除A ,C ,又当0<x <1时,y =2x lnx ,而lnx <0,所以y <0,故排除D ,故选B .8.答案:B解析:解:y =cosωx(ω>0)的图象向右平移π3个单位长度后, 得到:y =cos(ωx −ωπ3),由于图象与函数y =sinωx 图象重合,故:ωx −π2=2kπ+ωx −ωπ3(k ∈Z), 解得:ω=6k +32(k ∈Z),当k =0时,ω=32,即最小值.故选:B .直接利用函数的关系式的平移变换和诱导公式求出结果.本题考查的知识要点:函数的图象的平移变换,诱导公式的应用. 9.答案:A解析:解:由变量x ,y 满足约束条件{x +2y ≥0x −y ≤0x −2y +2≥0作出可行域如图,由图可知,最优解为A ,联立{x +2y =0x −2y +2=0,解得A(−1,12).∴z=2x−y的最小值为2×(−1)−12=−52.故选:A.由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.答案:D解析:本题考查三视图,考查学生的计算能力,作出直观图是关键,属于中档题.解:在长方体中进行切割,得到该几何体的直观图如图所示,则AB=GH=HE=EF=FG=ED=4,BC=CD=2√5,BD=4√3,AD=4√2,AH=BG=8,CF=6,故选D.11.答案:C解析:本题主要考查椭圆的离心率的求法,考查运算能力,属于基础题.求出椭圆的a,b,c,由e=ca,计算即可得到结论.解:椭圆x26+y22=1的a=√6,b=√2,c=√a2−b2=2,则e=ca =√6=√63.故选C.12.答案:B解析:本题考查利用导函数求函数的单调区间,通过单调性来确定函数的最小值.解:f′(x)=ln2x+x⋅1x =ln2x+1,令f′(x)>0,解得x>12e.令f′(x)<0解得0<x<12e,所以函数f(x)在(12e ,+∞)单调递增,在(0,12e)单调递减,所以f(x)在(0,+∞)的最小值为f(12e )=3+12e⋅ln1e=3−12e.故选B.13.答案:312解析:前19行共有19×4=76个数,所求两数为第78和第79个奇数,因此和为(2×78−1)+ (2×79−1)=312.14.答案:x±2√2y=0解析:本题考查双曲线的简单性质的应用,考查计算能力,属基础题.利用双曲线的离心率,先求出a,b的关系式,然后求渐近线方程.解:双曲线y2a2−x2b2=1(a>0,b>0)的离心率是3,可得ca=3,则ab=√a2c2−a2=√1c2a2−1=2√2.则其渐近线的方程为y=±abx即x±2√2y=0.故答案为:x±2√2y=0.15.答案:50π解析:本题考查几何体的外接球的表面积的求法,求解球的半径是解题的关键,属于中档题.求出几何体的外接球的半径,然后求解几何体的表面积即可.解:由题意可知,ABCD的外接圆的圆心在AC的中点,EA⊥平面ABCD,所以EC的中点是外接球的球心,所以球的半径为:12√32+42+52=5√22.则这个球的表面积为:4π⋅(5√22)2=50π.故答案为:50π.16.答案:6解析:解:∵AC=4,BC=2√7,∠BAC=π3,∴由余弦定理BC2=AC2+AB2−2AB⋅AC⋅cos∠BAC,可得:(2√7)2=AB2+42−2×AB×4×cosπ3,∴整理可得:AB2−4AB−12=0,解得:AB=6或−2(舍去).故答案为:6.由已知利用余弦定理即可计算得解.本题主要考查了余弦定理在解三角形中的应用,属于基础题.17.答案:(1)证明:∵函数f(x)=log√2x,且数列{f(a n)}是首项为2,公差为2的等差数列,∴f(a n)=2+2(n−1)=2n=log√2a n,∴an=(√2)2n=2n=2×2n−1,∴数列{a n}是等比数列,首项与公比都为2.(2)解:由(1)可得:a n=2n.b n=a n⋅f(a n)=2n⋅log√22n=2n×2n=n×2n+1,∴数列{b n}的前n项和T n=22+2×23+⋯+n×2n+1,2T n=23+2×24+⋯+(n−1)×2n+1+n×2n+2,∴−T n=22+23+⋯+2n+1−n×2n+2=4(2n−1)2−1−n×2n+2=(1−n)×2n+2−4,∴T n=(n−1)×2n+2+4.解析:(1)由函数f(x)=log√2x,且数列{f(a n)}是首项为2,公差为2的等差数列,可得f(a n)=2n=log√2a n,a n=2n,即可证明.(2)由(1)可得:a n=2n.可得:b n=a n⋅f(a n)=n×2n+1,再利用“错位相减法”与等比数列的前n项和公式即可得出.本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.18.答案:解:(1)从第5局到第10局的六局比赛中任选两局,所有可能的基本事件如下:{5,6},{5,7},{5,8},{5,9},{5,10},{6,7},{6,8},{6,9},{6,10},{7,8},{7,9},{7,10},{8,9},{8,10},{9,10}.基本事件共15个,其中甲均没有取胜的基本事件有1个,所以,甲至少获胜一局的概率为1−115=1415.(2)用样本频率估计概率可知,每局比赛甲获胜的概率为510=12,乙获胜的概率为12.打满三局比赛的情况有:①甲乙甲;②甲乙乙;③乙甲甲;④乙甲乙;前两局甲或乙连胜的情况等价于:⑤甲甲甲;⑥甲甲乙;⑦乙乙甲;⑧乙乙乙,共有八种等可能事件,⑤⑥对应的情况是甲以2︰0获胜,所以,甲以2︰0获胜的概率为28=14.解析:本题考查了古典概型,是一般题.(1)先求出甲均没有取胜的概率,用1减去甲均没有取胜的概率可以得出答案;(2)打满三局比赛的情况有:①甲乙甲;②甲乙乙;③乙甲甲;④乙甲乙;前两局甲或乙连胜的情况等价于:⑤甲甲甲;⑥甲甲乙;⑦乙乙甲;⑧乙乙乙,根据古典概型进行计算.19.答案:证明:(1)由题可知PE⊥AB,CE⊥AB.∵AB=2,∴PE=CE=√3.又∵PC=√6,∴PE2+EC2=PC2,∴∠PEC=90°,即PE⊥CE.又∵AB,CE⊂平面ABCD,∴PE⊥平面ABCD;解:(2)S △BCD =12×22×sin120°=√3,PE =√3. 由(1)知:PE ⊥平面ABCD , V P−BCD =13⋅S △BCD ⋅PE =1. ∵V D−PBC =V P−BCD ,∴三棱锥D −PBC 的体积为1.解析:(1)由题可知PE ⊥AB ,CE ⊥AB.求解三角形可得PE =CE =√3.结合PC =√6,得PE 2+EC 2=PC 2,可得PE ⊥CE.再由线面垂直的判定可得PE ⊥平面ABCD ; (2)由正弦定理求出S △BCD .然后利用等积法求得三棱锥D −PBC 的体积.本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.20.答案:解:(1)由题意△ABP 是等腰直角三角形,则a =2,B (2,0),设点Q(x 0,y 0),由PQ ⃗⃗⃗⃗⃗ =35PB ⃗⃗⃗⃗⃗ ,即(x 0,y 0−2)=35(2,−2), 则x 0=65,y 0=45,代入椭圆方程解得b 2=1, ∴椭圆方程为x 24+y 2=1;(2)由题意可知,直线l 的斜率存在,设l 的方程为y =kx +2,M (x 1,y 1),N (x 2,y 2), 则{y =kx +2x 24+y 2=1,整理可得(1+4k 2)x 2+16kx +12=0, ∴Δ=(16k )2−48×(1+4k 2)>0,解得k 2>34, ∴x 1+x 2=−16k1+4k 2,x 1x 2=121+4k 2, 当∠MON 为直角时,k OM ⋅k ON =−1,∴x 1x 2+y 1y 2=0, 则x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k(x 1+x 2)+4=(1+k 2)⋅121+4k 2+2k (−16k1+4k 2)+4=0,解得k 2=4,即k =±2,当∠MON 为直角时,直线l 的斜率为±2.解析:【试题解析】本题考查椭圆方程的求法,考查直线与椭圆的位置关系,属于中档题.(1)根据题意可得a =2,B(2,0),设点Q(x 0,y 0),由PQ ⃗⃗⃗⃗⃗ =35PB ⃗⃗⃗⃗⃗ ,即可求出点Q 的坐标,代入椭圆方程即可求出b ,可得椭圆方程;(2)由题意可知,直线l 的斜率存在,设l 的方程为y =kx +2,M(x 1,y 1),N(x 2,y 2),根据韦达定理和k OM ⋅k ON =−1,即可求出k 的值.21.答案:(1)解:,所以,令g′(x )>0,得0<x <e 2;g′(x )<0,得x >e 2; 所以g(x)在(0,e 2)上单调递增,在(e 2,+∞)上单调递减。

