考前三个月高考数学(全国甲卷通用理科)知识方法篇专题3函数与导数第8练

合集下载

2017版考前三个月高考数学全国甲卷通用理科知识 方法

2017版考前三个月高考数学全国甲卷通用理科知识 方法

第12练 导数几何意义的必会题型[题型分析·高考展望] 本部分题目考查导数的几何意义:函数f (x )在x =x 0处的导数即为函数图象在该点处的切线的斜率,考查形式主要为选择题和填空题或者在解答题的某一步中出现(难度为低中档),内容就是求导,注意审题是过点(x 0,y 0)的切线还是在点(x 0,y 0)处的切线.体验高考1.(2016·四川)设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞) 答案 A解析 ∵f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1,∴f ′(x )=⎩⎨⎧-1x,0<x <1,1x ,x >1.若k 1·k 2=-1,则两个切点一个在x ∈(0,1)的图象上为P 1,一个在x ∈(1,+∞)的图象上为P 2.设P 1(x 1,y 1),P 2(x 2,y 2), 则k 1=-1x 1,k 2=1x 2.∵k 1k 2=-1,∴x 1x 2=1. 令x 1=x 0(0<x 0<1),则x 2=1x 0.∴P 1(x 0,-ln x 0),P 2⎝⎛⎭⎫1x 0,-ln x 0.∴l 1:y +ln x 0=-1x 0(x -x 0)⇒y =-1x 0x +1-ln x 0,∴A (0,1-ln x 0).l 2:y +ln x 0=x 0(x -1x 0)⇒y =x 0x -1-ln x 0,∴B (0,-1-ln x 0),∴|AB |=1-ln x 0-(-1-ln x 0)=2.联立⎩⎪⎨⎪⎧y =-1x 0x +1-ln x 0,y =x 0x -1-ln x 0,得P ⎝ ⎛⎭⎪⎫2x 0x 20+1,x 20-1x 20+1-ln x 0.∴S △P AB =12·2|x 0|x 20+1·|AB |=12·2x 0x 20+1·2=2x 0x 20+1=2x 0+1x 0.∵x 0∈(0,1),∴0<2x 0+1x 0<1,故S △P AB ∈(0,1).2.(2016·课标全国丙)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________. 答案 y =2x解析 设x >0,则-x <0,f (-x )=e x -1+x ,因为f (x )为偶函数,所以f (-x )=f (x ), 所以f (x )=e x -1+x .因为当x >0时,f ′(x )=e x -1+1,所以f ′(1)=2,所以曲线y =f (x )在点(1,2)处的切线方程为 y -2=2(x -1),即y =2x .3.(2016·课标全国甲)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 答案 1-ln 2解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1),y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2),∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得⎩⎨⎧x 1=12,x 2=-12,,∴b =ln x 1+1=1-ln 2.4.(2015·天津)已知函数f (x )=4x -x 4,x ∈R . (1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a3+431.(1)解 由f (x )=4x -x 4,可得f ′(x )=4-4x 3. 当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减. 所以f (x )的单调递增区间为(-∞,1), 单调递减区间为(1,+∞). (2)证明 设点P 的坐标为(x 0,0), 则x 0=431,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)·(x -x 0), 即g (x )=f ′(x 0)(x -x 0). 令函数F (x )=f (x )-g (x ), 即F (x )=f (x )-f ′(x 0)(x -x 0), 则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减, 故F ′(x )在(-∞,+∞)上单调递减. 又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0; 当x ∈(x 0,+∞)时,F ′(x )<0, 所以F (x )在(-∞,x 0)上单调递增, 在(x 0,+∞)上单调递减,所以对于任意的实数x ,F (x )≤F (x 0)=0, 即对于任意的实数x ,都有f (x )≤g (x ). (3)证明 由(2)知g (x )=-12⎝⎛⎭⎫x -431.设方程g (x )=a 的根为x 2′,可得x 2′=-a12+431.因为g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′), 因此x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ), 可得h (x )=4x .对于任意的x ∈(-∞,+∞),有f (x )-h (x )=-x 4≤0,即f (x )≤h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=a4.因为h (x )=4x 在(-∞,+∞)上单调递增, 且h (x 1′)=a =f (x 1)≤h (x 1),因此x 1′≤x 1, 由此可得x 2-x 1≤x 2′-x 1′=-a3+431.5.(2016·课标全国甲)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1), f ′(x )=ln x +1x -3,f ′(1)=-2,f (1)=0,曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0,设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.①当a ≤2,x ∈(1,+∞)时, x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增, 因此g (x )>0;②当a >2时,令g ′(x )=0得,x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1. 由x 2>1和x 1x 2=1得x 1<1, 故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减, 因此g (x )<0.综上,a 的取值范围是(-∞,2].高考必会题型题型一 直接求切线或切线斜率问题例1 (1)(2015·课标全国Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =______. (2)曲线y =x e x-1在点(1,1)处切线的斜率等于( )A.2eB.eC.2D.1 答案 (1)1 (2)C解析 (1)f ′(x )=3ax 2+1,f ′(1)=1+3a ,f (1)=a +2. 在点(1,f (1))处的切线方程为y -(a +2)=(1+3a )(x -1). 将(2,7)代入切线方程,得7-(a +2)=(1+3a ),解得a =1. (2)∵y =x ex -1=x e x e, ∴y ′=1e (e x +x ·e x )=1e·e x·(x +1),故曲线在点(1,1)处的切线斜率为y ′|x =1=2. 点评 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0.(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.变式训练1 (2016·课标全国丙)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 答案 2x +y +1=0解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1. 题型二 导数几何意义的综合应用例2 (2015·山东)设函数f (x )=(x +a )ln x ,g (x )=x 2e x . 已知曲线y =f (x ) 在点(1,f (1))处的切线与直线2x -y =0平行. (1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2, 又f ′(x )=ln x +ax +1,即f ′(1)=a +1=2,所以a =1.(2)当k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0. 因为h ′(x )=ln x +1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈(2,+∞)时,h ′(x )>0, 所以当x ∈(1,+∞)时,h (x )单调递增,所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根. (3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0. 且x ∈(0,x 0)时,f (x )<g (x ), x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎪⎨⎪⎧(x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0),由m ′(x )=ln x +1x +1>0,可知0<m (x )≤m (x 0); 故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增; x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减; 可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e2.点评 已知切线求参数问题,主要利用导数几何意义,通过切点坐标、切线斜率之间的关系来构造方程组求解.变式训练2 (2015·广东)设a >1,函数f (x )=(1+x 2)e x -a . (1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O是坐标原点),证明:m ≤3a -2e-1.(1)解 f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ,∀x ∈R ,f ′(x )≥0恒成立.∴f (x )的单调增区间为(-∞,+∞),无单调减区间. (2)证明 ∵f (0)=1-a ,f (a )=(1+a 2)e a -a , ∵a >1,∴f (0)<0,f (a )>2a e a -a >2a -a =a >0, ∴f (0)·f (a )<0,∴f (x )在(0,a )上有一零点, 又∵f (x )在(-∞,+∞)上单调递增, ∴f (x )在(0,a )上仅有一个零点, ∴f (x )在(-∞,+∞)上仅有一个零点. (3)证明 f ′(x )=(x +1)2e x ,设P (x 0,y 0), 则f ′(x 0)=ex (x 0+1)2=0,∴x 0=-1,把x 0=-1代入y =f (x )得y 0=2e -a ,∴k OP =a -2e .f ′(m )=e m (m +1)2=a -2e,令g (m )=e m -(m +1),g ′(m )=e m -1.令g ′(x )>0,则m >0,∴g (m )在(0,+∞)上单调递增, 令g ′(x )<0,则m <0,∴g (m )在(-∞,0)上单调递减, ∴g (m )min =g (0)=0.∴e m -(m +1)≥0,即e m ≥m +1. ∴e m (m +1)2≥(m +1)3,即a -2e ≥(m +1)3.∴m +1≤3a -2e ,即m ≤ 3a -2e-1.高考题型精练1.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0B.x -y -1=0C.x +y +1=0D.x -y +1=0答案 B解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0. ∴切点为(1,0), ∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B.2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 等于( ) A.-1 B.-3 C.-4 D.-2 答案 D解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1, y 0=12x 20+mx 0+72(m <0), 于是解得m =-2.故选D.3.已知直线l 与曲线f (x )=x 2-3x +2+2ln x 相切,则直线l 倾斜角的最小值为( ) A.π6 B.π4 C.π3 D.π2 答案 B解析 函数的定义域为(0,+∞).由导数的几何意义可知,曲线上任意一点P (x ,y )处的切线的斜率为f ′(x )=2x -3+2x ,因为x >0,故2x +2x≥22x ×2x =4(当且仅当2x =2x,即x =1时取等号),所以f ′(x )=2x -3+2x ≥4-3=1,即直线l 的斜率的最小值为1,此时直线的倾斜角取得最小值π4.故选B.4.设a ∈R ,函数f (x )=x 3+ax 2+(a -3)x 的导函数是f ′(x ),若f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( ) A.y =3x B.y =-2x C.y =-3x D.y =2x答案 C解析 ∵f ′(x )=3x 2+2ax +(a -3),又f ′(x )是偶函数,∴a =0,即f ′(x )=3x 2-3. ∴k =f ′(0)=-3,∴曲线y =f (x )在原点处的切线方程为y =-3x , 故选C. 5.曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D.1 答案 A解析 因为y ′=-2e-2x,∴曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x+2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A ⎝⎛⎭⎫23,23,所以三角形的面积S =12×1×23=13.6.若曲线f (x )=13ax 3+12bx 2+cx +d (a ,b ,c >0)上不存在斜率为0的切线,则f ′(1)b -1的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(2,+∞) D.[2,+∞)答案 A解析 因为函数f ′(x )=ax 2+bx +c , 所以f ′(1)b -1=a +b +c b -1=a +cb .函数f (x )图象上不存在斜率为0的切线,也就是f ′(x )=0无解,故Δ=b 2-4ac <0,即ac >b 24,所以a +c b ≥2ac b >2b 24b=1,即f ′(1)b -1=a +c b的取值范围是(1,+∞).7.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P的坐标为________. 答案 (1,1)解析 y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2 (m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).8.已知f (x )=x 3+f ′(23)x 2-x ,则f (x )的图象在点(23,f (23))处的切线斜率是________.答案 -1解析 f ′(x )=3x 2+2f ′(23)x -1,令x =23,可得f ′(23)=3×(23)2+2f ′(23)×23-1,解得f ′(23)=-1,所以f (x )的图象在点(23,f (23))处的切线斜率是-1.9.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________. 答案278解析 设切点坐标为(t ,t 3-at +a ). 由题意知,f ′(x )=3x 2-a , 切线的斜率为k =y ′|x =t =3t 2-a ,① 所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ).②将点(1,0)代入②式得,-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意它们互为相反数,得a =278.10.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.答案 x -y -2=0解析 根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.11.(2015·课标全国Ⅰ)已知函数f (x )=x 3+ax +14,g (x )=-ln x . (1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min {}f (x ),g (x )(x >0),讨论h (x )零点的个数.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0.即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0, 解得⎩⎨⎧ x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线. (2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)内无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0, h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54, 则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)上的零点个数.(ⅰ)若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)内无零点,故f (x )在(0,1)上单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)内没有零点.(ⅱ)若-3<a <0,则f (x )在⎝⎛⎭⎫0, -a 3上单调递减,在⎝⎛⎭⎫ -a 3,1上单调递增,故在(0,1)中,当x =-a 3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎫ -a 3=2a 3 -a 3+14.①若f ⎝⎛⎭⎫ -a 3>0,即-34<a <0,f (x )在(0,1)内无零点; ②若f ⎝⎛⎭⎫ -a 3=0,即a =-34,则f (x )在(0,1)内有唯一零点; ③若f ⎝⎛⎭⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)内有两个零点;当-3<a ≤-54时,f (x )在(0,1)内有一个零点. 综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点. 12.(2016·北京)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.解 (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b . 依题设,⎩⎪⎨⎪⎧ f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1. 解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x , 由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知, f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞).。

高考数学 高考必会题型 专题三 函数与导数 第8练 函数

高考数学 高考必会题型 专题三 函数与导数 第8练 函数

第8练 函数性质在运用中的巧思妙解题型一 直接考查函数的性质例1 “a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的________条件.破题切入点 首先找出f(x)在(0,+∞)递增的等价条件,然后从集合的观点来研究充要条件. 答案 充要解析 当a =0时,f(x)=|(ax -1)x|=|x|在区间(0,+∞)上单调递增;当a<0时,结合函数f(x)=|(ax -1)x|=|ax2-x|的图象知函数在(0,+∞)上单调递增,如图(1)所示;当a>0时,结合函数f(x)=|(ax -1)x|=|ax2-x|的图象知函数在(0,+∞)上先增后减再增,不符合条件,如图(2)所示.所以,要使函数f(x)=|(ax -1)x|在(0,+∞)上单调递增只需a≤0.即“a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的充要条件.题型二 函数性质与其他知识结合考查例2 函数y =f(x)的图象如图所示,在区间[a ,b]上可找到n(n≥2)个不同的数x1,x2,…,xn ,使得f (x1)x1=f (x2)x2=…=f (xn )xn ,则n 的取值范围为________.破题切入点 从已知的比值相等这一数量关系出发,找图象上的表示形式,再找与原函数图象的关系,进一步判断出结果.答案 {2,3,4}解析 过原点作直线与函数y =f(x)的图象可以有两个、三个、四个不同的交点,因此n 的取值范围是{2,3,4}.题型三 对函数性质的综合考查例3 已知函数f(x)=x2+aln x.(1)当a =-2时,求函数f(x)的单调递减区间;(2)若函数g(x)=f(x)+2x 在[1,+∞)上单调,求实数a 的取值范围.破题切入点 (1)直接根据f′(x)<0确定单调递减区间.(2)g(x)在[1,+∞)上单调,则g′(x)≥0或g′(x)≤0在[1,+∞)上恒成立.解 (1)由题意知,函数的定义域为(0,+∞),当a =-2时,f′(x)=2x -2x =2(x +1)(x -1)x, 故f(x)的单调递减区间是(0,1).(2)由题意得g′(x)=2x +a x -2x2,函数g(x)在[1,+∞)上是单调函数.①若g(x)为[1,+∞)上的单调增函数,则g′(x)≥0在[1,+∞)上恒成立,即a≥2x -2x2在[1,+∞)上恒成立,设φ(x)=2x -2x2, ∵φ(x)在[1,+∞)上单调递减,∴φ(x)max =φ(1)=0,∴a≥0.②若g(x)为[1,+∞)上的单调减函数,则g′(x)≤0在[1,+∞)上恒成立,不可能.∴实数a 的取值范围为[0,+∞).总结提高 (1)函数单调性的等价结论:设x1、x2∈[a ,b]则(x1-x2) [f(x1)-f(x2)]>0⇔f (x1)-f (x2)x1-x2>0⇔f(x)在[a ,b]上递增.(x1-x2)[f(x1)-f(x2)]<0⇔f (x1)-f (x2)x1-x2<0⇔f(x)在[a ,b]上递减.(2)判断单调性时还可根据四则运算法则:若f(x)和g(x)都是增函数,则f(x)+g(x)也是增函数,-f(x)是减函数,复合函数单调性根据内函数和外函数同增异减的法则.(3)求函数的单调性问题还可以求导.(4)函数奇偶性的前提是定义域关于原点对称.(5)任何一个函数都可以写成一个奇函数加上一个偶函数.如f(x)=f (x )+f (-x )2+f (x )-f (-x )2,f (x )+f (-x )2为偶函数,而f (x )-f (-x )2为奇函数. (6)求函数的单调性要注意先研究定义域.1.已知函数f(x)为奇函数,且当x≥0时,f(x)=13x +2 013-a ,则f(log312)=________. 答案 12 015×2 014解析 由题意,可知函数f(x)为奇函数,所以f(0)=130+2 013-a =0, 解得a =12 014,所以当x≥0时,f(x)=13x +2 013-12 014. 所以f(log32)=13log32+2 013-12 014=12 015-12 014=-12 015×2 014.从而f(log312)=f(-log32)=-f(log32)=12 015×2 014.2.定义在R 上的函数f(x)满足f(x +6)=f(x),当-3≤x<-1时,f(x)=-(x +2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2 013)=________.答案 337解析 ∵f(x +6)=f(x),∴T =6.∵当-3≤x<-1时,f(x)=-(x +2)2,当-1≤x<3时,f(x)=x ,∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,∴f(1)+f(2)+…+f(6)=1,∴f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12)=…=f(2 005)+f(2 006)+…+f(2 010)=1,∴f(1)+f(2)+…+f(2 010)=1×2 0106=335.而f(2 011)+f(2 012)+f(2 013)=f(1)+f(2)+f(3)=2,∴f(1)+f(2)+…+f(2 013)=335+2=337.3.设f(x)是定义在R 上的奇函数,且当x≥0时,f(x)=x2,若对任意的x ∈[-2-2,2+2],不等式f(x +t)≤2f(x)恒成立,则实数t 的取值范围是________.答案 (-∞,-2]解析 设x<0,则-x>0.f(-x)=(-x)2,又∵f(x)是奇函数,∴f(x)=-x2.∴f(x)在R 上为增函数,且2f(x)=f(2x).∴f(x +t)≤2f(x)=f(2x)⇔x +t≤2x 在[-2-2,2+2]上恒成立,∵x +t≤2x ⇔(2-1)x≥t ,要使原不等式恒成立,只需(2-1)(-2-2)≥t⇒t≤-2即可.4.(2013·天津改编)已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f(log2a)+f(loga)≤2f(1),则a 的取值范围是________.答案 ⎣⎡⎦⎤12,2 解析 由题意知a>0,又log 21a =log2a -1=-log2a.∵f(x)是R 上的偶函数,∴f(log2a)=f(-log2a)=f(log 21a),∵f(log2a)+f(log 21a)≤2f(1), ∴2f(log2a)≤2f(1),即f(log2a)≤f(1). 又∵f(x)在[0,+∞)上递增, ∴|log2a|≤1,-1≤log2a≤1, ∴a ∈⎣⎡⎦⎤12,2. 5.函数y =f(x -1)的图象关于直线x =1对称,当x ∈(-∞,0)时,f(x)+xf′(x)<0成立,若a =20.2·f(20.2),b =ln 2·f(ln 2),c =(log 2114)·f(log 2114),则a ,b ,c 的大小关系是________.答案 b>a>c解析 因为函数y =f(x -1)的图象关于直线x =1对称,所以y =f(x)关于y 轴对称.所以函数y =xf(x)为奇函数.因为[xf(x)]′=f(x)+xf′(x),所以当x ∈(-∞,0)时,[xf(x)]′=f(x)+xf′(x)<0,函数y =xf(x)单调递减,从而当x ∈(0,+∞)时,函数y =xf(x)单调递减.因为1<20.2<2,0<ln 2<1,log 1214=2,从而0<ln 2<20.2<log 1214,所以b>a>c.6.已知定义在R 上的函数y =f(x)满足以下三个条件:①对于任意的x ∈R ,都有f(x +4)=f(x);②对于任意的x1,x2∈R ,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y =f(x +2)的图象关于y 轴对称.则f(4.5),f(6.5),f(7)的大小关系是______________.答案 f(4.5)<f(7)<f(6.5)解析 由已知得f(x)是以4为周期且关于直线x =2对称的函数.所以f(4.5)=f(4+12)=f(12),f(7)=f(4+3)=f(3),f(6.5)=f(4+52)=f(52).又f(x)在[0,2]上为增函数.所以作出其在[0,4]上的图象知f(4.5)<f(7)<f(6.5).7.已知函数f(x)是R 上的偶函数,若对于x≥0,都有f(x +2)=-f(x),且当x ∈[0,2)时,f(x)=log8(x +1),则f(-2 013)+f(2 014)的值为________.答案 13解析 当x≥0时,有f(x +2)=-f(x),故f(x +4)=f((x +2)+2)=-f(x +2)=f(x).由函数f(x)在R 上为偶函数,可得f(-2 013)=f(2 013),故f(2 013)=f(4×503+1)=f(1),f(2 014)=f(4×503+2)=f(2).而f(1)=log8(1+1)=log82=13,f(2)=f(0+2)=-f(0)=-log81=0.所以f(-2 013)+f(2 014)=13.8.对于任意实数a ,b ,定义min{a ,b}=⎩⎪⎨⎪⎧a ,a≤b ,b ,a>b.设函数f(x)=-x +3,g(x)=log2x ,则函数h(x)=min{f(x),g(x)}的最大值是________.答案 1解析 依题意,h(x)=⎩⎪⎨⎪⎧log2x ,0<x≤2,-x +3,x>2. 当0<x≤2时,h(x)=log2x 是增函数;当x>2时,h(x)=3-x 是减函数,∴h(x)在x =2时,取得最大值h(2)=1.9.(2013·江苏)已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x2-4x ,则不等式f(x)>x 的解集用区间表示为________________.答案 (-5,0)∪(5,+∞)解析 由已知得f(0)=0,当x<0时,f(x)=-f(-x)=-x2-4x ,因此f(x)=⎩⎪⎨⎪⎧ x2-4x ,x≥0-x2-4x ,x<0不等式f(x)>x 等价于⎩⎪⎨⎪⎧ x≥0x2-4x>x ,或⎩⎪⎨⎪⎧x<0-x2-4x>x , 解得:x>5或-5<x<0.10.已知函数y =f(x),x ∈R ,有下列4个命题:①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x =1对称;②y =f(x -2)与y =f(2-x)的图象关于直线x =2对称;③若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x =2对称;④若f(x)为奇函数,且f(x)=f(-x -2),则f(x)的图象关于直线x =1对称.其中正确命题的序号为________.答案 ①②④解析 1+2x +1-2x 2=1,故函数y =f(x)的图象关于直线x =1对称,故①正确;对于②,令t =x -2,则问题等价于y =f(t)与y =f(-t)图象的对称问题,显然这两个函数的图象关于直线t =0对称,即函数y =f(x -2)与y =f(2-x)的图象关于直线x -2=0即x =2对称,故②正确;由f(x +2)=-f(x),可得f(x +4)=-f(x +2)=f(x),我们只能得到函数的周期为4,即只能推得函数y =f(x)的图象关于直线x =4k(k ∈Z)对称,不能推得函数y =f(x)的图象关于直线x =2对称,故③错误;由于函数f(x)为奇函数,由f(x)=f(-x -2),可得f(-x)=f(x +2),由于-x +x +22=1,可得函数y =f(x)的图象关于直线x =1对称,故④正确.11.设函数f(x)对任意的a ,b ∈R ,都有f(a +b)=f(a)+f(b)-1,且当x>0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m2-m -2)<3.(1)证明 方法一 设x1<x2,∴Δx =x2-x1>0,∴f(Δx)>1,∴f(x2)=f(x1+Δx)=f(x1)+f(Δx)-1>f(x1),∴f(x)是R 上的增函数.方法二 ∵f(0+0)=f(0)+f(0)-1,∴f(0)=1,∴f(0)=f(x -x)=f(x)+f(-x)-1=1,∴f(-x)=2-f(x).设x1<x2,∴x2-x1>0,∴f(x2-x1)=f(x2)+f(-x1)-1=f(x2)+2-f(x1)-1=f(x2)-f(x1)+1>1,∴f(x2)-f(x1)>0,∴f(x2)>f(x1),∴f(x)是R 上的增函数.(2)解 f(4)=f(2)+f(2)-1=5,∴f(2)=3,∴f(3m2-m -2)<3=f(2).又由(1)的结论知f(x)是R 上的增函数,∴3m2-m -2<2,∴-1<m<43.12.已知函数f(x)=a·2x +b·3x ,其中常数a ,b 满足ab≠0.(1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x +1)>f(x)时x 的取值范围.解 (1)当a>0,b>0时,任意x1,x2∈R ,x1<x2,则f(x1)-f(x2)=a(21x -22x )+b(31x -32x ).∵21x <22x ,a>0⇒a(21x -22x )<0,31x <32x ,b>0⇒b(31x -32x )<0,∴f(x1)-f(x2)<0,函数f(x)在R 上是增函数.当a<0,b<0时,同理,函数f(x)在R 上是减函数.(2)f(x +1)-f(x)=a·2x +2b·3x>0,当a<0,b>0时,⎝⎛⎭⎫32x>-a 2b ,则x>log1.5⎝⎛⎭⎫-a 2b ; 当a>0,b<0时,⎝⎛⎭⎫32x<-a 2b ,则x<log1.5⎝⎛⎭⎫-a 2b . 故a<0,b>0时,x ∈(log1.5(-a 2b ),+∞);a>0,b<0时,x ∈(-∞,log1.5(-a 2b )).。

2019考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题3 函数与导数 第13练

2019考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题3 函数与导数 第13练
专题3 函数与导数
第 13 练 必考题型——导数与单调性
题型分析 高考展望
利用导数研究函数单调性是高考每年必考内容,多以综合题中某一问 的形式考查,题目承载形式多种多样,但其实质都是通过求导判断导 数符号,确定单调性 .题目难度为中等偏上,一般都在最后两道压轴 题上,这是二轮复习的得分点,应高度重视.

