六年级数学下册4比例2正比例和反比例正比例习题课件一新人教版
人教版六年级数学下册第四单元《正比例和反比例》(复习课件)
汽车所行路程与相应耗油量是两种相关联的量,耗油量
随着所行路程的变化而变化。所行路程增加,耗油量随
着增加;所行路程减少,耗油量随着减少。
4.已知y与x成正比例关系,在下表的空格中填写合
适的数。(选题源于教材P49第4题)
5
15
8
3
12.5
25
50
5.同一时间、同一地点测得3棵树的树高及其影长如
下表。(选题源于教材P50第5题)
长劲鹿:0.8×18=14.4(千米)
答:斑马18分钟跑了21.6千米,
长颈鹿跑了14.4千米。
下面的图象表示斑马和长颈鹿的奔跑情况。
(3)从图象上看,斑马跑得快还是长颈鹿跑得快?
从图像上看,10分钟时,斑马跑了
12千米,长劲鹿跑了8千米。
答:斑马跑得快。
判断下面各题中的两种量是否成反比例关系,并说明理由。
面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反比例?
为什么?(选题源于教材P51第8题)
成反比例关系。
因为所需地砖数量与每块地砖的面积的乘
积等于教室的面积,而教室的面积一定,
所以所需地砖数量与每块地砖的面积成反
比例关系。
2.食品加工厂准备把一批新酿的醋装瓶运往商店。
所装瓶数与每瓶容量是否成反比例关系?为什么?
有x、y、z三个相关联的量,并有xy=z。
(1)当z一定时,x与y成
比例关系。
反
xy=z
(一定) 即xy的积一定,则xy成反比例。
正
(2)当x一定时,z与y成
比例关系。
z
=x
xy=z
则zy成正比例。
y (一定),
正 比例关系。
六年级下册数学讲义-第四单元——比例:正比例和反比例人教版(含答案)
第四章 比例2.正比例和反比例【知识梳理】1.正比例的意义。
(1)意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)正比例关系的字母表达式:xy =k (一定)。
要点提示:成比例的两种量必须是相关联的量,而两种相关联的量却不一定都成比例。
如两种量的和或差一定时,这两种量虽然是相关联的量,但不成比例。
2.正比例关系的图像。
正比例图像是一条从(0,0)出发的无限延伸的射线,线上所有点所对应的两个数的比值都相等。
3.反比例的意义。
(1)意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
(2)反比例关系的字母表达式:x×y =k (一定)。
4.判断两种量成正比例还是成反比例的方法。
关键看这两种相关联的量中相对应的两个数是比值一定还是乘积一定。
如果比值一定,就成正比例;如果乘积一定,就成反比例。
【诊断自测】1.填空。
(1)用字母表示的正比例关系式是( ),反比例式是( )。
(2)已知6x=4y ,x 和y 成( )比例,已知3x =y6,x 和y 成( )比例。
(3)单价一定,数量与总价成( )比例;数量一定,单价与总价成( )比例;总价一定,数量与单价成( )比例。
(4)当两个变量成反比例关系时,所绘成的图是一条( )。
2.选择。
(1)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( )。
A.汽车每次运货吨数一定,运货次数和运货总吨数。
B.汽车运货次数一定,每次运货的吨数和运货总吨数。
C.汽车运货总吨数一定,每次运货的吨数和运货的次数。
(2)乐乐从1楼爬到3楼共用了3分钟,那么从1楼爬到5楼要用( )分钟。
A.8B.6C.4(3)a÷b=c ,当c 一定时,a 和b ( );当a 一定时,b 和c ( );当b 一定时,a 和c ( )。
最新人教版数学六年级下册第四单元正比例和反比例《正比例》优质课件
26
小试牛刀
(3)写出表中给出的已知.55
11 20
=0.55
表示每千瓦时电的价格。
13.2 24
=0.55,它们的比值
31
课堂总结
同学们,这节课你 有哪些收获呢?
32
谢谢观看 !
2024/1/13
33
六年级数学教学措施 1、认真学习和研究新课程理念,学习新课程标准。精心备课,认真上课,有序复习。 同时积极研究新课堂改革,钻研教学工作,努力提高自己教学工作,提倡短时高效, 极力向课堂四十分钟要质量。 2、开好家长会,及时与家长取得联系,相互交换不同的意见;同时多与学生交流,可 单独,可小组,及时了解学生思想动态和学习状态,准确反馈信息,及时调整部署, 采取不同的措施。 3、尊重学生,在言行和举止上努力做到爱护学生的自尊心和自信心,多鼓励少批评。 多和学生做平等的交谈,做到师生互动,亲如一家。在教学上根据学生的不同情况 做到因材施教,一把钥匙开一把锁。 4、成立互帮互助学习小组,建立一帮一互助模式,以一名优生带动、帮助一名学困 生,这样优生得到锻炼,学困生同时也得到一定程度上的提高。同时让小组与小组 之间互相交流,小组与小组之间互相评比,以促进培养更多的优秀生,鼓励提高学 困生。 5、重视学生已有知识和生活经验的学习和理解教学;重视引导学生自主探索,小组合 作,集体协作,培养学生的创新意识和创新能力,提高学习数学的兴趣。
21
小试牛刀
③因为总价与份数的比值一定,所以表中的两种 量叫做成( 正比例 )的量。 (2) 路程与时间的比值是( 速度 ),当这个比值一定 时,( 路程 )和( 时间 )成( 正 )比例关系。
六年级数学下册《反比例》PPT课件人教版
题目1
一个直角三角形,两 多少厘米?
题目2
题目3
一个长方形的周长是20厘米,长是a厘米, 宽是b厘米。求a和b的关系式,并求出当 a=5厘米时,b是多少厘米?
一个圆柱体和一个圆锥体的底面积相等、 体积也相等。已知圆锥的高是18厘米,求 圆柱的高是多少厘米。
疑问3
反比例在生活中有哪些应用?