2020年高考模拟试卷安徽芜湖市(3月份)高考数学仿真模拟测试试卷(文科) 含答案

2020年高考模拟试卷安徽芜湖市(3月份)高考数学仿真模拟测试试卷(文科) 含答案

2020年高考模拟试卷高考数学仿真模拟试卷(文科)(3月份)一、选择题1.集合A={x|﹣3<x≤2},B={0,1,2,3,4},则A∩B=()A.{0,1}B.{0,1,2}C.C、{﹣1,0,1,2}D.{2}2.如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.﹣6B.C.D.23.某课外小组为了了解什么样的活动最能促进同学们进行垃圾分类,随机对该校同学进行问卷调查,根据调查结果,得到如图所示的统计图,已知每个回答该问卷的同学都只能在问卷的五个选项中选择一个,以下结论错误的是()A.回答该问卷的总人数不可能是100B.回答该问卷的同学中,选择“设置分类明确的垃圾桶”的人数最多C.回答该问卷的同学中,选择“学校团委会宣传”的人数最少D.回答该问卷的同学中,选择播放“播放公益广告”的人数比选择“学校要求”的人数少84.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A.B.C.D.5.已知P(,)为双曲线C:x2﹣=1(b>0)上一点,则点P到双曲线C的渐近线的距离为()A.B.或C.D.或6.如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是()A.①④B.②③C.②④D.①②7.实数x,y满足不等式组,若z=3x+y的最大值为5,则正数m的值为()A.2B.C.10D.8.函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.9.已知椭圆的右顶点为A,左、右焦点分别为F1(﹣c,0),F2(c,0),B(﹣a,a),C(﹣a,﹣a),过A,B,C三点的圆与直线相切,则此椭圆的离心率为()A.B.C.D.10.已知将曲线y=sin(2x+)向左平移φ(φ>0)个单位长度后,得到的曲线y=g(x)经过点(﹣,1),有下列四个结论:①函数g(x)的最小正周期T=π;②函数g(x)在[,]上单调递增;③曲线y=g(x)关于直线x=;④曲线y=g(x)关于点(,0)对称.其中所有正确的结论是()A.①②④B.②④C.①④D.①③11.△ABC的内角A,B,C的对边分别为a,b,c,已知b=a(cos C+sin C),a=2,c=,则角C=()A.B.C.D.12.已知函数(其中无理数e=2.718…),关于x的方程有四个不等的实根,则实数λ的取值范围是()A.B.(2,+∞)C.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量=(2,﹣1),=(1,3),且⊥(+m),则m=.14.已知函数f(x)=e x﹣x2的图象在点(1,f(1))处的切线过点(0,a),则a=.15.已知tan(+α)=﹣2,则=.16.已知点A,B,C,D在同一个球的球面上,,若四面体ABCD的体积为,球心O恰好在棱DA上,则这个球的表面积为.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项的和为S n,满足a2=1,6S n=3a n+1﹣1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a2n,数列{b n}的前n项和与积分别为R n与T n,求R n与T n.18.某省确定从2021年开始,高考采用“3+1+2”的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目;“1”表示从物理、历史中任选一门:“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取n名学生进行调查(1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的n名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的2×2列联表,请将列联表补充完整,并判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由性别选择物理选择历史总计男生50女生30总计(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率附:,其中n=a+d+c+dP(K2≥k0)0.1000.0500.0250.0100.0050.001 K0 2.706 3.841 5.024 6.6357.87910.828 19.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PBC⊥平面ABCD,PB⊥PD.(1)证明:平面PAB⊥平面PCD;(2)若PB=PC,E为棱CD的中点,∠PEA=90°,BC=2,求四面体A﹣PED的体积.20.已知f(x)=sin x﹣ax2+2a.(1)若函数f(x)的图象在点(0,f(0))处的切线过点P(1,2),求a的值;(2)当a∈[,1]时,求证:f(x)<.21.已知抛物线C:y2=2px的焦点为F,抛物线C上的点M(2,y0)到F的距离为3.(Ⅰ)求抛物线C的方程;(Ⅱ)斜率存在的直线l与抛物线相交于相异两点A(x1,y1),B(x2,y2),x1+x2=4.若AB的垂直平分线交x轴于点G,且=5,求直线l方程.二、选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程是(α是参数).以原点O 为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的直角坐标.[选修4-5:不等式选讲]23.已知f(x)=﹣|x﹣1|.(1)求不等式f(x)<x2的解集;(2)若f(x)的最大值为M,且a2+b2=M,求证:ab≥.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={x|﹣3<x≤2},B={0,1,2,3,4},则A∩B=()A.{0,1}B.{0,1,2}C.C、{﹣1,0,1,2}D.{2}【分析】利用交集的性质求解.解:∵A={x|﹣3<x≤2},B={0,1,2,3,4},∴A∩B={0,1,2}.故选:B.2.如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.﹣6B.C.D.2【分析】先将复数化简,确定其实部和虚部,利用实部和虚部互为相反数,可求b的值.解:由题意,==∵复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数∴∴b=,故选:C.3.某课外小组为了了解什么样的活动最能促进同学们进行垃圾分类,随机对该校同学进行问卷调查,根据调查结果,得到如图所示的统计图,已知每个回答该问卷的同学都只能在问卷的五个选项中选择一个,以下结论错误的是()A.回答该问卷的总人数不可能是100B.回答该问卷的同学中,选择“设置分类明确的垃圾桶”的人数最多C.回答该问卷的同学中,选择“学校团委会宣传”的人数最少D.回答该问卷的同学中,选择播放“播放公益广告”的人数比选择“学校要求”的人数少8【分析】根据统计图,一一判断即可.解:根据题意,里面含有13.5%等,所以不可能100人,从统计图可得最多的是⑤,最少的是③,回答该问卷的同学中,选择播放“播放公益广告”的人数比选择“学校要求”的人数少8%,故D错误,故选:D.4.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A.B.C.D.【分析】设出大正方形的面积,求出阴影部分的面积,从而求出满足条件的概率即可.解:设“东方模板”的面积是4,则阴影部分的三角形面积是1,阴影部分平行四边形的面积是,则满足条件的概率p==,故选:C.5.已知P(,)为双曲线C:x2﹣=1(b>0)上一点,则点P到双曲线C的渐近线的距离为()A.B.或C.D.或【分析】把点P的坐标代入双曲线方程求得b,在利用点到直线距离公式即可求解.解:∵P(,)为双曲线C:x2﹣=1(b>0)上一点,∴,∴.∴双曲线C的渐近线方程为则点P到双曲线C的渐近线的距离为=.故选:B.6.如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是()A.①④B.②③C.②④D.①②【分析】由题意需要从三个角度对正方体进行平行投影,首先确定关键点P、A在各个面上的投影,再把它们连接起来,即,△PAC在该正方体各个面上的射影.解:从上下方向上看,△PAC的投影为①图所示的情况;从左右方向上看,△PAC的投影为④图所示的情况;从前后方向上看,△PAC的投影为④图所示的情况;故选:A.7.实数x,y满足不等式组,若z=3x+y的最大值为5,则正数m的值为()A.2B.C.10D.【分析】由题意作出其平面区域,将z=3x+y化为y=﹣3x+z,z相当于直线y=﹣3x+z 的纵截距,从而解方程可求出m,即可.解:由题意作出实数x,y满足不等式组的平面区域,将z=3x+y化为y=﹣3x+z,z相当于直线y=﹣3x+z的纵截距,故结合图象可得,,解得,x=1,y=2;故m=2;故选:A.8.函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.【分析】根据函数奇偶性,对称性,单调性和最值之间的关系进行判断即可.解:f(﹣x)==﹣=﹣f(x),则函数f(x)是奇函数,则图象关于原点对称,故排除D.当x∈(0,π)时,f′(x)=,则当x∈(0,)时,f′(x)>0,函数f(x)为增函数,x∈(,π)时,f′(x)<0,函数f(x)为减函数,则当x=时,f(x)取得极大值同时也是最大值f()==<1,故选:A.9.已知椭圆的右顶点为A,左、右焦点分别为F1(﹣c,0),F2(c,0),B(﹣a,a),C(﹣a,﹣a),过A,B,C三点的圆与直线相切,则此椭圆的离心率为()A.B.C.D.【分析】画出图形.利用射影定理转化求解离心率即可;另解:设过A,B,C三点的圆的圆心为M(m,0),由|MA|=|MB|,列出方程,转化求解即可.解:射影定理可得:BE2=AE•ED,即,所以即椭圆的离心率.故选:D.另解:设过A,B,C三点的圆的圆心为M(m,0),由|MA|=|MB|得:,解得:,所以,∴.故选:D.10.已知将曲线y=sin(2x+)向左平移φ(φ>0)个单位长度后,得到的曲线y=g(x)经过点(﹣,1),有下列四个结论:①函数g(x)的最小正周期T=π;②函数g(x)在[,]上单调递增;③曲线y=g(x)关于直线x=;④曲线y=g(x)关于点(,0)对称.其中所有正确的结论是()A.①②④B.②④C.①④D.①③【分析】根据三角函数的变化关系求出函数的解析式,结合三角函数的周期性,对称性,以及单调性分别进行判断即可.解:将曲线y=sin(2x+)向左平移φ(φ>0)个单位长度后,得到y=sin[2(x+φ)+]=sin(2x+2φ+),∵y=g(x)经过点(﹣,1),∴sin[2×(﹣)+2φ+]=sin(﹣+2φ+)=sin2φ=1,即2φ=2kπ+,则g(x)=sin(2x+2φ+)=sin(2x+2kπ++)=sin(2x++)=cos(2x+),①函数g(x)的最小正周期T==π;故①正确,②当x∈[,]时,2x∈[,],2x+∈[2π,3π],此时函数为减函数,即函数g(x)在[,]上单调递增错误,故②错误;③当x=时,g()=cos(2×+)=cos=0,曲线y=g(x)关于直线x=不正确;故③错误,④当x=时,g()=cos(2×+)=cos=0,曲线y=g(x)关于点(,0)对称,故④正确,故正确的是①④,故选:C.11.△ABC的内角A,B,C的对边分别为a,b,c,已知b=a(cos C+sin C),a=2,c=,则角C=()A.B.C.D.【分析】由正弦定理,两角和的正弦函数公式,同角三角函数基本关系式化简已知等式tan A=,结合范围A∈(0,π),可求sin A的值,进而根据正弦定理可得sin C的值,结合大边对大角可求C为锐角,利用特殊角的三角函数值即可求解.解:∵b=a(cos C+sin C),∴由正弦定理可得:sin B=sin A cos C+sin C sin A,又∵sin B=sin(A+C)=sin A cos C+cos A sin C,∴可得:sin A=cos A,可得:tan A=,∵A∈(0,π),∴A=,可得:sin A=,又∵a=2,c=,∴由正弦定理可得:sin C===,∵c<a,C为锐角,∴C=.故选:D.12.已知函数(其中无理数e=2.718…),关于x的方程有四个不等的实根,则实数λ的取值范围是()A.B.(2,+∞)C.D.【分析】求导数,确定函数的单调性,可得x=2时,函数取得极小值,关于x的方程有四个相异实根,则t+=λ的一根在(0,),另一根在(,+∞)之间,再由对勾函数的单调性即可得出结论.解:由题意,函数的导数为f′(x)=,∴0<x<2时,f′(x)<0,函数f(x)单调递减,x<0或x>2时,f′(x)>0,函数单调递增,∴x=2时,函数取得极小值,关于x的方程x的方程有四个相异实根,设t=,则t+=λ的一根在(0,),另一根在(,+∞)之间,∴y=t+在t=处取得最小值+,∴λ>+,故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量=(2,﹣1),=(1,3),且⊥(+m),则m=5.【分析】根据平面向量的坐标运算与数量积运算,列方程求出m的值.解:向量=(2,﹣1),=(1,3),且⊥(+m),∴•(+m)=+m•=0,即22+(﹣1)2+m(2﹣3)=0,解得m═5.故答案为:5.14.已知函数f(x)=e x﹣x2的图象在点(1,f(1))处的切线过点(0,a),则a=1.【分析】求得函数f(x)的导数,可得切线的斜率,由两点的斜率公式,解方程可得a 的值.解:函数f(x)=e x﹣x2的导数为f′(x)=e x﹣2x,函数f(x)=e x﹣x2的图象在点(1,f(1))处的切线的斜率为e﹣2,切点为(1,e﹣1),由切线过点(0,a),可得:e﹣2=,解得a=1,故答案为:1.15.已知tan(+α)=﹣2,则=.【分析】由已知求得tanα,把要求值的式子化弦为切求解.解:由tan(+α)===﹣2,得tanα=3,∴===.故答案为:.16.已知点A,B,C,D在同一个球的球面上,,若四面体ABCD的体积为,球心O恰好在棱DA上,则这个球的表面积为16π.【分析】确定△ABC外接圆直径为AC,由四面体ABCD中球心O恰好在侧棱DA上,V==,可得D到面ABC的距离为2,即可得球半径R=AO=即可.解:∵点A,B,C,D在同一个球的球面上,AB=BC=,AC=2,∴AB2+BC2=AC2,∴AB⊥BC,∴△ABC外接圆直径为AC,圆心O1是AC中点,∵四面体ABCD中球心O恰好在侧棱DA上,∵四面体ABCD的体积为,∴V==,∴h=2,即D到面ABC的距离为2,∴球心O到面ABC的距离为.∴球半径R=AO=,∴这个球的表面积S=4πR2=4π×22=16π.故答案为:16π.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项的和为S n,满足a2=1,6S n=3a n+1﹣1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a2n,数列{b n}的前n项和与积分别为R n与T n,求R n与T n.【分析】(Ⅰ)a2=1,6S n=3a n+1﹣1.n=1时,6a1=3a2﹣1,解得a1.n≥2时,6a n =6S n﹣6S n﹣1.化为:a n+1=3a n,n=1时满足.利用等比数列的通项公式即可得出.(Ⅱ)b n=a2n=32n﹣2=9n﹣1.分别利用等差数列与等比数列的求和公式即可得出.解:(Ⅰ)∵a2=1,6S n=3a n+1﹣1.∴n=1时,6a1=3a2﹣1,解得a1=.n≥2时,6a n=6S n﹣6S n﹣1=3a n+1﹣1﹣(3a n﹣1).化为:a n+1=3a n,n=1时满足.∴数列{a n}是等比数列,首项为,公比为3.∴=3n﹣2.(Ⅱ)b n=a2n=32n﹣2=9n﹣1.∴R n==.T n=90+1+2+……+(n﹣1)==.18.某省确定从2021年开始,高考采用“3+1+2”的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目;“1”表示从物理、历史中任选一门:“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取n名学生进行调查(1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的n名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的2×2列联表,请将列联表补充完整,并判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由性别选择物理选择历史总计男生6050110女生306090总计90110200(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率附:,其中n=a+d+c+dP(K2≥k0)0.1000.0500.0250.0100.0050.001 K0 2.706 3.841 5.024 6.6357.87910.828【分析】(1)根据题意列方程求出n的值,再求出女生人数;(2)根据题意填写列联表,计算K2的值,对照临界值得出结论;(3)利用分层抽样法和列举法,求出基本事件数,计算所求的概率值.解:(1)根据题意知,=,解得n=200,所以女生人数为200﹣110=90(人);(2)根据题意填写列联表如下,性别选择物理选择历史总计男生6050110女生306090总计90110200计算K2=≈8.999>7.879,所以有99.5%的把握认为选择科目与性别有关;(3)从90个选择“物理”的学生中按分层抽样抽取6人,这这6名学生中有4名男生,记为a、b、c、d,2名女生,记为E、F,从这6人中抽取2人,基本事件为:ab、ac、ad、aE、aF、bc、bd、bE、bF、cd、cE、cF、dE、dF、EF共15种;抽取的2人中至少有1名女生的基本事件为:aE、aF、bE、bF、cE、cF、dE、dF、EF共9种;故所求的概率为P==.19.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PBC⊥平面ABCD,PB⊥PD.(1)证明:平面PAB⊥平面PCD;(2)若PB=PC,E为棱CD的中点,∠PEA=90°,BC=2,求四面体A﹣PED的体积.【分析】(1)由四边形ABCD是矩形,可得CD⊥BC.再由已知结合面面垂直的性质可得CD⊥平面PBC,进一步得到CD⊥PB.再由PB⊥PD,利用线面垂直的判定可得PB⊥面PCD,进一步得到平面PAB⊥平面PCD;(2)取BC的中点O,连接OP、OE.由PB⊥平面PCD,可得PB⊥PC,求得OP,然后求解三角形可得ED,再求出三角形AED的面积,利用等积法即可求得四面体A﹣PED 的体积.【解答】(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD⊂平面ABCD,∴CD⊥平面PBC,则CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD⊂平面PCD,∴PB⊥平面PCD.∵PB⊂平面PAB,∴平面PAB⊥平面PCD;(2)解:取BC的中点O,连接OP、OE.∵PB⊥平面PCD,∴PB⊥PC,∴,∵PB=PC,∴PO⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,PO⊂平面PBC,∴PO⊥平面ABCD,∵AE⊂平面ABCD,∴PO⊥AE.∵∠PEA=90°,∴PE⊥AE.∵PO∩PE=P,∴AE⊥平面POE,则AE⊥OE.∵∠C=∠D=90°,∴∠OEC=∠EAD,∴Rt△OCE~Rt△EDA,则.∵OC=1,AD=2,CE=ED,∴,∴=.20.已知f(x)=sin x﹣ax2+2a.(1)若函数f(x)的图象在点(0,f(0))处的切线过点P(1,2),求a的值;(2)当a∈[,1]时,求证:f(x)<.【分析】(1)先对函数求导,然后结合导数的几何意义及已知直线的斜率公式即可求解a;(2)要证:f(x)<即证sin x﹣ax2+2a﹣<0,构造函数g(a)=(2﹣x2)a+sin x ﹣,a∈[,1],结合一次函数的性质,只要证g()<0,g(1)<0,结合函数的性质及导数即可证明.解:(1)f′(x)=cos x﹣2ax,因为函数f(x)的图象在点(0,f(0))处的切线过点P(1,2),所以切线的斜率k=f′(0)=1=,所以a=;(2)要证:f(x)<即证sin x﹣ax2+2a﹣<0,令g(a)=(2﹣x2)a+sin x﹣,a∈[,1],因为g()=sin x﹣x2﹣,故只要证明g(1)=sin x﹣x2<0,令h(x)=sin x﹣x2,则h′(x)=cos x﹣2x,因为h′(x)在(0,)上单调递减,且h′(0)>0,=<0,故存在使得cos x0﹣2x0=0,则x∈(0,x0)时,h′(x)>0,函数单调递增,当x时,h′(x)<0,函数单调递减,所以h(x)≤h(x0)=sin x0﹣=sin x0﹣=,=﹣<0,∴g(1)=sin x﹣x2<0,根据一次函数的性质可得,当a∈[,1]时,f(x)<.21.已知抛物线C:y2=2px的焦点为F,抛物线C上的点M(2,y0)到F的距离为3.(Ⅰ)求抛物线C的方程;(Ⅱ)斜率存在的直线l与抛物线相交于相异两点A(x1,y1),B(x2,y2),x1+x2=4.若AB的垂直平分线交x轴于点G,且=5,求直线l方程.【分析】(Ⅰ)由抛物线定义知MF=2+=3,⇒p=2.即可得抛物线方程.(Ⅱ)设AB中点坐标(2,m),=,由得y2﹣2my+2m2﹣8=0,其中△>0得到m2<8,.AB的垂直平分线方程为:y﹣m=﹣,可得G(4,0),,.由=5 可得m=,即可.解:(Ⅰ)由抛物线定义知MF=2+所以2+=3,⇒p=2.所以,抛物线方程为y2=4x.(Ⅱ)设AB中点坐标(2,m),直线l的斜率存在,所以m≠0,=,所以直线AB方程为:y﹣m=,即2x﹣my+m2﹣4=0.由得y2﹣2my+2m2﹣8=0,其中△>0得到m2<8,.AB的垂直平分线方程为:y﹣m=﹣,,令y=0,得x=4,所以G(4,0),,.因为=5,所以(x1﹣4)(x2﹣4)+y1y2=5.x1x2﹣4(x1+x2)+16+y1y2=5,③,把②代入③得((m2﹣4)2+8(m2﹣4)﹣20=0,(m2+6)(m2﹣6)=0,m2=6<8,m=,所以,直线l方程为2x﹣或2x+.二、选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程是(α是参数).以原点O 为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的直角坐标.【分析】(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcosθ、y=ρsinθ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y﹣8=0的距离为,可得d的最小值,以及此时的α的值,从而求得点P的坐标.解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.[选修4-5:不等式选讲]23.已知f(x)=﹣|x﹣1|.(1)求不等式f(x)<x2的解集;(2)若f(x)的最大值为M,且a2+b2=M,求证:ab≥.【分析】(1)对x讨论,分x<0,0<x<1,x≥1,去绝对值,结合二次不等式的解法,求并集可得所求解集;(2)由分段函数的最值求法,可得M,再由重要不等式结合绝对值不等式的解法,即可得证.解:(1)不等式f(x)<x2即为﹣|x﹣1|<x2,可得或或,即有x>1或x∈∅或x<0,综上可得原不等式的解集为(﹣∞,0)∪(1.+∞);(2)证明:当x≥1时,f(x)=2﹣x,此时f(x)≤1;当0<x<1时,f(x)=x∈(0,1);当x<0时,f(x)=x﹣2,此时f(x)<﹣2,可得f(x)的最大值为1,即a2+b2=1,由a2+b2≥2|ab|,可得﹣≤ab≤,故ab≥﹣.。