)
A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)
解析
1
2
3
4
1 3.(2016· 浙江)设函数 f(x)=x + ,x∈[0,1].证明: 1+x
3
(1)f(x)≥1-x+x2;
证明
4 4 1 - - x 1 - x 因为 1-x+x2-x3= = , 1--x 1+x
解析答案
(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.
点评
解析答案
变式训练 2
1 3 a 2 设函数 f(x)=3x -2x +bx+c, 曲线 y=f(x)在点(0, f(0))处的
切线方程为 y=1.
(1)求b,c的值; 解 f′(x)=x2-ax+b,
f0=1, c=1, 由题意得 即 f′0=0, b=0.
令g′(x)=0,解得x=0,x=-1或x=-4. 当x<-4时,g′(x)<0,故g(x)为减函数; 当-4<x<-1时,g′(x)>0,故g(x)为增函数; 当-1<x<0时,g′(x)<0,故g(x)为减函数; 当x>0时,g′(x)>0,故g(x)为增函数.
综上知,g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第11练

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第11练

第11练 研创新——以函数为背景的创新题型[题型分析·高考展望] 在近几年的高考命题中,以函数为背景的创新题型时有出现.主要以新定义、新运算或新规定等形式给出问题,通过判断、运算解决新问题.这种题难度一般为中档,多出现在选择题、填空题中,考查频率虽然不是很高,但失分率较高.通过研究命题特点及应对策略,可以做到有备无患.体验高考1.(2015·湖北)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A.sgn[g (x )]=sgn xB.sgn[g (x )]=sgn[f (x )]C.sgn[g (x )]=-sgn xD.sgn[g (x )]=-sgn[f (x )]答案 C解析 因为f (x )是R 上的增函数,令f (x )=x ,所以g (x )=(1-a )x ,因为a >1,所以g (x )是在R 上的减函数.由符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0知,sgn[g (x )]=⎩⎪⎨⎪⎧-1,x >0,0,x =0,1,x <0.所以sgn[g (x )]=-sgn x .2.(2016·山东)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) A.y =sin x B.y =ln x C.y =e x D.y =x 3答案 A解析 对函数y =sin x 求导,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1,当x =π时,该点处切线l 2的斜率k 2=-1,∴k 1·k 2=-1,∴l 1⊥l 2;对函数y =ln x 求导,得y ′=1x 恒大于0,斜率之积不可能为-1;对函数y =e x 求导,得y ′=e x 恒大于0,斜率之积不可能为-1;对函数y =x 3求导,得y ′=2x 2恒大于等于0,斜率之积不可能为-1.故选A. 3.(2015·四川)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设 m=f (x 1)-f (x 2)x 1-x 2,n =g (x 1)-g (x 2)x 1-x 2,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中的真命题有________(写出所有真命题的序号). 答案 ①④解析 设A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 1,g (x 1)),D (x 2,g (x 2)). 对于①,从y =2x 的图象可看出,m =k AB >0恒成立,故①正确; 对于②,直线CD 的斜率可为负,即n <0,故②不正确; 对于③,由m =n 得f (x 1)-f (x 2)=g (x 1)-g (x 2), 即f (x 1)-g (x 1)=f (x 2)-g (x 2), 令h (x )=f (x )-g (x )=2x -x 2-ax , 则h ′(x )=2x ·ln 2-2x -a .由h ′(x )=0,得2x ·ln 2=2x +a ,(*)结合图象知,当a 很小时,方程(*)无解,∴函数h (x )不一定有极值点,就不一定存在x 1,x 2使f (x 1)-g (x 1)=f (x 2)-g (x 2),不一定存在x 1,x 2使得m =n ,故③不正确;对于④,由m =-n ,得f (x 1)-f (x 2)=g (x 2)-g (x 1), 即f (x 1)+g (x 1)=f (x 2)+g (x 2), 令F (x )=f (x )+g (x )=2x +x 2+ax , 则F ′(x )=2x ln 2+2x +a .由F ′(x )=0,得2x ln 2=-2x -a , 结合如图所示图象可知,该方程有解,即F (x )必有极值点,∴存在x 1,x 2,使F (x 1)=F (x 2),使m =-n ,故④正确.故①④正确.4.(2015·福建)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组: ⎩⎪⎨⎪⎧x 4x 5x 6x 7=0,x 2x 3x 6x 7=0,x 1x 3x 5x 7=0,其中运算定义为00=0,01=1,10=1,11=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________. 答案 5 解析 (1)x 4x 5x 6x 7=111=1,(2)x 2x 3x 6x 7=11=0;(3)x 1x 3x 5x 7=111=1.由(1)(3)知x 5,x 7有一个错误,(2)中没有错误,∴x 5错误,故k 等于5.5.(2016·四川)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身,平面曲线C 上所有点的“伴随点”所构成的曲线C ′定义为曲线C 的“伴随曲线”.现有下列命题: ①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C ′关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是________(写出所有真命题的序号). 答案 ②③解析 ①设A 的坐标为(x ,y ), 则其“伴随点”为A ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,A ′的“伴随点”横坐标为-x x 2+y 2⎝⎛⎭⎫y x 2+y 22+⎝ ⎛⎭⎪⎫-x x 2+y 22=-x ,同理可得纵坐标为-y ,故A ″(-x ,-y ),①错误;②设单位圆上的点P 的坐标为(cos θ,sin θ),则P 的“伴随点”的坐标为P ′(sin θ,-cos θ),则有sin 2θ+(-cos θ)2=1,所以P ′也在单位圆上,即单位圆的“伴随曲线”是它自身,②正确;③设曲线C 上点A 的坐标为(x ,y ),其关于x 轴的对称点A 1(x ,-y )也在曲线C 上,所以点A 的“伴随点”A ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,点A 1的“伴随点”A 1′⎝ ⎛⎭⎪⎫-y x 2+y 2,-x x 2+y 2,A ′与A 1′关于y 轴对称,③正确;④反例:例如y =1这条直线,则A (0,1),B (1,1),C (2,1),这三个点的“伴随点”分别是A ′(1,0),B ′⎝⎛⎭⎫12,-12,C ′⎝⎛⎭⎫15,-25,而这三个点不在同一直线上,下面给出严格证明:设点P (x ,y )在直线l :Ax +By +C =0上,P 点的“伴随点”为P ′(x 0,y 0),则⎩⎪⎨⎪⎧x 0=yx 2+y 2,y 0=-xx 2+y 2,解得⎩⎪⎨⎪⎧x =-y0x 2+y 20,y =x0x 20+y 20.代入直线方程可知,A-y 0x 20+y 20+B x 0x 20+y 20+C =0, 化简得-Ay 0+Bx 0+C (x 20+y 20)=0. 当C =0时,C (x 20+y 20)是一个常数,点P ′的轨迹是一条直线; 当C ≠0时,C (x 20+y 20)不是一个常数,点P ′的轨迹不是一条直线.所以,一条直线的“伴随曲线”不一定是一条直线,④错误. 综上,真命题是②③.高考必会题型题型一 与新定义有关的创新题型例1 已知函数y =f (x )(x ∈R ).对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________. 答案 (210,+∞)解析 由已知得h (x )+4-x 22=3x +b ,所以h (x )=6x +2b -4-x 2. h (x )>g (x )恒成立,即6x +2b -4-x 2>4-x 2,3x +b >4-x 2恒成立.在同一坐标系内,画出直线y =3x +b 及半圆y =4-x 2(如图所示),可得b10>2,即b >210, 故答案为(210,+∞).点评 解答这类题目关键在于解读新定义,利用定义的规定去判断和求解是这类题目的主要解法.变式训练1 若函数y =f (x )在定义域内给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点.例如y =|x |是[-2,2]上的“平均值函数”,0就是它的均值点.若函数f (x )=x 2-mx -1是[-1,1]上的“平均值函数”,则实数m 的取值范围是________. 答案 (0,2)解析 因为函数f (x )=x 2-mx -1是[-1,1]上的“平均值函数”,所以关于x 的方程x 2-mx -1=f (1)-f (-1)2在区间(-1,1)内有实数根,即x 2-mx -1=-m 在区间(-1,1)内有实数根,即x 2-mx +m -1=0,解得x =m -1或x =1.又1不属于(-1,1),所以x =m -1必为均值点,即-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2). 题型二 综合型函数创新题例2 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ; ④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题是________.(写出所有真命题的序号)答案 ①③④解析 因为f (x )∈A ,所以函数f (x )的值域是R ,所以满足∀b ∈R ,∃a ∈D ,f (a )=b ,同时若∀b ∈R ,∃a ∈D ,f (a )=b ,则说明函数f (x )的值域是R ,则f (x )∈A ,所以①正确;令f (x )=1x,x ∈(1,2],取M =1,则f (x )⊆[-1,1], 但是f (x )没有最大值,所以②错误;因为f (x )∈A ,g (x )∈B 且它们的定义域相同(设为[m ,n ]),所以存在区间[a ,b ]⊆[m ,n ],使得f (x )在区间[a ,b ]上的值域与g (x )的值域相同,所以存在x 0∉[a ,b ],使得f (x 0)的值接近无穷,所以f (x )+g (x )∉B ,所以③正确;因为当x >-2时,函数y =ln(x +2)的值域是R ,所以函数f (x )若有最大值,则a =0,此时f (x )=x x 2+1.因为对∀x ∈R ,x 2+1≥2|x |,所以-12≤x x 2+1≤12.即-12≤f (x )≤12,故f (x )∈B ,所以④正确.点评 此类题目包含了与函数有关的较多的概念、性质及对基本问题的处理方法.解答这类题目,一是要细心,读题看清要求;二是要熟练掌握函数的基本性质及其判断应用的方法,掌握基本函数的图象与性质等.变式训练2 如果y =f (x )的定义域为R ,对于定义域内的任意x ,存在实数a 使得f (x +a )=f (-x )成立,则称此函数具有“P (a )性质”.给出下列命题: ①函数y =sin x 具有“P (a )性质”;②若奇函数y =f (x )具有“P (2)性质”,且f (1)=1,则f (2 015)=1;③若函数y =f (x )具有“P (4)性质”,图象关于点(1,0)成中心对称,且在(-1,0)上单调递减,则y =f (x )在(-2,-1)上单调递减,在(1,2)上单调递增;④若不恒为零的函数y =f (x )同时具有“P (0)性质”和“P (3)性质”,则函数y =f (x )是周期函数.其中正确的是________(写出所有正确命题的编号). 答案 ①③④解析 ①因为sin (x +π)=-sin x =sin (-x ), 所以函数y =sin x 具有“P (a )性质”, 所以①正确;②因为奇函数y =f (x )具有“P (2)性质”, 所以f (x +2)=f (-x )=-f (x ), 所以f (x +4)=f (x ),周期为4, 因为f (1)=1,所以f (2 015)=f (3)=-f (1)=-1. 所以②不正确;③因为函数y =f (x )具有“P (4)性质”, 所以f (x +4)=f (-x ),所以f (x )的图象关于直线x =2对称, 即f (2-x )=f (2+x ),因为图象关于点(1,0)成中心对称, 所以f (2-x )=-f (x ),即f (2+x )=-f (-x ), 所以得出f (x )=f (-x ),f (x )为偶函数, 因为图象关于点(1,0)成中心对称, 且在(-1,0)上单调递减,所以图象也关于点(-1,0)成中心对称, 且在(-2,-1)上单调递减;根据偶函数的对称性得出在(1,2)上单调递增,故③正确; ④因为具有“P (0)性质”和“P (3)性质”, 所以f (x )=f (-x ),f (x +3)=f (-x )=f (x ), 所以f (x )为偶函数,且周期为3,故④正确.高考题型精练1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( ) A.f (x )=cos(x +1) B.f (x )=x C.f (x )=tan x D.f (x )=x 3答案 A解析 由题意知,若f (x )是准偶函数,则函数的对称轴是直线x =a ,a ≠0,选项B ,C ,D 中,函数没有对称轴;函数f (x )=cos(x +1),有对称轴,且x =0不是对称轴,选项A 正确.故选A.2.设f (x )的定义域为D ,若f (x )满足条件:存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域是⎣⎡⎦⎤a 2,b 2,则称f (x )为“倍缩函数”.若函数f (x )=ln(e x +t )为“倍缩函数”,则t 的范围是( ) A.⎝⎛⎭⎫14,+∞ B.(0,1) C.⎝⎛⎦⎤0,12 D.⎝⎛⎭⎫0,14 答案 D解析 因为函数f (x )=ln(e x +t )为“倍缩函数”,所以存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域是⎣⎡⎦⎤a 2,b 2,因为函数f (x )=ln(e x +t )为增函数,所以⎩⎨⎧ln (e a +t )=a2,ln (e b+t )=b2,即⎩⎨⎧e a +t =e 2a ,e b+t =e2b ,即方程e x -e 2x+t =0有两个不等的正根,即⎩⎪⎨⎪⎧(-1)2-4t >0,t >0,解得t 的范围是⎝⎛⎭⎫0,14. 3.设函数y =f (x )的定义域为D ,若对于任意x 1,x 2∈D 且x 1+x 2=2a ,恒有f (x 1)+f (x 2)=2b ,则称点(a ,b )为函数y =f (x )图象的对称中心.研究并利用函数f (x )=x 3-3x 2-sin πx 的对称中心,可得f (12 016)+f (22 016)+…+f (4 0302 016)+f (4 0312 016)等于( )A.-16 124B.16 124C.-8 062D.8 062 答案 C解析 如果x 1+x 2=2,则f (x 1)+f (x 2)=x 31-3x 21-sin πx 1+x 32-3x 22-sin πx 2=x 31-3x 21-sin πx 1+(2-x 1)3-3(2-x 1)2-sin π(2-x 1)=-4. 令S =f (12 016)+f (22 016)+…+f (4 0302 016)+f (4 0312 016),又S =f (4 0312 016)+f (4 0302 016)+…+f (12 016),两式相加得2S =-4×4 031,所以S =-8 062.故选C.4.函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有f ⎝⎛⎭⎫x 1+x 22≤12[f (x 1)+f (x 2)],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题: ①f (x )在[1,3]上的图象是连续不断的; ②f (x 2)在[1, 3 ]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3]; ④对任意x 1,x 2,x 3,x 4∈[1,3],有f ⎝⎛⎭⎫x 1+x 2+x 3+x 44≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是( )A.①②B.①③C.②④D.③④ 答案 D解析 令f (x )=⎩⎪⎨⎪⎧1,x =1,0,1<x <3,1,x =3,可知对∀x 1,x 2∈[1,3],都有f ⎝⎛⎭⎫x 1+x 22≤12[f (x 1)+f (x 2)],但f (x )在[1,3]上的图象不连续,故①不正确; 令f (x )=-x ,则f (x )在[1,3]上具有性质P , 但f (x 2)=-x 2在[1, 3 ]上不具有性质P , 因为-⎝⎛⎭⎫x 1+x 222=-x 21+x 22+2x 1x 24≥-2(x 21+x 22)4=12(-x 21-x 22)=12[f (x 21)+f (x 22)],故②不正确; 对于③,假设存在x 0∈[1,3],使得f (x 0)≠1, 因为f (x )max =f (2)=1,x ∈[1,3],所以f (x 0)<1. 又当1≤x 0≤3时,有1≤4-x 0≤3, 由f (x )在[1,3]上具有性质P ,得 f (2)=f ⎝⎛⎭⎫x 0+4-x 02≤12[f (x 0)+f (4-x 0)],由于f (x 0)<1,f (4-x 0)≤1,与上式矛盾. 即对∀x ∈[1,3],有f (x )=1,故③正确. 对于④,对∀x 1,x 2,x 3,x 4∈[1,3], f ⎝⎛⎭⎫x 1+x 2+x 3+x 44=f ⎝ ⎛⎭⎪⎪⎫x 1+x 22+x 3+x 422 ≤12⎣⎡⎦⎤f ⎝⎛⎭⎫x 1+x 22+f ⎝⎛⎭⎫x 3+x 42 ≤12⎩⎨⎧⎭⎬⎫12[f (x 1)+f (x 2)]+12[f (x 3)+f (x 4)] =14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],故④正确. 5.已知函数f (x )=1-|2x -1|,x ∈[0,1].定义:f 1(x )=f (x ),f 2(x )=f [f 1(x )],…,f n (x )=f [f n -1(x )],n =2,3,4,…,满足f n (x )=x 的点x ∈[0,1]称为f (x )的n 阶不动点.则f (x )的n 阶不动点的个数是( )A.nB.2n 2C.2(2n -1)D.2n 答案 D解析 函数f (x )=1-|2x -1|=⎩⎨⎧2x ,0≤x ≤12,2-2x ,12<x ≤1,当x ∈⎣⎡⎦⎤0,12时,f 1(x )=2x =x ⇒x =0, 当x ∈⎝⎛⎦⎤12,1时,f 1(x )=2-2x =x ⇒x =23, ∴f 1(x )的1阶不动点的个数为2.当x ∈⎣⎡⎦⎤0,14时,f 1(x )=2x ,f 2(x )=4x =x ⇒x =0, 当x ∈⎝⎛⎦⎤14,12时,f 1(x )=2x ,f 2(x )=2-4x =x ⇒x =25, 当x ∈⎝⎛⎦⎤12,34时,f 1(x )=2-2x ,f 2(x )=4x -2=x ⇒x =23, 当x ∈⎝⎛⎦⎤34,1时,f 1(x )=2-2x ,f 2(x )=4-4x =x ⇒x =45. ∴f 2(x )的2阶不动点的个数为22,以此类推,f (x )的n 阶不动点的个数是2n .6.若集合A ={1,2,3,k },B ={4,7,a 4,a 2+3a },其中a ∈N *,k ∈N *,f :x →y =3x +1,x ∈A ,y ∈B 是从定义域A 到值域B 的一个函数,则a +k =________. 答案 7解析 由对应法则知1→4,2→7,3→10,k →3k +1,又a ∈N *,∴a 4≠10,∴a 2+3a =10,解得a =2(舍去a =-5),所以a 4=16,于是3k +1=16,∴k =5.∴a +k =7.7.如果定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =x 2;②y =e x +1;③y =2x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________. 答案 ②③解析 由已知x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)得(x 1-x 2)·[f (x 1)-f (x 2)]>0,所以函数f (x )在R 上是增函数.对于①,y =x 2在(-∞,0)上为减函数,在(0,+∞)上为增函数,其不是“H 函数”;对于②,y =e x +1在R 上为增函数,所以其为“H 函数”;对于③,由于y ′=2-cos x >0恒成立,所以y =2x -sin x 是增函数,所以其为“H 函数”;对于④,由于其为偶函数,所以其不可能在R 上是增函数,所以不是“H 函数”.综上知,是“H 函数”的序号为②③.8.已知二次函数f (x )的两个零点分别为b 1-a ,b1+a(0<b <a +1),f (0)=b 2.定义card(A ):集合A中的元素个数.若“⎩⎪⎨⎪⎧x ∈A ,card (A ∩Z )=4”是“f (x )>0”的充要条件,则实数a 的取值范围是____________. 答案 (1,2) 解析 由条件可得f (x )=(1-a 2)(x -b 1-a )(x -b1+a ),结合⎩⎪⎨⎪⎧x ∈A ,card (A ∩Z )=4知a >1,所以f (x )开口向下,所以f (x )>0的解集为⎝⎛⎭⎫b 1-a ,b 1+a ,且0<b 1+a <1.结合数轴分析,知-4≤b1-a<-3,即3a -3<b ≤4a -4,又0<b <a +1,所以3a -3<b <a +1,得1<a <2.9.设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ).例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b 2,即M f (a ,b )为a ,b 的算术平均数. (1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2ab a +b. (以上两空各只需写出一个符合要求的函数即可)答案 (1)x (2)x解析 设A (a ,f (a )),B (b ,-f (b )),C (c ,0),则三点共线.(1)依题意,c =ab ,则求得f (a )a =f (b )b, 故可以选择f (x )=x (x >0).(2)依题意,c =2ab a +b,求得f (a )a =f (b )b , 故可以选择f (x )=x (x >0).10.对于函数f (x ),若存在区间M =[a ,b ](其中a <b ),使得{y |y =f (x ),x ∈M }=M ,则称区间M 为函数f (x )的一个“稳定区间”.给出下列4个函数:①f (x )=(x -1)2;②f (x )=|2x -1|;③f (x )=cos π2x ;④f (x )=e x . 其中存在“稳定区间”的函数是________.(填出所有满足条件的函数序号)答案 ①②③解析 据已知定义,所谓的“稳定区间”即函数在区间[a ,b ]内的定义域与值域相等.问题可转化为已知函数y =f (x )的图象与直线y =x 是否相交,若相交则两交点所在区间即为函数的“稳定区间”.数形结合依次判断,①②③均符合条件,而④不符合条件.综上可知,①②③均为存在“稳定区间”的函数.11.若函数f (x )在定义域D 内的某个区间I 上是增函数,且F (x )=f (x )x在I 上是减函数,则称y =f (x )在I 上是“非完美增函数”.已知f (x )=ln x ,g (x )=2x +2x+a ln x (a ∈R ). (1)判断f (x )在(0,1]上是否为“非完美增函数”;(2)若g (x )在[1,+∞)上是“非完美增函数”,求实数a 的取值范围.解 (1)易知f ′(x )=1x >0在(0,1]上恒成立,所以f (x )=ln x 在(0,1]上是增函数.F (x )=f (x )x=ln x x ,求导得F ′(x )=1-ln x x 2,因为x ∈(0,1],所以ln x ≤0,即F ′(x )>0在(0,1]上恒成立,所以F (x )=ln x x在(0,1]上是增函数.由题意知,f (x )在(0,1]上不是“非完美增函数”. (2)若g (x )=2x +2x +a ln x (a ∈R )在[1,+∞)上是“非完美增函数”,则g (x )=2x +2x+a ln x 在[1,+∞)上单调递增,G (x )=g (x )x =2+2x 2+a ln x x在[1,+∞)上单调递减. ①若g (x )在[1,+∞)上单调递增,则g ′(x )=2-2x 2+a x ≥0在[1,+∞)上恒成立,即a ≥2x-2x 在[1,+∞)上恒成立.令h (x )=2x -2x ,x ∈[1,+∞),因为h ′(x )=-2x 2-2<0恒成立,所以h (x )在[1,+∞)上单调递减,h (x )max =h (1)=0,所以a ≥0.②若G (x )在[1,+∞)上单调递减,则G ′(x )=-4x 3+a (1-ln x )x 2≤0在[1,+∞)上恒成立,即-4+ax -ax ln x ≤0在[1,+∞)上恒成立.令t (x )=-4+ax -ax ln x ,x ∈[1,+∞),因为t ′(x )=-a ln x ,由①知a ≥0,所以t ′(x )≤0恒成立,所以t (x )=-4+ax -ax ln x 在[1,+∞)上单调递减,则t (x )max =t (1)=a -4.要使t (x )=-4+ax -ax ln x ≤0在[1,+∞)上恒成立,则a-4≤0,即a ≤4,此时G ′(x )=-4x 3+a (1-ln x )x 2≤0在[1,+∞)上恒成立. 综合①②知,实数a 的取值范围为[0,4].12.已知函数f (x )=ax +ln x ,g (x )=e x .(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -m x有解,求实数m 的取值范围; (3)定义:对于函数y =f (x )和y =g (x )在其公共定义域内的任意实数x 0,称|f (x 0)-g (x 0)|的值为两函数在x 0处的差值.证明:当a =0时,函数y =f (x )和y =g (x )在其公共定义域内的所有差值都大于2.(1)解 f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0). ①当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;②当a <0时,由f ′(x )=0,解得x =-1a, 则当x ∈(0,-1a)时,f ′(x )>0,∴f (x )单调递增, 当x ∈(-1a,+∞)时,f ′(x )<0,∴f (x )单调递减. 综上,当a =0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(0,-1a )上单调递增,在(-1a,+∞)上单调递减. (2)解 由题意:e x <x -m x有解,即e x x <x -m 有解,因此只需m <x -e x x ,x ∈(0,+∞)有解即可.设h (x )=x -e x x ,h ′(x )=1-e xx -e x 2x =1-e x (x +12x ). ∵x +12x ≥212=2>1, 且x ∈(0,+∞)时e x >1, ∴1-e x (x +12x)<0,即h ′(x )<0, 故h (x )在(0,+∞)上单调递减.∴h (x )<h (0)=0,故m <0.(3)证明 当a =0时,f (x )=ln x ,f (x )与g (x )的公共定义域为(0,+∞),|f (x )-g (x )|=|ln x -e x |=e x -ln x =e x -x -(ln x -x ).设m (x )=e x -x >0,则m ′(x )=e x -1>0,x ∈(0,+∞),m (x )在(0,+∞)上单调递增,m (x )>m (0)=1.又设n (x )=ln x -x ,x ∈(0,+∞),n ′(x )=1x-1, 当x ∈(0,1)时,n ′(x )>0,n (x )单调递增,当x ∈(1,+∞)时,n ′(x )<0,n (x )单调递减,所以x =1为n (x )的极大值点,即n (x )≤n (1)=-1,故|f (x )-g (x )|=m (x )-n (x )>1-(-1)=2.即公共定义域内任一点差值都大于2.。

高考理科数学专题三导数及其应用第八讲导数的综合应用答案.pdf

高考理科数学专题三导数及其应用第八讲导数的综合应用答案.pdf

2
上单调递减,在
(
1 ,
2
) 上单调递增,作出 g( x) 与 h( x) 的大致图象如图所示,
y 3 g(x)=ex(2x-1)
2
1 O –3 –2 –1 –1
h(x)= ax- a 1 2x
h(0) g(0)

,即
h( 1)≤ g( 1)
a1 2a ≤
3 ,所以 3 ≤ a <1 . 2e
e
1 7. D【解析】∵ f ( x) kx ln x ,∴ f ( x) k ,∵ f ( x) 在 (1, ) 单调递增,
象可知, y f ( x) 的极值点一负两正,所以 D 符合,选 D .
3.D【解析】当 x ? 0 时,令函数 f ( x) 2 x2 ex ,则 f ( x) 4x ex ,易知 f ( x) 在 [0, ln 4 )上单调递
增 , 在 [ ln 4 , 2] 上 单 调 递 减 , 又 f (0)
18 ,选 B.
f ( x)
5. A 【解析】令 h( x) =
,因为 f ( x) 为奇函数,所以 h( x) 为偶函数,由于
x
xf ( x) f (x)
h (x)
x2
,当 x > 0 时, xf '( x) f (x) 0 ,所以 h( x) 在 (0, )
上单调递减,根据对称性 h( x) 在 ( ,0) 上单调递增,又 f ( 1) 0 , f (1) = 0 ,
f (x) 0 , f (x) 单调递减;当 x (1, ) , f (x) 0 , f ( x) 单调递增,所以 f (x) 的极小值为 f (1) (1 1 1)e1 1 1,选 A .

