高速切削-课件 (1)
高速加工技术讲座 ppt课件
加工效果
铝合金 共晶硅 铝合金
HRC71
端铣 车削
共晶硅 HRC71 铣削
玻璃纤维 强化塑料
热塑性 醋酸盐
高Si-Al 铸造件
HRA87
车削 铣削 铣削
V=4000m/mim Ra 0.8-0.4μm V=600m/mim 一次刃磨切削行程800km f = 0.1mm/r Ra 0.8μm,刀具寿命为
硬质合金的50倍 V=2900m/mim 刀具寿命为硬质合金的80 Vf=0.018mm/齿 倍,Ra 0.8μm V=500m/mim 刀具寿命为硬质合金的
150倍,Ra 0.8-0.4μm
V = 4500m/s 比硬质合金寿命提高380 Vf=10mm/min 倍,Ra 0.8μm
V=2200m/mim Ra 0.8μm
9
1)金刚石刀具
优点:刃锋利,能切下极薄切屑,冷硬现象
少,摩擦系数低,无积屑瘤。
缺点:热稳定性差,强度低,脆性大,对振
动敏感,只适用于微量pp切t课削件。
10
金刚石刀具有三种: 天然单晶金刚石刀具 整体人造聚晶金刚石刀具 金刚石复合刀片
天然金刚石价格昂贵,使用较少。
人造金刚石是通过合金触媒作用,在高温高压下 由石墨转化而成。
620 ℃ 1000 ℃ 1400 ℃ 800 ℃ 600-800 ℃ >1000 ℃
低 惰性大 惰性小 惰性小 惰性大
低
较高
高 最高
最高
很高
一般精度 Ra≤0.8 Ra≤0.8 IT7-8 IT7-8
高精度 Ra=0.1-0.05
IT5-6
Ra=0.4-0.2
IT5-6 可替代磨削
低速加 加工对象 工一般
《高速切削加工》课件
3
高速切削加工技术的新发展
高速切削加工技术的新发展是智能化、高效化、多功能化等方向的发展。
总结
1 高速切削加工的重要性
在现代先进制造业中,高速切削加工已成为最先进的加工工艺之一。
2 发展前景
高速切削加工将朝着更高精度、更稳定、更智能的方向发展。
刀具
高速切削加工用的刀具有硬质合金刀具和普通高速钢刀具。
2
夹具
用于夹紧加工件,保证加工件的位置和尺寸的准确度。
3
加工中心机床
高速切削加工的核心设备,一般配备自动换刀库,可实现多种工序的加工。
高速切削加工的原理
四角切削
四角切削是刀具在加工过程 中所受力的主要方向,也是 影响刀具切削稳定的主要因 素。
பைடு நூலகம்
机械制造
高速车削、高速铣削、高速钻削 等机械制造领域。
电子信息
如手机、笔记本电脑金属外壳、 DVD机零部件、各类光学仪器等。
高速切削加工的挑战与未来
1
超细加工
针对非金属的加工,要求精度更高,应考虑空气轴承、颤动反馈控制、非触变形 传感控制等。
2
超硬材料加工
超硬材料的加工,如石墨、硬质合金、陶瓷等,已成为高速切削加工的一个重要 领域。
精密加工
精密高速切削加工广泛应用 于航空航天、汽车、电子和 精密机械制造等领域,如模 具、光学部件、超声波探头 和燃烧室等零部件。
表面质量
高速切削加工能够获得极高 的表面质量,如挤出铝合金 管、铜合金输入输出端子, 铜轴套、石英晶体等产品的 光洁度达到镜面级。
高速切削加工的应用
航空航天
航空航天零部件,如高压涡轮叶 片、大型钛合金零件等。
加工效率高
高速切削加工速度快,可以完成 较长时间处理不完的工作。
《高速切削》课件
本PPT课件将介绍高速切削的定义、原理、分类、技术、应用、注意事项以及 未来发展,为您展示全面的高速切削知识。
什么是高速切削?