2020届安徽省芜湖市高三高考(文科)数学仿真模拟卷(一)含解析

2020届安徽省芜湖市高三高考(文科)数学仿真模拟卷(一)含解析

2020届安徽省芜湖市高三高考(文科)数学仿真模拟卷(一)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A={x|-3<x≤2},B={0,1,2,3,4},则A∩B=A.{0,1}B.{0,1,2}C.{-1,0,1,2}D.{2}2.如果复数212bii-+(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于A.-6B.23C.-23D.23.某课外小组为了了解什么样的活动最能促进同学们进行垃圾分类,随机对该校同学进行问卷调查,根据调查结果,得到如图F1-1所示的统计图,已知每个回答该问卷的同学都只能在问卷的五个选项中选择一个,以下结论错误的是A.回答该问卷的总人数不可能是100B.回答该问卷的同学中,选择“设置分类明确的垃圾桶”的人数最多C.回答该问卷的同学中,选择“学校团委会宣传”的人数最少D.回答该问卷的同学中,选择播放“播放公益广告”的人数比选择“学校要求”的人数少84.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的。

如图F1-2是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为A.932B.516C.38D.7165.已知)为双曲线C:2221(0)yx bb-=>上一点,则点P到双曲线C的渐近线的距离为6.如图F1-3,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的正投影可能是A.①②B.①④C.②③D.②④7.已知实数x ,y 满足()20200x y x y y y m ⎧-≤⎪+≥⎨⎪-≤⎩,若z =3x +y 的最大值为5,则正实数m 的值为A.2B.12C.10D.1108.函数f(x)=2sin x x e在[-π,π],上的图像大致为9.已知椭圆22221(0)x y a b a b+=>>的右顶点为A ,左、右焦点分别为F 1(-c ,0),F 2(c ,0),且B(-a ,a),C(-a ,-a),若过A ,B ,C 三点的圆与直线x =2a c-相切,则此椭圆的离心率为 A.13 B.12C.2D.2310.已知将曲线y =sin(2x +6π)向左平移φ(φ>0)个单位长度后,得到的曲线y =g(x)经过点(12π-,1),有下列四个结论:其中所有正确的结论是①函数g(x)的最小正周期T =π;②函数g(x)在[1112π,1712π]上单调递增; ③曲线y =g(x)关于直线x =6π对称;④曲线y =g(x)关于点(23π,0)对称。

2020年安徽省高考数学(文科)模拟试卷(3)

2020年安徽省高考数学(文科)模拟试卷(3)