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣7

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣7

回扣7 解析几何1.直线方程的五种形式(1)点斜式:y -y 1=k (x -x 1)(直线过点P 1(x 1,y 1),且斜率为k ,不包括y 轴和平行于y 轴的直线).(2)斜截式:y =kx +b (b 为直线l 在y 轴上的截距,且斜率为k ,不包括y 轴和平行于y 轴的直线).(3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1(直线过点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,y 1≠y 2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:x a +yb =1(a 、b 分别为直线的横、纵截距,且a ≠0,b ≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax +By +C =0(其中A ,B 不同时为0). 2.直线的两种位置关系当不重合的两条直线l 1和l 2的斜率存在时: (1)两直线平行l 1∥l 2⇔k 1=k 2. (2)两直线垂直l 1⊥l 2⇔k 1·k 2=-1.提醒:当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略. 3.三种距离公式(1)A (x 1,y 1),B (x 2,y 2)两点间的距离: |AB |=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离:d =|Ax 0+By 0+C |A 2+B 2(其中点P (x 0,y 0),直线方程为Ax +By +C =0).(3)两平行线间的距离:d =|C 2-C 1|A 2+B 2(其中两平行线方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0).提醒:应用两平行线间距离公式时,注意两平行线方程中x ,y 的系数应对应相等. 4.圆的方程的两种形式(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法.6.圆锥曲线的定义、标准方程与几何性质|x|≤a,|y|≤b |x|≥a x≥07.直线与圆锥曲线的位置关系判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断.弦长公式:|AB|=1+k2|x1-x2|=1+1k2|y1-y2|.8.范围、最值问题的常用解法(1)几何法①直线外一定点P到直线上各点距离的最小值为该点P到直线的垂线段的长度.②圆C外一定点P到圆上各点距离的最大值为|PC|+R,最小值为|PC|-R(R为圆C的半径).③过圆C内一定点P的圆的最长的弦即为经过点P的直径,最短的弦为过点P且与经过点P 的直径垂直的弦.④圆锥曲线上本身存在最值问题,如(ⅰ)椭圆上两点间最大距离为2a(长轴长);(ⅱ)双曲线上两点间最小距离为2a(实轴长);(ⅲ)椭圆上的点到焦点的距离的取值范围为[a-c,a+c],a-c与a+c分别表示椭圆焦点到椭圆上点的最小与最大距离;(ⅳ)在抛物线上的点中,顶点与抛物线的准线距离最近.(2)代数法把要求的最值表示为某个参数的解析式,然后利用函数、最值、基本不等式等进行求解.9.定点、定值问题的思路求解直线或曲线过定点问题的基本思路是把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.求证某几何量为定值,首先要求出这个几何量的代数表达式,然后对表达式进行化简、整理,根据已知条件列出必要的方程(或不等式),消去参数,最后推出定值.10.解决存在性问题的解题步骤第一步:先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.1.不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.2.易忽视直线方程的几种形式的限制条件,如根据直线在两轴上的截距相等设方程时,忽视截距为0的情况,直接设为xa+ya=1;再如,过定点P(x0,y0)的直线往往忽视斜率不存在的情况直接设为y-y0=k(x-x0)等.3.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.4.在解析几何中,研究两条直线的位置关系时,要注意有可能这两条直线重合;在立体几何中提到的两条直线,一般可理解为它们不重合.5.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式|C1-C2|A2+B2,导致错解.6.在圆的标准方程中,误把r2当成r;在圆的一般方程中,忽视方程表示圆的条件.7.易误认两圆相切为两圆外切,忽视两圆内切的情况导致漏解.8.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.9.易混淆椭圆的标准方程与双曲线的标准方程,尤其是方程中a,b,c三者之间的关系,导致计算错误.10.已知双曲线的渐近线方程求双曲线的离心率时,易忽视讨论焦点所在坐标轴导致漏解. 11.直线与圆锥曲线相交的必要条件是它们构成的方程组有实数解,消元后得到的方程中要注意:二次项的系数是否为零,判别式Δ≥0的限制.尤其是在应用根与系数的关系解决问题时,必须先有“判别式Δ≥0”;在求交点、 弦长、中点、斜率、对称或存在性问题时都应在“Δ>0”下进行.1.直线2mx -(m 2+1)y -m =0倾斜角的取值范围为( ) A.[0,π) B.[0,π4]∪[3π4,π) C.[0,π4] D.[0,π4]∪(π2,π)答案 C解析 由已知可得m ≥0.直线的斜率k =2m m 2+1.当m =0时,k =0,当m >0时,k =2m m 2+1=2m +1m ≤22m ·1m=1,又因为m >0,所以0<k ≤1.综上可得直线的斜率0≤k ≤1.设直线的倾斜角为θ,则0≤tan θ≤1,因为0≤θ<π,所以0≤θ≤π4.2.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +a 2-1=0平行,则a 等于( ) A.2或-1 B.2 C.-1 D.以上都不对 答案 C解析 由题意a (a -1)=2,得a =2或a =-1.当a =2时,l 1方程为2x +2y +6=0,即x +y +3=0,l 2方程为x +y +3=0,两直线重合,不合题意,舍去;当a =-1时,直线l 1,l 2的方程分别为-x +2y +6=0,x -2y =0,符合题意.所以a =-1.故选C.3.直线x +y =3a 与圆x 2+y 2=a 2+(a -1)2相交于点A ,B ,点O 是坐标原点,若△AOB 是正三角形,则实数a 等于( ) A.1 B.-1 C.12 D.-12答案 C解析 由题意得,圆的圆心坐标为O (0,0),设圆心到直线的距离为d , 所以弦长为2r 2-d 2=r ,得4d 2=3r 2. 所以6a 2=3a 2+3(a -1)2, 解得a =12,故选C.4.直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( ) A.4 3 B.3 3 C.2 3 D. 3答案 C解析 由于圆x 2+y 2=4的圆心为O (0,0),半径r =2,而圆心O (0,0)到直线3x +4y -5=0的距离d =|-5|32+42=1,∴|AB |=2r 2-d 2=24-1=2 3.5.与圆O 1:x 2+y 2+4x -4y +7=0和圆O 2:x 2+y 2-4x -10y +13=0都相切的直线条数是( ) A.4 B.3 C.2 D.1 答案 B解析 圆O 1(-2,2),r 1=1,圆O 2(2,5),r 2=4, ∴|O 1O 2|=5=r 1+r 2,∴圆O 1和圆O 2相外切, ∴与圆O 1和圆O 2相切的直线有3条.故选B.6.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在直线,直线l 的方程为ax +by =r 2,那么( ) A.m ∥l ,l 与圆相交 B.m ⊥l ,l 与圆相切 C.m ∥l ,l 与圆相离 D.m ⊥l ,l 与圆相离答案 C解析 以点P 为中点的弦所在的直线的斜率是-ab ,直线m ∥l ,点P (a ,b )是圆x 2+y 2=r 2内一点,所以a 2+b 2<r 2,圆心到ax +by =r 2,距离是r 2a 2+b 2>r ,故相离. 7.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F 1、F 2是一对相关曲线的焦点,P 是它们在第一象限的交点,当∠F 1PF 2=30°时,这一对相关曲线中椭圆的离心率是( )A.7-4 3B.2- 3C.3-1D.4-2 3 答案 B解析 由题意设椭圆方程为x 2a 2+y 2b 2=1,双曲线方程为x 2a 21-y 2b 21=1,且c =c 1.由题意c a ·ca 1=1,(*)由∠F 1PF 2=30°,由余弦定理得:椭圆中4c 2=4a 2-(2+3)|PF 1||PF 2|, 双曲线中:4c 2=4a 21+(2-3)|PF 1||PF 2|,可得b 21=(7-43)b 2,代入(*)式,c 4=a 21a 2=(c 2-b 21)a 2=(8-43)c 2a 2-(7-43)a 4,即e 4-(8-43)e 2+(7-43)=0, 得e 2=7-43,即e =2-3,故选B.8.若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3两段,则此椭圆的离心率为( ) A.255 B.41717 C.35 D.45答案 A解析 ∵c +b2c -b 2=53,a 2-b 2=c 2,c =2b ,∴5c 2=4a 2,∴e =c a =25=255.9.如图,已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,|F 1F 2|=4,点A 在双曲线的右支上,线段AF 1与双曲线左支相交于点B ,△F 2AB 的内切圆与BF 2相切于点E ,若|AF 2|=2|BF 1|,|BE |=22,则双曲线C 的离心率为________.答案2解析 设|AF 2|=2|BF 1|=2m ,由题意得|AF 1|=2m +2a ,|BF 2|=m +2a ,因此|AB |=m +2a ,2|BE |=|AB |+|BF 2|-|AF 2|=4a , 即a =2,又|F 1F 2|=4⇒c =2,所以离心率为ca= 2.10.已知F 1,F 2是双曲线x 216-y 29=1的焦点,PQ 是过焦点F 1的弦,且PQ 的倾斜角为60°,那么|PF 2|+|QF 2|-|PQ |的值为________. 答案 16解析 由双曲线方程x 216-y 29=1知,2a =8,由双曲线的定义得,|PF 2|-|PF 1|=2a =8, ① |QF 2|-|QF 1|=2a =8,②①+②得|PF 2|+|QF 2|-(|QF 1|+|PF 1|)=16, ∴|PF 2|+|QF 2|-|PQ |=16. 11.抛物线y 2=4x的焦点到双曲线x 2-y 23=1的渐近线的距离是________.答案32解析 抛物线y 2=4x 的焦点为(1,0),双曲线x 2-y 23=1的渐近线为y =±ba x ,即y =±3x .由于焦点(1,0)到双曲线的两条渐近线距离相等,所以只考虑焦点到其中一条之间的距离d =|3|3+1=32. 12.过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,若|AB |=2512,|AF |<|BF |,则|AF |=________. 答案 56解析 ∵1|AF |+1|BF |=2p =2,|AB |=|AF |+|BF |=2512,|AF |<|BF |,∴|AF |=56,|BF |=54.13.已知圆F 1:(x +1)2+y 2=r 2与圆F 2:(x -1)2+y 2=(4-r )2 (0<r <4)的公共点的轨迹为曲线E ,且曲线E 与y 轴的正半轴相交于点M .若曲线E 上相异两点A 、B 满足直线MA ,MB 的斜率之积为14.(1)求曲线E 的方程;(2)证明:直线AB 恒过定点,并求定点的坐标; (3)求△ABM 的面积的最大值. 解 (1)设圆F 1,圆F 2的公共点为Q , 由已知得,|F 1F 2|=2,|QF 1|=r ,|QF 2|=4-r , 故|QF 1|+|QF 2|=4>|F 1F 2|,因此曲线E 是长轴长2a =4,焦距2c =2的椭圆,且b 2=a 2-c 2=3,所以曲线E 的方程为x 24+y 23=1. (2)由曲线E 的方程得,上顶点M (0,3),记A (x 1,y 1),B (x 2,y 2),由题意知,x 1≠0,x 2≠0,若直线AB 的斜率不存在,则直线AB 的方程为x =x 1,故y 1=-y 2,且y 21=y 22=3(1-x 214),因此k MA ·k MB =y 1-3x 1·y 2-3x 2=-y 21-3x 21=34,与已知不符,因此直线AB 的斜率存在,设直线AB :y=kx +m ,代入椭圆E 的方程x 24+y 23=1,得(3+4k 2)x 2+8kmx +4(m 2-3)=0.①因为直线AB 与曲线E 有公共点A ,B ,所以方程①有两个非零不等实根x 1,x 2, 所以x 1+x 2=-8km3+4k 2,x 1x 2=4(m 2-3)3+4k 2,又k AM =y 1-3x 1=kx 1+m -3x 1,k MB =y 2-3x 2=kx 2+m -3x 2, 由k AM ·k BM =14,得4(kx 1+m -3)(kx 2+m -3)=x 1x 2,即(4k 2-1)x 1x 2+4k (m -3)(x 1+x 2)+4(m -3)2=0,所以4(m 2-3)(4k 2-1)+4k (m -3)(-8km )+4(m -3)2(3+4k 2)=0, 化简得m 2-33m +6=0,故m =3或m =23, 结合x 1x 2≠0知m =23,即直线AB 恒过定点N (0,23). (3)由Δ>0且m =23得k <-32或k >32,又S △ABM =|S △ANM -S △BNM |=12|MN |·|x 2-x 1|=32(x 1+x 2)2-4x 1x 2 =32(-8km 3+4k 2)2-4·4(m 2-3)3+4k 2=64k 2-93+4k 2=64k 2-9+124k 2-9≤32, 当且仅当4k 2-9=12,即k =±212时,△ABM 的面积最大,最大值为32.。

高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第8练 含答案

高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第8练 含答案

第8练 突难点——抽象函数与函数图象[题型分析·高考展望] 抽象函数即没有函数关系式,通过对函数性质的描述,对函数相关知识进行考查,此类题目难度较大,也是近几年来高考命题的热点.对函数图象问题,以基本函数为主,由基本函数进行简单的图象变换,主要是平行变换和对称变换,这样的题目都离不开函数的单调性与奇偶性.体验高考1.(2015·安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )ax +b(x +c )2A.a >0,b >0,c <0B.a <0,b >0,c >0C.a <0,b >0,c <0D.a <0,b <0,c <0答案 C 解析 函数定义域为{x |x ≠-c },结合图象知-c >0,∴c <0.令x =0,得f (0)=,又由图象知f (0)>0,b c 2∴b >0.令f (x )=0,得x =-,结合图象知->0,b a b a∴a <0.故选C.2.(2015·天津)已知函数f (x )=Error!函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A. B.(74,+∞)(-∞,74)C. D.(0,74)(74,2)答案 D 解析 由f (x )=Error!得f (2-x )=Error!所以f (x )+f (2-x )=Error!即f (x )+f (2-x )=Error!y =f (x )-g (x )=f (x )+f (2-x )-b ,所以y =f (x )-g (x )恰有4个零点等价于方程f (x )+f (2-x )-b =0有4个不同的解,即函数y =b 与函数y =f (x )+f (2-x )的图象有4个公共点,由图象知<b <2.743.(2016·课标全国乙)函数y =2x 2-e |x |在[-2,2]的图象大致为( )答案 D解析 f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;当x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈时,f ′(x )<×4-e 0=0,(0,14)14因此f (x )在上单调递减,排除C ,故选D.(0,14)4.(2016·天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-),则a 的取值范围是________.2答案 (12,32)解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增,∴在(0,+∞)上单调递减,f (-)=f (),22∴f (2|a -1|)>f (),∴2|a -1|<=221,22∴|a -1|<,即-<a -1<,即<a <.12121212325.(2015·浙江)已知函数f (x )=Error!则f (f (-3))=________,f (x )的最小值是________.答案 0 2-32解析 f (f (-3))=f (1)=0.当x ≥1时,f (x )=x +-3≥2-3<0,当且仅当x =时,取等2x22号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号.∴f (x )的最小值为2-3.2高考必会题型题型一 与函数性质有关的简单的抽象函数问题例1 已知函数f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A.既不充分也不必要条件B.充分而不必要条件C.必要而不充分条件D.充要条件答案 D解析 ①∵f (x )在R 上是偶函数,∴f (x )的图象关于y 轴对称.∵f (x )为[0,1]上的增函数,∴f (x )为[-1,0]上的减函数.又∵f (x )的周期为2,∴f (x )为区间[-1+4,0+4]=[3,4]上的减函数.②∵f (x )为[3,4]上的减函数,且f (x )的周期为2,∴f (x )为[-1,0]上的减函数.又∵f (x )在R 上是偶函数,∴f (x )为[0,1]上的增函数.由①②知“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.点评 抽象函数的条件具有一般性,对待选择题、填空题可用特例法、特值法或赋值法.也可由函数一般性质进行推理.变式训练1 已知定义在区间(0,+∞)上的函数f (x )满足f ()=f (x 1)-f (x 2),且当x >1x 1x 2时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.解 (1)令x 1=x 2>0,代入f ()=f (x 1)-f (x 2),x 1x 2得f (1)=f (x 1)-f (x 2)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则>1.x 1x 2∵当x >1时,f (x )<0.∴f <0,即f (x 1)-f (x 2)<0,(x 1x 2)即f (x 1)<f (x 2),故函数f (x )在区间(0,+∞)上单调递减.(3)由f =f (x 1)-f (x 2),(x 1x 2)得f ()=f (9)-f (3).93而f (3)=-1,∴f (9)=-2,∴原不等式为f (|x |)<f (9).∵函数f (x )在区间(0,+∞)上单调递减,∴|x |>9,∴x <-9或x >9.∴不等式的解集为{x |x <-9或x >9}.题型二 与抽象函数有关的综合性问题例2 对于函数f (x ),若在定义域内存在实数x ,满足f (-x )=-f (x ),则称f (x )为“局部奇函数”.(1)已知二次函数f (x )=ax 2+2x -4a (a ∈R ),试判断f (x )是否为“局部奇函数”?并说明理由;(2)若f (x )=2x +m 是定义在区间[-1,1]上的“局部奇函数”,求实数m 的取值范围.解 f (x )为“局部奇函数”等价于关于x 的方程f (x )+f (-x )=0有解.(1)当f (x )=ax 2+2x -4a (a ∈R )时,方程f (x )+f (-x )=0即2a (x 2-4)=0.因为方程有解x =±2,所以f (x )为“局部奇函数”.(2)当f (x )=2x +m 时,f (x )+f (-x )=0可化为2x +2-x +2m =0,因为f (x )的定义域为[-1,1],所以方程2x +2-x +2m =0在[-1,1]上有解.令t =2x ∈[,2],则-2m =t +.121t设g (t )=t +,t ∈[,2],1t 12则g ′(t )=1-,t ∈[,2].1t 212当t ∈时,g ′(t )<0,(12,1)故g (t )在(0,1)上为减函数;当t ∈(1,2)时,g ′(t )>0,故g (t )在(1,2)上为增函数.所以函数g (t )=t +,t ∈[,2]的值域为[2,],1t 1252由2≤-2m ≤,得-≤m ≤-1,5254故实数m 的取值范围是[-,-1].54点评 (1)让抽象函数不再抽象的方法主要是赋值法和单调函数法,因此学会赋值、判断并掌握函数单调性和奇偶性是必须过好的两关,把握好函数的性质.(2)解答抽象函数问题时,学生往往盲目地用指数、对数函数等代替函数来解答问题,而导致出错.要明确抽象函数是具有某些性质的一类函数,而不是具体的某一个函数.因此掌握这类函数的关键是把握函数的性质以及赋值的方法.变式训练2 定义在(0,+∞)上的可导函数f (x )满足xf ′(x )-f (x )=x ,且f (1)=1.现给出关于函数f (x )的下列结论:(1)函数f (x )在上单调递增;(1e ,+∞)(2)函数f (x )的最小值为-;1e2(3)函数f (x )有且只有一个零点;(4)对于任意的x >0,都有f (x )≤x 2.其中正确结论的个数是( )A.1B.2C.3D.4答案 D解析 设g (x )=,x ∈(0,+∞),f (x )x 则g ′(x )===,xf ′(x )-f (x )x 2x x 21x 所以g (x )=ln x +c (c 为常数),所以f (x )=x ln x +cx .因为f (1)=1,所以c =1,所以f (x )=x ln x +x .对于(1),因为f ′(x )=ln x +2,当x >时,f ′(x )>ln +2=-1+2=1>0,1e 1e所以(1)正确.对于(2),由f ′(x )>0,得x >;1e2由f ′(x )<0,得0<x <,1e2所以f (x )=x ln x +x 在(0,]上单调递减,1e2在[,+∞)上单调递增.1e2所以当x =时,函数f (x )取得最小值f ()=ln +=-,所以(2)正确.1e21e21e21e21e21e2对于(3),函数f (x )=x ln x +x 的图象如图所示,所以(3)正确.对于(4),f (x )-x 2=x ln x +x -x 2=x (ln x +1-x ).令h (x )=ln x +1-x ,x ∈(0,+∞),则h ′(x )=-1=.1x 1-x x令h ′(x )>0,得0<x <1;令h (x )<0,得x >1.从而h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以h (x )≤h (1)=0,即ln x +1-x ≤0.又x >0,所以f (x )-x 2=x (ln x +1-x )≤0,即f (x )≤x 2.所以(4)正确.综上,正确结论的个数是4.题型三 函数图象的应用与判断例3 已知函数f (x )=,则y =f (x )的图象大致为( )1ln (x +1)-x答案 B解析 令g (x )=ln(x +1)-x ,则g ′(x )=-,x >-1.x1+x 当g ′(x )>0时,-1<x <0;当g ′(x )<0时,x >0.故g (x )<g (0)=0,即x >0或-1<x <0时均有f (x )<0,排除A ,C ,D.点评 (1)求函数图象时首先考虑函数定义域,然后考虑特殊值以及函数变化趋势,特殊值首先考虑坐标轴上的点.(2)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(3)在运用函数图象时要避免只看表象不联系其本质,透过函数的图象要看到它所反映的函数的性质,并以此为依据进行分析、推断,才是正确的做法.变式训练3 形如y =(a >0,b >0)的函数因其图象类似于汉字中的“囧”字,故生动b|x |-a 地称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg|x |的交点个数为n ,则n =________.答案 4解析 由题意知,当a =1,b =1时,y ==Error!1|x |-1在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.高考题型精练1.定义在R 上的偶函数f (x )满足f (2-x )=f (x ),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则下列不等式中正确的是( )A.f (sin α)>f (cos β)B.f (sin α)<f (cos β)C.f (cos α)<f (cos β)D.f (cos α)>f (cos β)答案 B解析 因为f (x )为R 上的偶函数,所以f (-x )=f (x ),又f (2-x )=f (x ),所以f (x +2)=f (2-(x +2))=f (-x )=f (x ),所以函数f (x )以2为周期.因为f (x )在[-3,-2]上是减函数,所以f (x )在[-1,0]上也是减函数,故f (x )在[0,1]上是增函数.因为α,β是钝角三角形的两个锐角,所以α+β<,α<-β,π2π2所以0<sin α<sin =cos β<1,(π2-β)故f (sin α)<f (cos β),故选B.2.定义域为R 的函数f (x )对任意x 都有f (2+x )=f (2-x ),且其导函数f ′(x )满足>0,f ′(x )2-x 则当2<a <4时,有( )A.f (2a )<f (log 2a )<f (2)B.f (log 2a )<f (2)<f (2a )C.f (2a )<f (2)<f (log 2a )D.f (log 2a )<f (2a )<f (2)答案 A解析 由函数f (x )对任意x 都有f (2+x )=f (2-x ),得函数f (x )图象的对称轴为直线x =2.因为函数f (x )的导函数f ′(x )满足>0,f ′(x )2-x 所以函数f (x )在(2,+∞)上单调递减,(-∞,2)上单调递增.因为2<a <4,所以1<log 2a <2<4<2a .又函数f (x )图象的对称轴为直线x =2,所以f (2)>f (log 2a )>f (2a ),故选A.3.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则“同根函数”是( )A.f 2(x )与f 4(x )B.f 1(x )与f 3(x )C.f 1(x )与f 4(x )D.f 3(x )与f 4(x )答案 A 解析 f 4(x )=log 2(2x )=1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.4.设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式>0恒成立,f (x 1)-f (x 2)x 1-x 2则实数a 的取值范围是( )A.(-∞,-3]B.[-3,0)C.(-∞,3]D.(0,3]答案 C解析 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又∵f (x )=x |x -a |,∴当a ≤0时,结论显然成立;当a >0时,f (x )=Error!∴f (x )在上单调递增,(-∞,a 2)在上单调递减,在(a ,+∞)上单调递增,(a 2,a )∴0<a ≤3.综上,实数a 的取值范围是(-∞,3].5.在平面直角坐标系中,若两点P ,Q 满足条件:(1)P ,Q 都在函数y =f (x )的图象上;(2)P ,Q 两点关于直线y =x 对称,则称点对{P ,Q }是函数y =f (x )的一对“和谐点对”.(注:点对{P ,Q }与{Q ,P }看作同一对“和谐点对”)已知函数f (x )=Error!则此函数的“和谐点对”有( )A.0对B.1对C.2对D.3对答案 C解析 作出函数f (x )的图象,然后作出f (x )=log 2x (x >0)关于直线y =x 对称的图象,与函数f (x )=x 2+3x +2(x ≤0)的图象有2个不同交点,所以函数的“和谐点对”有2对.6.对定义在[0,1]上,并且同时满足以下两个条件的函数f (x )称为M 函数:(1)对任意的x ∈[0,1],恒有f (x )≥0;(2)当x 1≥0,x 2≥0,x 1+x 2≤1时,总有f (x 1+x 2)≥f (x 1)+f (x 2)成立.则下列3个函数中不是M 函数的个数是( )①f (x )=x 2;②f (x )=x 2+1;③f (x )=2x -1.A.0B.1C.2D.3答案 B解析 在[0,1]上,3个函数都满足f (x )≥0.当x 1≥0,x 2≥0,x 1+x 2≤1时:对于①,f (x 1+x 2)-[f (x 1)+f (x 2)]=(x 1+x 2)2-(x +x )=2x 1x 2≥0,满足;212对于②,f (x 1+x 2)-[f (x 1)+f (x 2)]=[(x 1+x 2)2+1]-[(x +1)+(x +1)]=2x 1x 2-1<0,不满212足;对于③,f (x 1+x 2)-[f (x 1)+f (x 2)]=(212x +x -1)-(21x -1+22x -1)=21x 22x -21x -22x +1=(21x -1)·(22x -1)≥0,满足.故选B.7.已知函数f (x )=-m |x |有三个零点,则实数m 的取值范围为________.1x +2答案 (1,+∞)解析 函数f (x )有三个零点等价于方程=m |x |有且仅有三个实根.∵=m |x |⇔=1x +21x +21m |x |·(x +2),作函数y =|x |(x +2)的图象,如图所示.由图象可知m 应满足:0<<1,故m >1.1m8.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.答案 (-∞,0]∪(1,2]解析 y=f(x+1)的图象向右平移1个单位得到y=f(x)的图象,由已知可得f(x)的图象的对称轴为x=1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f(x)的大致图象如图所示.不等式(x-1)f(x)≤0可化为Error!或Error!由图可知符合条件的解集为(-∞,0]∪(1,2].9.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案 ①②解析 在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数,∴f(x)的最大值是2,最小值是1,故③错误.10.已知函数y=f(x)(x∈R)为奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x).当x∈(2,3)时,f(x)=log2(x-1),给出以下4个结论:①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;②函数y=f(x)是以2为周期的周期函数;③当x∈(-1,0)时,f(x)=-log2(1-x);④函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增,则正确结论的序号是__________.答案 ①②③解析 因为f(1+x)=-f(1-x),y=f(x)(x∈R)为奇函数,所以f (1+x )=f (x -1),则f (2+x )=f (x ),所以y =f (x )(x ∈R )是以2为周期的周期函数,②正确;所以f (2k +x )=f (x ),f (x -k )=f (x +k )=-f (k -x ),所以f (x +k )=-f (k -x ),即函数y =f (x )的图象关于点(k ,0)(k ∈Z )成中心对称,①正确;由①知,函数f (x )的图象关于点(2,0)成中心对称,即f (x +2)=-f (2-x ).又因为当x ∈(-1,0)时,2-x ∈(2,3),所以f (x )=f (x +2)=-f (2-x )=-log 2(2-x -1)=-log 2(1-x ),③正确;函数y =f (|x |)是偶函数,在关于原点对称的区间上的单调性相反,所以④不正确.11.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 f (x )=Error!作出函数图象如图.(1)函数的增区间为(1,2),(3,+∞);函数的减区间为(-∞,1),(2,3).(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1,∴M ={m |0<m <1}.12.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=f (1)=0.12令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )在D 上为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数,∴0<|x-1|<16,解得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.。

考前三个月高考数学(全国甲卷通用理科)知识方法篇专题3函数与导数第13练

考前三个月高考数学(全国甲卷通用理科)知识方法篇专题3函数与导数第13练

1 k-
, 1
所以结论中一定错误的是 C,选项 D 无法判断;
构造函数 h(x)= f(x)- x,
则 h′ (x)= f′( x)-1> 0,所以函数 h(x)在 R 上单调递增,且 1k> 0,
1
11
11
所以 h(k)> h(0),即 f(k)- k>- 1, f(k)> k- 1,选项 A, B 无法判断,故选 C.
(1) 讨论 f(x)的单调性; (2) 若 f(x)有两个零点,求 a 的取值范围 . 解 (1) f′ (x)= (x- 1)ex+2a(x- 1) =( x-1)(ex+ 2a).
(ⅰ )设 a≥ 0,则当 x∈ (- ∞ , 1)时, f ′(x)<0;
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
当 x∈ (1,+ ∞)时, f ′(x)>0.
所以 f( x)在 (- ∞, 1)上单调递减,在 (1,+ ∞ )上单调递增 .
(ⅱ )设 a<0,由 f′ (x)= 0 得 x=1 或 x= ln(- 2a).
2.(2015 课·标全国 Ⅱ )设函数 f′ (x)是奇函数 f(x)(x∈ R )的导函数, f(- 1)= 0,当 x>0 时,xf′( x) -f (x)< 0,则使得 f(x)>0 成立的 x 的取值范围是 ( )
A.( -∞,- 1)∪ (0, 1)
B.( - 1, 0)∪ (1,+∞ )
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
第 13 练 必考题型 —— 导数与单调性