答
反比例关系在现实生活中有着广泛的应用。例如,汽车行 驶时,如果速度一定,那么行驶的距离和所需的时间成反 比;一定体积的气体,如果压力一定,那么气体的温度和 体积成反比。
下节课预告
• 下节课我们将学习《圆柱与圆锥》,圆柱和圆锥是常见的几何 图形,它们在生活和数学中有着广泛的应用。通过学习圆柱和 圆锥的特性、面积和体积的计算方法,我们将更好地理解这两 种几何图形在现实世界中的作用。请大家做好预习工作。
杠杆原理
在杠杆两端挂上不同质量的物体,一端质量大,一端质量小,当杠杆平衡时,两端的距离相等,质量与距离成反 比关系。
数学问题中的反比例解析
面积固定时,长与宽的关系
当一个矩形的面积固定时,长与宽的乘积为定值,即长增大时,宽必须减小,反之亦然,这体现了反 比例关系。
速度固定时,距离与时间的关系
当一个物体的速度固定时,距离与时间的乘积为定值,即距离增大时,时间必须增大,反之亦然,这 体现了反比例关系。
02 反比例的图像表示
反比例图像的绘制
确定x和y的取值范围
在绘制反比例图像前,需要确定x和y的取值 范围,以便在坐标系中正确表示。
标出原点
在坐标系的中心位置标出原点。
绘制坐标轴
根据需要选择适当的坐标轴比例,并绘制坐 标轴线。
绘制双曲线
根据反比例函数的性质,在第一象限和第三 象限内绘制双曲线。
人教版六年级数学下册正比例和反比例的练习课件
正、反比例的相同点和不同点。
正比例
反比例
相同点
都是两种相关联的量,一种量随着另一种量变化。
1.变化的方向相同,一 1.变化的方向相反,一种 种量扩大或缩小,另一 量扩大(缩小),另一种 种量也扩大或缩小。 量反而缩小(扩大)。
2.相关联的两个量相对 2.相关联的两个量相 不同点 应的两个数的比值(商) 对应的两个数的乘积
A.成正比例
B.成反比例 C.不成比例
(2)和一定,加数和另一个加数.( C)
A.成正比例
B.成反比例 C.不成比例
(3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,
成正比例关系是( )A.,成反比例关系是( )。C
A.汽车每次运货吨数B一定,运货次数和运货总吨数。
B.汽车运货次数一定,每次运货的吨数和运货总吨数。
正比例
(10)图上距离一定,实际距离与比例尺 实际距离× 比例尺=图上距离(一定), 反比例
(11)小麦的出粉率一定,小麦的质量与面粉的质量 ( 正比例
12)六(1)班同学做操,每排站的人数与排数 每排人数×排数 =总人数(一定)(六(1)班人数一定
不成比例
六、课堂达标:
3.选择.
(1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的量.( B)2.下列各Βιβλιοθήκη 中的两种量是不是成比例,成什么比例,
并说明理由。
(1)买相同的电脑,购买的电脑台数与总价 =单
价(一定),
正比例
(2)每捆练习本的本数相同,练习本的总本数与
捆数=每捆练习本的本数(一定),正比例
(3)总路程一定,已行的路程与未行的路程(是
和关系,不是积或比值关系) 不成比例
人教版六年级数学下册讲义-正比例和反比例(含答案)
正比例和反比例的课堂讲义教材导入:1.两种相关联的量:一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
总价和数量是成正比例的量,总价与数量成正比例关系。
2.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
高度和底面积是成反比例的量,高度与底面积成反比例关系。
(一)正比例的意义例1 一列火车行驶的时间和所行的路程如下表:填空:1、表中有和两种量,当时间是1小时,路程是当时间是2小时,路程是,这说明时间这种量变化了,路程这种量也。
2、观察表格:我们从左往右观察,时间扩大2倍,对应的路程也倍,时间扩大3倍,对应的路程也倍……从右往左观察,时间缩小8倍,对应的路程也;时间缩小7倍,对应的路程也……通过观察,我们发现路程是随着的变化而变化的。
时间扩大路程也扩大,时间缩小路程也。
它们扩大、缩小的规律是。
3、比值60,实际上是火车的:将这些式子所表示的意义写成一个关系式:路程=速度(—定)。
时间4、小结:通过刚才的观察和分析.我们知道路程和时间是两种 的量。
(两种相关联的量。
)路程和时间这两种量的变化规律是 。
(路程和时间的比的比值(速度)总是一定的。
)【规律方法】理解成正比例的意义。
判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
【变式训练1】【难度分级】 A1、下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价。
②汽车行驶速度一定,行驶的路程和时间。
③工作效率一定,工作时间和工作总量。
六年级数学下册第4单元比例2正比例和反比例第1课时正比例课件新人教版7
a.4.5 %
aa..03aa6..a%..=aa..0a. .3
6
a.把百分数化成小数 , 只要把百分号去 掉 , 同时把小数点向左移动两位。
a.用百分数解决问题
a.学生的出勤率学出=生勤总人人数数 ×100% a.最多能达
b.产品的合格率合=产格品产总品数数
到100% ∶ ×100% 合格率 、
c.小麦的出粉率小面=麦粉的的质质量量
发芽率等。 ×100% b.达不到
d. 花生的出油率花=油生的的质质量量
100%∶出 ×100% 油率 、出水
e.学生的及格率=参加及考格试人人数数
率等。 ×100%c.可超过
aa.2.350%0x aa.4.408%0x aa.3.452%0x
a.35%
a.〔40%-35%〕x = 60 a.x = 1200
a.本单元综合训练
a.求一个数比另 一个数多〔或少〕
百分之几
a.求常见 的百分率
a.用百分
a.百分数的意 义和读写法
数解决问 题
a
a.求比一个数多 (或少)百分之几
a.问题 : 笑笑参加学校的冬季长跑活动 , 已经跑 了70% , 还剩下300 m , 笑笑一共要跑多少米 ?
a.? m a.先画图看
看。
a.70%
a.300m
a.你发现了什么等量关系 ?
a.总路程×〔1-70%〕=剩下的300 m
a.解 : 设笑笑一共要跑 x 米。 a.〔1-70%〕x = 300 a.0.3 x = 300 a.x = 1000
数量/m 1 2 3 4 5 6 7 8 ...
总价/元 3.5 7 10.5 14 17.5 21 24.5 28 ...