高速切削的定义
高速切削是指在高速运动下切削金属材料的加工方 法。
高速切削的优点
高速切削具有高效率、高精度和优质表面等优点。
高速切削的原理
1 原理介绍
高速切削技术的趋势 和前景
高速切削技术正朝着更高效率、 更高精度和更环保的方向发展。
ቤተ መጻሕፍቲ ባይዱ
高速切削的未来发展
高速切削未来将在各行各业中得 到更广泛的应用和进一步的优化。
高速切削注意事项
1 高速切削的注意事项
高速切削过程中需注意刀具选择、润滑和安全等方面。
2 如何安全进行高速切削
安全进行高速切削需遵循正确的操作规程和戴好个人防护装备。
3 如何保证高速切削的质量
保证高速切削质量需要注意刀具磨损和加工参数等关键因素。
高速切削发展前景
高速切削的发展历程
高速切削技术经历了多年的发展 与创新。
高速切削利用切削工具对工件进行高速运动切削,实现金属材料的加工。
2 高速切削的工作过程
高速切削的工作过程包括进给运动、主轴转动和切削速度等因素。
3 高速切削的工作原理
高速切削通过防振、刀具材料和润滑等措施,提高切削效率和质量。
高速切削的分类
高速切削分类介绍
高速切削可分为铣削加工和车削 加工两种主要类型。
CNC技术在高速切削加工中起到关 键作用,实现自动化加工。
高速切削的应用
1
高速切削在现代制造中的应用
高速切削广泛应用于航空、汽车、船舶等
高速切削的优势和局限性
2
高速切削与磨削PPT
机械制造技术高速切削与磨削概述Ø1931年德国切削物理学家C .J .S a l o m o m 在“高速切削原理”一文中给出了著名的“S a l o m o m 曲线”——对应于一定的工件材料存在一个临界切削速度,此点切削温度最高,超过该临界值,切削速度增加,切削温度反而下降。
ØS a l o m o m 的理论与实验结果,引发了人们极大的兴趣,并由此产生了“高速切削(H S C )”的概念。
Ø尚无统一定义,一般认为高速加工是指采用超硬材料的刀具,通过极大地提高切削速度和进给速度,来提高材料切除率、加工精度和加工表面质量的现代加工技术。
Ø以切削速度和进给速度界定:高速加工的切削速度和进给速度为普通切削的5~10倍。
Ø以主轴转速界定:高速加工的主轴转速≥10000r /m i n 。
3.8.1高速加工概述q 高速加工定义33.8.1高速加工概述图3-31Salomon 切削温度与切削速度曲线切削适应区软铝切削速度v /(m/min)切削不适应区6001200180024003000青铜铸铁钢硬质合金980℃高速钢650℃碳素工具钢450℃Stelite 合金850℃16001200800400切削温度/℃切削适应区非铁金属图3-32高速与超高速切削速度范围10100100010000切削速度V (m/min )塑料铝合金铜铸铁钢钛合金镍合金q 高速加工的切削速度范围Ø高速加工切削速度范围因不同的工件材料而异,见图3-32◎车削:700-7000m/min ◎铣削:300-6000m/min ◎钻削:200-1100m/min ◎磨削:50-300m/sØ高速加工切削速度范围随加工方法不同也有所不同q高速加工的特点Real Real Ø加工效率高:进给率较常规切削提高5-10倍,材料去除率可提高3-6倍Ø切削力小:较常规切削至少降低30%,径向力降低更明显。
《高速切削》PPT课件
2、外表层物理力学、化学性能
(1)外表金属层的冷作硬化 指工件在加工过程中,外表层金属产生强烈的塑性变形,
使工件加工外表层的强度和硬度都有所提高的现象。
表示方法
冷硬层深度 h
硬化程度
N