新教材高考数学临考题号押第8题函数导数含解析

新教材高考数学临考题号押第8题函数导数含解析

押第8题 函数导数函数导数一直是选择题和填空题高考的热点,尤其是导数与函数的单调性、极值、最值问题是高考考查的重点内容,有时也会考查导数的运算、导数的几何意义等,比较综合.1.导数的几何意义的应用:(1)已知切点P (x 0,y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程;(2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0,y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0,y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k =f ′(x 0)求出切点坐标(x 0,y 0),最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.2.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为:(1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数. 3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围. 4.(1)求函数()f x 极值的方法:①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(2)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 5.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,则f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点.1.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-, 由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-, 令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.2.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【详解】对于A,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,221202164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D.3.(2020年北京市高考数学试卷)已知函数()21xf x x =--,则不等式()0f x >的解集是( ). A .(1,1)- B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【答案】D 【详解】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2xy =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.4.(2020年新高考全国卷Ⅱ数学考试题文档版(海南卷))已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A .(2,)+∞ B .[2,)+∞ C .(5,)+∞ D .[5,)+∞【答案】D 【详解】由2450x x -->得5x >或1x <- 所以()f x 的定义域为(),1(5,)-∞-⋃+∞ 因为245y x x =--在(5,)+∞上单调递增 所以2()lg(45)f x x x =--在(5,)+∞上单调递增 所以5a ≥5.(2020年天津市高考数学试卷)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k>时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.6.(2020年新高考全国卷Ⅰ数学高考试题(山东))若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D 【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.1.(2022·山东聊城·一模)已知正数,x y 满足ln ln e x y x y y +=,则2xy x -的最小值为( ) A .1ln22B .22ln2-C .1ln22-D .22ln2+【答案】B 【详解】因为ln ln e x y x y y +=,即()ln e xy xy =,所以()()ln e xxy xy x =,所以()()ln ln ee xy x xy x =.令()(),0e x g x x x =>,则()()1e 0x g x x '=+>,所以()e xg x x =在()0,∞+上单调递增,所以()ln xy x =,即e x xy =,所以2e 2x xy x x -=-令()()e 2,0xf x x x =->.则()e 2x f x '=-.令()e 20x f x '=->,解得:ln 2x >;令()e 20xf x '=-<,解得:0ln 2x <<; 所以()e 2xf x x =-在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,所以()ln2min e 2ln 222ln 2f x =-⨯=-. 即2xy x -的最小值为22ln2-. 故选:B2.(2022·山东·潍坊一中模拟预测)已知函数()1ln f x x x=-,直线y mx n =+是曲线()y f x =的一条切线,则2m n +的取值范围是( )A .[)3,∞-+B .[)2ln 24,--+∞C .2e 3,e -⎛⎤-∞ ⎥⎝⎦D .5ln 2,4⎡⎫-+∞⎪⎢⎣⎭【答案】B 【详解】设切点为()(),P t f t ,()211x f x x =+',()211k f t t t='=+ 曲线()y f x =在切点()(),P t f t 处的切线方程为()()()y f t f t x t -='-, 整理得2112ln 1y x t t t t ⎛⎫=++-- ⎪⎝⎭,所以21322ln 2m n t t t+=+--. 令()2132ln 2(0)g x x x x x =+-->,则()23232x x g x x +-'=.当102x <<时,()0g x '<,()g x 单调递减; 当12x >时,()0g x '>,()g x 单调递增.故()min 12ln 242g x g ⎛⎫==-- ⎪⎝⎭, 则2m n +的取值范围是[)2ln 24,--+∞. 故选:B3.(2021·山东潍坊·模拟预测)已知函数()1f x x a x=++.若存在相异的两个实数()12,,0x x ∈-∞,使得()()12f x f x =成立,则实数a 的取值范围为( ) A .(),1-∞ B.⎛-∞ ⎝⎭C .(1,)+∞ D.)+∞ 【答案】C 【详解】由题意,函数()1,11,x a x a xf x x a x x a x a x⎧++≥-⎪⎪=++=⎨⎪--<-⎪⎩,①当0,0a x =<时,()1f x x x =-,可得()2110f x x'=--<, 此时函数()f x 在(,0)-∞上单调递减,不成立,舍去; ②当0,0<<a x 时,()1f x x a x =--,可得()2110f x x'=--<, 此时函数()f x 在(,0)-∞上单调递减,不成立,舍去; ③当0,0><a x 时,()1,1,0x a x a xf x x a a x x⎧--<-⎪⎪=⎨⎪++-≤<⎪⎩,若x a <-时,()2110f x x '=--<,此时()f x 在(,)a -∞-上单调递减; 若0a x -≤<时,()211f x x '=-,令()0f x '=,解得1x =±, 所以()1f x x a x=++在(,1)-∞-上单调递增,在(1,0)-上单调递减, 若1a -<-时,即1a >时,函数()f x 在(,)a -∞-和(1,0)-上单调递减, 在(,1)a --上单调递增,,对任意0[,1]x a ∈--,都有()()0f x f a >-成立,所以当1a >时,存在相异的两个实数()12,,0x x ∈-∞,使得()()12f x f x =成立, 所以实数a 的取值范围为(1,)+∞. 故选:C.4.(2021·山东·邹平市第一中学模拟预测)函数()()1cos sin x x f x =-在[],ππ-的极大值点为( ) A .23π-B .3π-C .3πD .23π 【答案】D 【详解】()()()()2sin sin 1cos cos 2cos cos 1cos 12cos 1'=⋅+-=-++=-++f x x x x x x x x x ,∴当2,3x ππ⎛⎫∈-- ⎪⎝⎭时,()0f x '<,()f x 单调递减,当22,33x ππ⎛⎫∈- ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当2,3x ππ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减,∴函数()()1cos sin x x f x =-在[],ππ-的极大值点为23π. 故选:D5.(2022·江苏江苏·二模)已知实数1()a b ∈+∞,,,且()22e 2ln 1a a b b +=++,e 为自然对数的底数,则( ) A .1b a << B .2a b a <<C .2e a a b <<D .2e e a a b <<【答案】D 【详解】因为22()e 2ln 1a a b b +=++,所以2ln e 212(ln 1)2(e ln 1)a b a b b b --=--=--,函数()()()e 1e 10,x xf x x f x f x =--⇒->'=在(0,)+∞上单调递增,且()00f =,因为()1ln 0ln 0b b f b >⇒>⇒>所以(2)2(ln )(ln )f a f b f b =>,所以2ln a b >,即2e a b <,又2e 212(e 1)a a a a -->--,所以(2)2(ln )2()f a f b f a =>,所以ln a b <,即e a b <,综上,2e e a a b <<. 故选:D6.(2022·江苏南通·模拟预测)已知函数2()ln12xf x x+=+-,若关于x 的不等式()1e 22x f k f x ⎛⎫+-> ⎪⎝⎭对任意(0,2)x ∈恒成立,则实数k 的取值范围( )A .1,2e ∞⎛⎫+ ⎪⎝⎭B .212,2e e ⎛⎫⎪⎝⎭C .212,2e e ⎛⎤ ⎥⎝⎦D .22,1e ⎛⎤ ⎥⎝⎦【答案】C 【详解】设()()21ln2xg x f x x+=-=-, 则()()11e 2e 11022x xf k f x f k f x ⎛⎫⎛⎫+->⇒-+--> ⎪ ⎪⎝⎭⎝⎭,即()1e 02x g k g x ⎛⎫+-> ⎪⎝⎭, 由202xx+>-,解得22x -<<,即g (x )定义域关于原点对称, 又()()()()()()2222lnln ln ln102222x x x xg x g x x x x x +-+-+-=+===-+-+, 故g (x )是定义在(-2,2)上的奇函数. ()24lnln 122x g x x x +-⎛⎫==- ⎪--⎝⎭, y =412x ---在(-2,2)单调递增,y =ln x 在(0,﹢∞)单调递增,故g (x )在(-2,2)单调递增,则()1e 02x g k g x ⎛⎫+-> ⎪⎝⎭变为()1e 2xg k g x ⎛⎫> ⎪⎝⎭,∴原问题转化为:()1e 2xg k g x ⎛⎫> ⎪⎝⎭对()0,2x ∈恒成立,则0e 22x xk <<<对()0,2x ∈恒成立, 即22e ex x x k <<对()0,2x ∈恒成立. 令()()2,0,2ex t x x =∈, ∵()2ex t x =在()0,2上单调递减, ∴()()222e t x t >=,∴22e k ; 令()(),0,22e x xh x x =∈, 则()12e xxh x -=', 当01x <<时,()0h x '>,()h x 单调递增, 当12x <<时,()0h x '<,()h x 单调递减, ∴当1x =时,()h x 取最大值()112eh =,∴12e k >,∴2122e e k <,即实数k 的取值范围是212,2e e ⎛⎤⎥⎝⎦. 故选:C.7.(2022·江苏苏州·模拟预测)已知函数()f x 是定义在R 上的奇函数,()20f =,当0x >时,有()()0xf x f x '->成立,则不等式()0xf x >的解集是( )A .()()22-∞-⋃+∞,, B .()()202-⋃+∞,, C .()()202-∞-⋃,, D .()2+∞,【答案】A 【详解】()()0xf x f x '->成立设()()f xg x x=, 则()()()()20f x f x x f x g x x x ''⎡⎤-'==>⎢⎥⎣⎦,即0x >时()g x 是增函数, 当2x >时,()()20g x g >=,此时()0f x >;02x <<时,()()20g x g <=,此时()0f x <.又()f x 是奇函数,所以20x -<<时,()()0f x f x =-->;2x <-时()()0f x f x =-->则不等式()0x f x ⋅>等价为()00f x x >⎧⎨>⎩或()00f x x <⎧⎨<⎩,可得2x >或2x <-,则不等式()0xf x >的解集是()()22-∞-⋃+∞,,, 故选:A .8.(2022·河北张家口·一模)已知当,()0x ∈+∞时,函数()e x f x k =的图象与函数2()21xg x x =+的图象有且只有两个交点,则实数k 的取值范围是( )A .⎛ ⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .1,e ⎛⎫+∞ ⎪⎝⎭D .⎫+∞⎪⎪⎝⎭【答案】A 【详解】由题设,当,()0x ∈+∞时,2e (21)x x k x =+,令2()e (21)x xh x x =+,则22(21)(1)()e (21)x x x h x x -+'=-+,所以当102x <<时,()0h x '>,则()h x 单调递增;当12x >时,()0h x '<,则()h x 单调递减.又()0h x >,1()2h x h ⎛⎫≤ ⎪⎝⎭所以当0k <<时,直线y k =与()h x 的图象有两个交点, 即函数()e x f x k =的图象与函数2()21xg x x =+的图象有且只有两个交点. 故选:A.9.(2020·河北衡水中学二模(文))已知函数()2e 2ln xf x k x kx x=+-,若 2x = 是函数()f x 的唯一极值点,则实数 k 的取值范围是 ( )A .(]02,B .[)2+∞,C .e ,2∞⎛⎤- ⎥⎝⎦D .2e ,4∞⎛⎤- ⎥⎝⎦【答案】D 【详解】由题意,()()2e 2ln 0x f x k x kx x x =+->,()22e x x f x k x x ⎛⎫-'=⋅- ⎪⎝⎭,记()2e xg x k x =-,则()()3e 2x x g x x-'=,则()0,2x ∈时,()0g x '<,()g x 单调递减,()2,x ∈+∞时,()0g x '>,()g x 单调递增,所以()()2mine 24g x g k ==-.若2e 4k ≤,则()0,2x ∈时,()0f x '<,()f x 单调递减,()2,x ∈+∞时,()0f x '>,()f x 单调递增,于是2x = 是函数 ()f x 的唯一极值点.若2e 4k >,则()2e 204g k =-<,易知()21g x k x >-,于是0x <<时,()0g x >;设()()e 2x x x x ϕ=->,()2e 1e 10x x ϕ'=->->,即()x ϕ在()2,+∞上单调递增,所以()2e 20e xx x ϕ>->⇒>,则6x >时,33e e 327xxx x >⇒>,此时()27x g x k >-,于是6x >且27x k >时,()0g x >.再结合函数()g x 的单调性可知,函数()g x 在()()0,2,2,+∞两个区间内分别存在唯一一个零点12,x x ,且当()10,x x ∈时,()0f x '<,()f x 单调递减,()1,2x x ∈时,()0f x '>,()f x 单调递增,()22,x x ∈时,()0f x '<,()f x 单调递减,()2,x ∈+∞时,()0f x '>,()f x 单调递增.于是函数 ()f x 存在3个极值点.综上所述:2e 4k ≤.故选:D.10.(2021·河北沧州·三模)已知函数ln ()xf x x x=-,则( ) A .()f x 的单调递减区间为(0,1) B .()f x 的极小值点为1 C .()f x 的极大值为1- D .()f x 的最小值为1-【答案】C 【详解】解:因为ln ()x f x x x =-,所以2221ln 1ln ()1x x x f x x x ---=-=',令2()1ln x x x ϕ=--,则1()20x x xϕ'=--<,所以2()1ln x x x ϕ=--在(0,)+∞上单调递减,因为()10ϕ=,所以当01x <<时,()0x ϕ>,即()0f x '>;当1x >时,()0x ϕ<,即()0f x '<,所以()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞,故()f x 的极大值点为1,()()11f x f ==-极大值,即()()max 11f x f ==-,不存在最小值. 故选:C .(限时:30分钟)1.已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则a =( )A .0B .1-C .3D .1-或3【答案】D 【详解】因为()ln f x x x =, 所以()1ln f x x '=+, 则()11ln11f '=+=, 所以1k =所以函数()f x 在1,0A 处的切线方程为1y x =-,由21y x y x ax=-⎧⎨=+⎩得()2110x a x +-+=, 由()2140a ∆=--=,解得3a =或1a =-, 故选:D2.已知函数222,0,()ln(1),0,x x x f x x x ⎧---≤=⎨+>⎩若关于x 的不等式1()2f x ax a ≤+-在R 上恒成立,则实数a 的取值范围是( )A .12e 2-⎡⎢⎣ B .122,e ⎤⎥⎦ C .12e 6-⎡⎢⎣ D .12e 6⎡⎢⎣ 【答案】A 【详解】画出函数()f x 的图像如图所示.1()2f x ax a ≤+-在R 上恒成立即函数()y f x =的图像恒在直线12y ax a =+-的图像的下方,且直线12y ax a =+-过定点11,2⎛⎫-- ⎪⎝⎭,当直线与ln(1)(0)=+>y x x 相切时,设切点()()00,ln 1P x x +,11y x '=+, 可得()0001ln 11211x x x ++=++,解得120e 1x =-,则直线斜率为12e -,即12e a -=;当直线与222(0)y x x x =---≤相切时,此时由21222ax a x x +-=---, 得23(2)02x a x a ++++=,令2(2)460a a ∆=+--=,得2a =或2a =-(舍), 所以由图像可知12e 2a -≤≤3.已知函数()()25xf x x e =-,()32123g x x x a =--,若()()f x g x >对x ∈R 恒成立,则a 的取值范围是( )A .4322,3e ⎛⎫-+∞ ⎪⎝⎭B .()3,e +∞C .2324,3e ⎛⎫-+∞ ⎪⎝⎭D .()6,e +∞【答案】A 【详解】令()()()h x f x g x =-=()3212523xx e x x a --++,则()()()42x h x x e x '=--, 令()2xs x e x =-,则()21xs x e '=-,令()0s x '>,解得1ln2x >,令()0s x '<,解得1ln 2x <,故()s x 在1,ln2⎛⎫-∞ ⎪⎝⎭上单调递减,在1ln ,2⎛⎫+∞ ⎪⎝⎭上单调递增,故()min 11ln 1ln 022s x s ⎛⎫==-> ⎪⎝⎭.令()0h x '>,解得4x >,令()0h x '<,解得4x <,故()h x 在(),4-∞上单调递减,在()4,+∞上单调递增,故()()4min 324203h x h e a ==-++>,解得43222a e >-, 故选:A . 4.已知函数()1e e 21x xxf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是( ) A .(]0,e B .[]0,eC .(]0,1D .[]0,1【答案】D 【详解】()1e e 21x xxf x -=+-+, ()()1111e e e e 121212121x x x xx x x xf x f x ----∴+-=+-+-+=++=+++ 令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数, 又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x xx x x x x g x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e xx ≥当且仅当1e exx =,即0x =时等号成立; ln 2ln 214222x x ≤++当且仅当122xx=,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数, 由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g axg ax g ax ≥--=-,即2210axax -+≥对x ∀∈R 恒成立.当0a =时显然成立;当0a ≠时,需2440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤, 故选:D.5.已知函数21()x f x e -=,11()ln 22g x x =+,若A ,B 分别为两个函数图像上一点,则AB 的最小值为( )A .ln 32B .ln 22C .1ln 22D .ln 2【答案】B 【详解】本题考查反函数对称性的应用以及构造函数计算两点间距离的最值. 由21()ex f x -=可得1121ln(())ln(())22x f x x f x -=⇒=+, 可得()f x 与()g x 互为反函数,()f x 与()g x 的图像关于直线y x =对称. 令21()ex h x x -=-,则21()2e 1x h x -='-,由()0h x '=得11ln 222x =-, ∴当110,ln 222x ⎛⎫∈- ⎪⎝⎭时,()0h x '<,()h x 单调递减; 当11ln 2,22x ⎛⎫∈-+∞ ⎪⎝⎭时,()0h x '>,()h x 单递增,∴1ln 21min 111()eln 2ln 2222h x --⎛⎫=--= ⎪⎝⎭,故AB 的最小值为min 2()2x =. 6.若关于x 的方程()288xk e x k +=-恰有3个不同的根,其中1k >且*N k ∈,则k 的最小值为( ) A .3 B .4C .5D .6【答案】C 【详解】()()2288e e 88x x k x k k x k +=⇔-=+-所以题目转化为方程()2e 88x x k k -=+恰有3个不同的根,令()()2e xf x x k =-,求导()()()2e xf x x k x k '=--+,令()0f x =,解得12x k =-,2x k =.当(),2x k ∈-∞-时,()0f x '>,故()f x 单调递增;当()2,x k k ∈-,()0f x '<,故()f x 单调递减;当()x k ∈+∞,,()0f x '>,故()f x 单调递增;显然当x →-∞时,()0f x →;当x →+∞时,()f x →+∞;故()2e 88x x k k -=+恰有3个不同的根,只需()2880f k k ->+>即可,即24e 880k k --->,即2220k e k --->, 令20t k =-≥,即e 26t t --0>,构造函数()e 26(0)t f t t t =--≥,求导()e 2tf t '=-,令()0f t '=,得ln 2t =,当[]0,ln 2t ∈时,()0f t '<,故()f t 单调递减;当()ln 2,t ∈+∞,()0f t '>,故()f t 单调递增;当0t =时,()0<f t ;当ln 2t =时,(ln 2)22ln 2642ln 20f =--=--< 当2t =时,2(2)e 100f =-<;当3t =时,3(3)e 120f =->,由零点存在性定理知方程e 26t t =+在()0,∞+上的根()02,3t ∈,则2e 220k k ---=在()2,+∞上的根()04,5k ∈,故2e 220k k --->的解集为()0,k +∞,故k 的最小值为5. 7.已知函数3()x f x e -=,1()ln 22xg x =+,若()()f m g n =成立,则n m -的最小值为( ) A .1ln2+ B .ln 2C .2ln 2D .ln21-【答案】D 【详解】令()()t f m g n ==,则3m e t -=,1ln 22nt +=, ∴3ln m t =+,122t n e-=,即1223ln t n m e t --=--,若12()23ln t h t et -=--,则121()2(0)t h t et t-'=->,∴()0h t '=,有12t =, 当102t <<时,()0h t '<,()h t 单调递减;当12t >时,()0h t '>,()h t 单调递增; ∴min 1()()ln 212h t h ==-,即n m -的最小值为ln21-.8.若函数2()ln f x x ax x =-+在区间()1,e 上单调递增,则a 的取值范围是( )A .[)3,+∞B .(],3-∞C .23,1e ⎡⎤+⎣⎦D .21,3e ⎡⎤+⎣⎦【答案】B 【详解】 依题意()'120fx x a x=-+≥在区间()1,e 上恒成立, 即12a x x≤+在区间()1,e 上恒成立, 令()()121g x x x e x=+<<, ())2'2221112120x g x x xx +--=-==>,()g x 在()1,e 上递增,()13g =,所以3a ≤.所以a 的取值范围是(],3-∞.9.已知函数2()||1log ||f x x x =--,则不等式()0f x <的解集是( ) A .(0,1)(2,)+∞B .(,2)(1,1)(2,)-∞--+∞C .(,2)(1,0)(0,1)(2,)-∞--+∞D .(2,1)(1,2)--⋃【答案】D 【详解】2()||1log ||f x x x =--定义域为()()00-∞∞,,+,∵22()||1log ||||1log ||=()f x x x x x f x -=----=--, ∴()f x 为偶函数.当x >0时,2()1log f x x x =--,1()1ln 2f x x'=-, 令()0f x '>,解得1ln 2x >,令()0f x '<,解得10ln 2x <<, 所以()f x 在10ln 2⎛⎫ ⎪⎝⎭,上单减,在1ln 2⎛⎫+∞ ⎪⎝⎭,上单增,而1()0ln 2f < 所以()f x 在10ln 2⎛⎫ ⎪⎝⎭,和1ln 2⎛⎫+∞⎪⎝⎭,各有一个零点, 因为22(1)11log 1=0(2)21log 2=0f f =--=--,, 所以当x >0时,()0f x <的解为1<x <2.又()f x 为偶函数,所以当x <0时,()0f x <的解为-1<x <-2. 故不等式()0f x <的解集是(2,1)(1,2)--⋃. 10.若直线322y x a =+与函数()2sin cos f x x x =-的图象相切于点()000,,6A x y x ππ⎫⎛⎫⎛∈ ⎪⎪ ⎝⎭⎝⎭,则a =( )A .22B .4π C .23228π-D .23228π+【答案】C由已知,()02f x '=.因为()2cos sin f x x x '=+, 所以()0002cos sin 2f x x x '=+=,联立0022002cos sin 2cos sin 1x x x x ⎧+=⎪⎨⎪+=⎩,解得00cos 2sin x x ⎧=⎪⎪⎨⎪=⎪⎩或00cos sin x x ⎧=⎪⎪⎨⎪=⎪⎩, 又因为0,6x ππ⎫⎛∈⎪⎝⎭,所以0cos 1,2x ⎛∈- ⎝⎭,而102>,故00cos 10sin x x ⎧=⎪⎪⎨⎪=⎪⎩舍去, 综上,00cos 2sin 2x x ⎧=⎪⎪⎨⎪=⎪⎩,所以04x π=,则0002sin cos 2y x x =-=,将()00,A x y代入2y x a =+中,得224a π=⨯+,解得28a =-. 故选:C.11.已知奇函数()f x 的导函数为()f x ',且()f x 在0,2π⎛⎫⎪⎝⎭上恒有()cos ()sin 0f x x f x x '-<成立,则下列不等式成立的( )A64f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B.36f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C43ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D.234f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】B构造函数()()sin f x F x x =,由()f x 在0,2π⎛⎫⎪⎝⎭上恒有()sin ()cos 0f x x f x x '->, 2()sin ()cos ()0(sin )f x x f x xF x x '-'∴=>, ()F x ∴在0,2π⎛⎫⎪⎝⎭上为增函数,又由()()()()sin()sin f x f x F x F x x x---===--,()F x ∴为偶函数,64ππ<,64F F ππ⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,64sin sin64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴<,64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故A 错误.偶函数()F x 在0,2π⎛⎫⎪⎝⎭上为增函数,()F x ∴在,02π⎛⎫- ⎪⎝⎭上为减函数, 36ππ-<-,36F F ππ⎛⎫⎛⎫∴->- ⎪ ⎪⎝⎭⎝⎭,36sin sin 36f f ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭∴>⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭36f ππ⎛⎫⎛⎫∴-->- ⎪ ⎪⎝⎭⎝⎭,36fππ⎛⎫⎛⎫∴-<- ⎪ ⎪⎝⎭⎝⎭,故B 正确; 43F F ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,43sin sin 43f f ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭∴<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,43ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,43ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故C 错误;34ππ>,34F F ππ⎛⎫⎛⎫∴> ⎪ ⎪⎝⎭⎝⎭,34sin sin34f f ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭∴>,34ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故D 错误.12.已知定义R 在上的函数()f x ,其导函数为()'f x ,若()()2sin f x f x x =--,且当0x ≥时,()cos 0f x x '+>,则不等式()()sin cos 2f x f x x x π+>+-的解集为( )A . (,)2π-∞ B . (,)2π+∞ C . (,)4π-∞-D . (,)4π-+∞【答案】D 【详解】令()()sin g x f x x =+,则()()()sin ()sin g x f x x f x x -=-+-=--, 又由()()2sin f x f x x =--,所以()sin ()sin f x x f x x +=--. 故()()g x g x =-,即()g x 为定义在R 上的偶函数; 当0x ≥时,()()cos 0g x f x x ''=+>, 所以()g x 在[0,)+∞上单调递增, 由()cos ()sin()()sin 222f x x f x x f x x πππ++=+++>+, 即()()2g x g x π+>, 所以||||2x x π+>,解得4x π>-,所以不等式()()sin cos 2f x f x x x π+>+-的解集为(,)4π-+∞.故选:D.13.已知函数22()log f x x x=-,则不等式()0f x >的解集是( ) A .(0,1) B .(,2)-∞C .(2,)+∞D .(0,2)【答案】D 【详解】22()log f x x x =-的定义域为()0,∞+,由221()0ln 2f x x x '=--< 所以22()log f x x x =-在()0,∞+上递减,又22(2)log 202f =-=, 所以不等式()0f x >的解集是(0,2). 故选:D14.已知()f x 是定义在R 上的奇函数,其导函数为(),f x '且当0x >时,()()ln 0f x f x x x'⋅+>,则不等式()()210x f x -<的解集为( )A .()1,1-B .(),1()0,1∞⋃--C .,11,()()∞⋃∞--+ D .1,0),()(1⋃∞-+ 【答案】B 【详解】设()()ln g x f x x =,则()()()ln 0f x g x f x x x''=+>,所以()g x 在(0,)+∞上递增, 又(1)0g =,所以1x >时,()()ln (1)0g x f x x g =>=,此时ln 0x >,所以()0f x >,01x <<时,()()ln (1)0g x f x x g =<=,此时,ln 0x <,所以()0f x >,所以(0,1)(1,)x ∈+∞时,()0f x >,因为()f x 是奇函数,所以(,1)(1,0)x ∈-∞--时,()0f x <,由2(1)()0x f x -<得210()0x f x ⎧->⎨<⎩或210()0x f x ⎧-<⎨>⎩,所以1x <-或01x <<.15.已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫⎪⎝⎭【答案】B 【详解】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤<。

考前三个月高考数学(全国甲卷通用理科)考前抢分必做考前回扣回扣3

考前三个月高考数学(全国甲卷通用理科)考前抢分必做考前回扣回扣3

x1x2+ y1y2 x21+ y21 x22+ y22 .
15.三角形 “ 四心 ” 向量形式的充要条件 设 O 为△ ABC 所在平面上一点,角 A,B, C 所对的边长分别为 a, b, c,则
→→→
a
(1) O 为△ ABC 的外心 ? |OA|= |OB|= |OC|= 2sin A.
(2) O 为△ ABC 的重心 ? O→A+ O→B+ O→C= 0.
(1) “五点法”作图: 设 z= ωx+ φ,令 z= 0,π2, π, 32π, 2π,求出相应的 x 的值与 y 的值,描点、连线可得 .
(2) 由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口
.
(3) 图象变换:
向左 φ>0 或向右 φ<0
y= sin x―――平―移―|φ―|个―单―位――→ y= sin(x+ φ) ―横―坐―标―变―为纵―原坐―来标的不―变―ω1―ω―>0―倍→y= sin( ωx+ φ)
.
6.要特别注意零向量带来的问题: 量平行 .
回扣 3 三角函数、平面向量
1.准确记忆六组诱导公式
对于“
kπ 2 ±α, k∈ Z ”的三角函数值,与
α角的三角函数值的关系可按口诀记忆:奇变偶不变,
符号看象限 .
2.同角三角函数的基本关系式
sin2α+ cos2α= 1,
tan
α=Βιβλιοθήκη sin cosα α(cos
α≠ 0).
3.两角和与差的正弦、余弦、正切公式
纵坐标变为原来的 A A>0 倍
―――――横―坐―标不―变――――→y= Asin(ωx+ φ).
7.正弦定理及其变形 a = b = c = 2R(2R 为△ ABC 外接圆的直径 ).

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣8

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣8

回扣8计数原理1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种方法,那么完成这件事共有N=m1+m2+…+m n种方法(也称加法原理).2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有m n种方法,那么完成这件事共有N=m1×m2×…×m n种方法(也称乘法原理).3.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(3)排列数公式:A m n=n(n-1)(n-2)…(n-m+1).(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,A n n=n·(n-1)·(n-2)·…·2·1=n!.排列数公式写成阶乘的形式为A m n=n!(n-m)!,这里规定0!=1.4.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,用C m n表示.(3)组合数的计算公式:C m n=A m nA m m=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,由于0!=1,所以C0n=1.(4)组合数的性质:①C m n=C n-mn ;②C m n+1=C m n+C m-1n.5.二项式定理(a+b)n=C0n a n+C1n a n-1b1+…+C k n a n-k b k+…+C n n b n(n∈N*).这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数C k n(k=0,1,2,…,n)叫做二项式系数.式中的C k n a n-k b k叫做二项展开式的通项,用T k+1表示,即展开式的第k +1项:T k +1=C k n an -k b k. 6.二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .7.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n. (2)增减性与最大值:二项式系数C k n,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间一项12+n T 的二项式系数最大.当n 是奇数时,那么其展开式中间两项112-+n T 和112++n T 的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C k n +…+C n n =2n . 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.1.关于两个计数原理应用的注意事项(1)分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.(2)混合问题一般是先分类再分步. (3)分类时标准要明确,做到不重复不遗漏.(4)要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律. 2.对于有附加条件的排列、组合应用题,通常从三个途径考虑: (1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素; (2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数. 3.排列、组合问题的求解方法与技巧(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件. 4.对于二项式定理应用时要注意:(1)区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a ,b 有关,可正可负,二项式系数只与n 有关,恒为正.(2)运用通项求展开的一些特殊项,通常都是由题意列方程求出k ,再求所需的某项;有时需先求n ,计算时要注意n 和k 的取值范围及它们之间的大小关系. (3)赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1. (4)在化简求值时,注意二项式定理的逆用,要用整体思想看待a 、b .1.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有( ) A.36个 B.18个 C.9个 D.6个 答案 B解析 利用树状图考察四个数位上填充数字的情况,如:1⎩⎪⎪⎨⎪⎪⎧2⎩⎪⎨⎪⎧ 1⎩⎨⎧ 233⎩⎨⎧123⎩⎪⎨⎪⎧1⎩⎨⎧ 232⎩⎨⎧13,共可确定8个四位数,但其中不符合要求的有2个,所以所确定的四位数应有18个,故选B.2.某学习小组男女生共8人,现从男生中选2人,女生中选1人,分别去做3种不同的工作,共有90种不同的选法,则男,女生人数为( ) A.2,6 B.3,5 C.5,3 D.6,2 答案 B解析 设男生人数为n ,则女生人数为8-n ,由题意可知C 2n C 18-n A 33=90,即C 2n C 18-n =15,解得n =3,所以男,女生人数为3,5,故选B.3.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有( ) A.150种 B.180种 C.240种 D.540种答案 A解析 先将5个人分成三组,(3,1,1)或(1,2,2),分组方法有C 35+C 15C 24C 222=25(种),再将三组全排列有A 33=6(种),故总的方法数有25×6=150(种).4.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( ) A.210种 B.420种 C.630种 D.840种 答案 B解析 因为要求3位班主任中男、女教师都要有,所以共有两种情况,1男2女或2男1女.若选出的3位教师是1男2女则共有C 15C 24A 33=180(种)不同的选派方法,若选出的3位教师是2男1女则共有C 25C 14A 33=240(种)不同的选派方法,所以共有180+240=420(种)不同的方案,故选B.5.若二项式(2x +a x )7的展开式中1x 3的系数是84,则实数a 等于( )A.2B.54 C.1 D.24答案 C解析 二项式(2x +a x )7的通项公式为T k +1=C k 7(2x )7-k (a x )k =C k 727-k a k x 7-2k ,令7-2k =-3,得k =5.故展开式中1x 3的系数是C 5722a 5=84,解得a =1. 6.(x -1)4-4x (x -1)3+6x 2(x -1)2-4x 3(x -1)+x 4等于( ) A.-1 B.1 C.(2x -1)4 D.(1-2x )5 答案 B解析 (x -1)4-4x (x -1)3+6x 2(x -1)2-4x 3(x -1)+x 4=((x -1)-x )4=1.7.某班准备从甲、乙等七人中选派四人发言,要求甲乙中两人至少有一人参加,那么不同的发言顺序有( )A.30种B.600种C.720种D.840种 答案 C解析 A 47-A 45=720(种).8.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种一种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为( )A.180B.240C.360D.420 答案 D解析 若5个花池栽了5种颜色的花卉,方法有A 55种,若5个花池栽了4种颜色的花卉,则2,4两个花池栽同一种颜色的花,或3,5两个花池栽同一种颜色的花,方法有2A 45种;若5个花池栽了3种颜色的花卉,方法有A 35种,所以最多有A 55+2A 45+A 35=420(种).9.(x +1ax )5的各项系数和是1 024,则由曲线y =x 2和y =x a 围成的封闭图形的面积为______.答案512解析 设x =1,则各项系数和为(1+1a )5=1 024=45,所以a =13,联立⎩⎪⎨⎪⎧y =x 2y =x 31可得交点坐标分别为(0,0),(1,1),所以曲线y =x 2和y =x 31围成的封闭图形的面积为⎠⎛01(x 31-x 2)d x =⎝ ⎛⎭⎪⎫34x 34-13x 3⎪⎪⎪10=34-13=512.10.圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为______. 答案 120解析 圆上任意三点都不共线, 因此有三角形C 310=120(个).11.一排共有9个座位,现有3人就坐,若他们每两人都不能相邻,每人左右都有空座,而且至多有两个空座,则不同坐法共有________种. 答案 36解析 可先考虑3人已经就座,共有A 33=6(种),再考虑剩余的6个空位怎么排放,根据要求可产生把6个空位分为1,1,2,2,放置在由已经坐定的3人产生的4个空中,共有C 24=6,所以不同的坐法共有6×6=36(种).12.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机(甲、乙、丙、丁、戊)准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法有________种. 答案 24解析 先把甲、乙捆绑在一起有A 22种情况,然后对甲、乙整体和戊进行排列,有A 22种情况,这样产生了三个空位,插入丙、丁,有A 23种情况,所以着舰方法共有A 22A 22A 23=2×2×6=24(种).13.实验员进行一项实验,先后要实施5个程序(A ,B ,C ,D ,E ),其中程序A 只能出现在第一步或最后一步,程序C 或D 在实施时必须相邻,则实验顺序的编排方法共有______种. 答案 24解析依题意,当A在第一步时,共有A22A33=12(种);当A在最后一步时,共有A22A33=12(种).所以实验的编排方法共有24种.14.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为________.答案288解析从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有A23=6(种),先排3个奇数,有A33=6(种),形成了4个空,将“整体”和另一个偶数插在3个奇数形成的4个空中,方法有A24=12(种).根据分步乘法计数原理求得此时满足条件的六位数共有6×6×12=432(种).若1排在两端,1的排法有A12A22=4(种),形成了3个空,将“整体”和另一个偶数插在3个奇数形成的3个空中,方法有A23=6(种),根据分步乘法计数原理求得此时满足条件的六位数共有6×4×6=144(种),故满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为432-144=288(种).。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第11练 Word版含答案