小学六年级下册数学讲义第四章 比例 人教新课标版(含解析)
人教版小学六年级数学下册同步复习与测试讲义第四章比例【知识点归纳总结】故选:B.点评:本题主要考查比例的意义,注意判断能否组成比例可以用求比值的方法,求出比值,比值相等两个比就能组成比例.例2:在比例3:4=9:12中,若第一个比的后项加上8,要使比例仍然成立,则第二个比的后项应加上()A、8B、12C、24D、36分析:在比例3:4=9:12中,若第一个比的后项加上8,由4变成12,这样两内项的积就成了108,根据比例的性质,两外项的积也得是108,再用108除以前一个比的前项3即得后一个比的后项,进而求出第二个比的后项应加上几即可.解:比例3:4=9:12中,第一个比的后项加上8,由4变成12,则两内项的积:12×9=108,两外项的积也得是108,第二个比的后项应是:108÷3=36,第二个比的后项应加上:36-12=24;故选:C.点评:此题主要考查比例的基本性质:在比例里,两内项的积等于两外项的积.点评:此题属于辨识两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例分析:根据正比例的意义x:y=k(一定)和反比例的意义xy=k(一定),因为长×宽=长方形的面积(一定),符合反比例的意义.解:根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选:B.点评:此题主要考查正、反比例的意义,以及长方形的面积公式.3. 解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项.求比例中的未知项,叫做解比例.一般来说,求比例的未知项有以下两种情况:例2:如果比例的两个外项互为倒数,那么比例的两个内项()A、成反比例B、成正比例C、不成比例分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.4. 比例的应用根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,根据正、5. 比的应用1.按比例分配问题的解题方法:(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:a.求出总份数;b.求出每一份是多少;c.求出各部分相应的具体数量.(2)转化成份数乘法来解答.解题步骤:a.先根据比求出总份数;b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.【经典例题】例1:一个三角形与一个平行四边形的面积和底部都相等,这个三角形与平行四边形高的比是()A、2:1B、1:2C、1:1D、3:1分析:根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.解:三角形的高=面积×2÷底,平行四边形的高=面积÷底,当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.所以这个三角形与平行四边形高的比是2:1.故选:A.点评:考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.例2:甲、乙两人各走一段路,他们的速度比是3:4,路程比是8:3,那么他们所需时间比是()答:甲乙所需的时间比是32:9.故选:B.点评:关键是把速度和路程设出来,然后根据时间=路程÷速度,先求得各自用的时间,再写出所用的时间比并化简比.6.辨识成正比例的量与成反比例的量1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,所以xy=1,是乘积一定,x和y成反比例;故选:D.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.【同步测试】单元同步测试题一.选择题(共8小题)1.当:4=x:5时,x的值是()A.B.C.D.2.根据6×7=2×21,写出下面的比例中正确的一组是()A.6:7=2:24B.6:2=7:21C.6:2=21:7 3.如表,如果x和y成反比例,那么“?”处应填()x3?y56A.2B.3.6C.2.5D.104.语文书和数学书共40本,语文书的本数和数学书的本数的比可能是()A.4:3B.4:5C.5:3D.无法确定5.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断6.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配7.一个三角形三个内角度数的比是1:3:4,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形8.一个长4cm,宽2cm的长方形按4:1放大,得到的图形的面积是()cm2.A.32B.72C.128二.填空题(共8小题)9.甲数与乙数的比例为5:3,甲数为60,乙数为.10.解比例:3.5:x=0.5:20%则x=11.表中x和y是两个成反比例的量,请将表格填写完整.x36120.18y10154012.一个最简分数的分母减去一个数,分子加上同一个数,所得的新分数可以约简为,这个数是.13.按照如图的配方,做5人份炒面,需要购买克面.14.利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相的数值.15.一个比例中,两个内项的积是1,其中一个外项是1.25,另一个外项是.16.在3,15,12,5,9,30,20中,把可以组成的比例写出两组、.三.判断题(共5小题)17.比例2:a=b:3,那么a与b的积是6.(判断对错)18.甲数的与乙数的相等,且甲、乙均不为零,则甲数大于乙数..(判断对错)19.a:b=2:4,则b是a的2倍.(判断对错)20.小明上学,已经走的路程与剩下的路程,是两个相关联的量.(判断对错)21.如果小华与小红体重的比是7:8,那么小华就比小红轻.(判断对错)四.计算题(共1小题)22.解比例.=4:2.4x:=15:五.应用题(共6小题)23.一种酒精溶液,水和酒精的比是4:1.如果要调3.2升的酒精溶液,水和酒精分别需要多少毫升?24.学校体育组购进12根大绳,准备按年级学生人数分配给参加“蓓蕾计划”的一、二、三年级学生.一年级45人,二年级75人,三年级60人,二年级能分到多少根大绳?25.修路队修一段铁路,修了一天后,已修路程和未修路程的比是1:4,第二天修了3600米,正好修完这条铁路的一半,这段铁路长多少米?26.甜甜学习做面包,她搜索得知,做面包需要的面粉、全麦、黄油可以按10:4:1配制.如果三样食材配成后共重3000克,其中含有全麦多少克?如果这三样食材各有200克制作这种面包,当面粉全部用完时,黄油还剩多少克?27.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的,二、三两个班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?28.解决问题.参考答案与试题解析一.选择题(共8小题)1.【分析】根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.【解答】解::4=x:5,4x=×5,4x=3,x=.故选:B.【点评】此题考查比例性质的运用即解比例.2.【分析】根据比例的性质:两内项的积等于两外项的积,据此逐项写出等式,与等式6×7=2×21比较得解.【解答】解:A、因为6:7=2:24,6×24不等于7×2,所以选项A不正确.B、因为6:2=7:21,6×21不等于7×2,所以选项B不正确.C、因为6:2=21:7,所以6×7=2×21,所以选项C正确.由此得出C是正确的.故选:C.【点评】此题考查比例性质的灵活运用,即:两内项的积等于两外项的积.3.【分析】如果x和y成反比例,则x和y的乘积一定,由此列出比例解答即可.【解答】解:6x=3×56x=15x=2.5答:如果x和y成反比例,那么“?”