硬化程度:
H N 10% 0
H0
其中: H——加工后外表层的显微硬度 H0——材料原有的显微硬度
波距与波高
波距:峰与峰或谷与谷间的距离, 以L表示;
波高:峰与谷间的高度,以H
表示。
L/H>1000时,属于宏观几何形状误差; L/H<50时,属于微观形状误差,称作外表粗糙度; L/H=50~ 1000时,称作外表波度;
纹理方向 是指外表刀纹的方向,取决于外表形成所采 用的机械加工方法。一般运动副或密封件对纹理方向有要求。
外表粗糙度的形 成和影响因素
几何因素
物理因素
两方面
一、切削加工外表粗糙度
刀尖圆弧半径
主偏角
切削残留面积的高度
副偏角 进给量
图p102
金相组织
金相组织越大,粗糙度也越大;
切削液的选用及刀具刃磨质量
机械加工中,外表粗糙度形成的原因大致可归纳为 几何因素和物理力学因素两个方面。
一、切削加工外表粗糙度
《高速切削》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
§4.1 机械加工外表质量对零件使用性能的影响 一、机械加工外表质量的概念
《高速切削加工》课件
03 高速切削加工的关键技术
高速切削加工的刀具技术
刀具材料
01
高速切削加工需要使用高硬度、高耐磨性的刀具材料,如硬质
合金、陶瓷和金刚石等。
刀具涂层技术
02
涂层技术能够提高刀具表面的硬度和耐磨性,降低摩擦系数,
提高切削效率。
刀具几何形状
03
高速切削加工需要采用特殊的刀具几何形状,如小前角、大后
角和短刀刃等,以减小切削力、切削热和刀具磨损。
在高速切削加工中,降低能耗、减少废弃 物排放和提高资源利用效率成为重要的发 展趋势,符合可持续发展的要求。
高速切削加工面临的挑战与对策
高温与热变形
高速切削加工过程中产生的高温可能导致 刀具磨损、工件热变形等问题,需采用新 型刀具材料、强化冷却技术等手段解决。
振动与稳定性
高速切削加工过程中的振动可能影响加工 精度和表面质量,应优化机床结构、提高 刚性和阻尼性能。
模具型腔加工
高速切削加工技术在模具制造业 中广泛应用于模具型腔的加工, 如注塑模、压铸模等,能够快速 准确地完成复杂型面的加工。
模具钢材料加工
高速切削加工技术能够高效地加 工各种模具钢材料,如H13、 SKD61等,提高加工效率,减少 热量的产生和材料的变形。
高速切削加工在航空航天制造业的应用
航空发动机制造
高速切削加工的工艺参数
1 2 3
切削速度
提高切削速度可以提高加工效率,但同时也需要 选择合适的刀具和材料,以避免刀具磨损和工件 热变形。
进给速度
进给速度的提高可以增加材料去除率,但过高的 进给速度可能导致刀具磨损和工件表面质量下降 。
切削深度
适当的切削深度可以提高加工效率,但过大的切 削深度可能导致刀具磨损和工件表面质量下降。
第4讲 高速切削加工技术
先进制造技术
第4讲 高速切削技术
21
先进制造技术
第4讲 高速切削技术
近年来,我国航天、航空、汽轮机、模具等制造行业引进了大量加工中 心和数控镗铣床,都不同程度地开始推广应用高速切削加工技术,其中模具 行业应用较多。 例如上海某模具厂,高速铣削高精度铝合金模具型腔,半精铣采用主轴 转速18000rpm,切削深度2mm,进给速度5m/min;精铣采用20000rpm,切 削深度0.2mm,进给速度8m/min,加工周期为6h,质量完全满足客户要求。
先进制造技术
第4讲 高速切削技术
高速加工的应用