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第11练 Word版含答案

第11练 研创新——以函数为背景的创新题型[题型分析·高考展望] 在近几年的高考命题中,以函数为背景的创新题型时有出现.主要以新定义、新运算或新规定等形式给出问题,通过判断、运算解决新问题.这种题难度一般为中档,多出现在选择题、填空题中,考查频率虽然不是很高,但失分率较高.通过研究命题特点及应对策略,可以做到有备无患.体验高考1.(2015·湖北)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A.sgn[g (x )]=sgn xB.sgn[g (x )]=sgn[f (x )]C.sgn[g (x )]=-sgn xD.sgn[g (x )]=-sgn[f (x )]答案 C解析 因为f (x )是R 上的增函数,令f (x )=x ,所以g (x )=(1-a )x ,因为a >1,所以g (x )是在R 上的减函数.由符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0知,sgn[g (x )]=⎩⎪⎨⎪⎧-1,x >0,0,x =0,1,x <0.所以sgn[g (x )]=-sgn x .2.(2016·山东)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) A.y =sin x B.y =ln x C.y =e x D.y =x 3答案 A解析 对函数y =sin x 求导,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1,当x =π时,该点处切线l 2的斜率k 2=-1,∴k 1·k 2=-1,∴l 1⊥l 2;对函数y =ln x 求导,得y ′=1x 恒大于0,斜率之积不可能为-1;对函数y =e x 求导,得y ′=e x 恒大于0,斜率之积不可能为-1;对函数y =x 3求导,得y ′=2x 2恒大于等于0,斜率之积不可能为-1.故选A. 3.(2015·四川)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设 m=f (x 1)-f (x 2)x 1-x 2,n =g (x 1)-g (x 2)x 1-x 2,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中的真命题有________(写出所有真命题的序号). 答案 ①④解析 设A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 1,g (x 1)),D (x 2,g (x 2)). 对于①,从y =2x 的图象可看出,m =k AB >0恒成立,故①正确; 对于②,直线CD 的斜率可为负,即n <0,故②不正确; 对于③,由m =n 得f (x 1)-f (x 2)=g (x 1)-g (x 2), 即f (x 1)-g (x 1)=f (x 2)-g (x 2), 令h (x )=f (x )-g (x )=2x -x 2-ax , 则h ′(x )=2x ·ln 2-2x -a .由h ′(x )=0,得2x ·ln 2=2x +a ,(*)结合图象知,当a 很小时,方程(*)无解,∴函数h (x )不一定有极值点,就不一定存在x 1,x 2使f (x 1)-g (x 1)=f (x 2)-g (x 2),不一定存在x 1,x 2使得m =n ,故③不正确;对于④,由m =-n ,得f (x 1)-f (x 2)=g (x 2)-g (x 1), 即f (x 1)+g (x 1)=f (x 2)+g (x 2), 令F (x )=f (x )+g (x )=2x +x 2+ax , 则F ′(x )=2x ln 2+2x +a .由F ′(x )=0,得2x ln 2=-2x -a , 结合如图所示图象可知,该方程有解,即F (x )必有极值点,∴存在x 1,x 2,使F (x 1)=F (x 2),使m =-n ,故④正确.故①④正确.4.(2015·福建)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组: ⎩⎪⎨⎪⎧x 4x 5x 6x 7=0,x 2x 3x 6x 7=0,x1x 3x 5x 7=0,其中运算定义为00=0,01=1,10=1,11=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________. 答案 5 解析 (1)x 4x 5x 6x 7=111=1,(2)x 2x 3x 6x 7=11=0;(3)x 1x 3x 5x 7=111=1.由(1)(3)知x 5,x 7有一个错误,(2)中没有错误,∴x 5错误,故k 等于5.5.(2016·四川)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身,平面曲线C 上所有点的“伴随点”所构成的曲线C ′定义为曲线C 的“伴随曲线”.现有下列命题: ①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C ′关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是________(写出所有真命题的序号). 答案 ②③解析 ①设A 的坐标为(x ,y ), 则其“伴随点”为A ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,A ′的“伴随点”横坐标为-x x 2+y 2⎝⎛⎭⎫y x 2+y 22+⎝ ⎛⎭⎪⎫-x x 2+y 22=-x ,同理可得纵坐标为-y ,故A ″(-x ,-y ),①错误;②设单位圆上的点P 的坐标为(cos θ,sin θ),则P 的“伴随点”的坐标为P ′(sin θ,-cos θ),则有sin 2θ+(-cos θ)2=1,所以P ′也在单位圆上,即单位圆的“伴随曲线”是它自身,②正确;③设曲线C 上点A 的坐标为(x ,y ),其关于x 轴的对称点A 1(x ,-y )也在曲线C 上,所以点A 的“伴随点”A ′⎝ ⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,点A 1的“伴随点”A 1′⎝ ⎛⎭⎪⎫-y x 2+y 2,-x x 2+y 2,A ′与A 1′关于y 轴对称,③正确;④反例:例如y =1这条直线,则A (0,1),B (1,1),C (2,1),这三个点的“伴随点”分别是A ′(1,0),B ′⎝⎛⎭⎫12,-12,C ′⎝⎛⎭⎫15,-25,而这三个点不在同一直线上,下面给出严格证明:设点P (x ,y )在直线l :Ax +By +C =0上,P 点的“伴随点”为P ′(x 0,y 0),则⎩⎪⎨⎪⎧x 0=yx 2+y2,y 0=-xx 2+y 2,解得⎩⎪⎨⎪⎧x =-y 0x 2+y 20,y =xx 20+y 20.代入直线方程可知,A-y 0x 20+y 20+B x 0x 20+y 20+C =0, 化简得-Ay 0+Bx 0+C (x 20+y 20)=0.当C =0时,C (x 20+y 20)是一个常数,点P ′的轨迹是一条直线; 当C ≠0时,C (x 20+y 20)不是一个常数,点P ′的轨迹不是一条直线.所以,一条直线的“伴随曲线”不一定是一条直线,④错误. 综上,真命题是②③.高考必会题型题型一 与新定义有关的创新题型例1 已知函数y =f (x )(x ∈R ).对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________. 答案 (210,+∞)解析 由已知得h (x )+4-x 22=3x +b ,所以h (x )=6x +2b -4-x 2. h (x )>g (x )恒成立,即6x +2b -4-x 2>4-x 2, 3x +b >4-x 2恒成立.在同一坐标系内,画出直线y =3x +b 及半圆y =4-x 2(如图所示),可得b10>2,即b >210, 故答案为(210,+∞).点评 解答这类题目关键在于解读新定义,利用定义的规定去判断和求解是这类题目的主要解法.变式训练1 若函数y =f (x )在定义域内给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点.例如y =|x |是[-2,2]上的“平均值函数”,0就是它的均值点.若函数f (x )=x 2-mx -1是[-1,1]上的“平均值函数”,则实数m 的取值范围是________. 答案 (0,2)解析 因为函数f (x )=x 2-mx -1是[-1,1]上的“平均值函数”,所以关于x 的方程x 2-mx -1=f (1)-f (-1)2在区间(-1,1)内有实数根,即x 2-mx -1=-m 在区间(-1,1)内有实数根,即x 2-mx +m -1=0,解得x =m -1或x =1.又1不属于(-1,1),所以x =m -1必为均值点,即-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2). 题型二 综合型函数创新题例2 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题是________.(写出所有真命题的序号) 答案 ①③④解析 因为f (x )∈A ,所以函数f (x )的值域是R ,所以满足∀b ∈R ,∃a ∈D ,f (a )=b ,同时若∀b ∈R ,∃a ∈D ,f (a )=b ,则说明函数f (x )的值域是R ,则f (x )∈A ,所以①正确;令f (x )=1x,x ∈(1,2],取M =1,则f (x )⊆[-1,1], 但是f (x )没有最大值,所以②错误;因为f (x )∈A ,g (x )∈B 且它们的定义域相同(设为[m ,n ]),所以存在区间[a ,b ]⊆[m ,n ],使得f (x )在区间[a ,b ]上的值域与g (x )的值域相同,所以存在x 0∉[a ,b ],使得f (x 0)的值接近无穷,所以f (x )+g (x )∉B ,所以③正确;因为当x >-2时,函数y =ln(x +2)的值域是R ,所以函数f (x )若有最大值,则a =0,此时f (x )=x x 2+1.因为对∀x ∈R ,x 2+1≥2|x |,所以-12≤x x 2+1≤12.即-12≤f (x )≤12,故f (x )∈B ,所以④正确.点评 此类题目包含了与函数有关的较多的概念、性质及对基本问题的处理方法.解答这类题目,一是要细心,读题看清要求;二是要熟练掌握函数的基本性质及其判断应用的方法,掌握基本函数的图象与性质等.变式训练2 如果y =f (x )的定义域为R ,对于定义域内的任意x ,存在实数a 使得f (x +a )=f (-x )成立,则称此函数具有“P (a )性质”.给出下列命题: ①函数y =sin x 具有“P (a )性质”;②若奇函数y =f (x )具有“P (2)性质”,且f (1)=1,则f (2 015)=1;③若函数y =f (x )具有“P (4)性质”,图象关于点(1,0)成中心对称,且在(-1,0)上单调递减,则y =f (x )在(-2,-1)上单调递减,在(1,2)上单调递增;④若不恒为零的函数y =f (x )同时具有“P (0)性质”和“P (3)性质”,则函数y =f (x )是周期函数.其中正确的是________(写出所有正确命题的编号). 答案 ①③④解析 ①因为sin (x +π)=-sin x =sin (-x ), 所以函数y =sin x 具有“P (a )性质”, 所以①正确;②因为奇函数y =f (x )具有“P (2)性质”, 所以f (x +2)=f (-x )=-f (x ), 所以f (x +4)=f (x ),周期为4,因为f (1)=1,所以f (2 015)=f (3)=-f (1)=-1. 所以②不正确;③因为函数y =f (x )具有“P (4)性质”, 所以f (x +4)=f (-x ),所以f (x )的图象关于直线x =2对称, 即f (2-x )=f (2+x ),因为图象关于点(1,0)成中心对称, 所以f (2-x )=-f (x ),即f (2+x )=-f (-x ), 所以得出f (x )=f (-x ),f (x )为偶函数, 因为图象关于点(1,0)成中心对称, 且在(-1,0)上单调递减,所以图象也关于点(-1,0)成中心对称, 且在(-2,-1)上单调递减;根据偶函数的对称性得出在(1,2)上单调递增,故③正确; ④因为具有“P (0)性质”和“P (3)性质”, 所以f (x )=f (-x ),f (x +3)=f (-x )=f (x ), 所以f (x )为偶函数,且周期为3,故④正确.高考题型精练1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( ) A.f (x )=cos(x +1) B.f (x )=x C.f (x )=tan x D.f (x )=x 3答案 A解析 由题意知,若f (x )是准偶函数,则函数的对称轴是直线x =a ,a ≠0,选项B ,C ,D 中,函数没有对称轴;函数f (x )=cos(x +1),有对称轴,且x =0不是对称轴,选项A 正确.故选A.2.设f (x )的定义域为D ,若f (x )满足条件:存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域是⎣⎡⎦⎤a 2,b 2,则称f (x )为“倍缩函数”.若函数f (x )=ln(e x +t )为“倍缩函数”,则t 的范围是( ) A.⎝⎛⎭⎫14,+∞ B.(0,1) C.⎝⎛⎦⎤0,12 D.⎝⎛⎭⎫0,14 答案 D解析 因为函数f (x )=ln(e x +t )为“倍缩函数”,所以存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域是⎣⎡⎦⎤a 2,b 2,因为函数f (x )=ln(e x +t )为增函数,所以⎩⎨⎧ln (e a +t )=a2,ln (e b +t )=b2,即⎩⎨⎧e a +t =e 2a ,e b+t =e2b ,即方程e x-e 2x+t =0有两个不等的正根,即⎩⎪⎨⎪⎧(-1)2-4t >0,t >0,解得t 的范围是⎝⎛⎭⎫0,14. 3.设函数y =f (x )的定义域为D ,若对于任意x 1,x 2∈D 且x 1+x 2=2a ,恒有f (x 1)+f (x 2)=2b ,则称点(a ,b )为函数y =f (x )图象的对称中心.研究并利用函数f (x )=x 3-3x 2-sin πx 的对称中心,可得f (12 016)+f (22 016)+…+f (4 0302 016)+f (4 0312 016)等于( )A.-16 124B.16 124C.-8 062D.8 062 答案 C解析 如果x 1+x 2=2,则f (x 1)+f (x 2)=x 31-3x 21-sin πx 1+x 32-3x 22-sin πx 2=x 31-3x 21-sin πx 1+(2-x 1)3-3(2-x 1)2-sin π(2-x 1)=-4. 令S =f (12 016)+f (22 016)+…+f (4 0302 016)+f (4 0312 016),又S =f (4 0312 016)+f (4 0302 016)+…+f (12 016),两式相加得2S =-4×4 031,所以S =-8 062.故选C.4.函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有f ⎝⎛⎭⎫x 1+x 22≤12[f (x 1)+f (x 2)],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题: ①f (x )在[1,3]上的图象是连续不断的; ②f (x 2)在[1, 3 ]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3]; ④对任意x 1,x 2,x 3,x 4∈[1,3],有f ⎝⎛⎭⎫x 1+x 2+x 3+x 44≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是( )A.①②B.①③C.②④D.③④ 答案 D解析 令f (x )=⎩⎪⎨⎪⎧1,x =1,0,1<x <3,1,x =3,可知对∀x 1,x 2∈[1,3],都有f ⎝⎛⎭⎫x 1+x 22≤12[f (x 1)+f (x 2)],但f (x )在[1,3]上的图象不连续,故①不正确; 令f (x )=-x ,则f (x )在[1,3]上具有性质P , 但f (x 2)=-x 2在[1, 3 ]上不具有性质P , 因为-⎝⎛⎭⎫x 1+x 222=-x 21+x 22+2x 1x 24≥-2(x 21+x 22)4=12(-x 21-x 22)=12[f (x 21)+f (x 22)],故②不正确; 对于③,假设存在x 0∈[1,3],使得f (x 0)≠1, 因为f (x )max =f (2)=1,x ∈[1,3],所以f (x 0)<1. 又当1≤x 0≤3时,有1≤4-x 0≤3, 由f (x )在[1,3]上具有性质P ,得 f (2)=f ⎝⎛⎭⎫x 0+4-x 02≤12[f (x 0)+f (4-x 0)],由于f (x 0)<1,f (4-x 0)≤1,与上式矛盾. 即对∀x ∈[1,3],有f (x )=1,故③正确. 对于④,对∀x 1,x 2,x 3,x 4∈[1,3], f ⎝⎛⎭⎫x 1+x 2+x 3+x 44=f ⎝⎛⎭⎪⎪⎫x 1+x 22+x 3+x 422≤12⎣⎡⎦⎤f ⎝⎛⎭⎫x 1+x 22+f ⎝⎛⎭⎫x 3+x 42 ≤12⎩⎨⎧⎭⎬⎫12[f (x 1)+f (x 2)]+12[f (x 3)+f (x 4)] =14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],故④正确. 5.已知函数f (x )=1-|2x -1|,x ∈[0,1].定义:f 1(x )=f (x ),f 2(x )=f [f 1(x )],…,f n (x )=f [f n -1(x )],n =2,3,4,…,满足f n (x )=x 的点x ∈[0,1]称为f (x )的n 阶不动点.则f (x )的n 阶不动点的个数是( )A.nB.2n 2C.2(2n -1)D.2n 答案 D解析 函数f (x )=1-|2x -1|=⎩⎨⎧2x ,0≤x ≤12,2-2x ,12<x ≤1,当x ∈⎣⎡⎦⎤0,12时,f 1(x )=2x =x ⇒x =0, 当x ∈⎝⎛⎦⎤12,1时,f 1(x )=2-2x =x ⇒x =23, ∴f 1(x )的1阶不动点的个数为2.当x ∈⎣⎡⎦⎤0,14时,f 1(x )=2x ,f 2(x )=4x =x ⇒x =0, 当x ∈⎝⎛⎦⎤14,12时,f 1(x )=2x ,f 2(x )=2-4x =x ⇒x =25, 当x ∈⎝⎛⎦⎤12,34时,f 1(x )=2-2x ,f 2(x )=4x -2=x ⇒x =23, 当x ∈⎝⎛⎦⎤34,1时,f 1(x )=2-2x ,f 2(x )=4-4x =x ⇒x =45. ∴f 2(x )的2阶不动点的个数为22,以此类推,f (x )的n 阶不动点的个数是2n .6.若集合A ={1,2,3,k },B ={4,7,a 4,a 2+3a },其中a ∈N *,k ∈N *,f :x →y =3x +1,x ∈A ,y ∈B 是从定义域A 到值域B 的一个函数,则a +k =________. 答案 7解析 由对应法则知1→4,2→7,3→10,k →3k +1,又a ∈N *,∴a 4≠10,∴a 2+3a =10,解得a =2(舍去a =-5),所以a 4=16,于是3k +1=16,∴k =5.∴a +k =7.7.如果定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =x 2;②y =e x +1;③y =2x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________. 答案 ②③解析 由已知x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)得(x 1-x 2)·[f (x 1)-f (x 2)]>0,所以函数f (x )在R 上是增函数.对于①,y =x 2在(-∞,0)上为减函数,在(0,+∞)上为增函数,其不是“H 函数”;对于②,y =e x +1在R 上为增函数,所以其为“H 函数”;对于③,由于y ′=2-cos x >0恒成立,所以y =2x -sin x 是增函数,所以其为“H 函数”;对于④,由于其为偶函数,所以其不可能在R 上是增函数,所以不是“H 函数”.综上知,是“H 函数”的序号为②③.8.已知二次函数f (x )的两个零点分别为b 1-a ,b1+a(0<b <a +1),f (0)=b 2.定义card(A ):集合A中的元素个数.若“⎩⎪⎨⎪⎧x ∈A ,card (A ∩Z )=4”是“f (x )>0”的充要条件,则实数a 的取值范围是____________.答案 (1,2)解析 由条件可得f (x )=(1-a 2)(x -b 1-a )(x -b 1+a ),结合⎩⎪⎨⎪⎧x ∈A ,card (A ∩Z )=4知a >1,所以f (x )开口向下,所以f (x )>0的解集为⎝⎛⎭⎫b 1-a ,b 1+a ,且0<b 1+a <1.结合数轴分析,知-4≤b 1-a<-3,即3a -3<b ≤4a -4,又0<b <a +1,所以3a -3<b <a +1,得1<a <2.9.设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ).例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b 2,即M f (a ,b )为a ,b 的算术平均数. (1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2ab a +b. (以上两空各只需写出一个符合要求的函数即可)答案 (1)x (2)x解析 设A (a ,f (a )),B (b ,-f (b )),C (c ,0),则三点共线.(1)依题意,c =ab ,则求得f (a )a =f (b )b, 故可以选择f (x )=x (x >0).(2)依题意,c =2ab a +b,求得f (a )a =f (b )b , 故可以选择f (x )=x (x >0).10.对于函数f (x ),若存在区间M =[a ,b ](其中a <b ),使得{y |y =f (x ),x ∈M }=M ,则称区间M 为函数f (x )的一个“稳定区间”.给出下列4个函数:①f (x )=(x -1)2;②f (x )=|2x -1|;③f (x )=cos π2x ;④f (x )=e x . 其中存在“稳定区间”的函数是________.(填出所有满足条件的函数序号)答案 ①②③解析 据已知定义,所谓的“稳定区间”即函数在区间[a ,b ]内的定义域与值域相等.问题可转化为已知函数y =f (x )的图象与直线y =x 是否相交,若相交则两交点所在区间即为函数的“稳定区间”.数形结合依次判断,①②③均符合条件,而④不符合条件.综上可知,①②③均为存在“稳定区间”的函数.11.若函数f (x )在定义域D 内的某个区间I 上是增函数,且F (x )=f (x )x在I 上是减函数,则称y =f (x )在I 上是“非完美增函数”.已知f (x )=ln x ,g (x )=2x +2x+a ln x (a ∈R ). (1)判断f (x )在(0,1]上是否为“非完美增函数”;(2)若g (x )在[1,+∞)上是“非完美增函数”,求实数a 的取值范围.解 (1)易知f ′(x )=1x >0在(0,1]上恒成立,所以f (x )=ln x 在(0,1]上是增函数.F (x )=f (x )x=ln x x ,求导得F ′(x )=1-ln x x 2,因为x ∈(0,1],所以ln x ≤0,即F ′(x )>0在(0,1]上恒成立,所以F (x )=ln x x在(0,1]上是增函数.由题意知,f (x )在(0,1]上不是“非完美增函数”. (2)若g (x )=2x +2x +a ln x (a ∈R )在[1,+∞)上是“非完美增函数”,则g (x )=2x +2x+a ln x 在[1,+∞)上单调递增,G (x )=g (x )x =2+2x 2+a ln x x在[1,+∞)上单调递减. ①若g (x )在[1,+∞)上单调递增,则g ′(x )=2-2x 2+a x ≥0在[1,+∞)上恒成立,即a ≥2x-2x 在[1,+∞)上恒成立.令h (x )=2x -2x ,x ∈[1,+∞),因为h ′(x )=-2x 2-2<0恒成立,所以h (x )在[1,+∞)上单调递减,h (x )max =h (1)=0,所以a ≥0.②若G (x )在[1,+∞)上单调递减,则G ′(x )=-4x 3+a (1-ln x )x 2≤0在[1,+∞)上恒成立,即-4+ax -ax ln x ≤0在[1,+∞)上恒成立.令t (x )=-4+ax -ax ln x ,x ∈[1,+∞),因为t ′(x )=-a ln x ,由①知a ≥0,所以t ′(x )≤0恒成立,所以t (x )=-4+ax -ax ln x 在[1,+∞)上单调递减,则t (x )max =t (1)=a -4.要使t (x )=-4+ax -ax ln x ≤0在[1,+∞)上恒成立,则a-4≤0,即a ≤4,此时G ′(x )=-4x 3+a (1-ln x )x 2≤0在[1,+∞)上恒成立. 综合①②知,实数a 的取值范围为[0,4].12.已知函数f (x )=ax +ln x ,g (x )=e x .(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -m x有解,求实数m 的取值范围; (3)定义:对于函数y =f (x )和y =g (x )在其公共定义域内的任意实数x 0,称|f (x 0)-g (x 0)|的值为两函数在x 0处的差值.证明:当a =0时,函数y =f (x )和y =g (x )在其公共定义域内的所有差值都大于2.(1)解 f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0). ①当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;②当a <0时,由f ′(x )=0,解得x =-1a, 则当x ∈(0,-1a)时,f ′(x )>0,∴f (x )单调递增, 当x ∈(-1a,+∞)时,f ′(x )<0,∴f (x )单调递减. 综上,当a =0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(0,-1a )上单调递增,在(-1a,+∞)上单调递减. (2)解 由题意:e x <x -m x有解,即e x x <x -m 有解,因此只需m <x -e x x ,x ∈(0,+∞)有解即可.设h (x )=x -e x x ,h ′(x )=1-e xx -e x 2x =1-e x (x +12x ). ∵x +12x ≥212=2>1, 且x ∈(0,+∞)时e x >1, ∴1-e x (x +12x)<0,即h ′(x )<0, 故h (x )在(0,+∞)上单调递减.∴h (x )<h (0)=0,故m <0.(3)证明 当a =0时,f (x )=ln x ,f (x )与g (x )的公共定义域为(0,+∞),|f (x )-g (x )|=|ln x -e x |=e x -ln x =e x -x -(ln x -x ).设m (x )=e x -x >0,则m ′(x )=e x -1>0,x ∈(0,+∞),m (x )在(0,+∞)上单调递增,m (x )>m (0)=1.又设n (x )=ln x -x ,x ∈(0,+∞),n ′(x )=1x-1, 当x ∈(0,1)时,n ′(x )>0,n (x )单调递增,当x ∈(1,+∞)时,n ′(x )<0,n (x )单调递减,所以x =1为n (x )的极大值点,即n (x )≤n (1)=-1,故|f (x )-g (x )|=m (x )-n (x )>1-(-1)=2.即公共定义域内任一点差值都大于2.。

2021版考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题

2021版考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题

2021版考前三个月高考数学(全国甲卷通用理科)知识方法篇专题2021版考前三个月高考数学(全国甲卷通用理科)知识方法篇专题第13次练习的强制测试类型——导数和单调性[题型分析高考展望]利用导数研究函数单调性是高考每年必考内容,多以综合题中某一问的形式考查,题目承载形式多种多样,但其实质都是通过求导判断导数符号,确定单调性.题目难度为中等偏上,一般都在最后两道压轴题上,这是二轮复习的得分点,应高度重视.体验高考1.(2021福建)若定义在r上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()1?1a.f??k?<k11c.f?k-1?<??k-1答案c它由已知条件解析,构造器g(x)=f(x)-KX,11则g′(x)=f′(x)-k>0,故函数g(x)在r上单调递增,且>0,故g()>g(0),k-1k-11k11所以f()->-1,f()>,K-1k-1k-1k-1,所以C的结论肯定是错误的,选项D无法判断;构造函数H(x)=f (x)-x,1然后H'(x)=f'(x)-1>0,因此函数H(x)在R上单调增加且>0,k一万一千一百一十一所以h()>h(0),即f()->-1,f()>-1,选项a,b无法判断,故选c.KKKK2.(2021课标全国ⅱ)设函数f′(x)是奇函数f(x)(x∈r)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()a.(-∞,-1)∪(0,1)b.(-1,0)∪(1,+∞)c.(-∞,-1)∪(-1,0)d.(0,1)∪(1,+∞)答案axf′?x?-F十、F十、解析记函数g(x)=,则g(x)=,三十二1?1b、 f?>?Kk-11kd。