2020年安徽省高考数学(文科)模拟试卷(3)一.选择题(共12小题,满分60分,每小题5分)1.(5分)已知集合A={x∈N|x>1},B={x|x<5},则A∩B=()A.{x|1<x<5}B.{x|x>1}C.{2,3,4}D.{1,2,3,4,5}2.(5分)设i为虚数单位,复数z=2+3ii,则z的共轭复数是()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i3.(5分)如图,设点A是单位圆上的一定点,动点P由点A出发在圆上按逆时针方向旋转一周,点P旋转过的弧AP̂为l,弦AP为d则函数d=f(l)的图象是()A.B.C.D.4.(5分)函数f(x)=(3x﹣3﹣x)log3x2的图象大致为()A.B.C.D.5.(5分)为了推进课堂改革,提高课堂效率,银川一中引进了平板教学,开始推进“智慧课堂”改革.学校教务处为了了解我校高二年级同学平板使用情况,从高二年级923名同学中抽取50名同学进行调查.先用简单随机抽样从923人中剔除23人,剩下的900人再按系统抽样方法抽取50人,则在这923人中,每个人被抽取的可能性()A .都相等,且为118B .不全相等C .都相等,且为50923D .都不相等6.(5分)sin20°cos20°cos50°=( ) A .2B .12C .√2D .√227.(5分)已知a =21.2,b =30.4,c =ln 83,则( ) A .b >a >cB .a >b >cC .b >c >aD .a >c >b8.(5分)如图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是( )A .i >5B .i ≤4C .i >4D .i ≤59.(5分)同时抛掷两个质地均匀的骰子,向上的点数之和小于5的概率为( ) A .19B .16C .118D .51210.(5分)在△ABC 中,A ,B ,C 所对应边分别为a ,b ,c ,已知a 2+b 2﹣c 2=√3ab ,且bc sin A =2sin C ,则△ABC 的面积为( ) A .1B .12C .√32D .√3411.(5分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴长为2,过右焦点F 且斜率为k (k >0)的直线与椭圆C 相交于A 、B 两点.若AF →=3FB →,则k =( ) A .1B .√2C .√3D .212.(5分)已知函数f (x )=A sin (ωx +φ)(A >0,0<ω<4,−π2<φ<π2)的部分图象如图所示,则下列说法正确的个数为①f (x )的最小正周期为2π②f (x )在(π2,3π4)内单调递减③x =−3π4是f (x )的一条对称轴 ④(2π3,0)是f (x )的一个对称中心( )A .3B .2C .1D .0二.填空题(共4小题,满分20分,每小题5分)13.(5分)曲线f (x )=2sin x 在x =π3处的切线与直线ax +y ﹣1=0垂直,则a = . 14.(5分)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的实轴长为8,右焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF ,O 为坐标原点,若S △OMF =6,则双曲线C 的离心率为 .15.(5分)已知向量a →=(2,﹣1),b →=(1,3),且a →⊥(a →+m b →),则m = . 16.(5分)已知三棱锥P ﹣ABC 中,P A ⊥平面ABC ,P A =BC =2,∠BAC =π2,则三棱锥P ﹣ABC 的外接球的表面积为 .三.解答题(共5小题,满分60分,每小题12分)17.(12分)已知等差数列{a n }的前n 项和为S n ,a 1=1,且S 4=a 4+a 5. (1)求a n ;(2)求数列{an 2n }的前n 项和T n .18.(12分)某地区在“精准扶贫”工作中切实贯彻习近平总书记提出的“因地制宜”的指导思想,扶贫工作小组经过多方调研,综合该地区的气候、地质、地理位置等特点,决定向当地农户推行某类景观树苗种植.工作小组根据市场前景重点考察了A ,B 两种景观树苗,为对比两种树苗的成活率,工作小组进行了引种试验,分别引种树苗A ,B 各50株,试验发现有80%的树苗成活,未成活的树苗A ,B 株数之比为1:3.(1)完成2×2列联表,并据此判断是否有99%的把握认为树苗A ,B 的成活率有差异?A B 合计 成活株数 未成活株数合计5050100K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)P(K2≥k0)0.050.0100.0050.001k0 3.841 6.6357.87910.828(2)已知树苗A经引种成活后再经过1年的生长即可作为景观树A在市场上出售,但每株售价y(单位:百元)受其树干的直径x(单位:cm)影响,扶贫工作小组对一批已出售的景观树A的相关数据进行统计,得到结果如表:直径x1015202530单株售价y48101627根据上述数据,判断是否可用线性回归模型拟合y与x的关系?并用相关系数r加以说明.(一般认为,|r|>0.75为高度线性相关)参考公式及数据:相关系数r=∑n i=1i−x)(y i−y)√∑i=1i −x)2√∑i=1i−y)2,∑5i=1(x i−x)2=250,∑5i=1(y i−y)2=32019.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是边长为4的菱形,P A=PC=5,点M,N分别是AB,PC的中点.(1)求证:MN∥平面P AD;(2)若cos∠PCD=45,∠DAB=60°,求三棱锥P﹣ADN的体积.20.(12分)已知函数f(x)=2lnx+12ax2+(2a+1)x,a∈R.(1)讨论f(x)的单调性;(2)当a<0时,证明:f(x)≤−52a−4.21.(12分)如图,设抛物线方程为x2=2py(p>0),M为直线y=﹣2p上任意一点,过M引抛物线的切线,切点分别为A ,B . (Ⅰ)求直线AB 与y 轴的交点坐标;(Ⅱ)若E 为抛物线弧AB 上的动点,抛物线在E 点处的切线与三角形MAB 的边MA ,MB 分别交于点C ,D ,记λ=S △EABS △MCD,问λ是否为定值?若是求出该定值;若不是请说明理由.四.解答题(共1小题,满分10分,每小题10分)22.(10分)在平面直角坐标系x 0y 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m3k(m 为参数).设直线l 1与l 2的交点为P .当k 变化时点P 的轨迹为曲线C 1.(Ⅰ)求出曲线C 1的普通方程;(Ⅱ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=3√2,点Q 为曲线C 1上的动点,求点Q 到直线C 2的距离的最大值. 五.解答题(共1小题)23.已知f (x )=|2x ﹣1|+|x +a |(a ∈R ). (1)若a =1,求不等式f (x )>2的解集; (2)若存在x 0∈R ,对任意m ∈(0,1)恒有1m+41−m>f(x 0),求实数a 的取值范围.2020年安徽省高考数学(文科)模拟试卷(3)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)已知集合A={x∈N|x>1},B={x|x<5},则A∩B=()A.{x|1<x<5}B.{x|x>1}C.{2,3,4}D.{1,2,3,4,5}【解答】解:∵集合A={x∈N|x>1},B={x|x<5},∴A∩B={x∈N|1<x<5}={2,3,4}.故选:C.2.(5分)设i为虚数单位,复数z=2+3ii,则z的共轭复数是()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i【解答】解:∵z=2+3ii=(2+3i)(−i)−i2=3−2i,∴z=3+2i.故选:B.3.(5分)如图,设点A是单位圆上的一定点,动点P由点A出发在圆上按逆时针方向旋转一周,点P旋转过的弧AP̂为l,弦AP为d则函数d=f(l)的图象是()A.B.C.D.【解答】解:取AP的中点为D,设∠DOA=θ,则d=2sinθ,l=2θR=2θ,∴θ=l 2∴d=2sin l2,根据正弦函数的图象知,C中的图象符合解析式.故选:C.4.(5分)函数f (x )=(3x ﹣3﹣x )log 3x 2的图象大致为( )A .B .C .D .【解答】解:根据题意,函数f (x )=(3x ﹣3﹣x )log 3x 2,其定义域为{x |x ≠0}, 且f (﹣x )=(3x ﹣3﹣x )log 3x 2=﹣(3x ﹣3﹣x )log 3x 2)=﹣f (x ),即函数f (x )为奇函数,排除A 、C ,又由x →0时,(3x ﹣3﹣x )→0,则f (x )→0,排除D ;故选:B .5.(5分)为了推进课堂改革,提高课堂效率,银川一中引进了平板教学,开始推进“智慧课堂”改革.学校教务处为了了解我校高二年级同学平板使用情况,从高二年级923名同学中抽取50名同学进行调查.先用简单随机抽样从923人中剔除23人,剩下的900人再按系统抽样方法抽取50人,则在这923人中,每个人被抽取的可能性( ) A .都相等,且为118B .不全相等C .都相等,且为50923D .都不相等【解答】解:根据系统抽样的定义和方法,它和简单随机抽样的概率是一样的,都是50923,故选:C . 6.(5分)sin20°cos20°cos50°=( ) A .2B .12C .√2D .√22【解答】解:根据题意,原式=sin20°cos20°cos50°=12×2sin20°cos20°cos50°=12×sin40°cos50°=12;故选:B .7.(5分)已知a =21.2,b =30.4,c =ln 83,则( ) A .b >a >cB .a >b >cC .b >c >aD .a >c >b【解答】解:由题意得:a =21.2∈(2,4),b =30.4∈(1,√3),c =ln 83<lne =1. ∴a >b >c , 故选:B .8.(5分)如图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是( )A .i >5B .i ≤4C .i >4D .i ≤5【解答】解:由题意输出的S =1+1×2+1×22+1×23+1×24, 按照程序运行:S =1,i =1,不应此时输出S , S =1+1×2,i =2;不应此时输出S , S =1+1×2+1×22,i =3;不应此时输出S , S =1+1×2+1×22+1×23,i =4;不应此时输出S ,S =1+1×2+1×22+1×23+1×24,i =5,此时跳出循环输出结果, 故判断框内的条件应为i >4. 故选:C .9.(5分)同时抛掷两个质地均匀的骰子,向上的点数之和小于5的概率为( ) A .19B .16C .118D .512【解答】解:同时抛掷两个质地均匀的骰子, 基本事件总数n =6×6=36,向上的点数之和小于5包含的基本事件有:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个, ∴向上的点数之和小于5的概率为p =636=16.故选:B .10.(5分)在△ABC 中,A ,B ,C 所对应边分别为a ,b ,c ,已知a 2+b 2﹣c 2=√3ab ,且bc sin A =2sin C ,则△ABC 的面积为( ) A .1B .12C .√32D .√34【解答】解:△ABC 中,A ,B ,C 所对应边分别为a ,b ,c ,已知a 2+b 2﹣c 2=√3ab ,所以cosC =a 2+b 2−c 22ab=√32, 由于0<C <π,所以C =π6,所以S △ABC =12bcsinA =12×2sinC =12. 故选:B .11.(5分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴长为2,过右焦点F 且斜率为k (k >0)的直线与椭圆C 相交于A 、B 两点.若AF →=3FB →,则k =( ) A .1B .√2C .√3D .2【解答】解:椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴长为2,可得b =1,ca =√32,解得a =2,c =√3,b =1,x 24+y 2=1 右焦点F 且斜率为k (k >0)的直线与椭圆C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),∵AF →=3FB →, ∴y 1=﹣3y 2,设直线AB 方程为y =k (x −√3), 代入x 24+y 2=1,消去x ,可得(14k 2+1)y 2+√32ky −14=0,∴y 1+y 2=−√32k1+14k2=−2√3k 1+4k2,y 1y 2=−141+14k2=−k24k 2+1, ﹣2y 2=−2√3k 1+4k2,﹣3y 22=−k24k 2+1,解得:k =√2. 故选:B .12.(5分)已知函数f (x )=A sin (ωx +φ)(A >0,0<ω<4,−π2<φ<π2)的部分图象如图所示,则下列说法正确的个数为①f (x )的最小正周期为2π②f (x )在(π2,3π4)内单调递减 ③x =−3π4是f (x )的一条对称轴 ④(2π3,0)是f (x )的一个对称中心( )A .3B .2C .1D .0【解答】解:由函数f (x )=A sin (ωx +φ)的部分图象知,A =2, 又f (0)=2sin φ=−√3,所以sin φ=−√32; 又−π2<φ<π2,所以φ=−π3; 又f (−π3)=2sin[ω×(−π3)−π3]=0, 所以sin (π3ω+π3)=0,所以π3ω+π3=k π,k ∈Z ;又0<ω<4,所以ω=2; 所以f (x )=2sin (2x −π3);所以f (x )的最小正周期为T =2π2=π,①错误; 当x ∈(π2,3π4)时,2x −π3∈(2π3,7π6),f (x )在(π2,3π4)内单调递减,②正确; f (−3π4)=2sin[2×(−3π4)−π3]=﹣2sin 11π6=1,所以x =−3π4不是f (x )的一条对称轴,③错误; f (2π3)=2sin (2×2π3−π3)=2sin π=0,所以(2π3,0)是f (x )的一个对称中心,④错误.综上知,正确的命题序号是②④,共2个. 故选:B .二.填空题(共4小题,满分20分,每小题5分)13.(5分)曲线f (x )=2sin x 在x =π3处的切线与直线ax +y ﹣1=0垂直,则a = 1 . 【解答】解:∵f ′(x )=2cos x , ∴f ′(π3)=2cos π3=1, ∵切线与直线ax +y ﹣1=0垂直, 所以﹣a =﹣1 ∴a =1. 故答案为:1.14.(5分)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的实轴长为8,右焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF ,O 为坐标原点,若S △OMF =6,则双曲线C 的离心率为54.【解答】解:由题意可得a =4,双曲线的一条渐近线方程为bx ﹣ay =0,F (c ,0), 可得|MF |=√b +a 2=b ,在直角三角形OMF 中,可得|OM |=√|OF|2−|MF|2=√c 2−b 2=a , 则△OMF 的面积为12ab =2b =6,可得b =3,c =√a 2+b 2=5,则e =c a =54. 故答案为:54.15.(5分)已知向量a →=(2,﹣1),b →=(1,3),且a →⊥(a →+m b →),则m = 5 . 【解答】解:向量a →=(2,﹣1),b →=(1,3), 且a →⊥(a →+m b →),∴a →•(a →+m b →)=a →2+m a →•b →=0, 即22+(﹣1)2+m (2﹣3)=0, 解得m ═5. 故答案为:5.16.(5分)已知三棱锥P ﹣ABC 中,P A ⊥平面ABC ,P A =BC =2,∠BAC =π2,则三棱锥P﹣ABC 的外接球的表面积为 8π . 【解答】解:将三棱锥还原成直三棱柱,则三棱柱的外接球即为求O ,D ,D ′,为上下底面的外心,O 为DD ′的中点,AD 为底面外接圆的半径, 由正弦定理可得:2AD =2sin π2=2;由OD =1,AD =1;得R =AO =√2, 所以球O 的表面积为:4πR 2=8π. 故答案为:8π.三.解答题(共5小题,满分60分,每小题12分)17.(12分)已知等差数列{a n }的前n 项和为S n ,a 1=1,且S 4=a 4+a 5. (1)求a n ;(2)求数列{an 2n }的前n 项和T n .【解答】解:(1)设公差为d ,由S 4=a 4+a 5,得4a 1+4×32d =a 1+3d +a 1+4d ,即4+6d =2+7d ,解得d =2,所以,a n =1+2(n ﹣1)=2n ﹣1; (2)a n 2=2n−12,可得T n =12+322+523+⋯+2n−12n ,两边同乘以12,有12T n =12+32+52+⋯+2n−12, 两式相减,得T n −12T n =12+222+223+224+⋯+22n −2n−12n+1=12+2×14(1−12n−1)1−12−2n−12n+1=32−2n+32n+1.所以,T n =3−2n+32n . 18.(12分)某地区在“精准扶贫”工作中切实贯彻习近平总书记提出的“因地制宜”的指导思想,扶贫工作小组经过多方调研,综合该地区的气候、地质、地理位置等特点,决定向当地农户推行某类景观树苗种植.工作小组根据市场前景重点考察了A ,B 两种景观树苗,为对比两种树苗的成活率,工作小组进行了引种试验,分别引种树苗A,B各50株,试验发现有80%的树苗成活,未成活的树苗A,B株数之比为1:3.(1)完成2×2列联表,并据此判断是否有99%的把握认为树苗A,B的成活率有差异?A B合计成活株数未成活株数合计5050100K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)P(K2≥k0)0.050.0100.0050.001k0 3.841 6.6357.87910.828(2)已知树苗A经引种成活后再经过1年的生长即可作为景观树A在市场上出售,但每株售价y(单位:百元)受其树干的直径x(单位:cm)影响,扶贫工作小组对一批已出售的景观树A的相关数据进行统计,得到结果如表:直径x1015202530单株售价y48101627根据上述数据,判断是否可用线性回归模型拟合y与x的关系?并用相关系数r加以说明.(一般认为,|r|>0.75为高度线性相关)参考公式及数据:相关系数r=∑n i=1i−x)(y i−y)√∑i=1i −x)2√∑i=1i−y)2,∑5i=1(x i−x)2=250,∑5i=1(y i−y)2=320【解答】解:(1)由题意填写列联表如下;A B合计成活株数453580未成活株数51520合计5050100由表中数据,计算K2=100×(45×15−5×35)280×20×50×50=6.25<6.635,所以没有99%的把握认为二者有差异;(2)由题意计算x=15×(10+15+20+25+30)=20,y=15×(4+8+10+16+27)=13;所以相关系数为r=250×320=202≈0.95>0.75;所以可以用线性回归模型拟合.19.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是边长为4的菱形,P A=PC=5,点M,N分别是AB,PC的中点.(1)求证:MN∥平面P AD;(2)若cos∠PCD=45,∠DAB=60°,求三棱锥P﹣ADN的体积.【解答】(1)证明:取PD的中点H,连接NH,AH,∵N是PC的中点,∴NH∥DC,NH=12 DC,又AM∥DC,AM=12DC,∴NH∥AM且NH=AM,∴四边形AMNH为平行四边形,则MN∥AH,又MN⊄平面P AD,AH⊂平面P AD,∴MN∥平面P AD;(2)解:∵PC=5,DC=4,cos∠PCD=4 5,∴PD2=25+16−2×5×4×45=9,则PC2=PD2+DC2,∴PD⊥DC,同理PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD,又MN∥平面P AD,∴V P﹣ADN=V N﹣P AD=V M﹣P AD=V P﹣ADM,又∵∠DAB=60°,∴S△ADM=12×4×2×√32=2√3.∴V P−ADN=12×2√3×3=2√3.20.(12分)已知函数f(x)=2lnx+12ax2+(2a+1)x,a∈R.(1)讨论f(x)的单调性;(2)当a<0时,证明:f(x)≤−52a−4.【解答】解法一:(1)因为f(x)=2lnx+12ax2+(2a+1)x,定义域为(0,+∞),所以f′(x)=2x+ax+(2a+1)=(x+2)(ax+1)x.当a≥0时,f'(x)>0,f(x)在(0,+∞)上单调递增,当a<0时,x∈(0,−1a)时,f'(x)>0,f(x)单调递增,x∈(−1a,+∞)时,f'(x)<0,f(x)单调递减.综上所述:当a≥0时,f(x)在(0,+∞)上单调递增;当a<0时,f(x)在(0,−1a)上单调递增,在(−1a,+∞)上单调递减.(2)由(1)可知,当a<0时,f(x)在(0,−1a)上单调递增,在(−1a,+∞)上单调递减.所以f(x)max=f(−1a)=2ln(−1a)−12a−2.要证f(x)≤−52a−4,只要证2ln(−1a)−12a−2≤−52a−4,即证ln(−1a)+1a+1≤0.令t=−1a,即证lnt+t+1≤0在t>0上成立.令g(t)=lnt﹣t+1,即证g(t)≤0.因为g′(t)=1t−1,所以g(t)在(0,1).上单调递增,在(1,+∞)上单调递减.所以g(t)≤g(1)=0,命题得证.解法二:(1)同解法.(2)由(1)可知,当a<0时,f(x)在(0,−1a)单调递增,在(−1a,+∞)单调递减,所以f(x)max=f(−1a)=2ln(−1a)−12a−2.要证f(x)≤−52a−4,只要证2ln(−1a)−12a−2≤−52a−4,即证ln(−1a)+1a+1≤0.因为g′(a)=−1a−1a2=a+1a2,所以g(a)在(﹣∞,﹣1)上单调递增,在(﹣1,0)上单调递减.所以g(a)≤g(﹣1)=0,命题得证.21.(12分)如图,设抛物线方程为x2=2py(p>0),M为直线y=﹣2p上任意一点,过M 引抛物线的切线,切点分别为A,B.(Ⅰ)求直线AB与y轴的交点坐标;(Ⅱ)若E为抛物线弧AB上的动点,抛物线在E点处的切线与三角形MAB的边MA,MB分别交于点C,D,记λ=S△EABS△MCD,问λ是否为定值?若是求出该定值;若不是请说明理由.【解答】解:(I)设A(x1,y1),B(x2,y2),过A点的切线方程为y−x122p=x1p(x−x1),过B点的切线方程为y−x222p=x2p(x−x2),联立这两个方程可得x M=x2+x12,y M=x1x22p,又k AB=y2−y1x2−x1=x1+x22p,所以直线AB的方程为:y−x122p=x1+x22p(x﹣x1),化简得(x 1+x 2)x ﹣2py ﹣x 1x 2=0,令x =0,y =−x 1x22p ,又y M =x 1x22p =−2p ,∴y =2p ∴直线AB 过点(0,2p ); (Ⅱ)记x M =x 1+x 22,同理可得x C =x 1+x E 2,x D =x 2+x E2, |AC CM |=|x C−x 1x M−x C |=|x 1+x E 2−x 1||x 1+x 22−x 1+x E 2|=|x E−x 1x 2−x E |,|CEED |=|x E−x c x D−x E |=|x E−x 1+xE 2x 2+x E 2−x E|=|x E−x 1x 2−x E |,∴|AC CM |=|CE ED |,同理|MDDB |=|x E−X C x 2−x E| ∴|AC CM |=|EC DB |=|DM DB|, ∴设|AC CM |=|EC ED |=|DMDB|=t ,记S △MCE =S ,则S △ACE =tS , 同理,S △MDE =S t ,S △BDE =S t2,S △MABS △MCD =|MA||MB||MC||MD|=t+11⋅t+1t =(t+1)2t , 于是S △MAB=(t+1)2t S △MCD =(t+1)2t (S +S t )=(t+1)3t 2S , ∴S △EAB =S △MAB ﹣S △MCD ﹣S △ACE −S △BDE =2(t+1)t S ,S △MCD=t+1tS , ∴λ=S△EAB S △MCD=2.四.解答题(共1小题,满分10分,每小题10分)22.(10分)在平面直角坐标系x 0y 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m3k(m 为参数).设直线l 1与l 2的交点为P .当k 变化时点P 的轨迹为曲线C 1.(Ⅰ)求出曲线C 1的普通方程;(Ⅱ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=3√2,点Q 为曲线C 1上的动点,求点Q 到直线C 2的距离的最大值.【解答】解:(Ⅰ)直线l 1的参数方程为{x =t −√3y =kt (t 为参数),转换为直角坐标方程为y =k(x +√3)①. 直线l 2的参数方程为{x =√3−m y =m 3k(m 为参数).转换为直角坐标方程为y =13k (√3−x)②. 所以①×②得到x 23+y 2=1(y ≠0).(Ⅱ)直线C 2的极坐标方程为ρsin(θ+π4)=3√2,转换为直角坐标方程为x +y ﹣6=0. 设曲线C 1的上的点Q (√3cosθ,sinθ)到直线x +y ﹣8=0的距离d =|√3cosθ+sinθ−6|√2=|2sin(θ+π3)−6|2,当sin(θ+π3)=−1时,d max =8√2=4√2. 五.解答题(共1小题)23.已知f (x )=|2x ﹣1|+|x +a |(a ∈R ). (1)若a =1,求不等式f (x )>2的解集; (2)若存在x 0∈R ,对任意m ∈(0,1)恒有1m+41−m>f(x 0),求实数a 的取值范围.【解答】解:(1)a =1,不等式f (x )>2即为|2x ﹣1|+|x +1|>2, 可得{x ≥122x −1+x +1>2或{−1<x <121−2x +x +1>2或{x ≤−11−2x −x −1>2,解得x >23或﹣1<x <0或x ≤﹣1, 则原不等式的解集为{x |x <0或x >23};(2)f (x )=|2x ﹣1|+|x +a |=|x −12|+|x −12|+|x +a |≥0+|x −12−x ﹣a |=|a +12|, 当x =12时,f (x )取得最小值|a +12|, 存在x 0∈R ,对任意m ∈(0,1)恒有1m+41−m >f(x 0),可得任意m ∈(0,1)恒有1m+41−m>|a +12|,由(m +1﹣m )(1m+41−m)=5+1−m m +4m 1−m ≥5+2√1−m m ⋅4m 1−m =9,当且仅当m =13取得等号,则|a +12|<9,解得−192<a <172.。