处填2.5.故选:C.【点评】此题属于根据反比例的意义解题,如果两种相关联的量成反比例,则对应的乘积一定;再根据乘积一定列出比例,求得未知数的数值即可.4.【分析】要求这两种书的本数比是几比几,因为数的本数应该为整数,所以只要40能整除比的前项和后项份数的和即可.【解答】解:A、因为4+3=7,7不能整除40,所以这两种书的本数比不可能是4:3;B、因为4+5=9,9不能整除40,所以这两种书的本数比不可能是4:5;C、5+3=8,40能被8整除,所以这两种书的本数比可能是5:3;故选:C.【点评】此题考查了学生对比的应用以及分析判断的能力.5.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.【分析】根据题意可得:三角形的三个内角分别占三角形内角和的、和,三角形的内角和是180度,根据一个数乘分数的意义分别求出三个角,进而进行判断即可.【解答】解:1+3+4=8180°×=22.5°180°×=67.5°180°×=90°所以该三角形是直角三角形.故选:B.【点评】解答此题的关键是先根据一个数乘分数的意义分别求出三个角,进而根据三角形的分类,判断即可.8.【分析】先根据按4:1放大,放大后长和宽是原来的4倍,求出放大后的长和宽,再求出面积.【解答】解:放大后的长:4×4=16(厘米);放大后的宽:2×4=8(厘米);面积:16×8=128(平方厘米);故选:C.【点评】先根据比例求出放大后的长和宽,再求出面积.二.填空题(共8小题)9.【分析】利用比例的基本性质即可求解,即两内项之积等于两外项之积.【解答】解:设乙数为x,则5:3=60:x,5x=180,x=36.故答案为:36.【点评】此题主要考查比例的基本性质.10.【分析】根据比例的基本性质,原式化成0.5x=3.5×20%,再依据等式的性质,方程两边同时除以0.5求解.【解答】解:3.5:x=0.5:20%0.5x=3.5×20%0.5x÷0.5=0.7÷0.5x=1.4;故答案为:1.4.【点评】本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.11.【分析】根据x和y两个量成反比例关系,可知x和y这两个量对应的乘积一定,进而根据乘积一定得解.【解答】解:12×15=180180÷36=5180÷10=18180÷0.18=1000180÷40=4.5如图:x36180120.18 4.5y51015100040故答案为:5,180,1000,4.5.【点评】此题属于考查正、反比例的意义,如果两种相关联的量成反比例关系,那么它们对应的乘积一定相等.12.【分析】若设这个数为x,则的分母减去一个数,分子加上同一个数后,新分数的分子与分母的比是,据此就可以列比例求解.【解答】解:设这个数为x,则=,5×(13+x)=3×(27﹣x),65+5x=81﹣3x,8x=16,x=2;答:这个数是2.故答案为:2.【点评】解答此题的关键是明白的分母减去一个数,分子加上同一个数后,新分数与成比例,从而问题得解.13.【分析】通过观察配方表可知,2人份炒面需要600克面粉,由此可以求出1人份炒面需要面粉多少克,再根据乘法的意义,用乘法解答即可.【解答】解:600÷2×5=300×5=1500(克)答:需要购买1500克面粉.故答案为:1500.【点评】此题考查的目的是理解比的意义,掌握比与除法之间的联系及应用.14.【分析】根据正比例的定义,以及函数图象的对应关系即可求解.【解答】解:利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相对应的数值.故答案为:对应.【点评】考查了正比例图象,关键是熟练掌握正比例的定义,以及利用正比例图象解决问题.15.【分析】根据比例的基本性质:在比例中,两个外项的积等于两个内项的积;已知两个内项的积是1,则两个外项的积也是1;用1除以1.25,即为另一个外项.【解答】解:因为两内项之积等于两外项之积,所以另一个外项是:1÷1.25=0.8.故答案为:0.8.【点评】本题主要考查比例基本性质的应用.16.【分析】根据比例的基本性质“两外项的积等于两内项的积”,只要找出四个数中任意两个数的积等于另外两个数的积,就说明这四个数能组成比例.据此解答.【解答】解:在3,15,12,5,9,30,20中3×20=12×5所以可以组成比例:3:12=5:20、3:5=12:20.故答案为:3:12=5:20、3:5=12:20.【点评】此题考查比例的意义和比例的性质的运用:验证所给的四个数能否组成比例,可以根据比例的性质:两外项的积等于两内项的积;也可以用求比值的方法,任意两个数的比值和另外两个数的比值相等,就能组成比例,否则就不能组成比例.三.判断题(共5小题)17.【分析】根据比例的性质,两个内项之积等于两个外项之积,进行判断即可.【解答】解:2:a=b:3,ab=2×3=6;所以原题计算正确;故答案为:√.【点评】此题考查比例性质的运用.18.【分析】利用比例的性质,将两个内项积等于两个外项积先改写成比例,再进一步化简比得解.【解答】解:甲数×=乙数×,则甲数:乙数=:=24:25,因为24份的数<25份的数,所以甲数<乙数.故答案为:错误.【点评】此题考查比例的运用,关键是把两个内项积等于两个外项积先改写成比例的形式.19.【分析】在比例中,两个外项的积等于两个内项的积,据此先把a:b=2:4改写成2b=4a,再根据等式的性质,两边同除以2得到b=2a,即b是a的2倍;据此判断即可.【解答】解:a:b=2:4,即2b=4a,则b=2a,即b是a的2倍;所以原题说法正确.故答案为:√.【点评】此题考查了比例的基本性质和等式性质的运用.20.【分析】已经走的路程与剩下的路程相加是总路程,它们是加数、加数与和的关系,所以已经走的路程与剩下的路程是两个相关联的量,据此判断.【解答】解:已经走的路程与剩下的路程相加是总路程,所以已经走的路程与剩下的路程是两个相关联的量.原题说法正确.故答案为:√.【点评】此题考查了两种相关联的量,成正比例、反比例,不成比例,有三种情况.21.【分析】如果小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,据此解答.【解答】解:小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,7<8,所以小华就比小红轻;原题说法正确.故答案为:√.【点评】此题考查了比的运用,把比看作份数比来理解.四.计算题(共1小题)22.【分析】(1)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程4x=0.2×2.4,再根据等式的性质,方程两边都除以4即可得到原比例的解.(2)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程x=×15,再根据等式的性质,方程两边都除以即可得到原比例的解.【解答】解:(1)=4:2.44x=0.2×2.44x÷4=0.2×2.4÷4x=0.12(2)x:=15:x=×15x÷=×15÷x=8【点评】解比例时,先根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程,然后再根据解方程的方法解答.五.应用题(共6小题)23.【分析】先求出总份数,即4+1=5份,然后分别求出水和酒精各占3.2升的几分之几,最后根据分数乘法的意义解答即可.【解答】解:4+1=53.2×=2.56(升)3.2×=0.64(升)答:水需要2.56毫升;酒精需要0.64毫升.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.24.【分析】把大绳的根数看作单位“1”,先求出总人数,再求出二年级学生人数占总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.【解答】解:45+75+60=180(人)12×=5(根)答:二年级能分到5根大绳.