Fk-1?>??k-1因为当x>0时,xf′(x)-f(x)<0,故当x>0时,g′(x)<0,所以g(x)在(0,+∞)单调递减;又因为函数f(x)(x∈r)是奇函数,故函数g(x)是偶函数,因此,G(x)在(-∞, 当0<x<1时,G(-1)=G(1)=0,G(x)>0,则f(x)>0;当x<-1,G(x)<0时,则f(x)>0综上所述,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1),故选a.3.(2021浙江)设函数f(x)=x3+(1)f(x)≥1-x+x2;33(2)<f(x)≤.421-?-十、41-x4证明(1)因为1-x+x-x==,1-?-x?1+x二3一,x∈[0,1].证明:1+x1-x41由于x∈[0,1],有≤,1+xx+11即1-x+x2-x3≤,X+1,所以f(X)≥ 1-x+x2(2)X3≤ x、 0比11≤ 十、≤ 1.故f(x)=x3+≤x+x+1x+1133?x-1??2x+1?33=x+-≤,22x+1222?x+1?3所以f(x)≤2133x-?2 + ≥, from(1),f(x)≥ 1-x+x2=??2.44。

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣2

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣2

回扣2 函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):a >0时,值域为⎣⎡⎭⎫4ac -b24a ,+∞,a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a ;③反比例函数y =kx (k ≠0)的值域为{y ∈R |y ≠0}.2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期.②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期.③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期.(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称. ②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称. ③若函数y =f (x )满足f (a +x )=f (b -x ), 则函数f (x )的图象关于直线x =a +b2对称.4.函数的单调性函数的单调性是函数在定义域上的局部性质. ①单调性的定义的等价形式:设x 1,x 2∈[a ,b ], 那么(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②若函数f (x )和g (x )都是减函数,则在公共定义域内,f (x )+g (x )是减函数;若函数f (x )和g (x )都是增函数,则在公共定义域内,f (x )+g (x )是增函数;根据同增异减判断复合函数y =f [g (x )]的单调性.5.函数图象的基本变换 (1)平移变换:y =f (x )――――→h >0,右移h <0,左移y =f (x -h ), y =f (x )――――→k >0,上移k <0,下移y =f (x )+k . (2)伸缩变换:y =f (x )――――→0<ω<1,伸ω>1,缩y =f (ωx ), y =f (x )――――→0<A <1,缩A >1,伸y =Af (x ). (3)对称变换: y =f (x )――→x 轴y =-f (x ), y =f (x )――→y 轴y =f (-x ), y =f (x )――→原点y =-f (-x ).6.准确记忆指数函数与对数函数的基本性质 (1)定点:y =a x (a >0,且a ≠1)恒过(0,1)点; y =log a x (a >0,且a ≠1)恒过(1,0)点.(2)单调性:当a >1时,y =a x 在R 上单调递增;y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =a x 在R 上单调递减;y =log a x 在(0,+∞)上单调递减. 7.函数与方程(1)零点定义:x 0为函数f (x )的零点⇔f (x 0)=0⇔(x 0,0)为f (x )的图象与x 轴的交点.(2)确定函数零点的三种常用方法 ①解方程判定法:即解方程f (x )=0.②零点定理法:根据连续函数y =f (x )满足f (a )f (b )<0,判断函数在区间(a ,b )内存在零点. ③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解. 8.导数的几何意义(1)f ′(x 0)的几何意义:曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,该切线的方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)切点的两大特征:①在曲线y =f (x )上;②在切线上. 9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤:①求函数f (x )的定义域;②求导函数f ′(x );③由f ′(x )>0的解集确定函数f (x )的单调增区间,由f ′(x )<0的解集确定函数f (x )的单调减区间.(2)由函数的单调性求参数的取值范围:①若可导函数f (x )在区间M 上单调递增,则f ′(x )≥0(x ∈M )恒成立;若可导函数f (x )在区间M 上单调递减,则f ′(x )≤0 (x ∈M )恒成立;②若可导函数在某区间上存在单调递增(减)区间,f ′(x )>0(或f ′(x )<0)在该区间上存在解集;③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,则I 是其单调区间的子集.10.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤:①确定函数的定义域;②解方程f ′(x )=0;③判断f ′(x )在方程f ′(x )=0的根x 0两侧的符号变化: 若左正右负,则x 0为极大值点; 若左负右正,则x 0为极小值点; 若不变号,则x 0不是极值点.(2)求函数f (x )在区间[a ,b ]上的最值的一般步骤: ①求函数y =f (x )在(a ,b )内的极值;②比较函数y =f (x )的各极值与端点处的函数值f (a )、f (b )的大小,最大的一个是最大值,最小的一个是最小值.11.定积分的三个公式与一个定理 (1)定积分的性质: ①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x ;②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .③⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).(2)微积分基本定理:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y =a x (a >0,a ≠1)的单调性忽视字母a 的取值讨论,忽视a x >0;对数函数y =log a x (a >0,a ≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.7.已知可导函数f (x )在(a ,b )上单调递增(减),则f ′(x )≥0(≤0)对∀x ∈(a ,b )恒成立,不能漏掉“=”号,且需验证“=”不能恒成立;而已知可导函数f (x )的单调递增(减)区间为(a ,b ),则f ′(x )>0(<0)的解集为(a ,b ).8.f ′(x )=0的解不一定是函数f (x )的极值点.一定要检验在x =x 0的两侧f ′(x )的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.1.若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x -4,x >0,则f (f (1))等于( )A.-10B.10C.-2D.2 答案 C解析 由f (f (1))=f (21-4)=f (-2)=2×(-2)+2=-2,故选C.2.若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A.[1,+∞)B.[1,32)C.[1,2)D.[32,2)答案 B解析 因为f (x )的定义域为(0,+∞),y ′=2x -12x ,由f ′(x )=0,得x =12.利用图象可得,⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32,故选B.3.若函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,则实数a 的取值范围是( )A.(94,3)B.[94,3) C.(1,3) D.(2,3) 答案 D解析 因为函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,所以1<a <3且由f (7)<f (8)得,7(3-a )-3<a 2,解得a <-9或a >2,所以实数a 的取值范围是(2,3),故选D.4.设函数F (x )=f (x )+f (-x ),x ∈R ,且⎣⎡⎦⎤-π,-π2是函数F (x )的一个单调递增区间.将函数F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是( ) A.⎣⎡⎦⎤-π,-π2 B.⎣⎡⎦⎤-π2,0 C.⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤3π2,2π 答案 D解析 ∵F (x )=f (x )+f (-x ),x ∈R ,∴F (-x )=f (-x )+f (x )=F (x ),∴F (x )为偶函数,∴⎣⎡⎦⎤π2,π为函数F (x )的一个单调递减区间.将F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是⎣⎡⎦⎤3π2,2π.5.已知函数f (x )为偶函数,将f (x )的图象向右平移一个单位后得到一个奇函数,若f (2)=-1,则f (1)+f (2)+…+f (2 016)等于( ) A.1 B.0 C.-1 003 D.1 003 答案 B解析 由条件知f (x -1)是奇函数,所以f (-x -1)=-f (x -1),又f (x )为偶函数,所以f (x +1)=-f (x -1),即f (x +2)=-f (x ),从而f (x +4)=f (x ),即函数f (x )是周期为4的函数,在f (x +2)=-f (x )中令x =-1,可得f (1)=0,再令x =1可得f (3)=-f (1)=0,令x =2可得f (4)=-f (2)=1,因此f (1)+f (2)+…+f (2 016)=504[f (1)+f (2)+f (3)+f (4)]=0,故选B.6.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且f (-1)=2,则f (2 017)的值是( ) A.2 B.0 C.-1 D.-2 答案 D解析 由题意得f (x +4)=-f (x +2)=f (x ),所以函数是以T =4的周期函数,所以f (2 017)=f (1)=-f (-1)=-2,故选D.7.a 、b 、c 依次表示函数f (x )=2x +x -2,g (x )=3x +x -2,h (x )=ln x +x -2的零点,则a 、b 、c 的大小顺序为( )A.c <b <aB.a <b <cC.a <c <bD.b <a <c 答案 D解析 a 、b 、c 为直线y =2-x 分别与曲线y =2x ,y =3x ,y =ln x 的交点横坐标,从图象可知b <a <c ,故选D.8.设a =log 32,b =log 52,c =log 23,则( ) A.a >c >b B.b >c >a C.c >b >a D.c >a >b 答案 D解析 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图象,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式得log 32>log 52,即a >b .9.若函数f (x )定义域为[-2,2],则函数y =f (2x )·ln(x +1)的定义域为________. 答案 (-1,1]解析 由题意可得⎩⎪⎨⎪⎧-2≤2x ≤2,x +1>0,∴-1<x ≤1,即函数y =f (2x )·ln(x +1)的定义域为(-1,1].10.设函数f (x )=x 3-2e x 2+mx -ln x ,记g (x )=f (x )x ,若函数g (x )至少存在一个零点,则实数m的取值范围是__________. 答案 (-∞,e 2+1e]解析 令g (x )=x 2-2e x +m -ln xx =0,∴m =-x 2+2e x +ln xx(x >0),设h (x )=-x 2+2e x +ln xx ,令f 1(x )=-x 2+2e x ,f 2(x )=ln xx ,∴f 2′(x )=1-ln x x 2,发现函数f 1(x ),f 2(x )在x ∈(0,e)上都是单调递增,在x ∈(e ,+∞)上都是单调递减,∴函数h (x )=-x 2+2e x +ln xx 在x ∈(0,e)上单调递增,在x ∈(e ,+∞)上单调递减,∴当x =e 时,h (x )max=e 2+1e ,∴函数有零点需满足m ≤h (x )max ,即m ≤e 2+1e.11.设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈[0,12]时f (x )=-x 2,则f (3)+f (-32)的值等于________.答案 -14解析 由于y =f (x )为奇函数,根据对任意t ∈R 都有f (t )=f (1-t ), 可得f (-t )=f (1+t ),所以函数y =f (x )的一个周期为2, 故f (3)=f (1)=f (0+1)=-f (0)=0, f (-32)=f (12)=-14,∴f (3)+f (-32)=-14.12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极小值10,则a +b 的值为________. 答案 -7解析 ∵f ′(x )=3x 2+2ax +b ,由已知可得⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得a =4,b =-11或a =-3,b =3, 经验证,a =4,b =-11符合题意, 故a +b =-7.13.已知函数f (x )=x +1e x (e 为自然对数的底数).(1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t的取值范围.解 (1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0, ∴f (x )在(-∞,0)上单调递增, 在(0,+∞)上单调递减.(2)存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max .∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1e x,∴φ′(x )=-x 2+(1+t )x -t e x=-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1;②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0;③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减,若t ∈(t ,1],φ′(x )>0,φ(x )在(t ,1)上单调递增,∴2φ(t )<max{φ(0),φ(1)}, 即2·t +1e t <max{1,3-t e}.(*)由(1)知,g (t )=2·t +1e t 在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e , ∴不等式(*)无解.综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立.。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第14练

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第14练

第14练 函数的极值与最值[题型分析·高考展望] 本部分内容为导数在研究函数中的一个重要应用,在高考中也是重点考查的内容,多在解答题中的某一问中考查,要求熟练掌握函数极值与极值点的概念及判断方法,极值和最值的关系.体验高考1.(2016·四川)已知a 为函数f (x )=x 3-12x 的极小值点,则a 等于( ) A.-4 B.-2 C.4 D.2 答案 D解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12, 令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减, ∴f (x )的极小值点为a =2.2.(2016·课标全国甲)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 所以当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0. (2)证明 g ′(x )=(x -2)e x +a (x +2)x 3=x +2x 3(f (x )+a ).由(1)知,f (x )+a 单调递增,对任意a ∈[0,1), f (0)+a =a -1<0,f (2)+a =a ≥0.因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0, 即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增.因此g (x )在x =x a 处取得最小值,最小值为22e (+1)e ()(+1)e ().+2-+===a a ax x x a a a a a a a a x f x x g x x x x 于是h (a )=e .+2a x a x 由⎝⎛⎭⎫e x x +2′=(x +1)e x (x +2)2>0, 得e x x +2单调递增.所以,由x a ∈(0,2], 得12=e 00+2<h (a )=e +2a xa x ≤e 22+2=e 24. 因为e x x +2单调递增,对任意λ∈⎝⎛⎦⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝⎛⎦⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝⎛⎦⎤12,e 24. 3.(2015·安徽)设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值; (2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎡⎦⎤-π2,π2上的最大值D ; (3)在(2)中,取a 0=b 0=0,求z =b -a 24满足D ≤1时的最大值.解 (1)f (sin x )=sin 2 x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值. ③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0, 使得2sin x 0=a .-π2<x ≤x 0时,函数f (sin x )单调递减;x 0≤x <π2时,函数f (sin x )单调递增;因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24.(2)-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b -b 0|. 当(a 0-a )(b -b 0)≥0时,取x =π2,等号成立.当(a 0-a )(b -b 0)<0时,取x =-π2,等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎡⎦⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|. (3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1,从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1.由此可知,z =b -a 24满足条件D ≤1时的最大值为1.高考必会题型题型一 利用导数求函数的极值例1 (2015·重庆)设函数f (x )=3x 2+axe x(a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +a e x ,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0. 当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x ,故f (1)=3e ,f ′(1)=3e,从而f (x )在点(1,f (1))处的切线方程为 y -3e =3e (x -1),化简得3x -e y =0. (2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x .令g (x )=-3x 2+(6-a )x +a , 由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数. 由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎡⎭⎫-92,+∞. 点评 (1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内一定不是单调函数,即在某区间上的单调函数没有极值.变式训练1 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值; (2)求函数f (x )的极值.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)上为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5,f (x )无极大值. 题型二 利用导数求函数最值例2 已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,当x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值. 解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b .当x =1时,切线l 的斜率为3,可得2a +b =0.① 当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0, 可得4a +3b +4=0.② 由①②,解得a =2,b =-4.由于切点的横坐标为x =1,所以f (1)=4. 所以1+a +b +c =4,所以c =5. 综上,a =2,b =-4,c =5.(2)由(1),可得f (x )=x 3+2x 2-4x +5, 所以f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:所以y =f (x )在[-3,1]上的最大值为13,最小值为9527.点评 (1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得. (2)可以利用列表法研究函数在一个区间上的变化情况.变式训练2 设f (x )=ax 3+bx +c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f ′(x )的最小值为-12. (1)求函数f (x )的解析式;(2)求函数f (x )的单调增区间,并求函数f (x )在[-1,3]上的最大值和最小值. 解 (1)因为f (x )为奇函数,所以f (-x )=-f (x ), 即-ax 3-bx +c =-ax 3-bx -c ,所以c =0, 又f ′(x )=3ax 2+b 的最小值为-12,所以b =-12. 由题设知f ′(1)=3a +b =-6.所以a =2,故f (x )=2x 3-12x . (2)f ′(x )=6x 2-12=6(x +2)(x -2). 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递增区间为(-∞,-2)和(2,+∞). 因为f (-1)=10,f (3)=18, f (2)=-82,f (-2)=82, 所以当x =2时,f (x )min =-82; 当x =3时,f (x )max =18.高考题型精练1.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( ) A.11或18 B.11 C.18 D.17或18 答案 C解析 ∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,f ′(x )=3x 2+2ax +b , ∴f (1)=10,且f ′(1)=0,即⎩⎪⎨⎪⎧ 1+a +b +a 2=10,3+2a +b =0,解得⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11. 而当⎩⎪⎨⎪⎧a =-3,b =3时,函数在x =1处无极值,故舍去.∴f (x )=x 3+4x 2-11x +16, ∴f (2)=18.2.函数f (x )=3x 2+ln x -2x 的极值点的个数是( ) A.0 B.1 C.2 D.无数个 答案 A解析 函数定义域为(0,+∞), 且f ′(x )=6x +1x -2=6x 2-2x +1x,由于x >0,令g (x )=6x 2-2x +1,在g (x )中Δ=-20<0,所以g (x )>0恒成立,故f ′(x )>0恒成立,即f (x )在定义域上单调递增,无极值点. 3.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( )A.a <-1B.a >-1C.a >-1eD.a <-1e答案 A解析 ∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, ∴方程y ′=e x +a =0有大于零的解. ∵x >0时,-e x <-1,∴a =-e x <-1.4.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2) 答案 D解析 由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0; 当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值, 在x =2处取得极小值.5.已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ) A.f (x 1)>0,f (x 2)>-12B.f (x 1)<0,f (x 2)<-12C.f (x 1)>0,f (x 2)<-12D.f (x 1)<0,f (x 2)>-12答案 D解析 f ′(x )=ln x +1-2ax (x >0), 令f ′(x )=0得2a =ln x +1x .设φ(x )=ln x +1x,知φ′(x )=-ln xx2,φ(x )草图如图,∴f (x )的两个极值点0<x 1<1, x 2>1,且2a ∈(0,1), ∴a ∈⎝⎛⎭⎫0,12. 由f (x )草图可知f (x )在区间(0,x 1)上单调递减,在(x 1,x 2)上单调递增. 又f (1)=-a ,f (x 2)≥f (1)且-a ∈⎝⎛⎭⎫-12,0. ∴f (x 1)<0,f (x 2)>-12.6.已知函数f (x )=x 3+2bx 2+cx +1有两个极值点x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2],则f (-1)的取值范围是( )A.[-32,3]B.[32,6]C.[3,12]D.[-32,12]答案 C解析 方法一 由于f ′(x )=3x 2+4bx +c , 据题意,方程3x 2+4bx +c =0有两个根x 1,x 2, 且x 1∈[-2,-1],x 2∈[1,2]. 令g (x )=3x 2+4bx +c ,结合二次函数图象可得,只需⎩⎪⎨⎪⎧g (-2)=12-8b +c ≥0,g (-1)=3-4b +c ≤0,g (1)=3+4b +c ≤0,g (2)=12+8b +c ≥0,此即为关于点(b ,c )的线性约束条件,作出其对应平面区域,f (-1)=2b -c ,问题转化为在上述线性约束条件下确定目标函数f (-1)=2b -c 的最值问题,由线性规划易知3≤f (-1)≤12,故选C.方法二 方程3x 2+4bx +c =0有两个根x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2]的条件也可以通过二分法处理,即只需g (-2)g (-1)≤0,g (2)g (1)≤0即可,利用同样的方法也可解答. 7.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.答案 (-1,+∞)解析 f (x )的定义域为(0,+∞),f ′(x )=1x-ax -b ,由f ′(1)=0,得b =1-a .所以f ′(x )=1x -ax +a -1=-ax 2+1+ax -x x =-(x -1)(ax +1)x .①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减, 所以x =1是f (x )的极大值点;②若a <0,由f ′(x )=0,得x =1或x =-1a ,因为x =1是f (x )的极大值点, 所以-1a >1,解得-1<a <0.综合①②得,a 的取值范围是a >-1.8.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是______. 答案 (-1,1)解析 令f ′(x )=3x 2-3a =0,得x =±a , 则f (x ),f ′(x )随x 的变化情况如下表:从而⎩⎨⎧(-a )3-3a (-a )+b =6,(a )3-3a a +b =2,解得⎩⎪⎨⎪⎧a =1,b =4.所以f (x )的单调递减区间是(-1,1).9.若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值是______. 答案 16解析 依题意,f (x -2)为偶函数,f (x -2)=(-x 2+4x -3)[x 2+(a -4)x +4-2a +b ], 其中x 3的系数为8-a =0,故a =8, x 的系数为28+4b -11a =0,故b =15. 令f ′(x )=0,得x 3+6x 2+7x -2=0, 由对称轴为x =-2可知, 将该式分解为(x +2)(x 2+4x -1)=0.可知其在5-2和-5-2处取到最大值,最大值为16.10.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是______.答案 (22,+∞) 解析 f ′(x )=3x 2-3a 2=3(x +a )(x -a ), 由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数单调递增. ∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是(22,+∞). 11.已知a ∈R ,函数f (x )=ax+ln x -1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解 (1)当a =1时,f (x )=1x +ln x -1,x ∈(0,+∞),所以f ′(x )=-1x 2+1x =x -1x2,x ∈(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14.又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -⎝⎛⎭⎫ln 2-12=14(x -2),即x -4y +4ln 2-4=0. (2)因为f (x )=ax+ln x -1,所以f ′(x )=-a x 2+1x =x -ax 2,x ∈(0,+∞).令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增, 此时函数f (x )无最小值.②若0<a <e ,当x ∈(0,a )时,f ′(x )<0, 函数f (x )在区间(0,a )上单调递减,当x ∈(a ,e]时,f ′(x )>0,函数f (x )在区间(a ,e]上单调递增, 所以当x =a 时,函数f (x )取得最小值ln a .③若a ≥e ,则当x ∈(0,e]时,f ′(x )≤0,函数f (x )在区间(0,e]上单调递减,你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云所以当x =e 时,函数f (x )取得最小值ae.综上可知,当a ≤0时,函数f (x )在区间(0,e]上无最小值; 当0<a <e 时,函数f (x )在区间(0,e]上的最小值为ln a ; 当a ≥e 时,函数f (x )在区间(0,e]上的最小值为ae.12.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2(x <1),a ln x (x ≥1).(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在区间[-1,e](e 为自然对数的底数)上的最大值. 解 (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以在区间(-∞,1)上,函数f (x )的极小值点为x =0,极大值点为x =23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0)和(23,1)上单调递减,在(0,23)上单调递增.因为f (-1)=2,f (23)=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增, 所以f (x )在[1,e]上的最大值为f (e)=a .所以当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.。