汽车工业:采用高速数控机床和高速加工中心组成高速柔性生产线,实现 多品种、中小批量的高效生产。 模具制造:高速铣削代替传统的电火花成形加工,效率提高3-5倍。 仪器仪表:精密光学零件加工。 难加工材料 超精密微细切削加工
先进制造技术 10 1 0.1 0.01 0.001 高速切削 少量手工精修 加工时间 粗加工
先进制造技术
第4讲 高速切削技术
Salomom的理论与实验结果,引发了人们极大的兴趣,并 由此产生了“高速切削(HSC)”的概念。 他指出,在常规切削速度范围内,切削温度随着切削速度 的提高而升高,但切削速度提高到一定值后,切削温度不 但不升高反会降低,且该切削速度值与工件材料的种类有 关。对每一种工件材料都存在一个速度范围,在该速度范 围内,由于切削温度过高,刀具材料无法承受,即切削加 工不可能进行,称该区为“死谷”。
先进制造技术
第4讲 高速切削技术
我国高速切削加工技术最早应用于轿车工业,二十世纪八十年代后 期,相继从德国、美国、法国、日本等国引进了多条具有先进水平的轿 车数控自动化生产线,如从德国引进的具有九十年代中期水平的一汽大 众捷达轿车和上海大众桑塔纳轿车自动生产线,其中大量应用了高速切 削加工技术。生产线所用刀具材料以超硬刀具为主,依靠进口。 采用PCBN、Si3N4基陶瓷、金属陶瓷、TiCN涂层刀具加工高强度铸 铁件,铣削速度达2200m/min;采用PCD、超细硬质合金刀具加工硅铝 合金铸件,铣削速度为2200m/min,钻、铰削速度达80-240m/min;采 用Si3N4基陶瓷、TiCN涂层刀具加工精锻结构钢件,车削速度达200m/mi n。
高速切削简介
高速切削加工切屑形成特征 文献2
2021/7/16
高速切削加工切屑形成特征 文献2
从连续光滑的切削到周期性的锯齿状切屑,是随着切削速度增大而变化 过渡,这是高速切削加工中最基本又富有挑战性的问题。本文中,用临 界切削速度对切屑流起因的显式表达式,用材料性能,未变形切屑厚度 与刀具前角三者来表达,并基于尺寸分析和数值模拟。实验对于各种金 属材料在宽范围的切削厚度与刀具前角下,切屑由连续到锯齿状,给出 临界切削速度合理的预测。更有趣的是,发现,由于由雷诺数对湍流流 动的控制,对锯齿形切屑的流动模式的转变是由雷诺数主导。此外,材 料的性能对锯齿形切屑的影响进行系统的研究,其发展趋势和Recht经典 2021/7模/16 型吻合。
➢ 1931年德国物理学家C. J. Salomom在“高速切削原理 ”一文中给出了著名的“Salomom曲线”——对应于一 定的工件材料存在一个临界切削速度,此点切削温度最 高,超过该临界值,切削速度增加,切削温度反而下降 。
2021/7/16
➢ Salomom的理论与实验结果,引发了人们极大的兴趣, 并由此产生了“高速切削(HSC)”的概念。
2021/7/16
2021/7/16
高速钻孔
表面和内侧倒棱
高速加工中心 1台1轴1工序(3万件/月) 柔性(零件、孔数、孔径、孔型可变)
汽车轮毂螺栓孔高速加工实例
电极制造
1毛坯 → 2粗铣 → 3半精铣 → 4热处理 →5电火花加工→6精铣 →7手工磨修 a)传统模具加工的过程
1硬化毛坯→ 2粗铣 → 3半精铣 → 4精铣 →5手工磨修 b)高速模具加工的过程
切削热大部分由 切屑快速带走
避免积屑瘤的产 生
接触区 高速切削的剪切角 常规切削的剪切角
《高速切削》课件
高速切削技术面临的挑战
高成本
高速切削技术需要高精度 和高性能的机床、刀具等 设备,成本较高。
技术门槛高
高速切削技术需要操作者 具备较高的技能水平和经 验,技术门槛较高。
加工过程不稳定