安徽省2020年高考文科数学预测题及答案(二)

安徽省2020年高考文科数学预测题及答案(二)

安徽省2020年高考文科数学预测题及答案(二)(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知集合{|1}A x x =<,{|31}xB x =<,则( )A. {}1A B x x ⋃=> B. A B =R C.D. A B ⋂=∅2. 复数2(1)41i z i -+=+的虚部为( )A. 1-B. 3-C. 1D. 23. 已知变量x ,y 之间具有线性相关关系,其散点图如图所示,回归直线l 的方程为,则下列说法正确的是( ) A. B.C.D.4. 设3log a e =,131log 4b =,则( ) A. 1a b >> B. 1a b >> C. 1b a >> D. 1b a >>5.设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.已知tan α =-2,tan(α+β)=17,则tan β的值为( ) A .3 B.-3 C.5 D.-57. 宋元时期数学名着《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n =( )A. 5B. 4C. 3D. 28. 已知抛物线214y x =的焦点F 是椭圆22221(0)y x a b a b+=>>的一个焦点,且该抛物线的准线与椭圆相交于A 、B 两点,若FAB ∆是正三角形,则椭圆的离心率为( )1- 19. 如图,在直三棱柱中,,,点为的中点,则异面直线与所成的角为( )A. B. C. D.10. 一次数学考试中,4位同学各自在选作题第22题和第23题中任选一题作答,则至少有1人选作第23题的概率为( ) A.B.C. D.11. 已知椭圆C 的方程为,焦距为,直线与椭圆C 相交于A ,B 两点,若,则椭圆C 的离心率为( )A.B. C.D.12.已知函数满足:,当若不等式恒成立,则实数的取值范围是( ) A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分。

安徽省2020年高考文科数学模拟试题及答案(二)

安徽省2020年高考文科数学模拟试题及答案(二)

安徽省2020年高考文科数学模拟试题及答案(二)(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知集合{1,2,3,4,5,6}U =,集合{2,3}A =,集合{3,5}B =,则()U A C B = A .{2,3,5}B .{1,4,6}C .{2}D .{5}2.已知扇形OAB 的圆周角...为2rad ,其面积是28cm ,则该扇形的周长..是( )cm .A .8B .4C .D .3.“k ”是“直线:(2)l y k x =+与圆221x y +=相切”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 若非零向量,a b 满足||||,(2)0a b a b b =+⋅=,则,a b 的夹角为 A.6π B.3π C.56π D.23π 5. 已知两条平行直线1l ,2l 之间的距离为1,1l 与圆C :224x y +=相切,2l 与C 相交于A ,B 两点,则AB =C. 3D. 6. 函数()·ln xf x e x =的大致图象为 A. B. C. D.7. 以下列函数中,最小值为2的是 A .1y x x=+B .33x xy -=+C .()1lg 01lg y x x x =+<< D .1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭8. 已知实数02224sin 24cos -=a ,0225sin 21-=b ,02023tan 123tan 2-=c ,则c b a ,,的大小关系为 A .c a b >>B .b a c >>C .c b a >>D .a b c >>9.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π8的图象沿x 轴向左平移m (m >0)个单位后,得到一个奇函数的图象,则m 的最小值为 A.7π16B.15π16C.7π8D.π1610.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为A .y =±2xB .y =±22x C .y =±12x D .y =±2x 11. 已知点F 1,F 2分别是椭圆E :22x y 259+=1的左、右焦点,P 为E 上一点,直线l 为∠F 1PF 2的外角平分线,过点F 2作l 的垂线,交F 1P 的延长线于M ,则|F 1M|= A. 10B. 8C. 6D. 412. 已知函数f (x )(x ∈R )满足f (x )=f (a-x ),若函数y=|x 2-ax-5|与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),且mi i 1x =∑=2m ,则a=A. 1B. 2C. 3D. 4二、填空题(本题共4小题,每小题5分,共20分。

2020年安徽高三一模数学试卷(文科)

2020年安徽高三一模数学试卷(文科)