高考数学真题分类专题三 导数及其应用第八讲导数的综合应用答案

高考数学真题分类专题三  导数及其应用第八讲导数的综合应用答案

专题三 导数及其应用 第八讲 导数的综合应用答案部分 2019年1.解析 当1x =时,()112210f a a =-+=>恒成立; 当1x <时,()2222021x f x x ax aax =-+⇔-恒成立,令()()()()22221112111111x x x x x g x x x x x-----+==-=-=-=----()()11221201x x x⎛⎫--+---= ⎪ ⎪-⎝⎭, 所以()max 20ag x =,即0a >.当1x >时,()ln 0ln xf x x a xax=-⇔恒成立,令()ln x h x x =,则()()21ln ln x x x h x x -⋅'==当e x >时,()0h x '>,()h x 递增,当1e x <<时,()0h x '<,()h x 递减, 所以当e x =时,()h x 取得最小值()e e h =. 所以()min e ah x =.综上,a 的取值范围是[]0,e .2.解析(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减. (2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为–1,最大值为1.3.解析:(Ⅰ)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(Ⅱ)由1(1)2f a≤,得04a <≤.当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()10g t g x ⎛+=> ⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2xf x a. 综上所述,所求a的取值范围是⎛ ⎝⎦4.解析:(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><, 可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α. 则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点.(2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而()f x 在0,2⎛⎤⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π ⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.5.解析:(1)f (x )的定义域为(0,1)(1,)+∞.因为211()0(1)f x x x '=+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--, 所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0. 又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-, 故f (x )在(0,1)有唯一零点11x . 综上,f (x )有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上. 由题设知0()0f x =,即0001ln 1x x x +=-, 故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y =e x在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是1x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.6.解析(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =.解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 7.解析:(I )由321()4f x x x x =-+,得23'()214f x x x =-+.令'()1f x =,即232114x x -+=,解得0x =或83x =.又88(0)0,(),327f f ==所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(II )令()()g x f x x =-,[]2,4x ∈-.由321()4g x x x =-得23'()24g x x x =-. 令'()0g x =得0x =或83x =.'(),()g x g x 随x 的变化情况如表所示所以()g x 的最小值为-6,最大值为0,所以6()0g x -≤≤,即6()x f x x -≤≤. (III )由(II )知,当3a ≤-时,()()()003M a F g a a ≥=-=->; 当3a >-时,()()()2263M a F g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.8.解析 (Ⅰ)由已知,有'()e (cos sin )x f x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()'0f x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()'0f x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而'()2e sin x g x x =-.当ππ,42x ⎛⎫∈⎪⎝⎭时,()'0g x <, 故'()'()'()()(1)'()022h x f x g x x g x g x x ππ⎛⎫⎛⎫=+-+-=-<⎪ ⎪⎝⎭⎝⎭. 因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭.(Ⅲ)依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭, 且()()()22e cos ecos 2e n n yx n n n n n n f y y x n -π-π==-π=∈N .由()()20e 1n n f y f y -π==及(Ⅰ),得0n y y . 由(Ⅱ)知,当,42x ππ⎛⎫∈⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-⎪⎝⎭, 故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-=<--. 所以,20022sin c s e o n n n x x x -πππ+-<-.2010-2018年1.A 【解析】∵21()[(2)1]x f x x a x a e-'=+++-,∵(2)0f '-=,∴1a =-,所以21()(1)x f x x x e-=--,21()(2)x f x x x e-'=+-,令()0f x '=,解得2x =-或1x =,所以当(,2)x ∈-∞-,()0f x '>,()f x 单调递增;当(2,1)x ∈-时,()0f x '<,()f x 单调递减;当(1,)x ∈+∞,()0f x '>,()f x 单调递增,所以()f x 的极小值为11(1)(111)1f e-=--=-,选A .2.D 【解析】由导函数的图象可知,()y f x =的单调性是减→增→减→增,排除 A 、C ;由导函数的图象可知,()yf x =的极值点一负两正,所以D 符合,选D . 3.D 【解析】当0x时,令函数2()2x f x x e =-,则()4x f x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .4.B 【解析】(解法一)2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,822n m --≥-即212m n +≤.2262m nm n +⋅≤≤18mn ∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m --≤-即218m n +≤.2292m n m n +⋅≤≤812mn ∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B .(解法二)由已知得()(2)8f x m x n '=-+-,对任意的1[,2]2x ∈,()0f x '≤,所以1()02()0f f x ⎧'⎪⎨⎪'⎩≤≤,即0,021822m n m n m n ⎧⎪+⎨⎪+⎩≥≥≤≤.画出该不等式组表示的平面区域如图中阴影部分所示,令mn t =,则当0n时,0t ,当0n ≠时,tm n=,由线性规划的相关知识,只有当直线212m n +=与曲线t mn 相切时,t 取得最大值,由212192tn t n n ⎧-=-⎪⎪⎨⎪-=⎪⎩,解得6n ,18t ,所以max ()18mn =,选B .5.A 【解析】令()()f x h x x,因为()f x 为奇函数,所以()h x 为偶函数,由于 2()()()xf x f x h x x '-'=,当0x 时,'()()xf x f x - 0<,所以()h x 在(0,)+∞ 上单调递减,根据对称性()h x 在(,0)-∞上单调递增,又(1)0f -=,(1)0f ,数形结合可知,使得()0f x 成立的x 的取值范围是()(),10,1-∞-.6.D 【解析】由题意可知存在唯一的整数0x ,使得000(21)-<-xe x ax a ,设()(21)=-x g x e x ,()=-h x ax a ,由()(21)x g x e x '=+,可知()g x 在1(,)2-∞-上单调递减,在1(,)2-+∞上单调递增,作出()g x 与()h x 的大致图象如图所示,-a故(0)(0)(1)(1)>⎧⎨--⎩h g h g ≤,即132<⎧⎪⎨--⎪⎩a a e ≤,所以312a e ≤. 7.D 【解析】∵()ln f x kx x =-,∴1()f x k x'=-,∵()f x 在(1,)+∞单调递增, 所以当1x > 时,1()0f x k x '=-≥恒成立,即1k x≥在(1,)+∞上恒成立,∵1x >,∴101x<<,所以k ≥1,故选D .8.A 【解析】法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y x =-,在(2,0)处的切线方程为36y x =-,以此对选项进行检验.A 选项,321122y x x x =--,显然过两个定点,又2312y x x '=--, 则02|1,|3x x y y ==''=-=,故条件都满足,由选择题的特点知应选A .法二 设该三次函数为32()f x ax bx cx d =+++,则2()32f x ax bx c '=++由题设有(0)0(2)0(0)1(2)3f f f f =⎧⎪=⎪⎨'=-⎪⎪'=⎩,解得11,,1,022a b c d==-=-=.故该函数的解析式为321122y x x x =--,选A .9.C 【解析】由正弦型函数的图象可知:()f x 的极值点0x 满足0()f x =,则22x k m πππ=+()k Z ∈,从而得01()()2x k m k Z =+∈.所以不等式()22200[]x f x m +<,即为2221()32k m m ++<,变形得21[1()]32m k -+>,其中k Z ∈.由题意,存在整数k 使得不等式21[1()]32m k -+>成立.当1k ≠-且0k ≠时,必有21()12k +>,此时不等式显然不能成立, 故1k =-或0k =,此时,不等式即为2334m >,解得2m <-或2m >. 10.A 【解析】设所求函数解析式为()y f x =,由题意知(5)2,52f f =--=(),且(5)0f '±=,代入验证易得3131255y x x =-符合题意,故选A . 11.C 【解析】当(0,1]x ∈时,得321113()4()a x x x --+≥,令1t x=,则[1,)t ∈+∞,3234a t t t --+≥,令()g t =3234t t t --+,[1,)t ∈+∞,则()2981(1)(91)g x t t t t '=--+=-+-,显然在[1,)+∞上,()0g t '<,()g t 单调递减,所以max ()(1)6g t g ==-,因此6a -≥;同理,当[2,0)x ∈-时,得2a -≤.由以上两种情况得62a --≤≤. 显然当0x =时也成立,故实数a 的取值范围为[6,2]--.12.C 【解析】设()ln x f x e x =-,则1()xf x e x'=-,故()f x 在(0,1)上有一个极值点,即()f x 在(0,1)上不是单调函数,无法判断1()f x 与2()f x 的大小,故A 、B 错;构造函数()x e g x x =,2(1)()x e x g x x-'=,故()g x 在(0,1)上单调递减,所以()()12g x g x >,选C .13.【解析】B 当0a =,可得图象D ;记2()2a f x ax x =-+,232()2g x a x ax =-+ ()x a a R +∈,取12a =,211()(1)24f x x =--,令()0g x '=,得2,23x =,易知()g x 的极小值为1(2)2g =,又1(2)4f =,所以(2)(2)g f >,所以图象A 有可能;同理取2a =,可得图象C 有可能;利用排除法可知选B .14.C 【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为(0,0),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0(,)x -∞单调递减是错误的,D 正确.选C .15.A 【解析】法一:由题意可得,00sin y x =[1,1]∈-,而由()f x =0[0,1]y ∈,当0a =时,()f x∴0[0,1]y ∈时,0()[1f x ∈.∴0(())1f f y >.∴ 不存在0[0,1]y ∈使00))((y y f f =成立,故B ,D 错;当1a e =+时,()f x当0[0,1]y ∈时,只有01y =时()f x 才有意义,而(1)0f =, ∴ ((1))(0)f f f =,显然无意义,故C 错.故选A .法二:显然,函数()f x 是增函数,()0f x ≥,从而以题意知0[0,1]y ∈.于是,只能有00()f y y =.不然的话,若00()f y y >,得000(())()f f y f y y >>, 与条件矛盾;若00()f y y <,得000(())()f f y f y y <<,与条件矛盾. 于是,问题转化为()f t t =在[0,1]上有解.由t =2tt e t a =+-,分离变量,得2()ta g t e t t ==-+,[0,1]t ∈因为()210tg t e t '=-+>,[0,1]t ∈,所以,函数()g t 在[0,1]上是增函数,于是有1(0)()(1)g g t g e ==≤≤, 即[1,]a e ∈,应选A .16.D 【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点;B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点;C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系;D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对称,再关于x 轴的对称图像.故D 正确.17.B 【解析】∵21ln 2y x x =-,∴1y x x'=-,由0y ',解得11x -,又0x >,∴01x<故选B .18.D 【解析】()xf x xe =,()(1)xf x e x '=+,0>x e 恒成立,令()0f x '=,则1-=x当1-<x 时,()0f x '<,函数单调减,当1->x 时,()0f x '>,函数单调增, 则1x =-为()f x 的极小值点,故选D .19.D 【解析】2()1222f x x ax b '=--,由(1)0f '=,即12220a b --=,得6a b +=.由0a >,0b >,所以2()92a b ab +=≤,当且仅当3a b ==时取等号.选D .20.D 【解析】若1x =-为函数()xf x e 的一个极值点,则易知a c =,∵选项A ,B 的函数为2()(1)f x a x =+,∴[()][()()](1)(3)xxxf x e f x f x e a x x e '=+=++,∴1x =-为函数()xf x e 的一个极值点满足条件;选项C 中,对称轴02bx a=->, 且开口向下,∵0,0a b <>,∴(1)20f a b -=-<,也满足条件; 选项D 中,对称轴02bx a=-<,且开口向上,∴0,2a b a >>, ∴(1)20f a b -=-<,与题图矛盾,故选D .21.D 【解析】由题2||ln MN x x =-,(0)x >不妨令2()ln h x x x =-,则1'()2h x x x=-,令'()0h x =解得2x =,因2x ∈时,'()0h x <,当)x ∈+∞时,'()0h x >,所以当x =时,||MN 达到最小.即2t =. 22.①③④⑤ 【解析】 令32(),()3f x x ax b f x x a '=++=+,当0a ≥时,()0f x '≥,则()f x 在R 上单调递增函数,此时30x ax b ++=仅有一个实根,所以(4)(5)对; 当3a =-时,由2()330f x x '=-<得11x -<<,所以1x = 是()f x 的极小值点.由(1)0f >,得31310b -⋅+>,即2b >,(3)对.1x =- 是()f x 的极大值点, 由(1)0f -<,得3(1)3(1)0b --⋅-+<,即2b <-,(1)对.23.①④【解析】(1)设12x >x ,函数2x 单调递增,所有122>2x x,120x x ,则m =1212()()f x f x x x --=121222x x x x >0,所以正确;(2)设1x >2x ,则120x x ->,则1212()()g x g x nx x 22121212()x x a x x x x12121212()()x x x x a x x a x x ,可令1x =1,2x =2,4a =-,则10n =-<,所以错误;(3)因为mn ,由(2)得:2121)()(x x x f x f --12x x a =++,分母乘到右边,右边即为12()()g x g x -,所以原等式即为12()()f x f x -=12()()g x g x -, 即为12()()f x g x -=12()()f x g x ,令()()()h x f x g x =-,则原题意转化为对于任意的a ,函数()()()h x f x g x =-存在不相等的实数1x ,2x 使得函数值相等,2()2x h x x ax =--,则()2ln 22x h x x a '=--,则()2(ln 2)2xh x ''=-,令0()0h x ''=,且012x <<,可得0()h x '为极小值. 若10000a =-,则0()0h x '>,即0()0h x '>,()h x 单调递增,不满足题意, 所以错误.(4)由(3) 得12()()f x f x -=12()()g x g x -,则1122()()()()f x g x g x f x +=+, 设()()()h x f x g x =+,有1x ,2x 使其函数值相等,则()h x 不恒为单调.2()2x h x x ax =++,()2ln 22x h x x a '=++,()2()2ln 220x h x ''=+>恒成立,()h x '单调递增且()0h '-∞<,()0h '+∞>.所以()h x 先减后增,满足题意,所以正确. 24.4【解析】当01x ≤时,()ln f x x ,()0g x ,此时方程|()()|1f x g x即为ln 1x 或ln 1x ,故x e 或1xe ,此时1x e符合题意,方程有一个实根. 当12x时,()ln f x x ,22()422g x x x ,方程|()()|1f x g x即为2ln 21x x 或2ln 21x x ,即2ln 10x x 或2ln 30x x ,令2ln 1yx x ,则120yx x,函数2ln 1y x x 在(1,2)x 上单调递减,且1x 时0y ,所以当12x 时,方程2ln 10x x 无解;令2ln 3yx x ,则120yx x,函数2ln 3y x x 在(1,2)x 上单调递减,且1x 时20y ,2x 时ln 210y ,所以当12x 时,方程2ln 30x x 有一个实根.当2x ≥时,()ln f x x ,2()6g x x ,方程|()()|1f x g x 即为2ln 61x x 或2ln 61x x ,即2ln 70x x 或2ln 50x x ,令2y ln 7x x ,则120yx x,函数2y ln 7x x 在[2,)x 上单调递增,且2x 时ln 230y ,3x 时ln320y ,所以当2x ≥时方程2ln 70x x有1个实根;同理2ln 50x x在[2,)x 有1个实根.故方程1|)()(|=+x g x f 实根的个数为4个.25.2【解析】由题意2()363(2)f x x x x x '=-=-,令()0f x '=得0x =或2x =.因0x <或2x >时,()0f x '>,02x <<时,()0f x '<. ∴2x =时()f x 取得极小值.26.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2≤a ,则()0'≤f x ,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,x =或x =.当2()a a x +∈+∞时,()0f x '<;当x ∈时,()0f x '>.所以()f x在,)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----,所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 27.【解析】(1)当1=a 时,()1≥f x 等价于2(1)e10-+-≤xx .设函数2()(1)1-=+-xg x x e,则22()(21)(1)--=--+=--x x g'x x x e x e .当1≠x 时,()0<g'x ,所以()g x 在(0,)+∞单调递减. 而(0)0=g ,故当0≥x 时,()0≤g x ,即()1≥f x . (2)设函数2()1e -=-xh x ax .()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0≤a 时,()0>h x ,()h x 没有零点; (ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)∈x 时,()0<h'x ;当(2,)∈+∞x 时,()0>h'x .所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1e=-ah 是()h x 在[0,)+∞的最小值. ①若(2)0>h ,即2e 4<a ,()h x 在(0,)+∞没有零点;②若(2)0=h ,即2e 4=a ,()h x 在(0,)+∞只有一个零点;③若(2)0<h ,即2e 4>a ,由于(0)1=h ,所以()h x 在(0,2)有一个零点,由(1)知,当0>x 时,2e >xx ,所以33342241616161(4)11110e (e )(2)=-=->-=->a a a a a h a a a. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4=a .28.【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+. 当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g =≥,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ++->=≥,这与0x =是()f x 的极大值点矛盾. (ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>, 故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>; 当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点 综上,16a =-. 29.【解析】(1)因为2()[(41)43]xf x ax a x a e =-+++,所以2()[2(41)][(41)43]xxf x ax a e ax a x a e '=-++-+++(x ∈R ) =2[(21)2]xax a x e -++.(1)(1)f a e '=-.由题设知(1)0f '=,即(1)0a e -=,解得1a =. 此时(1)30f e =≠. 所以a 的值为1.(2)由(1)得2()[(21)2](1)(2)x xf x ax a x e ax x e '=-++=--.若12a >,则当1(,2)x a∈时,()0f x '<; 当(2,)x ∈+∞时,()0f x '>. 所以()0f x <在2x =处取得极小值. 若12a ≤,则当(0,2)x ∈时,20x -<,11102ax x --<≤, 所以()0f x '>.所以2不是()f x 的极小值点. 综上可知,a 的取值范围是1(,)2+∞.30.【解析】(1)由已知,()ln xh x a x a =-,有()ln ln xh x a a a '=-.令()0h x '=,解得0x =.由1a >,可知当x 变化时,()h x ',()h x 的变化情况如下表:所以函数()h x 的单调递减区间(,0)-∞,单调递增区间为(0,)+∞.(2)证明:由()ln xf x a a '=,可得曲线()y f x =在点11(,())x f x 处的切线斜率为1ln x a a .由1()ln g x x a'=,可得曲线()y g x =在点22(,())x g x 处的切线斜率为21ln x a.因为这两条切线平行,故有121ln ln x a a x a =,即122(ln )1x x a a =.两边取以a 为底的对数,得21log 2log ln 0a a x x a ++=,所以122ln ln ()ln ax g x a+=-. (3)证明:曲线()y f x =在点11(,)xx a 处的切线1l :111ln ()xxy a a a x x -=⋅-.曲线()y g x =在点22(,log )a x x 处的切线2l :2221log ()ln a y x x x x a-=⋅-. 要证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线,只需证明当1ee a ≥时,存在1(,)x ∈-∞+∞,2(0,)x ∈+∞,使得l 1和l 2重合.即只需证明当1e e a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩①②有解,由①得1221(ln )x x a a =,代入②,得111112ln ln ln 0ln ln x x a a x a a x a a-+++=. ③ 因此,只需证明当1ee a ≥时,关于1x 的方程③有实数解. 设函数12ln ln ()ln ln ln x xau x a xa a x a a=-+++, 即要证明当1ee a ≥时,函数()y u x =存在零点.2()1(ln )x u x a xa '=-,可知(,0)x ∈-∞时,()0u x '>;(0,)x ∈+∞时,()u x '单调递减,又(0)10u '=>,21(ln )21()10(ln )a u a a '=-<, 故存在唯一的0x ,且00x >,使得0()0u x '=,即0201(ln )0x a x a-=.由此可得()u x 在0(,)x -∞上单调递增,在0(,)x +∞上单调递减.()u x 在0x x =处取得极大值0()u x .因为1ee a ≥,故ln(ln )1a -≥, 所以0000012ln ln ()ln ln ln xxau x a x a a x a a=-+++02012ln ln 22ln ln 0(ln )ln ln a ax x a a a+=++≥≥. 下面证明存在实数t ,使得()0u t <. 由(1)可得1ln xa x a +≥, 当1ln x a>时, 有12ln ln ()(1ln )(1ln )ln ln a u x x a x a x a a+-+++≤ 2212ln ln (ln )1ln ln aa x x a a=-++++,所以存在实数t ,使得()0u t <因此,当1ee a ≥时,存在1(,)x ∈-∞+∞,使得1()0u x =.所以,当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.31.【解析】(1)函数()f x x =,2()22g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x ⎧=+-⎨=+⎩,此方程组无解,因此,()f x 与()g x 不存在“S 点”. (2)函数2()1f x ax =-,()ln g x x =, 则1()2()f x ax g x x'='=,. 设0x 为()f x 与()g x 的“S 点”,由00()()f x g x =且00()()f x g x ''=,得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S 点”.因此,a 的值为e 2. (3)对任意0a >,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且()h x 的图象是不间断的,所以存在0(0,1)x ∈,使得0()0h x =.令03002e (1)x x b x =-,则0b >.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′.由()()f x g x =且()()f x g x ''=,得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间(0,1)内的一个“S 点”. 因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”. 32.【解析】(1)函数()f x的导函数1()f x x'=-, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=,所以所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (2)令(||)a k m e-+=,2||1()1a n k+=+,则 ()||0f m km a a k k a -->+--≥,()))0a f n kn a n k n k n --<---<≤ 所以,存在0(,)x m n ∈使00()f x kx a =+,所以,对于任意的a ∈R 及(0,)k ∈+∞,直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得ln x ak x-=.设ln ()x ah x x-=,则22ln 1()12()x ag x a h x x x --+--+'==,其中()ln 2g x x =-. 由(1)可知()(16)g x g ≥,又34ln 2a -≤, 故()1(16)134ln 2g x a g a a --+--+=-++≤,所以()0h x '≤,即函数()h x 在(0,)+∞上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln 2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.33.【解析】(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20nnnnf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).34.【解析】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为(1)0g =,()0g x ≥,故(1)0g '=,而1()g x a x'=-,(1)1g a '=-,得1a =. 若1a =,则1()1g x x'=-.当01x <<时,()0g x '<,()g x 单调递减;当1x >时,()0g x '>,()g x 单调递增.所以1x =是()g x 的极小值点,故()(1)0g x g =≥.综上,1a =.(2)由(1)知2()ln f x x x x x =--,()22ln f x x x '=--. 设()22ln h x x x =--,则1()2h x x'=-. 当1(0,)2x ∈时,()0h x '<;当1(,)2x ∈+∞时,()0h x '>.所以()h x 在1(0,)2单调递减,在1(,)2+∞单调递增.又2()0h e ->,1()02h <,(1)0h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <;当(1,)x ∈+∞时,()0h x >.因此()()f x h x '=,所以0x x =是()f x 的唯一极大值点. 由0()0f x '=得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得,01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由1(0,1)e -∈,1()0f e -'≠得120()()f x f e e -->=.所以220()2ef x --<<.35.【解析】(1)()f x 的定义域为(0,)+∞.①若a 0≤,因为11()ln 2022f a =-+<,所以不满足题意; ②若>0a ,由()1a x a f 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在(0,)a 单调递减,在(,)a +∞单调递增,故x a =是()f x 在(0,)+∞的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1.(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n+<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.36.【解析】(Ⅰ)因为(21)121x x x '--=--,()x xe e --'=- 所以 ()(1)(21)21x x f x e x x e x --'=----- (1)(212)21xx x e x ----=-1()2x > (Ⅱ)由(1)(212)()021xx x e f x x ----'==-错误!未找到引用源。

考前三个月高考数学(全国甲卷通用理科)考前抢分必做压轴大题突破练(三)含答案

考前三个月高考数学(全国甲卷通用理科)考前抢分必做压轴大题突破练(三)含答案

压轴大题突破练(三) 函数与导数(1)1.已知函数f (x )=(x 2-2ax +2)e x .(1)函数f (x )在x =0处的切线方程为2x +y +b =0,求a ,b 的值;(2)当a >0时,若曲线y =f (x )上存在三条斜率为k 的切线,求实数k 的取值范围. 解 (1)f (x )=(x 2-2ax +2)e x , f (0)=2e 0=2,2+b =0,得b =-2. f ′(x )=(x 2-2ax +2+2x -2a )e x =[x 2+(2-2a )x +2-2a ]e x , f ′(0)=2-2a =-2,得a =2, ∴a =2,b =-2.(2)f ′(x )=[x 2+(2-2a )x +2-2a ]e x ,令h (x )=f ′(x ),依题意知存在k 使h (x )=k 有三个不同的实数根, h ′(x )=(x 2-2ax +2+2x -2a +2x -2a +2)e x =[x 2+(4-2a )x +4-4a ]e x ,令h ′(x )=[x 2+(4-2a )x +4-4a ]e x =0, 得x 1=-2,x 2=2a -2.由a >0知x 1<x 2,则f ′(x )在(-∞,-2),(2a -2,+∞)上单调递增,在(-2,2a -2)上单调递减.当x →-∞时,f ′(x )→0,当x →+∞时,f ′(x )→+∞, ∴f ′(x )的极大值为f ′(-2)=e -2(2a +2), f ′(x )的极小值为f ′(2a -2)=e 2a -2(2-2a ), ∴此时e 2a -2(2-2a )<k <e -2(2a +2).2.(2016·四川)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a. 此时,当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0, 所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a>1.由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈⎣⎡⎭⎫12,+∞. 3.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调递减区间;(3)设函数g (x )=f (x )-x 2+ax ,a >0,若x ∈(0,e]时,g (x )的最小值是3,求实数a 的值(e 为自然对数的底数).解 (1)∵f (x )=x 2-ln x , ∴f ′(x )=2x -1x .∴f ′(1)=1.又∵f (1)=1,∴曲线y =f (x )在点(1,f (1))处的切线方程为y -1=x -1,即x -y =0. (2)∵函数f (x )=x 2-ln x 的定义域为(0,+∞), 由f ′(x )=2x -1x <0,得0<x <22.∴函数f (x )=x 2-ln x 的单调递减区间是(0,22). (3)∵g (x )=ax -ln x ,∴g ′(x )=ax -1x ,令g ′(x )=0,得x =1a .①当1a ≥e ,即0<a ≤1e时,g ′(x )=ax -1x ≤0在(0,e]上恒成立,则g (x )在(0,e]上单调递减,g (x )min =g (e)=a e -1=3,a =4e (舍去);②当0<1a <e ,即a >1e时,列表如下:由表知,g (x )min =g (1a )=1+ln a =3,a =e 2,满足条件.综上,所求实数a =e 2,使得当x ∈(0,e]时g (x )有最小值3. 4.已知函数f (x )=2x+a ln x -2(a >0).(1)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间; (2)若对∀x ∈(0,+∞)都有f (x )>2(a -1)成立,试求实数a 的取值范围;(3)记g (x )=f (x )+x -b (b ∈R ),当a =1时,函数g (x )在区间[e -1,e]上有两个零点,求实数b的取值范围.解 (1)直线y =x +2的斜率为1,函数f (x )的定义域为(0,+∞),f ′(x )=-2x 2+ax ,∴f ′(1)=-212+a1=-1,解得a =1,∴f (x )=2x +ln x -2,f ′(x )=x -2x 2,由f ′(x )>0得x >2,由f ′(x )<0得0<x <2, ∴f (x )的单调递增区间为(2,+∞), 单调递减区间为(0,2).(2)f ′(x )=-2x 2+a x =ax -2x 2(a >0),由f ′(x )>0得x >2a ,由f ′(x )<0得0<x <2a ,∴f (x )的单调递增区间为(2a,+∞),单调递减区间为(0,2a ),当x =2a 时,f (x )取极小值,也就是最小值f (x )min =f (2a).∵对∀x ∈(0,+∞)都有f (x )>2(a -1)成立, ∴f (2a )>2(a -1),即22a +a ln 2a-2>2(a -1),∴a ln 2a >a ,ln 2a >1,0<a <2e ,∴实数a 的取值范围为(0,2e).(3)当a =1时,g (x )=2x +ln x +x -2-b (x >0),g ′(x )=x 2+x -2x 2,由g ′(x )>0得x >1,由g ′(x )<0得0<x <1.∴g (x )的单调递增区间是(1,+∞), 单调递减区间为(0,1), 当x =1时,g (x )取得极小值g (1).∵函数g (x )在区间[e -1,e]上有两个零点,∴⎩⎪⎨⎪⎧g (e -1)≥0,g (e )≥0,g (1)<0,解得1<b ≤2e+e -1.∴b 的取值范围是(1,2e+e -1].合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第15练

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第15练

第15练 存在与恒成立问题[题型分析·高考展望] “存在”与“恒成立”两个表示范围的词语在题目中出现是近年高考的一大热点,其本质是“特称”与“全称”量词的一个延伸,弄清其含义,适当进行转化来加以解决.此类题目主要出现在函数与导数结合的解答题中,难度高,需要有较强的分析能力和运算能力,训练时应注意破题方法的研究.体验高考1.(2015·课标全国Ⅰ)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1B.⎣⎡⎭⎫-32e ,34C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1 答案 D解析 设g (x )=e x (2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得当x =x 0时,g (x )在直线y =ax -a 的下方.因为g ′(x )=e x (2x +1), 所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min =-2e 21-,当x =0时,g (0)=-1,g (1)=e>0,直线y =a (x -1)恒过(1,0)且斜率为a ,故-a >g (0)=-1,且g (-1)=-3e -1≥-a -a ,解得32e ≤a <1.故选D.2.(2015·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. (1)证明 f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1, 即⎩⎪⎨⎪⎧e m -m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t -1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1; 当m <-1时,g (-m )>0,即e -m +m >e -1. 综上,m 的取值范围是[-1,1].3.(2016·江苏)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12.①求方程f (x )=2的根;②若对任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解 (1)①由已知可得2x +⎝⎛⎭⎫12x=2, 即2x +12x =2.∴(2x )2-2·2x +1=0, 解得2x =1,∴x =0. ②f (x )=2x +⎝⎛⎭⎫12x =2x+2-x , 令t =2x +2-x ,则t ≥2. 又f (2x )=22x +2-2x =t 2-2,故f (2x )≥mf (x )-6可化为t 2-2≥mt -6, 即m ≤t +4t,又t ≥2,t +4t ≥2t ·4t=4. (当且仅当t =2时等号成立). ∴m ≤⎝⎛⎭⎫t +4t min =4. 即m 的最大值为4.(2)∵0<a <1,b >1,∴ln a <0,ln b >0. g (x )=f (x )-2=a x +b x -2.∵g ′(x )=a x ln a +b x ln b 为单调递增函数,且值域为R , ∴g ′(x )一定存在零点,∴g (x )为先减后增且有唯一极值点. 由题意,g (x )有且仅有1个零点, 则g (x )的极值一定为0,而g (0)=a 0+b 0-2=0,故极值点为0. ∴g ′(0)=0,即ln a +ln b =0.∴ab =1.高考必会题型题型一 恒成立问题例1 (2015·福建改编)已知函数f (x )=ln(1+x ),g (x )=kx (k ∈R ). (1)证明:当x >0时,f (x )<x ;(2)证明:当k <1时,存在x 0>0,使得对任意的x ∈(0,x 0),恒有f (x )>g (x ). 证明 (1)令F (x )=f (x )-x =ln(1+x )-x ,x ∈(0,+∞), 则有F ′(x )=11+x -1=-x x +1.当x ∈(0,+∞)时,F ′(x )<0, 所以F (x )在(0,+∞)上单调递减, 故当x >0时,F (x )<F (0)=0, 即当x >0时,f (x )<x .(2)令G (x )=f (x )-g (x )=ln(1+x )-kx ,x ∈(0,+∞), 则有G ′(x )=1x +1-k =-kx +(1-k )x +1.当k ≤0时,G ′(x )>0,故G (x )在(0,+∞)上单调递增,G (x )>G (0)=0, 故任意正实数x 0均满足题意. 当0<k <1时,令G ′(x )=0,得x =1-k k =1k-1>0,取x 0=1k -1,对任意x ∈(0,x 0),有G ′(x )>0,从而G (x )在(0,x 0)上单调递增, 所以G (x )>G (0)=0,即f (x )>g (x ). 综上,当k <1时,总存在x 0>0, 使得对任意x ∈(0,x 0),恒有f (x )>g (x ).点评 恒成立问题一般与不等式有关,解决此类问题需要构造函数,利用函数单调性求函数最值,从而说明函数值恒大于或恒小于某一确定的值. 变式训练1 设f (x )=e x -a (x +1).(1)若∀x ∈R ,f (x )≥0恒成立,求正实数a 的取值范围;(2)设g (x )=f (x )+ae x ,且A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围. 解 (1)因为f (x )=e x -a (x +1),所以f ′(x )=e x -a . 由题意,知a >0,故由f ′(x )=e x -a =0,解得x =ln a . 故当x ∈(-∞,ln a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(ln a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 所以函数f (x )的最小值为f (ln a )=e ln a -a (ln a +1)=-a ln a . 由题意,若∀x ∈R ,f (x )≥0恒成立,即f (x )=e x -a (x +1)≥0恒成立,故有-a ln a ≥0, 又a >0,所以ln a ≤0,解得0<a ≤1. 所以正实数a 的取值范围为(0,1].(2)设x 1,x 2是任意的两个实数,且x 1<x 2, 则直线AB 的斜率为k =g (x 2)-g (x 1)x 2-x 1.由已知k >m ,即g (x 2)-g (x 1)x 2-x 1>m .因为x 2-x 1>0,所以g (x 2)-g (x 1)>m (x 2-x 1), 即g (x 2)-mx 2>g (x 1)-mx 1.因为x 1<x 2, 所以函数h (x )=g (x )-mx 在R 上为增函数, 故有h ′(x )=g ′(x )-m ≥0恒成立,所以m ≤g ′(x ). 而g ′(x )=e x -a -aex ,又a ≤-1<0,故g ′(x )=e x +(-a )e x -a ≥2e x ·(-a )ex -a =2-a -a .而2-a -a =2-a +(-a )2=(-a +1)2-1≥3, 所以m 的取值范围为(-∞,3]. 题型二 存在性问题例2 (2015·浙江)设函数f (x )=x 2+ax +b (a ,b ∈R ).(1)当b =a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式;(2)已知函数f (x )在[-1,1]上存在零点,0≤b -2a ≤1,求b 的取值范围. 解 (1)当b =a 24+1时,f (x )=⎝⎛⎭⎫x +a 22+1, 故对称轴为直线x =-a2.当a ≤-2时,g (a )=f (1)=a 24+a +2.当-2<a ≤2时,g (a )=f ⎝⎛⎭⎫-a2=1. 当a >2时,g (a )=f (-1)=a 24-a +2.综上,g (a )=⎩⎪⎨⎪⎧a 24+a +2,a ≤-2,1,-2<a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧s +t =-a ,st =b ,由于0≤b -2a ≤1,因此-2t t +2≤s ≤1-2tt +2(-1≤t ≤1).当0≤t ≤1时,-2t 2t +2≤st ≤t -2t 2t +2.由于-23≤-2t 2t +2≤0和-13≤t -2t 2t +2≤9-45,所以-23≤b ≤9-4 5.当-1≤t <0时,t -2t 2t +2≤st ≤-2t 2t +2,由于-2≤-2t 2t +2<0和-3≤t -2t 2t +2<0,所以-3≤b <0.故b 的取值范围是[-3,9-4 5 ].点评 “存在”是特称量词,即“有的”意思,证明这类问题的思路是想法找到一个“x 0”使问题成立即可,必要时需要对问题进行转化.若证“存在且唯一”则需说明除“x 0”外其余不能使命题成立,或利用函数单调性证明此类问题. 变式训练2 (2015·北京)已知函数f (x )=ln 1+x 1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求证:当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33; (3)设实数k 使得f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立,求k 的最大值. (1)解 因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明 令g (x )=f (x )-2⎝⎛⎭⎫x +x33, 则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2. 因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增.所以g (x )>g (0)=0,x ∈(0,1), 即当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33. (3)解 由(2)知,当k ≤2时,f (x )>k ⎝⎛⎭⎫x +x 33对x ∈(0,1)恒成立.当k >2时,令h (x )=f (x )-k ⎝⎛⎭⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2.所以当0<x < 4k -2k 时,h ′(x )<0,因此h (x )在区间⎝ ⎛⎭⎪⎫0, 4k -2k 上单调递减.故当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝⎛⎭⎫x +x 33.所以当k >2时,f (x )>k ⎝⎛⎭⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.高考题型精练1.已知函数f (x )=13x 3-2x 2+3m ,x ∈[0,+∞),若f (x )+5≥0恒成立,则实数m 的取值范围是( )A.⎣⎡⎭⎫179,+∞B.⎝⎛⎭⎫179,+∞ C.(-∞,2] D.(-∞,2) 答案 A解析 f ′(x )=x 2-4x ,由f ′(x )>0,得x >4或x <0. ∴f (x )在(0,4)上递减,在(4,+∞)上递增, ∴当x ∈[0,+∞)时,f (x )min =f (4).∴要使f (x )+5≥0恒成立,只需f (4)+5≥0恒成立即可,代入解得m ≥179.2.在R 上定义运算:⎝⎛⎭⎪⎫ab cd =ad -bc ,若不等式⎝ ⎛⎭⎪⎫x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A.-12B.-32C.12D.32答案 D解析 由定义知,不等式⎝ ⎛⎭⎪⎫x -1 a -2a +1 x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立, ∵x 2-x +1=(x -12)2+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.3.若x ∈[0,+∞),则下列不等式恒成立的是( ) A.e x ≤1+x +x 2 B.11+x≤1-12x +14x 2C.cos x ≥1-12x 2D.ln(1+x )≥x -18x 2答案 C解析 设f (x )=cos x +12x 2-1,则f ′(x )=-sin x +x ≥0(x ≥0), 所以f (x )=cos x +12x 2-1是增函数,所以f (x )=cos x +12x 2-1≥f (0)=0,即cos x ≥1-12x 2.4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ) A.{x |x >0}B.{x |x <0}C.{x |x <-1,或x >1}D.{x |x <-1,或0<x <1}答案 A解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0, 所以g (x )=e x ·f (x )-e x 为R 上的增函数. 又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A.[-5,-3] B.[-6,-98] C.[-6,-2] D.[-4,-3]答案 C解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0,恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎡⎦⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0,∴φ(x )在(0,1]上单调递增,φ(x )max =φ(1)=-6, ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎡⎦⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4.当x ∈[-2,-1)时,φ′(x )<0, 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2. 综上知-6≤a ≤-2.6.若函数f (x )=(x +1)·e x ,则下列命题正确的是( ) A.对任意m <-1e 2,都存在x ∈R ,使得f (x )<mB.对任意m >-1e 2,都存在x ∈R ,使得f (x )<mC.对任意m <-1e2,方程f (x )=m 只有一个实根D.对任意m >-1e 2,方程f (x )=m 总有两个实根答案 B解析 ∵f ′(x )=(x +2)·e x , ∴x >-2时,f ′(x )>0,f (x )为增函数. x <-2时,f ′(x )<0,f (x )为减函数, ∴f (-2)=-1e 2为f (x )的最小值,即f (x )≥-1e2(x ∈R ),故B 正确.7.已知二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ),f ′(x )>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 答案 2解析 ∵f ′(x )=2ax +b ,∴f ′(0)=b >0.由题意知⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0a >0,∴ac ≥b 24,∴c >0,∴f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2b b =2,当且仅当a =c 时“=”成立.8.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是______. 答案 (-∞,-2)解析 a =0时,不符合题意; a ≠0时,f ′(x )=3ax 2-6x , 令f ′(x )=0,得x =0或x =2a.若a >0,则由图象知f (x )有负数零点,不符合题意. 则a <0,由图象f (0)=1>0知, 此时必有0<f ⎝⎛⎭⎫2a <1, 即0<a ×8a 3-3×4a 2+1<1,化简得a 2>4, 又a <0,所以a <-2.9.若在区间[0,1]上存在实数x 使2x (3x +a )<1成立,则a 的取值范围是________. 答案 (-∞,1)解析 2x (3x +a )<1可化为a <2-x -3x ,则在区间[0,1]上存在实数x 使2x (3x +a )<1成立,等价于a <(2-x -3x )max ,而2-x -3x 在[0,1]上单调递减,∴2-x -3x 的最大值为20-0=1,∴a <1, 故a 的取值范围是(-∞,1). 10.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min=f (0)=-1.根据题意可知,存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立.令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x 在[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.11.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.(1)解 ∀x ∈(0,+∞),有2x ln x ≥-x 2+ax -3, 则a ≤2ln x +x +3x ,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2,①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增, 所以h (x )min =h (1)=4.因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4, 即a 的取值范围为(-∞,4].(2)证明 问题等价于证明x ln x >x e x -2e (x ∈(0,+∞))成立.f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x=1e时取到.设m(x)=xe x-2e(x∈(0,+∞)),则m′(x)=1-xe x,易知m(x)max=m(1)=-1e,当且仅当x=1时取到.从而对一切x∈(0,+∞),都有ln x>1e x-2e x成立.12.(2016·课标全国丙)设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;(2)证明:当x∈(1,+∞)时,1<x-1ln x<x;(3)设c>1,证明:当x∈(0,1)时,1+(c-1)x>c x.(1)解由题设,f(x)的定义域为(0,+∞),f′(x)=1x-1,令f′(x)=0解得x=1.当0<x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减.(2)证明由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.所以当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln1x<1x-1,即1<x-1ln x<x. (3)证明由题设c>1,设g(x)=1+(c-1)x-c x,则g′(x)=c-1-c x ln c.令g′(x)=0,解得x0=lnc-1ln cln c.当x<x0时,g′(x)>0,g(x)单调递增;当x>x0时,g′(x)<0,g(x)单调递减.由(2)知1<c-1ln c<c,故0<x0<1.又g(0)=g(1)=0,故当0<x<1时,g(x)>0.所以当x∈(0,1)时,1+(c-1)x>c x.。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第9练 Word版含答案