高速切削过程中的振动、 热变形等因素可能导致加 工过程不稳定,影响加工 精度和表面质量。
高速切削技术的发展前景
广泛应用
高速切削过程中产生的热量较 少,减少了工件的热变形和热 损伤,有利于加工质量的稳定 。
适合难加工材料
对于一些硬、韧、耐磨等难加 工材料,高速切削可以有效地
提高切削效率和加工质量。
高速切削的应用领域
航空航天
汽车制造
高速切削在航空航天领域广泛应用于加工 高强度、轻质材料,如钛合金和复合材料 等。
汽车制造过程中需要大量切削加工,高速 切削可以提高生产效率和加工质量,尤其 在汽车零部件的制造中得到广泛应用。
02
高速切削通常采用非常锋利的刀 具,并在高转速的机床条件下进 行加工,以实现高效率、高质量 的切削。
高速切削的特点
高效率
高速切削的切削速度远高于常 规切削,因此可以在短时间内 完成大量切削,提高生产效率
。
高质量
高速切削产生的切削力较小, 减少了工件的变形和振动,提 高了加工精度和表面质量。
减少热影响
高速切削时,应使用高质量的刀具和合适的切削液,以减小刀具磨损和提高加工精 度。
CHAPTER 03
高速切削的关键技术
高速切削的刀具技术
刀具材料
选用高硬度、高耐磨性的刀具材 料,如硬质合金、陶瓷和金刚石 等,以提高刀具的耐用度和切削
效率。
刀具几何形状
设计合理的刀具几何形状,如采用 较大的前角和后角,以减小切削力 和切削热,提高刀具的切削性能。
高速切削加工技术
在通用机械制造业中,高速切 削加工技术广泛应用于机床、 泵阀、压缩机和液压传动装置 等产品的制造。
05
高速切削加工技术的发 展趋势与挑战
高效稳定的高速切削技术
高效稳定的高速切削技术是未来发展 的关键,需要不断提高切削速度和加 工效率,同时保持加工过程的稳定性 和可靠性。
高效稳定的切削技术还需要不断优化 切削参数和刀具设计,以适应不同材 料和加工需求的挑战。
高速切削工艺技术
切削参数选择
根据不同的加工材料和切削条件, 选择合适的切削速度、进给速度 和切削深度等参数,以实现高效
切削和高质量加工。
切削液使用
合理选用切削液,如乳化液、极 压切削油等,以提高切削效率和 工件表面质量,同时减少刀具磨
损和热量产生。
加工路径规划
采用合理的加工路径和顺序,以 减少空行程和换刀次数,提高加
高效稳定的切削技术需要解决切削过 程中的振动和热变形问题,提高加工 精度和表面质量。
高性能刀具材料的研发
高性能刀具材料是实现高速切削 的关键因素之一,需要具备高硬 度、高强度、高耐磨性和良好的
抗热震性等特点。
研发新型高性能刀具材料,如超 硬材料、陶瓷材料等,能够提高 切削速度和加工效率,同时减少
刀具磨损和破损。
改善加工质量
01
高速切削加工技术能够减少切削 力,降低切削热,从而减小了工 件的热变形和残余应力,提高了 加工精度和表面质量。
02
由于切削力减小,工件不易产生 振动,减少了振纹和表面粗糙度 ,进一步提高了加工质量。
降低加工成本
高速切削加工技术能够显著提高加工效率,缩短了加工周期,从而降低了单件成 本。
高速切削加工技术
目 录
• 高速切削加工技术概述 • 高速切削加工技术的优势 • 高速切削加工的关键技术 • 高速切削加工的实践应用 • 高速切削加工技术的发展趋势与挑战 • 高速切削加工技术的未来展望
数控加工工艺学第8章高速切削工艺
冷却润滑优化
采用高效冷却润滑剂,减少切削热和 摩擦,降低刀具磨损和工件热变形。
高速切削的实践案例
1 2
航空制造领域
在航空制造领域,高速切削技术广泛应用于加工 飞机零部件,如发动机叶片和机身结构件等。