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律.即先求出总份数,再求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.25.【分析】把这段铁路的总长度看作单位“1”,修了1天后,已修的占总长度的,第二天修3600米,已修的占总长度的,则3600的对应分率是(﹣),用对应量除以对应分率,就是这段铁路的总长度.【解答】解:3600÷(﹣)=3600÷=12000(米)答:这段铁路长12000米.【点评】解答此题的关键是:求出3600的对应分率,用对应量除以对应分率,就是这条段路的总长度.26.【分析】已知一种面包需要的面粉、全麦、黄油可以按10:4:1配制.又知三样食材配成后共重3000克,先求出一份是多少克,进而求出含有全麦多少克;如果这三样食材各有200克制作这种面包,先求出面粉200克对应的黄油克数,再用200克减去对应的黄油克数即可求解.【解答】解:3000×=3000×=800(克)200﹣200÷10×1=200﹣20=180(克)答:其中含有全麦800克,黄油还剩180克.【点评】此题考查的目的是掌握按比例分配应用题的结构特征和解答规律,此题关键是求出一份是多少千克.进而求出缺少和剩余的各是多少千克.27.【分析】把六年级三个班捐书的总数看作单位“1”,一班捐的本数是三个班总数的,根据一个数乘分数的意义,用乘法即可得出一班捐的本数,用总数减去一班捐的本数就是二班和三班共捐书多少本,已知二、三两个班捐的本数比是4:3,也就是三班捐书的本数占二、三班捐书本数的,根据一个数乘分数的意义,用乘法即可求得三班捐了多少本.【解答】解:700×=280(本)(700﹣280)×=420×=180(本)答:三班捐书180本.【点评】此题考查的目的是理解掌握比的意义及应用,以及比与分数之间的联系及应用.28.【分析】根据高年级和低年级所分的本数比,求出各占剩余本数的几分之几,进而根据分数乘法解决问题.【解答】解:640×=400(本)640×=240(本)答:高年级分得400本图书,低年级分得240本图书.【点评】本题考查了分数问题和按比例分配的实际问题,按比例分配的方法求出两个年级的本数,是比较难的问题.。
比和比例(课件)-六年级数学下册人教版
答:需要糖0.1千克,水1.9千克。
➢ 用正、反比例的知识解决问题
甲工程队铺一条路,前5天 乙工程队铺路,原计划每天
铺了16千米,照这样的速度, 铺3.2千米,15天铺完。实
铺完这条路用了15天。这条 际每天铺4千米,实际需要
路长多少千米? 正比例
多少天铺完? 反比例
在练习本上解 答这两题。
➢ 用正、反比例的知识解决问题 • 解题步骤 ✓ 分析数量关系,判断成什么比例关系。 ✓ 找等量关系。若成正比例,则按“等比”找等量关系式; 若成反比例,则按“等积”找等量关系式。 ✓ 列比例。设未知数x,并代入等量关系式。 ✓ 解比例。 ✓ 检验写答。
=
5 32
前比 后
比
项号 项
值
3∶ 2 = 6 ∶4
内项 外项
➢ 比和比例的区别
• 基本性质
化简比 的根据
比的基本性质:比的前项和后项同时乘或除以 解比例 相同的数(0除外),比值相等。
的根据
比例的基本性质:在比例里,两个外项的积等于
两个内项的积。
➢ 比和比例的联系 • 比是比例的基础,比例是比的扩展; • 两个相等的比可以组成比例。
➢ 判断正、反比例的方法
一找:分析数量关系,确定哪两种量是相关联的量 二看:分析这两种相关联的量,看它们之间的关系是
乘积一定还是比值一定 三判断:如果乘积一定,成反比例
如果比值一定,成正比例 如果乘积和比值都不一定,不成比例
用比和比例的知识解决问题
➢ 按一定的比分配问题
一种糖水是糖与水按1∶19的比例配制而成的。要配制 这种糖水2千克,需要糖和水各多少千克?
成整数比再化简。 把比的前、后项同时乘分母的最小公倍数,转化成整 分数比 数比再化简。
六年级数学下册课件正比例和反比例复习课共19张PPT人教版
二、反比例
判断下面每组题中的两种量是否成反比例关系,并说出理由。 1.完成同一个工程,工作效率和工作时间。 ( 成反比例 )
工作效率×工作时间=工作总量(一定) 2.100元零花钱买同一种零食,零食的数量和单价。( 成反比例)
零食的数量×单价=100元(一定) 3.差一定,被减数和减数。( 不成比例 )
由题意得 60x 503
60x 150 x 5 2 5
答:返回时用了 小时。
2
归纳
用正、反比例解决实际问题的一般步骤:
➢ 根据题中的不变量找出两种相关联的量,并判断 这两种相关联的量成什么比例
➢ 设未知量为x,注意写明计量单位 ➢ 列出比例式,并解比例式 ➢ 写答
实际应用
3.用一台打字机打字,6小时打36页,照这样计算,如果再打4小
时,一共可以打字多少页?
工作总量
方法一
工作时间
=工作效率(一定) 方法二
解:设一共可以打字x页。
由题意得 x 36 64 6 6x 36 (6 4)
6x 360
解:设4小时可以打字x页。
由题意得 x 36 46
6x 36 4
6x 144
x 60
答:一共可以打字60页。
x 24
36+24=60(页) 答:一共可以打字60页。
正比例和反比例的异同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
变 化(或缩小),另一 种量也扩大(或缩小)。
y k(一定) x
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。
xy k(一定)
针对训练
4.下表中,x与y成反比例,那么☆表示的数是( B )
六年级下册数学教案《 4.2.正比例和反比例 第1课时 正比例 》 人教版
六年级下册数学教案《 4.2.正比例和反比例第1课时正比例》人教版一. 教材分析《4.2.正比例和反比例》是人教版六年级下册数学的教学内容。
这部分内容主要让学生理解正比例和反比例的概念,能够辨识生活中的正比例和反比例关系,并运用比例知识解决实际问题。
本节课是这一单元的第一课时,重点是让学生掌握正比例的定义和判断方法。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力。
他们在学习过程中,需要通过观察、操作、思考、交流等活动,理解正比例的概念,掌握正比例的判断方法。
同时,学生在生活中已经积累了一些关于比例的经验,为本节课的学习奠定了基础。
三. 教学目标1.让学生理解正比例的概念,能够判断两个相关联的量之间成正比例。
2.培养学生运用比例知识解决实际问题的能力。
3.激发学生的学习兴趣,培养学生的合作意识。
四. 教学重难点1.重点:掌握正比例的定义和判断方法。
2.难点:辨识生活中的正比例关系,运用比例知识解决实际问题。
五. 教学方法1.采用情境导入法,激发学生的学习兴趣。
2.运用实例分析法,让学生直观地理解正比例的概念。
3.采用合作交流法,培养学生的团队协作能力。
4.运用练习巩固法,提高学生的应用能力。
六. 教学准备1.准备相关的教学PPT或黑板。
2.准备一些生活中的实例,用于讲解正比例关系。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT或黑板展示一些生活中的图片,如行驶的汽车、升空的火箭等,引导学生观察这些图片,并提出问题:“这些图片中的物体有什么共同的特点?”让学生思考并回答,从而引出本节课的主题——正比例。
2.呈现(10分钟)讲解正比例的概念,并通过实例让学生直观地理解正比例关系。
例如,讲解速度、时间和路程之间的关系,引导学生判断它们是否成正比例。
同时,让学生举例说明生活中其他的正比例关系。
3.操练(10分钟)让学生分组讨论,每组找出生活中的一个正比例关系,并运用所学的判断方法进行验证。
六年级数学下册课件-4.2.2反比例-人教版2
书的总页数一定,已读的页数与未读的页数。
(1)X∶Y=K,k一定,成正比例。
判断下面每题中的两种量成什么比例关系?并用关系式或列表等方式说明你作出判断的依据。
量出他的影长和身高,得到相应比例;
要想左右保持平衡,右边也要挂6颗,应该挂在哪里?