2020年安徽高三一模数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)A.B.C.D.1.已知集合,,则( ).A.B.C.D.2.已知复数(为虚数单位),则( ).A.厘米B.厘米C.厘米D.厘米3.某装饰公司制作一种扇形板状装饰品,其圆心角为,并在扇形弧上正面等距安装个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为厘米,则连接导线最小大致需要的长度为( ).4.函数在上的图象大致为( ).A.xyOB.xyOC.xyOD.xyO5.在年春节前夕,为了春节食品市场安全,确保人们过一个健康安全的春节,某市质检部门对辖区内的某大型超市中的一品牌袋装食品进行抽检,将超市中该袋装食品编号为,,,,,从中用系统抽样(等距抽样)的方法抽取袋进行检测,如果编号为的食品被抽到,则下列个编号的食品中被抽到的是( ).A.号B.号C.号D.号6.已知,则( ).A.B.C.D.7.已知,,,则,,的大小关系为( ).A.B.C.D.8.执行下面的程序框图,则输出的值为( ).开始,否是输出结束?A.B. C.D.9.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于的偶数都可以写成两个质数(素数)之和.也就是我们所谓的“”问题.它是年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将拆成两个正整数的和.则拆成的和式中,加数全部为质数的概率为( ).A.B.C.D.10.在中,角,,的对边分别为,,.若,,,则的面积为( ).A.B.C.D.11.已知椭圆的焦距为,为右焦点,直线与椭圆相交于,两点, 是等腰直角三角形,点的坐标为,若记椭圆上任一点到点的距离的最大值为,则的值为( ).A.B.C.D.12.已知.给出下列判断:①若,,且,则;②存在,使得的图象右移个单位长度后得到的图象关于轴对称;③若在上恰有个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为( ).A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数,则曲线在点处的切线方程为 .14.已知双曲线的离心率为,则双曲线的右顶点到双曲线的渐近线的距离为 .15.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为 .16.已知在三棱锥中,,,,四点均在以为球心的球面上,若,,,则球的表面积为 .三、解答题(本大题共5小题,每小题12分,共60分)(1)(2)17.已知数列是递增的等比数列,是其前项和,,.求数列的通项公式.记,求数列的前项和.(1)(2)18.移动支付是指移动客户端利用手机等电子产品来进行电子货币支付,移动支付将互联网、终端设备、金融机构有效地联合起来,形成了一个新型的支付体系,使电子货币开始普及.某机构为了研究不同年龄人群使用移动支付的情况,随机抽取了名市民,得到如下表格:年龄(岁)使用移动支付不使用移动支付画出样本中使用移动支付的频率分布直方图,并估计使用移动支付的平均年龄.完成下面的列联表,能否在犯错误的概率不超过的前提下认为使用移动支付与年龄有关系?年龄小于岁年龄不小于岁合计使用移动支付不使用移动支付合计附:,.(1)(2)19.如图,在四棱锥中,底面为等腰梯形,,,,为等腰直角三角形,,平面底面,为的中点.求证:平面.求三棱锥的体积.(1)(2)20.已知函数.当时,讨论的单调区间.若对,成立,求实数的取值范围.(1)(2)21.已知抛物线,若圆与抛物线相交于,两点,且.求抛物线的方程.过点的直线与抛物线相切,斜率为的直线与抛物线相交于,两点,直线,交于点,求证:.四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为(为参数).若直线,的交点为,当变化时,点的轨迹是曲线.求曲线的普通方程.以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点为射线与曲线的交点.求点的极径.23.已知函数.【答案】解析:,,则.故选.解析:由,则.故选.解析:因为弧长比较短的情况下分成等分,每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,所以导线长度为(厘米).故选.解析:由,可知函数为奇函数,所以函数图象关于原点对称,当时,.故选.解析:由系统抽样的特点知,从编号为,,,的食品中抽取袋,需要将它们分成组,每组个,因为抽到的编号为,则所有被抽到的食品编号满足,所以所给四个编号符合条(1)(2)求不等式的解集.若不等式在上恒成立,求实数的取值范围.D1.A2.B3.C4.D5.件的是号.故选.解析:由,.故选.解析:因,所以,因为,所以,,即,故有.故选.解析:,故选.解析:由古典概型的基本事件的等可能性可得拆成两个正整数的和含有的基本事件有:,,,,,而加数全为质数的有,所以所求概率为.故选.解析:因为,由正弦定理得,所以,所以.C 6.A 7.D 8.A 9.B 10.因为,所以,所以,所以,因为,,,所以,所以,所以.故选:.解析:由题意可得,所以点的坐标为,代入椭圆方程有,又,所以,解得或(舍去),所以,所以椭圆的方程可化为,设点的坐标为,则,所以,所以,.故选.解析:因为,所以周期.对于①,由条件知,周期为,所以,故①错误;对于②,函数图象右移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;对于③,由条件得,解得,故③正确;对于④,由条件得,解得,又,所以,故④正确.C 11.B 12.故选.13.解析:的导函数为,∴,∵,∴在处的切线方程为,即.14.解析:设双曲线的焦距为,因,,所以,,故双曲线的右顶点的坐标为,一条渐近线的方程为,则右顶点到渐近线的距离为.故答案为:.15.解析:∵点在的平分线上,∴存在,使,又∵,∴,∴.16.解析:设球О的半径为,过作平面,垂足为,连接,,,由易得,即为的外心,(1)(2)所以球心在射线上,在中,,,设外接圆的半径为,由正弦定理得,所以,所以,连接,则,即,解得,所以.解析:由题意,设等比数列的公比为,∵,,∴,,∴,,∴,解得或,∵数列是递增的等比数列,∴,∴,∴.,∴,两式相减得:∴.(1).(2).17.(1)(2)解析:样本中使用移动支付的人数为人,所以每段的频率分别为:,,,,,0.025.所以其频率分布直方图为年龄(岁)频率组距所以使用移动支付的平均年龄为,所以估计使用移动支付的平均年龄为岁.完成列联表如下:年龄小于岁年龄不小于岁合计使用移动支付不使用移动支付合计由,故在犯错误概率不超过的前提下认为使用移动支付与年龄有关系.(1)画图见解析,岁.(2) 年龄小于岁年龄不小于岁合计使用移动支付不使用移动支付合计在犯错误概率不超过的前提下认为使用移动支付与年龄有关系.18.(1)证明见解析.19.(1)(2)解析:如图所示,取中点,连接和,∵点为的中点,∴为的中位线,∴且,∵,∴,∵,∴,∴四边形为平行四边形,∴,∵平面,平面,∴平面.方法一:如图所示,取中点,连接,和,∵为等腰直角三角形,∴,且,(2).∴平面,∵平面,∴,∴为直角三角形,∵,,∴,∵四边形为等腰梯形,∴,在中,由余弦定理知,∵,∴,∴的面积为,设点到平面的距离为,则三棱锥的体积为,∵的面积,∴三棱锥的体积为,∵,∴,∴,即点到平面的距离为,∵平面,∴点到平面的距离为.则三棱锥的体积为.方法二:由知,平面,∴点到平面的距离等于到平面的距离,∴.如图取的中点,连接,∵,∴,(1)(2)平面,∴平面,∵为等腰三角形,,,∴.∵四边形为等腰梯形,且,,,∴梯形的高为,则.∴三棱锥的体积为.解析:的定义域为,则,的两根为,.①当,即时,当时,,当时,,所以在区间上单调递减,在区间,上单调递增;②当,即时,对,,所以在上单调递增;③当,即时,当时,,当时,,所有在区间上单调递减,在区间,上单调递增.综上所述,当时,在区间和上单调递增,在区间上单调递减;当时,在区间上单调递增;当时,在区间,上单调递增,在区间上单调递减.方法一:因为对恒成立,所以,即恒成立,所以.(1)当时,在区间和上单调递增,在区间上单调递减;当时,在区间上单调递增;当时,在区间,上单调递增,在区间上单调递减.(2).20.(1)令,则问题转化为,,令,则,所以在上单调递增,又,所以在上,在上,所以在上,在上,所以在上单调递减,在上单调递增,所以,所以,即实数的取值范围为.方法二:因为对恒成立,所以,即恒成立.令,,由二次函数性质可知,存在,使得,即,且当时,,当时,,∴在上单调递增,在上单调递减,∴,由题意可知,设,则,即单调递增,又,∴的解集为,即,∴.解析:如图所示,(1)抛物线方程为.(2)证明见解析.21.(2)设,由题意可知,∴,∵点在圆上,∴,解得,∵点也在抛物线上,∴,解得,∴抛物线方程为.对抛物线方程求导,点在抛物线上,故,,设直线的方程为,联立, 得,设,,;,,,联立,得,,,,(1)(2)(1)(2),代入韦达定理得:,∴.解析:直线的普通方程为,直线的普通方程为,联立直线,方程消去参数,得曲线的普通方程为,整理得.设点的直角坐标系坐标为,由,可得,,代入曲线的方程可得,解得,(舍),所以点的极径为.解析:①当时,不等式可化为,得,无解;②当时,不等式可化为,得,故;③当时,不等式可化为,得,故.综上,不等式的解集为.由题意知在上恒成立,所以,(1).(2)点的极径为.22.(1).(2).23.令,则当时,,又当时,取得最小值,且,又,所以当时,与同时取得最小值,所以,所以.即实数的取值范围为.。

2020年安徽省高考数学(文科)模拟试卷(7)

2020年安徽省高考数学(文科)模拟试卷(7)
→→
上,且 ?????????= 0,点 P 为 RQ 的中点,点 P 的轨迹为曲线 C,点 E 是曲线 C 上一点,
其横坐标为 2,经过点( 0, 2)的直线 l 与曲线 C 交于不同的两点 A, B(不同于点 E), 直线 EA, EB 分别交直线 y=﹣ 2 于点 M , N.
( I)求点 P 的轨迹方程; ( II )若 O 为原点,求证: ∠ ??????= ??.
Sn.若 ??3??6 =
2??52 ,?4? =
15 ,则 2
a 2+ a4=(

3 A.
2
5 B.
2
C. 32
D. 40
5.( 5 分)图 1 是某学习小组学生数学考试成绩的茎叶图, 1 号到 16 号的同学的成绩依次为
A1,A2,…, A16,图 2 是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么
(Ⅰ)求曲线 C1, C2 的极坐标方程;
(Ⅱ)曲线
??= C3: { ??=
????????????(????t ??为??参数,
t> 0, 0<??< ?2?)分别交

C1, C2 于 A,B 两点,
|????|
当 α取何值时,
取得最大值.
|????|
五.解答题(共 1 小题)
23.已知函数 f( x)= |2x﹣ 1|+|x﹣ 2|. ( 1)求不等式 f( x)≥ 3 的解集;
个不同的零点,则实数 m 的取值范围为(

A .1< m< 25
B .m>25 或 m< 1 C. 1≤m≤ 25
D. 0<m< 4
12.( 5 分)已知函数 f( x)是 R 上的增函数,且 f( sinω)+f (﹣ cosω)> f(﹣ sinω)+f

2020年安徽合肥市高考(文科)数学(4月份)模拟试卷 (解析版)

2020年安徽合肥市高考(文科)数学(4月份)模拟试卷 (解析版)