数控加工工艺学第8章高速切削工 艺
目录
• 高速切削工艺概述 • 高速切削的原理与技术 • 高速切削的材料与刀具 • 高速切削的机床与设备 • 高速切削的工艺优化与实践
01 高速切削工艺概述
高速切削的定义与特点
高速切削定义
高速切削是一种在极短时间内完 成高精度加工的方法,通过高转 速和高进给速度实现高效加工。
钟)。
根据布局形式
高速切削机床可分为立式机床、 卧式机床、龙门式机床等。
根据功能
高速切削机床可分为铣削机床、 车削机床、钻孔机床等。
高速切削机床的应用
难加工材料
01
高速切削机床适用于加工各种难加工材料,如高硬度、高强度、
高耐磨性的材料。
薄壁件和细长件
02
高速切削机床能够快速去除材料,减少工件变形,适用于加工
根据切削速度、进给量等 参数选择合适的刀具材料。
根据加工要求选择
根据加工精度、表面质量 等要求选择合适的刀具材 料。
04 高速切削的机床与设备
高速切削机床的特点
高转速
高速切削机床的主轴转速非常高,通常在10,000100,000转/分钟之间,甚至更高。
大功率
高速切削机床需要大功率来提供高切削速度和高进给速 度。
ABCD
高动态性能
高速切削机床的动态性能优异,能够快速响应加减速, 确保加工过程的稳定性和精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.1 机械加工表面质量对零件使用性能的影响
一、机械加工表面质量的概念
1.表面的几何特征
2.表面层物理 力学、化学性能
(1)表面粗糙度
(2)表面波度 (3)纹理方向
(1)表面层加工硬化(冷作硬化)。 (2)表面层金相组织变化。 (3)表面层产生残余应力。
1、表面的几何形状特征 加工后表面形状,总是以 “峰”、“谷”的形式偏离其 理想光滑表面。按偏离程度有 宏观和微观之分。
糙度Ra值约为0.32~0.25μm较好。
表面纹理方向对耐磨性的影响
表面纹理方向影响金属表面的实际接触面积和润滑液的存留情况。 轻载时,两表面的纹理方向与相对运动方向一致时,磨损 最小;当两表面纹理方向与相对运动方向垂直时,磨损最大。 重载情况下,由于压强、分子亲和力和润滑液的储存等因
素的变化,其规律与上述有所不同。
↑→ Ra↓
砂轮修正
影响磨削加工表面 粗糙度的因素
砂轮硬度
磨削用量
工件材料性质
影响表面粗 糙度的因素
第一类是与磨削砂轮有关的因素 第二类是与工件材质有关的因素
第三类是与加工条件有关的因素
(1)与磨削砂轮有关的因素 主要是砂轮的粒度、硬度以及对砂轮的修整等。
砂轮的粒度要适度
砂轮的粒度越细,则砂轮单位面积上
第四章 机械加工表面质量
概 述
少数
因设计不周而导致强度不够; 机械产品的失效形式 零件的表面破坏(磨损、腐蚀和疲劳破坏)
多数
实践表明,零件的破坏一般总是从表面层开始的。产品的工作性能,尤
其是它的可靠性、耐久性等,在很大程度上取决于其主要零件的表面质量。
研究机械加工表面质量的目的 掌握机械加工中各种工艺因素对表面质量影响的规律,并 应用这些规律控制加工过程,以达到提高加工表面质量、提高 产品性能的目的。
残余压应力,能延缓疲劳裂纹的产生、扩展,而使零件疲劳强度提高。
表面层的加工硬化对疲劳强度影响 适当的加工硬化能阻碍已有裂纹的继续扩大和新裂纹的产生,有助于 提高疲劳强度。但加工硬化程度过大,反而易产生裂纹,故加工硬化程度 应控制在一定范围内。
拉应力加剧疲劳裂纹的产生和扩展;
3.表面质量对零件耐腐蚀性的影响 表面粗糙 表面粗糙度值越大,越容易积聚腐蚀性物质; 度的影响 波谷越深,渗透与腐蚀作用越强烈。 零件的耐腐蚀性在很大程度上取决于表面粗糙度 表面残余应力对零件耐腐蚀性影响