乘积一定,都等于300。
(4)使用竹竿来当参照物,绑在旗杆上,或者立在
正比例和反比例
反比例
正比例和反比例的认识
(1)X∶Y=K,k一定,成正比例。 (2)Y×X=K,k一定,成反比例。
正比例和反比例的认识
(3)正比例,两种相关联的量,一个 量变化,另外一个量也随之变化, 如果这两个的比值一定,就是正 比例。
正比例和反比例的认识
(4)反比例,两种相关联的量,一种 变化,另外一种也随之变化,如 果这两个量的乘积一定,那么就 是反比例。
(1)下面是某种汽车所行路程和耗油量的对应数值表。
树高和影长是成正比例。
杠杆原理背后隐藏着反比例。 第三步,量出旗杆的影长,用 右边的刻度×所放棋子数=左边的刻度×所放棋子数 同学身高∶同学影长=X∶旗杆影长
乘积一定,所以成反比例关系。
有两个相关联的量X、Y
(1)X∶Y=K,k一定,成正比例。
(2)京沪高铁的火车平均行驶速度与形式时间数值表。
书的总页数一定,已读的页数与未读的页数。 不成比例。
已读页数+未读的页数=书的总页数。 正比例 反比例 不成比例
有两个相关联的量X、Y
X
10 20
Y
30 15
反比例: 10×30=300 20×15=300 乘积一定,成反比例。
有两个相关联的量X、Y
X
10 20
Y
六年级下册4比例2正比例和反比例第1课时正比例习题新人教版
长度/m 1 2 3 4 5 … 金额/元 30 60 90 120 150 …
点拨:根据每米售价30元,用每米售价乘长度即可求出金额。
(2)表中( 长度 )和( 金额 )是两种相关联的量, ( 金额 )随着( 长度 )的变化而变化。
点拨:观察表中数据可知,长度越长,金额就越大,长度和 金额是两种相关联的量,金额随着长度的变化而变化。
(3)因为(每米售价 )一定,所以( 金额 )与( 成( 正 )比例关系。
长度 )
点拨:金额∶长度=每米售价,每米售价一定,也就是金额 与长度的比值一定,所以金额与长度成正比例关系。
知 识 点 2 正比例图象
2. 根据上表的数据,在下图中描出表示这种丝绸所 需金额与相应长度的点, 然后把它们顺次连接起来 并延长。
(1)观察图象,可以发现( 这是一条从(0,0)出发的射线 ); (2)不计算,买5. 5 m这种丝绸要用( 165 )元。
知 识 点 3 正比例关系的判断
3. 判断下面各题中的两种量是否成正比例关系,并 说明理由。 (1)文具盒的单价一定,文具盒的数量与总价。 成正比例关系,因为( 总价 )∶( 数量 )=单价 (一定),所以( 总价 )和( 数量 )成正比例关系。
点拨: 表面积与底面积的比为6∶1=6,24∶4=6,54∶9=6, 96∶16=6,比值相等,所以正方体钢块的表面积和底面 积成正比例关系。质量与体积的比为7. 8∶1=7. 8,62. 4∶8=7. 8,210. 6∶27=7. 8,499. 2∶64=7. 8,比值相 等,所以正方体钢块的质量与体积成正比例关系。
第4单元 比例 2. 正比例和反比例
第1课时 正比例
知 识 点 1 正比例的意义
1. 新丝绸之路经济带,给我国经济注入了新的活力。 我国的许多纺织品都远销国外,其中一种丝绸在国 外特别受欢迎。已知这种丝绸每米售价30元,那么 购买2 m,3 m,4 m……这种丝绸各要多少元? (1)将相应的金额填在表中。
新人教版六年级下册数学正比例和反比例课件
(2)上面两个比能组成比例吗?为什么? (3)如果李阿姨要剪出120张剪纸,需要多少小时?
练
习
十
七
乘3
1 91:1014源自3553出勤人数和缺勤人数是两种相关联的量,因为出勤 分子 关联的量, 正方体的表面积和它的 一个面的面积是两种相 三角形的底和高是两种 相关联的量,因为底 面积 2 ( 分子和分母是两种相关 联的量,因为 高 分数 人数+缺勤人数=全班人数 (一定),和一定,所以出勤人 分母 表面积 一定),所以三角形的 底和高成反比例。 因为 6 (一定),所以正方体 的表面积和 值(一定),所以分子 和分母成正比例。 数和缺勤人数不成比例。 一个面的面积
4、圆的周长与直径成什么比例?圆的周长与半径成什 么比例?圆的面积与半径成什么比例?
圆的周长 圆周率(一定) 正比例 直径 圆的周长 圆周率 2 (一定) 正比例 半径 圆的面积 半径 圆周率(不一定) 不成比例 半径
5、假设两个圆的半径分别是3cm和5cm。 两个圆半径的比:
反比例关系可以用 x y k(一定)表示。
正比例和反比例的对比:
正比例 反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。 变 化 规 律 关 系 式 变化的方向相同,一种 量扩大(或缩小),另一 种量也扩大(或缩小)。 相对应的两个数的比值 (商)一定。
y 关系式: k(一定) x
( 12 6 )x 12 30 18 x 12 30
12 30 x 18 x 20
答:20天可以完成。
堂 课
习
练
4
李阿姨是剪纸艺人。平时李阿 姨每天工作6小时,剪出72张 纸;节日期间,李阿姨每天要 工作8小时,能剪出96张剪纸。
人教版六年级数学下册第四单元 比例复习课件
1:5000000的地图上,这条公路的图上距离是多少?