2020年高考(文科)数学(4月份)模拟试卷一、选择题(共12小题)1.设z=(2+5i)(3﹣i),则|z|=()A.5B.C.2D.42.已知集合U={x∈Z|﹣3<x<8},∁U M={﹣2,1,3,4,7},N={﹣2,﹣1,2,4,5,7},则M∩N的元素个数为()A.1B.2C.3D.43.已知a=,b=log,c=()2.9,则()A.a>b>c B.a>c>b C.b>c>a D.c>a>b 4.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的.若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是()A.小明B.小红C.小金D.小金或小明5.函数f(x)=+在[﹣2π,0)∪(0,2π]上的图象大致为()A.B.C.D.6.为了了解公司800名员工对公司食堂组建的需求程度,将这些员工编号为1,2,3,…,800,对这些员工使用系统抽样的方法等距抽取100人征求意见,有下述三个结论:①若25号员工被抽到,则105号员工也会被抽到;②若32号员工被抽到,则1到100号的员工中被抽取了10人;③若88号员工未被抽到,则10号员工一定未被抽到,其中正确的结论个数为()A.0B.1C.2D.37.已知向量=(m,1),=(﹣1,2),若(﹣2)⊥,则与夹角的余弦值为()A.﹣B.C.D.8.若tan(α+β)=3,tanβ=2,则=()A.B.7C.﹣D.﹣79.框图与程序是解决数学问题的重要手段.实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决.例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入x1=15,x2=16,x3=18,x4=20,x5=22,x6=24,x7=25,则图中空白框中应填入()A.i>6,S=B.i≥6,S=C.i>6,S=7S D.i≥6,S=7S10.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,点M(0,m).若线段F2M与双曲线C的一条渐近线垂直,垂足为N,且△NOF2的面积是△MON 的2倍,则双曲线C的离心率为()A.B.C.D.11.在△ABC中,角A,B,C所对的边分别为a,b,c.若tan C=,c=2a,b=3时,则△ABC的面积为()A.3B.C.D.12.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点P(x1,y1),Q(﹣x1,﹣y1)在椭圆C上,其中x1>0,y1>0,若|PQ|=2|OF2|,||,则椭圆C的离心率的取值范围为()A.(0,]B.(0,﹣2]C.(,]D.(0,﹣1]二、填空题:本题共4小题,每小题5分,共20分.13.曲线y=在(0,0)处的切线方程为.14.设S n为正项等比数列{a n}的前n项和,若S2=4,S4=20,则a n=.15.函数f(x)=tan60°sin2x+2sin2x在[]上的值域为.16.已知四棱锥P﹣ABCD中的外接球O的体积为36π,PA=3,PA⊥平面ABCD,四边形ABCD为矩形,点M在球O的表面上运动,则四棱锥M﹣ABCD体积的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将A地区200家实体店该品牌洗衣机的月经济损失统计如图所示.(1)求a的值;(2)求A地区200家实体店该品牌洗衣机的月经济损失的众数以及中位数;(3)不经过计算,直接给出A地区200家实体店经济损失的平均数与6000的大小关系.18.记S n为等差数列{a n}的前n项和,且a10=4,S15=30.(1)求数列{a n}的通项公式以及前n项和S n;(2)记数列{2+a n}的前n项和为T n,求满足T n>0的最小正整数n的值.19.四棱锥S﹣ABCD如图所示,其中四边形ABCD是直角梯形,AB⊥AD,AD⊥DC,SA ⊥平面ABCD,DA=DC=AB,AC与BD交于点G,直线SC与平面ABCD所成角的余弦值为,点M线段SA上.(1)若直线SC∥平面MBD,求的值;(2)若DA=1,求点A到平面SCD的距离.20.已知函数f(x)=.(1)判断函数f(x)在(0,2π)上的单调性;(2)若0<a<π,求证:当x∈(0,π)时,f(x)>aln.21.已知椭圆C:+y2=1的左、右焦点分别为F1,F2,点M,N在椭圆C上.(1)若线段MN的中点坐标为(2,),求直线MN的斜率;(2)若M,N,O三点共线,直线NF1与椭圆C交于N,P两点,求△PMN面积的最大值.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2=.(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;(2)若直线l:y=kx与曲线C1、曲线C2在第一象限交于P,Q两点,且|OP|=2|OQ|,点M的坐标为(2,0),求△MPQ的面积.[选修4-5不等式选讲]23.已知a>0,b>0,c>0.(1)求证:a4﹣a2b2+b4≥;(2)若abc=1,求证:a3+b3+c3≥ab+bc+ac.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设z=(2+5i)(3﹣i),则|z|=()A.5B.C.2D.4【分析】根据复数的基本运算法则进行化简即可.解:依题意,z=(2+5i)(3﹣i)=6﹣2i+15i+5=11+13i,故.故选:B.2.已知集合U={x∈Z|﹣3<x<8},∁U M={﹣2,1,3,4,7},N={﹣2,﹣1,2,4,5,7},则M∩N的元素个数为()A.1B.2C.3D.4【分析】根据条件即可求出集合M,然后进行交集的运算即可求出M∩N,从而可得出M∩N的元素个数.解:U={﹣2,﹣1,0,1,2,3,4,5,6,7},则M={﹣1,0,2,5,6},∴M∩N={﹣1,2,5},∴M∩N的元素个数为3.故选:C.3.已知a=,b=log,c=()2.9,则()A.a>b>c B.a>c>b C.b>c>a D.c>a>b【分析】先化简,和0,1,b比较,然后可得出结论.【解答】解析:依题意,.故选:B.4.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的.若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是()A.小明B.小红C.小金D.小金或小明【分析】分别假设”鸿福齐天”是三个人的一个人做的,再判断他们的说法是否正确,即可得到结论.解:①假若”鸿福齐天”是小明做的,则小明说法正确,假设“国富民强”是小红做的,则小红说法也正确,故不合题意;假设“国富民强”小金做的,则小金说法也正确,故不合题意②假若”鸿福齐天”是小红做的,则小明的说法错误,若小明做的“国富民强”,小金做的“兴国之路”,则小红说法正确,小金说法错误,故合题意;若小明做的“兴国之路”,小金做的“国富民强”,则小红说法错误,小金说法正确,故合题意;③假若”鸿福齐天”是小金做的,则小金的说法正确,假若小明做的“国富民强”,小红做的“兴国之路”,则小明说法也错误,小红说法也正确,故不合题意;假若小明做的“兴国之路”,小红做的“国富民强”,则小明说法也错误,小红说法也正确,故不合题意;综上所述则“鸿福齐天”的制作者是小红,故选:B.5.函数f(x)=+在[﹣2π,0)∪(0,2π]上的图象大致为()A.B.C.D.【分析】根据题意,分析可得f(x)为偶函数,其图象关于y轴对称,排除C,再利用特殊值分析f(π)、f(2π)的值,排除B、D,由排除法分析可得答案.解:根据题意,函数f(x)=+,则有,故函数f(x)为偶函数,图象关于y轴对称,排除C;而,排除B,,排除D.故选:A.6.为了了解公司800名员工对公司食堂组建的需求程度,将这些员工编号为1,2,3,…,800,对这些员工使用系统抽样的方法等距抽取100人征求意见,有下述三个结论:①若25号员工被抽到,则105号员工也会被抽到;②若32号员工被抽到,则1到100号的员工中被抽取了10人;③若88号员工未被抽到,则10号员工一定未被抽到,其中正确的结论个数为()A.0B.1C.2D.3【分析】求出抽样间隔f=,由此能求出结果.解:为了了解公司800名员工对公司食堂组建的需求程度,将这些员工编号为1,2,3,…,800,对这些员工使用系统抽样的方法等距抽取100人征求意见,在①中,抽样间隔f=,若25号员工被抽到,即第4组的第一名员工被抽到,则第14组的第一名员工即105号员工也会被抽到,故①正确;在②中,若32号员工被抽到,则1到100号的员工中被抽取了12人,故②错误;在③中,若88号员工未被抽到,则8号员工和16号员工被抽到,10号员工一定未被抽到,故③正确.故选:C.7.已知向量=(m,1),=(﹣1,2),若(﹣2)⊥,则与夹角的余弦值为()A.﹣B.C.D.【分析】利用向量坐标运算法则求出,再由向量垂直求出m=﹣8,由此能求出与夹角的余弦值.解:∵向量=(m,1),=(﹣1,2),若﹣2⊥,∴依题意,,而,即﹣m﹣2﹣6=0,解得m=﹣8,则cos<>=.故选:B.8.若tan(α+β)=3,tanβ=2,则=()A.B.7C.﹣D.﹣7【分析】由已知结合tanα=tan[(α+β)﹣β],利用两角差的正切公式可求tanα,然后对所求式子结合诱导公式及同角基本关系进行化简可求.α+β解:∵tan(α+β)=3,tanβ=2则,∴.故选:B.9.框图与程序是解决数学问题的重要手段.实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决.例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入x1=15,x2=16,x3=18,x4=20,x5=22,x6=24,x7=25,则图中空白框中应填入()A.i>6,S=B.i≥6,S=C.i>6,S=7S D.i≥6,S=7S【分析】由题意知该程序的作用是求样本x1,x2,…,x7的方差,模拟程序的运行,即可得解.解:程序框图是为了计算7个数的方差,即输出的,观察可知.故选:A.10.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,点M(0,m).若线段F2M与双曲线C的一条渐近线垂直,垂足为N,且△NOF2的面积是△MON 的2倍,则双曲线C的离心率为()A.B.C.D.【分析】由椭圆的方程可得F2的坐标及渐近线的方程,及直线F2M的方程,由△NOF2的面积是△MON的2倍可得则2|MF2|=3|NF2|,可得a,b的关系,进而求出离心率的值.解:不妨设m>0,|NF2|即为双曲线的焦点到渐近线的距离,故|NF2|=b,因为△NOF2的面积是△MON的2倍,故,不妨设m>0,则直线,故.则2|MF2|=3|NF2|,则.即3a2=c2,故.故选:B.11.在△ABC中,角A,B,C所对的边分别为a,b,c.若tan C=,c=2a,b=3时,则△ABC的面积为()A.3B.C.D.【分析】结合正弦定理和同角三角函数的关系易得sin A,cos A,cos C的值,又由sin B =sin(A+C)=sin A cos C+cos A sin C求出sin B的值,最后由正弦定理求出a的值,根据三角形的面积公式即可计算得解.解:因为,且sin2C+cos2C=1,解得,,而c=2a,,所以,,故因为,,故a=2,故.故选:B.12.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点P(x1,y1),Q(﹣x1,﹣y1)在椭圆C上,其中x1>0,y1>0,若|PQ|=2|OF2|,||,则椭圆C的离心率的取值范围为()A.(0,]B.(0,﹣2]C.(,]D.(0,﹣1]【分析】设PF1=n,PF2=m,由|PQ|=2|OF2|,可得四边形PF1QF2为矩形,可得QF1=PF2,再由||,转化m,n的关系,由题意的定义可得a,c与m,n的关系,可得设参数t,(注意t的范围),进而可得离心率的范围.解:设PF1=n,PF2=m,由x1>0,y1>0,知m<n,因为P,Q在椭圆C上,|PQ|=2|OF2|,所以四边形PF1QF2为矩形,QF1=PF2;由,可得<1,由椭圆的定义可得m+n=2a,n2+m2=4c2①,平方相减可得mn=﹣(a2﹣c2)②,由①②得==;令t=+,令v=,所以t=v+,即2,所以a2﹣c2<c2(a2﹣c2),所以1﹣e2<e2(1﹣e2),所以,解得;故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.曲线y=在(0,0)处的切线方程为y=2x.【分析】先对曲线y=求导,然后得到曲线在(0,0)处切线的斜率k=y'|x=0,再求出切线方程.解:由y=,得,∴曲线y=在(0,0)处切线的斜率k=y'|x=0=2,∴切线方程为y=2x.故答案为:y=2x.14.设S n为正项等比数列{a n}的前n项和,若S2=4,S4=20,则a n=.【分析】由题意可得q≠1,q>0,由等比数列的求和公式可得S2=(1﹣q2)=4,S4=(1﹣q4)=20,两式相除可求q,进而可求a1,即可求出通项公式.解:由题意可得q≠1,q>0,由等比数列的求和公式可得S2=(1﹣q2)=4,S4=(1﹣q4)=20,两式相除可得1+q2=5,又数列是正项数列,∴q=2,∴a1=,∴a n=×2n﹣1=,故答案为:.15.函数f(x)=tan60°sin2x+2sin2x在[]上的值域为[﹣,2].【分析】由已知利用三角函数恒等变换的应用可求f(x)=sin(2x﹣)+,结合范围x∈[],可得:2x﹣∈[,],进而利用正弦函数的性质即可得解.解:∵f(x)=tan60°sin2x+2sin2x=sin2x+2×=sin2x+﹣cos2x=sin(2x﹣)+又∵x∈[],可得:2x﹣∈[,],∴sin(2x﹣)∈[﹣1,],可得f(x)=sin(2x﹣)+∈[,2].故答案为:[,2].16.已知四棱锥P﹣ABCD中的外接球O的体积为36π,PA=3,PA⊥平面ABCD,四边形ABCD为矩形,点M在球O的表面上运动,则四棱锥M﹣ABCD体积的最大值为.【分析】求出球半径,将四棱锥P﹣ABCD补成长方体,可知外接球的直径为长方体的体对角线,要使得四棱锥M﹣ABCD的体积最大,只需点M为平面ABCD的中心O'与球心O所在的直线与球的交点,由此能求出M﹣ABCD体积的最大值.解:依题意,=36π,解得R=3,将四棱锥P﹣ABCD补成长方体,可知外接球的直径为长方体的体对角线,设长方体的长、宽、高分别为a,b,c,且c=3,由于a2+b2=27,又a2+b2≥2ab,当且仅当时等号成立,此时,要使得四棱锥M﹣ABCD的体积最大,只需点M为平面ABCD的中心O'与球心O所在的直线与球的交点,又,故M﹣ABCD体积的最大值为.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将A地区200家实体店该品牌洗衣机的月经济损失统计如图所示.(1)求a的值;(2)求A地区200家实体店该品牌洗衣机的月经济损失的众数以及中位数;(3)不经过计算,直接给出A地区200家实体店经济损失的平均数与6000的大小关系.【分析】(1)由频率分布直方图能求出a的值.(2)由图可知,A地区200家实体店该品牌洗衣机的月经济损失的众数为3000,第一块小矩形的面积S1=0.3,第二块小矩形的面积S2=0.4,从而所求中位数在[2000,4000)之间,由此能求出中位数.(3)由频率分布直方图得.解:(1)依题意.(0.00015+0.0002+a+0.0006)×2000=1,解得a=0.00009.(2)由图可知,A地区200家实体店该品牌洗衣机的月经济损失的众数为3000,第一块小矩形的面积S1=0.3,第二块小矩形的面积S2=0.4,故所求中位数在[2000,4000)之间,故所求中位数为.(3)由频率分布直方图得.18.记S n为等差数列{a n}的前n项和,且a10=4,S15=30.(1)求数列{a n}的通项公式以及前n项和S n;(2)记数列{2+a n}的前n项和为T n,求满足T n>0的最小正整数n的值.【分析】第(1)题先设等差数列{a n}的公差为d,然后根据已知条件列出关于首项a1与公差为d的方程组,解出a1与d的值,即可计算出数列{a n}的通项公式以及前n项和S n;第(2)题先根据第(1)题的结果计算出数列{2+a n}的通项公式,再运用分组求和法计算出前n项和T n,再判断出前n项和T n构成的数列{T n}的单调性,并计算出数列{T n}的前几项的正负性即可得到满足T n>0的最小正整数n的值.解:(1)由题意,设等差数列{a n}的公差为d,则,整理,得,解得,∴a n=﹣5+1•(n﹣1)=n﹣6,n∈N*.S n=﹣5n+•1=n2﹣n.(2)由(1)知,+a n=2n﹣6+4+n﹣6=2n﹣2+n﹣6,T n=(+a1)+(+a2)+…+(+a n)=(2﹣1﹣5)+(20﹣4)+…+(2n﹣2+n﹣6)=[﹣5﹣4+••+(n﹣6)]+(2﹣1+20+…+2n﹣2)=+=+.T n+1﹣T n=+﹣﹣=﹣+﹣=n﹣5+2n﹣1,∵当1≤n≤2时,n﹣5+2n﹣1<0;当n≥3时,n﹣5+2n﹣1>0,即当1≤n≤2时,T n+1﹣T n<0;当n≥3时,T n+1﹣T n>0,∴T1>T2>T3<T4<T5<T6<…当n=1时,,当n=2时,,当n=3时,,当n=4时,,当n=5时,T5=>0,∴满足T n>0的最小正整数n的值为5.19.四棱锥S﹣ABCD如图所示,其中四边形ABCD是直角梯形,AB⊥AD,AD⊥DC,SA ⊥平面ABCD,DA=DC=AB,AC与BD交于点G,直线SC与平面ABCD所成角的余弦值为,点M线段SA上.(1)若直线SC∥平面MBD,求的值;(2)若DA=1,求点A到平面SCD的距离.【分析】(1)连接MG,由已知得AB∥CD,再由已知结合平行线截线段成比例可得,由线面平行的性质得到SC∥MG,则;(2)在平面SAD内作AN⊥SD于点N,由已知证明AN⊥平面SCD.再由直线SC与平面ABCD所成角的余弦值为,求解三角形得到AN,即点A到平面SCD的距离.解:(1)连接MG.∵AB⊥AD,AD⊥DC,且AB,CD在同一平面内,∴AB∥CD,设DC=1,AB=2,得,∵SC∥平面MBD,平面SAC∩平面MBD=MG,SC⊂平面SAC,∴SC∥MG,故;(2)在平面SAD内作AN⊥SD于点N,∵SA⊥平面ABCD,∴DC⊥SA,又DC⊥AD,SA∩AD=A,得DC⊥平面SAD.∵AN⊂平面SAD,∴CD⊥AN.又SD∩CD=D,∴AN⊥平面SCD.∵直线SC与平面ABCD所成角的余弦值为,即,又,∴SC=,则,而AD=1,SA⊥AD,求得,,即点A到平面SCD的距离为.20.已知函数f(x)=.(1)判断函数f(x)在(0,2π)上的单调性;(2)若0<a<π,求证:当x∈(0,π)时,f(x)>aln.【分析】(1)依题意,f′(x)=,再令g(x)=﹣x cos x+sin x﹣π,利用导数可求得[g(x)]max=g(π)=0,即f'(x)≤0,从而可得函数f(x)在(0,2π)上单调递减;(2)依题意,.再证明①当x∈(0,π)时,;②当0<a<π时,之后,构造函数令,利用导数即可证得结论成立.解:(1)依题意,f′(x)=,令g(x)=﹣x cos x+sin x﹣π,则g'(x)=x sin x,故当x∈(0,π)时,g'(x)>0,当x∈(π,2π)时,g'(x)<0.故[g(x)]max=g(π)=0,故g(x)≤0在(0,2π)上恒成立,故f'(x)≤0,即函数f(x)在(0,2π)上单调递减.(2)证明:依题意,.下面证明:①当x∈(0,π)时,;②当0<a<π时,;事实上,h(x)=x﹣sin x,则h'(x)=1﹣cos x>0,所以h(x)=x﹣sin x在(0,π)上单调递增,故h(x)>h(0)=0,则x﹣sin x>0,又x>0,sin x>0,则①;令,则.由s'(x)=0,得s(x)的极小值点为,若,则1<a<π,则,故,若,即0<a≤1,则s(x)在(0,π)上单调递减,故s(x)>s(π)=1+alnπ>1.综上所述,当0<a<π时,②;。

2020年合肥市第三次高考模拟考试数学文答案

2020年合肥市第三次高考模拟考试数学文答案

1 1 2 2
3 2
3. 2
在菱形 A1ACC1 中,∵ A1C 3AC1 ,
∴ACC1 60 , S A1ACC1 2 2
3 2 2
3.
∵平面 ABC ⊥平面 ACC1 ,取 AC 的中点为M ,连接 BM,C1M ,
∴ BM ⊥平面 ACC1 ,C1M ⊥平面 ABC .
由(1)知,平面 ABC ∥平面 A1B1C1 ,
按题意有, f
xn
g
xn1
,即 e xn
exn
2xn1 ,∴ xn1
exn
exn 2
.
②由①知 xn1 exn
exn 2
e xn
2
.
注意到 x1 1,
∴ xn1 xn
x2 xn1 xn
e e xn
xn1
x2 x1
2
2
ex1

2
∴ xn1 xn
x2
x1
直线m 的极坐标方程为 ( R ).
(2)设点 A ,C 的极坐标分别为1, ,2, .