切削用量
机械加工振动
1、 磨削中影响粗糙度的几何因素 工件的磨削表面是由砂轮上大量磨粒刻划出无数极细 的刻痕形成的,工件单位面积上通过的砂粒数越多,则刻 痕越多,刻痕的等高性越好,表面粗糙度值越小。
(1)砂轮的磨粒
磨粒在砂轮上的分布越 均匀、磨粒越细,刃口的等 高性越好。则砂轮单位面积 上参加磨削的磨粒越多,磨 削表面上的刻痕就越细密均 匀,表面粗糙度值就越小。
残余压应力使零件表面紧密,腐蚀性物质不易进入,
可增强零件的耐腐蚀性;
拉应力则降低耐腐蚀性
4.表面质量对配合质量的影响 相配零件间的配合关系是用过盈量或间隙值来表示的。
表面粗糙 度的影响
对间隙配合而言,表面粗糙度值太大,会 使配合表面很快磨损而增大配合间隙,改变配 合性质,降低配合精度。 对过盈配合而言,装配时配合表面的波峰 被挤平,减小实际过盈量,降低了连接强度, 影响了配合的可靠性。
包括材料的硬度、塑性、导热性等。
铝、铜合金等软材料易堵塞砂轮,比较难磨。 对表面粗糙度 有显著影响
塑性大、导热性差的耐热合金易使砂粒早期崩落,导致 磨削表面粗糙度值增大。
(3)与加工条件有关的因素
包括磨削用量、冷却条件及工艺系统的精度与抗振性等。
切削液 砂轮磨削时温度高,热的作用占主导地位。采用切削液可 以降低磨削区温度,减少烧伤,冲去脱落的砂粒和切屑,以免 划伤工件,从而降低表面粗糙度度值。但必须选择适当的冷却 方法和切削液。 减少加工表面的表面粗糙度的其它方法 除了从上述几个方面考虑采取措施外,还可从加工方法上 着手改善,如用研磨、珩磨、超精加工、抛光等。
切削用量
影响切削加工表面 粗糙度的因素
工件材料
•材料塑性↑→ Ra↑ •同样材料晶粒组织大↑→ Ra↑ ,常用正火、调质处理
刀具材料、刃磨质量
•刀具材料强度↑→ Ra↓ •刃磨质量↑→ Ra↓ •冷却、润滑↑→ Ra↓
二、磨削过程中表面粗糙度的形成
1、形成因素
几何原因 塑性变形
砂轮的粒度和砂轮的修整情况
(2)砂轮修整
(3)磨削用量
砂轮修整除了使砂轮具 有正确的几何形状外,更重 要的是使砂轮工作表面形成 排列整齐而又锐利的微刃 (图4-47)。因此,砂轮修 整的质量对磨削表面的粗糙 度影响很大。
砂轮转速越高,单位时间内通过被磨表面的磨粒数越 多,表面粗糙度值就越小。 工件转速对表面粗糙度值的影响刚好与砂轮转速的影 响相反。工件的转速增大,通过加工表面的磨粒数减少, 因此表面粗糙度值增大。 砂轮的纵向进给量小于砂轮的宽度时,工件表面将被 重叠切削,而被磨次数越多,工件表面粗糙度值就越小。
砂轮太软,磨粒易脱落,磨削作用减弱,也会增大表面粗糙度值。
砂轮的修整质量 砂轮的修整是用金刚石除去砂轮外层己钝化的磨粒,使磨粒切削刃锋 利,降低磨削表面的表面粗糙度值。
砂轮的修整质量
修整工具 修整砂轮的纵向进给量
与这两者有密切关系
(2)与工件材质有关的因素
越小,修出的微刃 越多,等高性越好, 粗糙度值低。
的磨粒数越多,磨削表面的刻痕越细,表 面粗糙度值越小;但较度过细,砂轮易堵 塞,使表面组糙度值增大,同时还易产生 波纹和引起烧伤。 砂轮硬度要合适 砂轮的硬度是指磨粒受磨削力后从砂轮上脱落的难易程度。 砂轮太硬,磨粒磨损后不易脱落,使工件表面受到强烈的摩擦和挤压,
增加了塑性变形,表面粗糙度值增大,同时还容易引起烧伤;
伤痕 是指在加工表面个别位置出现的缺陷,如沙眼、气 孔、裂痕等。