(教材P66第3题)
5.5×2000000= 11000000(cm)
1
11000000÷
= 2.2(cm)
5000000
答:这条公路的图上距离是2.2 cm。
3
同一时间、同一地点测得旗杆高度和影长的数据如下表。
7 :14 和 6 :12
0.4 :1.6 和 3 :12
0.5
0.5
7 :14 = 6 :12
0.25
0.25
0.4 :1.6 = 3 :12
0.5 :2 和
0.25
1
4
1
:
16
1
3
1
:
4
和
4
3
4
1
3
1
:
4
=
1
6
1
:
8
4
3
1
1
:
6
8
2
解比例。
0.6 1.5
=
12
解:0.6x = 1.5×12
1.5×12
01 计算表中两种量的比值或乘积。
若两种量的比值一定,则成正比例;
02
若两种量的乘积一定,则成反比例。
(1)从甲地到乙地的路程是240km,汽车行驶的速度与时间如下表。
速度/(千米/时)
40
50
60
80
100
时间/时
6
4.8
4
3
2.4
(1)40×6 = 50×4.8 = 60×4=80×3 = 100×2.4 = 240
部编人教版六年级数学下册《第4单元比例2.正比例和反比例 第2课时 反比例》精品PPT优质课件
三、巩固练习
每天运的吨数/t 300 150 100 75 60 50 运货的天数/天 1 2 3 4 5 6 (1)表中有哪两种量?它们是不是相关联的量? 表中有每天运的吨数和运货的天数两种相关联的量。 (2)写出几组这两种量中相对应的两个数的积,并比较积的大 小,说一说这个积表示什么。 300×1=150×2=100×3=75×4=60×5=50×6=300, 积表示需要运输货物的总吨数。 (3)运货的天数与每天运的吨数成反比例关系吗?为什么? 成反比例关系,因为每天运的吨数与运货的天数的乘积一定。
Thanห้องสมุดไป่ตู้ you!
Good Bye!
量,水的高度是随着杯子的底面积的变大而不断变小的。而且水 的高度与杯子的底面积的乘积总是一定的。例如: 30×10=20×15=15×20=…=300。
积300,实际就是倒入杯子的水的体积。用式子表示它们的 关系就是:
底面积×高度=体积
像这样,两种相关联的量,一种量变化,另一种量也随着变化,
如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成 反比例的量,它们的关系叫做反比例关系。
杯子的底面积/cm2 10 15 20 30 60 …
水的高度/cm
30 20 15 10 5 …
观察上表,回答下面的问题。 (1)表中有哪两种量? (2)水的高度是怎样随着杯子底面积的大小变化而变化的? (3)相对应的杯子的底面积与水的高度的乘积分别是多少?
从上表可以看出,水的高度和杯子的底面积是两种相关联的
在上面的实验中,高度和底面积是成反比例的量,高度与底面 积成反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的积(一 定),反比例关系可以用下面的式子表示:
人教版六年级数学下册第四单元《比例尺的应用、正比例与反比例的应用》技巧课件
应 用 3 根据比例尺求图上距离并绘图
3.学校在广场的正东方向方向,距离广场350 m;文化宫在广场
图上距离3.5cm 的南偏西30°方向,距离广场300 m;体育馆在广场
图上距离3cm 的北偏东40°方向,距离广场400 m。在下图中画出
它们的位置平面图。
x= 23 70×(23-5)=1260(m) 答:小东家到学校的路程是1260 m。
类 型 3 列比例解答工程问题
每小时燃烧
1 2
求出粗蜡烛和细蜡烛 的剩余长度
每小时燃烧
1 3
4.有长度相等,粗细不同的两根蜡烛,粗的可燃3小时,
细的可燃2小时。一天晚上8:00停电了,小明把这
两根蜡烛同时点燃照明。来电时,小明同时吹灭这
1500x=1200×(6-x) x=83
1500×83=4000(km) 答:这架飞机最多飞行 4000 km 就需要返回。
类 型 5 已知变化前后的比和变化的数量,求
原来的数量 6.某次测试中,甲、乙两个同学的分数比为5∶4,如
果甲少得25分,乙多得25分,那么他们的分数比是 5∶7。甲、乙各得多少分? 设甲得5x分,乙得4x分
2.小明家住在八楼,一天停电,小明只好从一楼走楼梯
回家,当他上到四楼时用了36秒,假设小明上每层楼所
用的时间相同,那么小明从一楼回到家需要多少秒?
爬了3层楼
从1楼爬到8楼
爬了7层楼
爬1层楼用的时间一定
爬楼用的时间与爬楼的层数成正比
解:设小明从一楼回到家需要 x 秒。 43-61=8-x 1
x=84 答:小明从一楼回到家需要 84 秒。
园的长是4.5 cm,宽是3.6 cm。学校植物园的实际面
积是多少平方米? 长方形面积的比是其长度比的平方 图上面积与实际面积的比:1²∶2000² 实际面积=5×3×2000²
六年级数学下册试题 -《第4章 比例 第2课时 正比例和反比例》同步测试题 人教版(含解析)
人教版六年级数学下册《第4章比例第2课时正比例和反比例》同步测试题一.选择题(共6小题)1.下列等式中,a与b(a、b均不为0)成反比例的是()A.2a=5b B.a×7=C.a×=12.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时间和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数3.圆的周长和直径()A.成正比例B.成反比例C.不成比例4.a和b成反比例关系的式子是()A.5a=4b B.=C.5a=D.5a=b+45.如果ab=3,那么a与b()A.不成比例B.成反比例C.成正比例6.总价一定,单价和数量()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题(共6小题)7.A、B、C三量的关系时A×B=C中,当C一定时,A和B成关系.8.表格中,如果A和B成正比例,x=,如果A和B成反比例,x=.A28B0.5x9.少先队员每人做好事的件数一定,做好事的总件数与做好事的少先队员人数成正比例..10.表中如果x和y成正比例,那么空格里应填;如果x和y成反比例,那么空格里应填.x26y2411.一种练习本销售的数量与总价的关系如表.数量/本12345总价/元 5.51116.52227.5(1)表中有和两种相关联的量,总价随着的变化而变化,且总价与相应数量的比值都是,实际就是练习本的.(2)像这样,两种的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的一定,这两种量就叫做的量,它们的关系叫做关系.上表中,总价和数量是成的量,总价与数量成关系.12.在比例中,两个外项的积一定,两个两内项成比例.三.判断题(共5小题)13.工作总量一定,工作效率和工作时间成正比例.(判断对错)14.在一定的距离内,车轮周长和它转动的圈数成反比例..(判断对错)15.