=
2
+2
cos
3
0
得,
2
+2
cos
3
0

∴ 1 2 2cos , 12 3 ,
∴ AC 1 2 2 cos2 3 .
同理得 BD 2 sin2 3 .
………………………………5 分
19.(本小题满分 12 分)
解:(1)由已知得
2k 4
2k 8
2
(
k
Z
),解得
2
4

∴ f x
2

2020年安徽省高考文科数学考前押题试卷解析版

2020年安徽省高考文科数学考前押题试卷解析版

第 1 页 共 13 页2020年安徽省高考文科数学考前押题试卷解析版一.选择题(共12小题,满分60分,每小题5分)1.(5分)复数z 满足(1+i )z =|1﹣i |,则z =( )A .1﹣iB .1+iC .√22−√22iD .√22+√22i 【解答】解:因为(1+i )z =|1﹣i |,∴z =|1−i|1+i =√21+i =√2(1−i)(1+i)(1−i)=√2(1−i)2=√22−√22i . 故选:C .2.(5分)设集合A ={x|x+2x−1≤0},B ={x |y =log 2(x 2﹣2x ﹣3)},则A ∩B =( )A .{x |﹣2≤x <﹣1}B .{x |﹣1<x ≤1}C .{x |﹣2≤x <1}D .{x |﹣1≤x <1} 【解答】解:A ={x |﹣2≤x <1},B ={x |x 2﹣2x ﹣3>0}={x |x <﹣1或x >3},∴A ∩B ={x |﹣2≤x <﹣1}.故选:A .3.(5分)已知a =21.2,b =30.4,c =ln 83,则( )A .b >a >cB .a >b >cC .b >c >aD .a >c >b【解答】解:由题意得:a =21.2∈(2,4),b =30.4∈(1,√3),c =ln 83<lne =1.∴a >b >c ,故选:B .4.(5分)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”,过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:总体平均数为3,中位数为4;乙地:总体平均数为1,总体方差大于0;丙地:总体平均数为2,总体方差为3;丁地:中位数为2,众数为3;则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的是( )A .甲地B .乙地C .丙地D .丁地【解答】解:∵平均数和中位数不能限制某一天的病例超过7人,不是A 地,当总体方差大于0,不知道总体方差的具体数值,因此不能确定数据的波动大小,不是B。

2020年安徽省高考文科科数学仿真模拟试题二(附答案)

2020年安徽省高考文科科数学仿真模拟试题二(附答案)

2020年安徽省高考文科数学仿真模拟试题二(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =( )A. [0,)+∞B. [1,)+∞C. 3,2⎛⎫+∞ ⎪⎝⎭D. 30,2⎡⎫⎪⎢⎣⎭2. 在复平面内,复数22ii+-对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3.“x>5”是“>1”的( )A. 充分不必要条件B. 必要不充分条件C. 既不充分也不必要条件D. 充要条件4. 以A (-2,1),B (1,5)为半径两端点的圆的方程是( ) A. (x +2)2+(y -1)2=25 B. (x -1)2+(y -5)2=25C. (x +2)2+(y -1)2=25或(x -1)2+(y -5)2=25D. (x +2)2+(y -1)2=5或(x -1)2+(y -5)2=5 5. 已知函数2()21x f x a =-+(a R ∈)为奇函数,则(1)f =( ) A. 53-B. 13C. 23D. 326. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,510a =-,则1a =( ) A. -3B. -2C. 2D. 37. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则( ) A. 1212p p << B. 1212p p << C. 2112p p << D.2112p p << 8. 已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为( ) A. 58-B.118C.14D.189. 已知4616117421⨯⨯⨯⨯⨯⨯⨯= T ,若右边的框图是计算T 的程序框图,则框图中①和②处可以分别填入( ) A.i m m i +=≤,?10 B.1?10++=≤i m m i , C.i m m i +=≤,?11 D.1?11++=≤i m m i ,10.已知点()12,0F -,圆()222:236F x y -+=,点M 是圆上一动点,线段1MF 的垂直平分线与2MF 交于点N .则点N 的轨迹方程为A.22192x y -=B.320x y --=C.2236x y += D.22195x y += 11.函数()2sin sin2f x x x =-在[]0,2π的零点个数为( )A .2B .3C .4D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦ 二、填空题:本题共4小题,每小题5分,共20分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年安徽新课标 高 考 模 拟 试 卷数 学 试 题(文科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U= {a , b , c , d , e},A={c , d , e},B={a , b , e},则集合{a , b}可表示为 ( ) A .A ∩B B .(C ∪A )∩B C .(C ∪B )∩A D .C ∪(A ∪B ) 2.设)(1x f -是函数1()(22)2xx f x -=-的反函数,则使1)(1>-x f 成立的x 的取值范围为( )A .3(,)4+∞B .3(,)4-∞C .3(,2)4D .[2,)+∞3.某全日制大学共有学生5600人,其中专科有1300人、本科有3000人、研究生1300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中应分别抽取 ( ) A .65人,150人,65人 B .30人,150人,100人 C .93人,94人,93人 D .80人,120人,80人 4.在正三棱锥中,相邻两侧面所成二面角的取值范围是 ( )A .3ππ(,)B .23ππ(,)C .(0,2π) D .23ππ(,)35.下列命题中假命题是( )A .离心率为2的双曲线的两渐近线互相垂直B .过点(1,1)且与直线x -2y+3=0垂直的直线方程是2x + y -3=0C .抛物线y 2 = 2x 的焦点到准线的距离为1D .223x +225y =1的两条准线之间的距离为4256.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π7.21,e e 是平面内不共线两向量,已知2121213,2,e e CD e e CB e k e AB -=+=-=,若D B A ,,三点共线,则k 的值是( )A .2B .3-C .2-D .38.点P 是抛物线x y 42=上一动点,则点P 到点)1,0(-A 的距离与P 到直线1-=x 的距离和的最小值是 ( )A .5 B . 3 C .2 D .29.已知点M (a ,b )在由不不等式组002x y x y ì³ïïï³íïï+?ïïî确定的平面区域内,则点N (a+b ,a-b )所在的平面区域的面积是( )A .1B .2C .4D .810.函数b x A x f +ϕ+ω=)sin()(的图象如图,则)(x f 的解析式和++=)1()0(f f S )2006()2(f f +⋯+的值分别为( )A .12sin 21)(+π=x x f , 2006=S B .12sin 21)(+π=x x f , 212007=SC .12sin 21)(+π=x x f , 212006=SD .12sin 21)(+π=x x f , 2007=S11.等差数列}{n a 的公差,0<d 且21121a a =,则数列}{n a 的前n 项和n S 取得最大值时的项数n 是( )A .5B .6C .5或6D .6或712.若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.俯视图 正(主)视图 侧(左)视图2 32 213.定义运算“*”如下:,,,*2⎩⎨⎧<≥=b a b ba ab a 则函数∈-⋅=x x x x x f ()*2()*1()(])2,2[-的最大值等于.14.执行右边的程序框图,若0.8p =,则输出的n .15. 如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,点M在A 上,且AM=31AB ,点P 在平面ABCD 上,且动点P 到直线A 1D 1的距离的平方与P 到点M 的距离的平方差为1,在平面直角坐标系xAy 中,动点 P 的轨迹方程是 . 16. 有以下4个命题:①p 、q 为简单命题,则“p 且q 为假命题”是“p 或q 为 假命题”的必要不充分条件;②直线2x-By+3=0的倾斜角为B2arctan ; ③)cos (2log 1cos x x y -+-=表示y 为x 的函数;④从某地区20个商场中抽取8个调查其收入和售后服务情况,宜采用分层抽样. 其中错误..的命题为 (将所有错误的命题的序号都填上). 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)设函数f (x )=a·b ,其中向量a =(cos x 2,sin x 2),(x ∈R ),向量b=(cos ϕ,sin ϕ)(|ϕ|<π2),,f (x )的图象关于x =π6对称.(Ⅰ)求ϕ的值;(Ⅱ)若函数y =1+sin x2的图象按向量c =(m ,n ) (| m |<π=平移可得到函数y =f (x )的图象,求向量c .18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C , 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,开始 10n S ==,S p <?是输入p 结束输出n 12nS S =+否1n n =+满足AE EB =12CF CP FA PB ==(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2) (Ⅰ)求证:A 1E ⊥平面BEP ;(II )求直线A 1E 与平面A 1BP 所成角的大小;(III )求二面角B -A 1P -F 的大小(用反三角函数表示).20.(本小题满分12分)某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区.已知AB ⊥BC ,OA//BC ,且AB=BC=4 AO=2km ,曲线段OC 是以点O 为顶点且开口向上的抛物线的一段.如果要使矩形的相邻两边分别落在AB ,BC 上,且一个顶点落在曲线段OC 上,问应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到0.1km 2).21.(本小题满分12分)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明1||cF P a x a=+u u u r ;(Ⅱ)求点T 的轨迹C 的方程; (Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.22.(本小题满分12分)已知函数2()2f x x x =+,数列{}n a 的前n 项和为n S ,对一切正整图图E B P C F1A A P F E CB D A O BC x y Q PN数n ,点(,)n n P n S 都在函数()f x 的图象上,且过点(,)n n P n S 的切线的斜率为n k . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若2n k n n b a =⋅,求数列{}n b 的前n 项和为n T ;(Ⅲ)设{|,*}n Q x x k n N ==∈,{|2,*}n R x x a n N ==∈,等差数列{}n c 的任一项n c Q R ∈I ,其中1c 是Q R I 中的最小数,10110115c <<,求{}n c 的通项公式.参考答案1. B 由C ∪A={ a , b }得(C ∪A )∩B={ a , b },故选B .【帮你归纳】本题考查集合的概念与运算,,以及 逆向思维能力. 【误区警示】本题属于基础题, 每步细心计算是求解本题的关键,否则将会遭 遇“千里之堤,溃于蚁穴”之尴尬. 2. A 根据反函数的性质,即求当x > 1时,函数1()(22)2xx f x -=-的值域,此后注意到()f x 在1+∞(,)上递增即可获解. 【命题动向】本题考查反函数的概念与性质,函数的单调性,函数值域的求法,灵活驾驶基础知识和基本方法的能力. 3. A 抓住分层抽样按比例抽取的特点有5600130030001300280x y z===.∴65x z ==,150y =,即专科生、本科生与研究生应分别抽取65,150,65.【总结点评】简单随机抽样与分层抽样方法是数学高考的一个常考点.【温馨提醒】本题属于基础题,每步细心计算是求解本题的关键,否则将会遭遇“千里之堤,溃于蚁穴”之尴尬.4. A 方法一:观察正三棱锥P –ABC ,O 为底面中心,不妨将底面正△ABC 固 定,顶点P 运动,相邻两侧面所成二面角为∠AHC .当PO →0时, 面PAB →△OAB ,面PBC →△OBC ,∠AHC →π,当PO →+∞时,∠AHC →∠ABC=3π.故3π<∠AHC <π,选A . 方法二:不妨设AB=2,PC= x ,则x > OC =332. 等腰△PBC 中,S △PBC =21x ·CH =21·2·⇒-1x 2CH =2x112-, 等腰△AHC 中,sin2x 1121CH2AC 2AHC-==∠.由x>332得2AHC sin 21∠<<1,∴322AHC 6π⇒π<∠<π<∠AHC <π. 【总结点评】本题主要考查多面体、二面角等基础知识,分析问题与解决问题的能力,注重考查我们对算法算理的理解. 5. D 对于A :e =2,a = b ,渐近线y = ±x 互相垂直,真命题. 对于B :设所求直线斜率为k ,则k=-2,由点斜式得方程为2x+y -3=0 , 也为真命题. 对于C :焦点F (21,0),准线x = -21, d = 1真命题. 对于D : a = 5 ,b = 3 ,c = 4 ,d =2·225c a 2= 假命题,选D . 【总结点评】本题主要考查对圆锥曲线的基本知识、相关运算的熟练程度. 以及思维的灵活性、数形结合、化归与转化的思想方法.6.D 解:本小题主要考查三视图与几何体的表面积。

相关文档
最新文档