2、表面层物理力学、化学性能 (1)表面金属层的冷作硬化 指工件在加工过程中,表面层金属产生强烈的塑性变形,使 工件加工表面层的强度和硬度都有所提高的现象。
冷硬层深度 h 表示方法 硬化程度 N
硬化程度:
N H 100% H0
H=f/(cotκr+cotκr′)
H=f 2/(8rε)
2、物理力学因素
(1)工件材料的影响
韧性材料:工件材料韧性愈好,金属塑性变形愈
大,加工表面愈粗糙。故对中碳钢和低碳钢材料的 工件,为改善切削性能,减小表面粗糙度,常在粗 加工或精加工前安排正火或调质处理。 脆性材料:加工脆性材料时,其切削呈碎粒状, 由于切屑的崩碎而在加工表面留下许多麻点,使表 面粗糙。
(4)其它因素的影响
加工塑性材料时切削速度对表面粗糙度的影响 由上图可见,用较高的切削速度既可提高生产效 率,又可使表面粗糙度下降,所以提高切削速度 是提高工艺水平的重要方向
刀具几何形状
•残留面积高度↓ →Ra↓ •前角↑→ Ra↓ •后角↑→摩擦↓→Ra↓ • v↑→ Ra↓ •f↑→ Ra↑ •ap对Ra影响不大,太小会 打滑,划伤已加工表面
表面层的加工硬化对耐磨性的影响
由于加工硬化提高了表面层的强度,减少了表面进一步塑
性变形和咬合的可能。一般能提高耐磨性0.5 ~ 1倍。
过度的加工硬化会使金属组织疏松,甚至出现疲劳裂纹和
产生剥落现象,从而使耐磨性下降。
2.表面质量对零件疲劳强度的影响
表面粗糙度的影响 在交变载荷作用下,零件表面粗糙度、划痕、裂纹等缺陷员易形成应力 集中,并发展成疲劳裂纹,导致零件疲劳破坏。因此,对于重要零件表面如 连杆、曲轴等,应进行光整加工,减小表面粗糙度值,提高其疲劳强度。 表面残余应力对疲劳强度的影响 影响极大
(1)磨削用量
砂轮的转速↑ →材料塑性变形↓ → 表面粗
糙度值↓ ; 工件速度↑ → 塑性变形↑ →表面粗糙度值↑ ; 背吃刀量↑→ 塑性变形↑ →表面粗糙度值↑ ;
(2)工件材料
•太硬易使磨粒磨钝 →Ra ↑ ; •太软容易堵塞砂轮→Ra ↑ ; •韧性太大,热导率差会使磨
粒早期崩落→Ra ↑ 。
(2)切削速度的影响
(3)进给量的影响
加工塑性材料时,切削速度对 表面粗糙度的影响(对积屑瘤和鳞 刺的影响)见如图4-41所示。 此外,切削速度越高,塑性变 形越不充分,表面粗糙度值越小 选择低速宽刀精切和高速精切, 可以得到较小的表面粗糙度。
减小进给量f固然可以减小 表面粗糙度值,但进给量过小, 表面粗糙度会有增大的趋势。 此外,合理使用冷却润滑液, 适当增大刀具的前角,提高刀具 的刃磨质量等,均能有效地减小 表面粗糙度值。
波距:峰与峰或谷与谷间的距离, 以L表示; 波距与波高 波高:峰与谷间的高度,以H 表示。
L/H>1000时,属于宏观几何形状误差;
L/H<50时,属于微观形状误差,称作表面粗糙度; L/H=50~ 1000时,称作表面波度;
纹理方向 是指表面刀纹的方向,取决于表面形成所采用 的机械加工方法。一般运动副或密封件对纹理方向有要求。
(3)砂轮粒度与硬度
•磨粒太细,砂轮易被磨屑
堵塞,使表面粗糙度值增大, 若导热情况不好,还会烧伤 工件表面。
•砂轮太硬,使表面粗糙度增
大; •砂轮选得太软,使表面↓→Ra↓ • 金刚石笔锋利↑,修正导程、 径向进给量↓→ Ra↓ •磨粒等高性↑→Ra↓ •硬度↑→钝化磨粒脱落↓→ Ra↑ •硬度↓→磨粒脱落↑→Ra↑ •硬度合适、自励性好↑→Ra↓ •砂轮V↑→ Ra↓ •ap、工件V↑→ 塑变↑→ Ra↑ •粗磨ap↑→生产率↑ •精磨ap↓→ Ra↓(ap=0光磨) •太硬、太软、韧性、导热性差