小明应完成的作业量一定,他已完成的作业量和未完成的作业量成反比例.(判断对错)16.式子=k(一定)表示的是正比例关系..(判断对错)17.如果a和b成正比例,b和c成反比例,那么a和c一定成反比例..(判断对错)四.应用题(共3小题)18.淘淘家在装修房屋时,买了同样大小的地板砖,铺地面积与所需块数的关系如图.他家的客厅面积是36m2,需要铺多少块这样的地板砖?(用比例解决问题)19.下面的图象表示小强从甲地到乙地不同的速度和所对应的时间.(1)在这个过程中,哪种量没有变?(2)速度和所对应的时间成什么比例关系?(3)不计算,观察图象,如果每小时行40km,那么从甲地到乙地大约需要多少小时?20.食堂有一批大米.如表记录的是每天的用量和所用的天数.每天的用量/kg40255所用的天数8102080(1)把上表填写完整.(2)每天的用量和所用的天数成反比例吗?为什么?(3)如果每天用8kg,那么可以用多少天?(4)如果计划用100天,那么每天应该用多少千克?五.操作题(共2小题)21.甲、乙两台机器的工作时间和耗电量如表.时间/时123456甲机器耗电量/千瓦时306090120150180乙机器耗电量/千瓦时3065100130160200根据表中的数据,在下图中描出每一组工作时间与耗电量所对应的点,再把它们按顺序连接起来.(1)根据画出的图象,机器的工作时间和耗电量成正比例.(2)根据画出的图象,工作2.5小时,甲机器的耗电量大约是千瓦时,乙机器的耗电量大约是千瓦时.22.文具店有一种电动橡皮擦,销售的数量与总价的关系如下表:数量/个246总价/元163248(1)把橡皮擦的数量与总价所对应的点在图中描出来,并连线;(2)利用图象估计7个这样的橡皮擦总价是元.六.解答题(共2小题)23.一辆汽车所行的时间与路程的关系,可以用如图来表示,请你根据图上信息填一填、算一算下列问题.(1)从图上可以看出这辆车所行的路程与时间,这两个量成比例.(2)如果这辆汽车以这样的速度从甲地行到乙地用了5小时,问甲、乙两地之间的路程是多少千米?24.一种岩石的体积与质量的关系如下表.体积/cm326101213质量/g618303639(1)在如图中描出各点,并顺次连起来.(2)这种岩石的体积与质量成比例吗?成什么比例?(3)如果一块岩石的体积是8cm2,那么这块岩石的质量是多少克?参考答案与试题解析一.选择题(共6小题)1.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.【解答】解:A,因为2a=5b,所以=(一定),所以a、b成正比例;B,因为a×7=,所以=14(一定),所以a、b成正比例;C,因为a×=1,所以ab=3(一定),所以a、b成反比例;故选:C.【点评】此题属于辨识成正、反比例的量,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.2.【分析】判断两种相关联的量之间是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:A.圆的面积=π×圆的半径2,不符合正比例的意义,所以圆的半径和圆的面积不成正比例关系;B.因为写字总时间=写字总数×写一个字所用时间,所以写字总时间÷写一个字所用时间=写字总数(一定)符合正比例的意义,写字总数一定,写一个字所用时间和写字总时间成正比例关系;C.因为每分钟写字个数×写字总时间=写字总数(一定),符合反比例的意义,不符合正比例的意义,所以写字总数一定,每分钟写字个数和写字总时间不成正比例关系;D.两个互相咬合的齿轮,齿轮的齿数是一定的与转数没关系,不符合正比例的意义,所以两个互相咬合的齿轮,齿轮的齿数和转数不成正比例关系,故选:B。
2023春人教版六年级数学下册《 反比例》PPT课件
(2)全班的人数一定,按各组人数相等的要求 分组,组数与每组的人数。
成反比例关系。因为每组的人数×组数=全班的人 数(一定),所以组数与每组的人数成反比例关系。
(3)圆柱的体积一定,圆柱的底面积与高。
成反比例关系。因为圆柱的底面积×高=圆柱 体积(一定),所以圆柱的底面积与高成反比例 关系。
(4)在一块菜地上只种黄瓜与西红柿两种作物, 这两种作物的种植面积。
探究新知
容器的底面积/cm2 10
水的高度/cm 30 水的体积/cm³ 300
15 20 30 60 … 20 15 10 5 …
300 300 300 300
像这样,两种相关联的量,一种量变化, 另一种量也随着变化,如果这两种量中相对 应的两个数的乘积一定,这两种量就叫作成 反比例的量,它们的关系叫作反比例关系。
容器的底面积/cm² 10 15 20 30 60 ...
水的高度/cm
30 20 15 10 5 ...
根据上表,回答下面的问题。
(1)表中有哪两种量?
容器的底面积和水的高度。
容器的底面积/cm² 10 15 20 30 60 ...
水的高度/cm
30 20 15 10 5 ...
(2)水的高度是怎样随着容器底面积的大小变化 而变化的?
2.判断下面各题中的两种量是否成正比例关系。
(1)长方形的长一定,它的宽和面积。 成正比例关系
(2)圆的周长和半径。 成正比例关系
(3)一个人的年龄和他的身高。 不成比例
探究新知
把相同体积的水倒入底面积不同的圆柱形容器, 容器的底面积与水的高度的变化情况如下表。
容器的底面积/cm² 10 15 20 30 60 … 水的高度/cm 30 20 15 10 5 …
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
值实际是(
单);价因为这两种量的比值(
一),定所
以( 总价)和( 数量)这两种量叫做( 成正比例)的量.
(2)路程与时间的比值是( 速度 ),当这个比值一定 时路,( 程 )和时( 间 )成正( )比例.
易错点
2.下面判断正比例关系的说法对吗?若不对,请改正. 在梯形中,面积与上底成正比例关系. 不对,如果梯形的高一定,那么面积与上下底的 和成正比例关系;如果梯形的上下底的和一定, 那么面积与高成正比例关系.
提升点 1 正确判断正方体中的两种量是否成正比例
3.下表关于正方体的一些数量,哪两种量成正比例关
系?说明理由.
棱长/cm
1
2
3
4
底面积/cm2 1
4
9
16
表面积/cm2 6
24
54ห้องสมุดไป่ตู้
96
体积/cm3
1
8
27
64
正方体的表面积和底面积成正比例关系. 因为:表面积÷底面积=6. 正方体的质量与体积成正比例关系. 因为:质量÷体积=每立方厘米的质量(一定).
4.根据等式a=bc,判断题中哪种量一定时,另外两种 量成正比例关系.
b一定时,a与c成正比例关系. c一定时,a与b成正比例关系.
正比例(一)
知识点1 正比例的意义
1.填空. (1)某体育用品商店有一种跳绳,销售的数量与总价的
情况如下表:
数量/根 1 2 3 4 5 …
总价/元 4.5 9 13.5 18 22.5 …
表中( 数量 )和( 总价 )是相关联的量.这两种相关
联的量中相对应的两个数的比值都是( 4.5),这个比