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第9练 Word版含答案

第9练顾全局——函数零点与方程的根[题型分析·高考展望]函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围.体验高考1.(2015·天津)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为() A.2B.3C.4D.5 答案A解析当x >2时,g (x )=x -1,f (x )=(x -2)2; 当0≤x ≤2时,g (x )=3-x ,f (x )=2-x ; 当x <0时,g (x )=3-x 2,f (x )=2+x .由于函数y =f (x )-g (x )的零点个数就是方程f (x )-g (x )=0的根的个数.当x >2时,方程f (x )-g (x )=0可化为x 2-5x +5=0,其根为x =5+52或x =5-52(舍去);当0≤x ≤2时,方程f (x )-g (x )=0 可化为2-x =3-x ,无解;当x <0时,方程f (x )-g (x )=0可化为x 2+x -1=0,其根为x =-1-52或x =-1+52(舍去).所以函数y =f (x )-g (x )的零点个数为2.2.已知函数f (x )=(14)x -cos x ,则f (x )在[0,2π]上的零点个数是()A.1B.2C.3D.4 答案C解析f (x )在[0,2π]上的零点个数就是函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点个数,而函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点有3个.3.(2016·上海)设a ∈R ,b ∈[0,2π].若对任意实数x 都有sin(3x -π3)=sin(ax +b ),则满足条件的有序实数对(a ,b )的对数为() A.1B.2C.3D.4 答案B解析∵对于任意实数x 都有sin(3x -π3)=sin(ax +b ),则函数的周期相同,若a =3,此时sin(3x -π3)=sin(3x +b ),则b =-π3+2π=5π3;若a =-3,则方程等价为sin(3x -π3)=sin(-3x +b )=-sin(3x -b )=sin(3x -b +π),则-π3=-b +π,∴b =4π3.综上,满足条件的有序实数对(a ,b )为⎝⎛⎭⎫3,5π3,⎝⎛⎭⎫-3,4π3. 4.(2015·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________. 答案4解析令h (x )=f (x )+g (x ),则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.高考必会题型题型一零点个数与零点区间问题例1(1)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为() A.{1,3}B.{-3,-1,1,3} C.{2-7,1,3}D.{-2-7,1,3}(2)(2015·北京)设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.①若a =1,则f (x )的最小值为________;②若f (x )恰有2个零点,则实数a 的取值范围是________. 答案(1)D(2)①-1②⎣⎡⎭⎫12,1∪[2,+∞) 解析(1)令x <0,则-x >0, 所以f (-x )=(-x )2+3x =x 2+3x . 因为f (x )是定义在R 上的奇函数, 所以f (-x )=-f (x ),所以当x <0时,f (x )=-x 2-3x . 当x ≥0时,g (x )=x 2-4x +3,令g (x )=0,即x 2-4x +3=0,解得x =1或x =3; 当x <0时,g (x )=-x 2-4x +3, 令g (x )=0,即x 2+4x -3=0,解得x =-2+7>0(舍去)或x =-2-7.所以函数g (x )有3个零点,其集合为{-2-7,1,3}.(2)①当a =1时,f (x )=⎩⎪⎨⎪⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x -1∈(-1,1),当x ≥1时,f (x )=4(x 2-3x +2)=4⎣⎡⎦⎤⎝⎛⎭⎫x -322-14≥-1, ∴f (x )min =-1.②由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x -a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时,无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有1个零点时,0<a <2. f (x )=4(x -a )(x -2a ),x ≥1有1个零点, 此时a <1,2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.点评确定函数零点的常用方法(1)当方程易求解时,用解方程判定法;(2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.变式训练1[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是() A.1B.2C.3D.4 答案B解析函数h (x )=f (x )-g (x )的零点个数可转化为函数f (x )与g (x )图象的交点个数,作出函数f (x )=x -[x ]=⎩⎪⎨⎪⎧…x +1,-1≤x <0,x ,0≤x <1,x -1,1≤x <2,…与函数g (x )=log 4(x -1)的大致图象如图,由图可知两函数图象的交点个数为2,即函数h (x )=f (x )-g (x )的零点个数是2.题型二由函数零点求参数范围问题例2若关于x 的方程22x +2x a +a +1=0有实根,求实数a 的取值范围. 解方法一(换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2,则⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f (0)=a +1<0,解得a <-1;③若方程(*)有一个正实根和一个零根, 则f (0)=0且-a2>0,解得a =-1.综上,a 的取值范围是(-∞,2-2 2 ]. 方法二(分离变量法)由方程,解得a =-22x +12x +1,设t =2x (t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1 =2-⎣⎢⎡⎦⎥⎤(t +1)+2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 点评利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.变式训练2已知函数f (x )=⎩⎪⎨⎪⎧a x -1,x ≤0,lg x ,x >0,若关于x 的方程f [f (x )]=0有且只有一个实数解,则实数a 的取值范围为________. 答案(-1,0)∪(0,+∞)解析依题意,得a ≠0,令f (x )=0,得lg x =0,即x =1.由f [f (x )]=0,得f (x )=1. 当x >0时,函数y =lg x 的图象与直线y =1有且只有一个交点,则当x ≤0时,函数y =ax -1的图象与直线y =1没有交点.若a >0,结论成立;若a <0,则函数y =ax -1的图象与y 轴交点的纵坐标-a <1,得-1<a <0, 则实数a 的取值范围为(-1,0)∪(0,+∞).高考题型精练1.若偶函数f (x )满足f (x -1)=f (x +1),且当x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=(110)x在[0,103]上的根的个数是()A.1B.2C.3D.4 答案C解析当x ∈[-1,0]时,-x ∈[0,1],所以f (-x )=x 2,因为f (x )为偶函数,所以f (x )=x 2. 又f (x -1)=f (x +1),所以f (x +2)=f ((x +1)+1)=f ((x +1)-1)=f (x ),故f (x )是以2为周期的周期函数.据此在同一坐标系中作出函数y =f (x )与y =⎝⎛⎭⎫110x 在[0,103]上的图象如图所示,数形结合得两图象有3个交点, 故方程f (x )=⎝⎛⎭⎫110x 在[0,103]上有3个根,故选C.2.函数f (x )=2sinπx -x +1的零点个数为() A.4B.5C.6D.7 答案B解析∵2sinπx -x +1=0,∴2sinπx =x -1,图象如图所示,由图象看出y =2sinπx 与y =x -1有5个交点,∴f (x )=2sinπx -x +1的零点个数为5.3.已知函数f (x )=⎩⎪⎨⎪⎧1,x ≤0,1x ,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是()A.(1,2)B.(-∞,-2]C.(-∞,1)∪(2,+∞)D.(-∞,1]∪[2,+∞) 答案D解析当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1; 当x >0时,x +f (x )=m ,即x +1x =m ,解得m ≥2.即实数m 的取值范围是(-∞,1]∪[2,+∞).故选D.4.定义域为R 的偶函数f (x )满足对任意x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y =f (x )-log a (x +1)在(0,+∞)上恰有三个零点,则a 的取值范围是() A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫0,33 C.⎝⎛⎭⎫0,55 D.⎝⎛⎭⎫55,33 答案D解析因为f (x +2)=f (x )-f (1), 所以f (1)=f (-1)-f (1),又因为f (x )是偶函数,所以f (1)=0, 所以函数f (x )是以2为周期的偶函数.函数y =f (x )-log a (x +1)在(0,+∞)上恰有三个零点可化为函数y =f (x )与y =log a (x +1)在(0,+∞)上有三个不同的交点.作函数y =f (x )与y =log a (x +1)的图象如下图.结合函数图象知,⎩⎪⎨⎪⎧log a (2+1)>-2,log a (4+1)<-2,解得55<a <33,故选D. 5.已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则() A.1e<x 1x 2<1B.1<x 1x 2<e C.1<x 1x 2<10D.e<x 1x 2<10 答案A解析在同一坐标系中画出函数y =e -x 与y =|ln x |的图象如图.结合图象不难看出,它们的两个交点中,其中一个交点的横坐标属于区间(0,1),另一个交点的横坐标属于区间(1,+∞),即在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1∈(0,1),x 2∈(1,+∞),则有e 1-x =|ln x 1|=-ln x 1∈(e -1,1),e2-x =|ln x 2|=ln x 2∈(0,e -1),e2-x -e1-x =ln x 2+ln x 1=ln x 1x 2∈(-1,0),于是有e -1<x 1x 2<e 0,即1e<x 1x 2<1.6.已知函数f (x )=⎩⎪⎨⎪⎧e x +a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是()A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0) 答案D解析当x >0时,f (x )=2x -1.令f (x )=0,解得x =12;当x ≤0时,f (x )=e x +a ,此时函数f (x )=e x +a 在(-∞,0]上有且仅有一个零点,等价转化为方程e x =-a 在(-∞,0]上有且仅有一个实根,而函数y =e x 在(-∞,0]上的值域为(0,1],所以0<-a ≤1,解得-1≤a <0.故选D.7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案(0,1)解析画出f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0的图象,如图,由于函数g (x )=f (x )-m有3个零点,结合图象得:0<m <1, 即m ∈(0,1).8.已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x +34,x ≥2,log 2x ,0<x <2,若函数g (x )=f (x )-k 有两个不同的零点,则实数k 的取值范围是__________. 答案⎝⎛⎭⎫34,1解析画出函数f (x )的图象如图.要使函数g (x )=f (x )-k 有两个不同零点, 只需y =f (x )与y =k 的图象有两个不同交点, 由图易知k ∈⎝⎛⎭⎫34,1.9.(2015·湖南)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 答案(0,2)解析由f (x )=|2x -2|-b =0 得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点.10.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x -a (x ≠0)有且仅有3个零点,则a 的取值范围是________. 答案⎝⎛⎦⎤34,45∪⎣⎡⎭⎫43,32解析当0<x <1时,f (x )=[x ]x -a =-a ,当1≤x <2时,f (x )=[x ]x -a =1x -a ,当2≤x <3时,f (x )=[x ]x -a =2x-a ,….f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x 的图象,通过数形结合可知a ∈⎝⎛⎦⎤34,45.当x <0时,同理可得a ∈⎣⎡⎭⎫43,32.综上,a ∈⎝⎛⎦⎤34,45∪⎣⎡⎭⎫43,32.11.设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值; (3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围.解(1)如图所示.(2)∵f (x )=⎪⎪⎪⎪1-1x =⎩⎨⎧ 1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1)上是减函数,而在(1,+∞)上是增函数.由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b, ∴1a +1b=2. (3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根.12.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解(1)函数的定义域为R ,f ′(x )=e x +a ,由函数f (x )在x =0处取得极值,则f ′(0)=1+a =0,解得a =-1,即有f (x )=e x -x +1,f ′(x )=e x -1.当x <0时,有f ′(x )<0,f (x )单调递减,当x >0时,有f ′(x )>0,f (x )单调递增.则在x =0处f (x )取得极小值,也为最小值,值为2. 又f (-2)=e -2+3,f (1)=e ,f (-2)>f (1), 即有最大值e -2+3.(2)函数f (x )不存在零点,即为e x +ax -a =0无实数解.当x =1时,e +0=0显然不成立,即有a ∈R 且a ≠0. 若x ≠1,即有-a =e xx -1. 令g (x )=e x x -1, 则g ′(x )=e x (x -2)(x -1)2, 当x >2时,g ′(x )>0,g (x )单调递增,当x <1或1<x <2时,g ′(x )<0,g (x )单调递减. 即在x =2处g (x )取得极小值e 2,当x <1时,g (x )<0,则有0<-a <e 2,解得-e 2<a <0,则实数a 的取值范围为(-e 2,0).。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第16练

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第16练

第16练 定积分问题[题型分析·高考展望] 定积分在理科高考中,也是重点考查内容.主要考查定积分的计算和利用定积分求不规则图形的面积,题目难度不大,多为中低档题目,常以选择题、填空题的形式考查,掌握定积分的计算公式,会求各种类型的曲边图形的面积是本节重点.体验高考1.(2015·湖南)⎠⎛02(x -1)d x =________.答案 0 解析 ⎠⎛2(x -1)d x =⎝⎛⎭⎫12x 2-x ⎪⎪⎪20=12×22-2=0.2.(2015·陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为________.答案 1.2解析 由题意可知最大流量的比即为横截面面积的比,建立以抛物线顶点为原点的直角坐标系,如图所示.设抛物线方程为y =ax 2,将点(5,2)代入抛物线方程得a =225,故抛物线方程为y =225x 2,抛物线的横截面面积为S 1=2⎠⎛05⎝⎛⎭⎫2-225x 2d x =2⎝⎛⎭⎫2x -275x 3⎪⎪⎪50=403(m 2), 而原梯形下底为10-2tan 45°×2=6(m),故原梯形面积为S 2=12(10+6)×2=16(m 2),S 2S 1=16403=1.2.3.(2015·天津)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 答案 16解析 曲线y =x 2与直线y =x 所围成的封闭图形如图,由⎩⎪⎨⎪⎧y =x 2,y =x ,得A (1,1), 面积S =⎠⎛01x d x -⎠⎛01x 2d x =12x 2⎪⎪⎪10-13x 3⎪⎪⎪10=12-13=16.4.(2015·福建)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.答案512解析 由题意知,阴影部分的面积 S =⎠⎛12(4-x 2)d x =(4x -13x 3)⎪⎪⎪21=53,∴所求概率P =S S 矩形ABCD =531×4=512.高考必会题型题型一 定积分的计算例1 (1)⎠⎜⎜⎛-π2π2 (sin x +cos x )d x 的值为( )A.0B.π4C.2D.4(2)若f (x )=⎩⎪⎨⎪⎧x 3+sin x ,-1≤x ≤1,2,1<x ≤2.则⎠⎛-12 f (x )d x 等于( )A.0B.1C.2D.3 答案 (1)C (2)C解析 (1)原式=(-cos x +sin x ) ⎪⎪⎪π2-π2=1-(-1)=2,故选C.(2)⎠⎛-12f (x )d x =⎠⎛-11(x 3+sin x )d x +⎠⎛122d x=(14x 4-cos x )⎪⎪⎪1-1+(2x )⎪⎪⎪21=0+2=2. 点评 (1)计算定积分,要先将被积函数化简,然后利用运算性质分解成几个简单函数的定积分,再利用微积分基本定理求解;(2)对有关函数图象和圆的定积分问题可以利用定积分的几何意义求解.变式训练1 (1)已知复数z =a +(a -2)i(a ∈R ,i 为虚数单位)为实数,则⎠⎛0a ()4-x 2+x d x的值为( )A.2+πB.2+π2 C.4+2π D.4+4π(2)⎠⎛03|x 2-4|d x 等于( )A.213B.223C.233D.253 答案 (1)A (2)C解析 (1)因为z =a +(a -2)i(a ∈R )为实数,所以a =2,⎠⎛0a (4-x 2+x )d x =⎠⎛024-x 2d x+12x 2⎪⎪⎪20,由定积分的几何意义知,⎠⎛02 4-x 2d x 的值为以原点为圆心,以2为半径的圆的面积的四分之一,即是π,所以⎠⎛024-x 2d x +12x 2⎪⎪⎪2的值为2+π,故选A. (2)画出函数图象如图所示,可知⎠⎛03|x 2-4|d x =⎠⎛02(4-x 2)d x +⎠⎛23(x 2-4)d x =8-83+(9-12-83+8)=233.题型二 利用定积分求曲边梯形的面积例2 (1)由曲线y =x 2与y =x 的边界所围成区域的面积为()A.13B.23C.1D.16 (2)y =12ex 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B.4e 2 C.2e 2 D.e 2 (3)由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面图形(如图中的阴影部分所示)的面积是( )A.1B.π4C.223 D.22-2答案 (1)A (2)D (3)D解析 (1)由题意可知,曲线y =x 2与y =x 的边界所围成区域的面积 S =⎠⎛01(x -x 2)d x =(23x 32-13x 3)⎪⎪⎪10=23-13=13.(2)因为y ′=1212e x ,所以y ′|x =4=12e 2,所以在点(4,e 2)处的切线方程是y -e 2=12e 2(x -4),当x =0时,y =-e 2,当y =0时,x =2, 所以切线与坐标轴所围成三角形的面积是 S =12×|-e 2|×2=e 2,故选D. (3)方法一 由sin x =cos x (x ∈(0,π2)),得x =π4.故所求阴影部分的面积S =⎠⎜⎛0π4 (cos x -sin x )d x +⎠⎜⎜⎛π4π2(sin x -cos x )d x =(sin x +cos x )⎪⎪⎪⎪π4+(-cos x -sin x ) ⎪⎪⎪π2π4=sin π4+cos π4-sin 0-cos 0+[(-cos π2-sin π2)-(-cos π4-sin π4)]=22-2.故选D.方法二 由sin x =cos x (x ∈(0,π2)),得x =π4.根据图象的对称性,可知所求阴影部分的面积S =2⎠⎜⎛0π4(cos x -sin x )d x =2(sin x +cos x )⎪⎪⎪⎪π4=2(sin π4+cos π4-sin 0-cos 0)=22-2.点评 求曲边多边形面积的步骤(1)画出草图,在直角坐标系中画出曲线或直线的大致图形. (2)借助图形确定被积函数,求出交点坐标,确定积分的上限、下限. (3)将曲边梯形的面积表示为若干个定积分之和. (4)计算定积分.变式训练2 如图所示,由函数f (x )=sin x 与函数g (x )=cos x 在区间⎣⎡⎦⎤0,3π2上的图象所围成的封闭图形的面积为( )A.32-1B.42-2C. 2D.22 答案 B解析 f (x )=sin x 和g (x )=cos x 在⎣⎡⎦⎤0,3π2上的交点坐标为⎝⎛⎭⎫π4,22,⎝⎛⎭⎫5π4,-22, 两函数图象所围成的封闭图形的面积为S =⎠⎜⎛0π4(cos x -sin x )d x +⎠⎜⎜⎛π45π4(sin x -cos x )d x +⎠⎜⎜⎛5π43π2(cos x -sin x )d x =(sin x +cos x )⎪⎪⎪⎪π4-(sin x +cos x )⎪⎪⎪5π4π4+(sin x +cos x )⎪⎪⎪3π25π4=42-2.故选B.高考题型精练1.已知自由落体运动的速率v =gt ,则落体运动从t =0到t =t 0所走的路程为( ) A.gt 203 B.gt 20 C.gt 202 D.gt 206 答案 C解析 由题意,可知所走路程为⎠⎛0t 0v d t =⎠⎛0t 0gt d t =12gt 2⎪⎪⎪t 00=12gt 20.2.定积分⎠⎛01(e x +2x )d x 的值为( )A.1B.e -1C.eD.e +1 答案 C解析 ⎠⎛01(e x +2x )d x =⎠⎛01e x d x +⎠⎛012x d x=e x⎪⎪⎪10+x 2⎪⎪⎪1=e ,故选C. 3.若⎠⎜⎛0π2(sin x -a cos x )d x =2,则实数a 等于( )A.-1B.1C.- 3D.3 答案 A解析 ⎠⎜⎛0π2(sin x -a cos x )d x =(-cos x -a sin x )⎪⎪⎪⎪π2=-a +1=2,a =-1.4.已知等差数列{a n }的前n 项和为S n ,且S 10=⎠⎛03(1+2x )d x ,S 20=17,则S 30为( )A.15B.20C.25D.30 答案 A解析 由已知得S 10=⎠⎛03(1+2x )d x =12,根据等差数列性质可得S 10=12,S 20-S 10=5,S 30-S 20=S 30-17亦成等差数列,故有12+S 30-17=10⇒S 30=15. 5.由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A.4 B.6 C.103 D.163答案 D解析 因为⎩⎨⎧y =xy =x -2⇒x =4,根据定积分的几何意义可得,⎠⎛04(x -x +2)d x =(23x 32-12x 2+2x )⎪⎪⎪40=163,故选D.6.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈[1,e](其中e 为自然对数的底数),则⎠⎛0e f (x )d x 的值为( )A.43B.54C.65D.76 答案 A解析 根据定积分的运算法则,由题意, 可知⎠⎛0e f (x )d x =⎠⎛1x 2d x +⎠⎛1e 1xd x =13x 3⎪⎪⎪10+ln x ⎪⎪⎪e1=13+1=43. 7.如图,矩形OABC 内的阴影部分是由曲线f (x )=sin x ,x ∈(0,π)及直线x =a ,a ∈(0,π)与x 轴围成.向矩形OABC 内随机投掷一点,若此点落在阴影部分的概率为14,则a 的值是( )A.7π12B.2π3C.3π4D.5π6 答案 B解析 由题意可得,是与面积有关的几何概型,构成试验的全部区域是矩形OACB ,面积为a ×6a =6.记“向矩形OACB 内随机投掷一点,若落在阴影部分”为事件A , 则构成事件A 的区域即为阴影部分,面积为⎠⎛0a sin x d x =-cos x ⎪⎪⎪a0=1-cos a , 由几何概型的计算公式可得P (A )=14=1-cos a 6,cos a =-12,又∵a ∈(0,π),∴a =2π3,故选B.8.已知⎠⎛02(3x 2+k )d x =16,则k 等于( )A.1B.2C.3D.4 答案 D解析 ⎠⎛02(3x 2+k )d x =(x 3+kx )⎪⎪⎪20=8+2k =16,所以k =4.故选D.9.定积分⎠⎛01(2+1-x 2)d x =________.答案 π4+2解析 ⎠⎛01(2+1-x 2)d x =⎠⎛012d x +⎠⎛011+x 2d x=2x ⎪⎪⎪10+⎠⎛011+x 2d x =2+⎠⎛011+x 2d x , 令y =1+x 2,得x 2+y 2=1(y ≥0), 点(x ,y )的轨迹表示半圆.⎠⎛011+x 2d x 表示以原点为圆心, 以1为半径的圆的面积的14,故⎠⎛011+x 2d x =14×π×12=π4,∴⎠⎛01(2+1-x 2)d x =π4+2.10.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.答案 -1解析 由曲线在原点处与x 轴相切,可得f ′(0)=0=b , 此时f (x )=-x 3+ax 2=x 2(a -x ),据定积分知,阴影部分面积为-⎠⎛a0(-x 3+ax 2)d x =112,解得a =-1. 11.已知a >0,(ax -x )6的展开式的常数项为15,则⎠⎛-aa (x 2+x +4-x 2)d x =______. 答案2+2π3+3 解析 根据二项展开式的通项公式可知,T k +1=C k 6(-1)ka6-k1(6)2k k x--=C k 6(-1)ka6-k332k x-,∴令k =2,∴C 26(-1)2a 4=15⇒a =1(a >0),∴⎠⎛-a a (x 2+x +4-x 2)d x=⎠⎛-11x 2d x +⎠⎛-11x d x +⎠⎛-114-x 2d x .作出⎠⎛-114-x 2d x 表示的图象如图,根据定积分的几何意义及定义, 从而可知⎠⎛-11x 2d x +⎠⎛-11x d x +⎠⎛-114-x 2d x=23+0+12·1·3·2+16π·4=2+2π3+ 3. 12.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.解 由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3,解得x =0及x =3.从而所求图形的面积 S =⎠⎛03[(x +3)-(x 2-2x +3)]d x=⎠⎛3(-x 2+3x )d x =⎝⎛⎭⎫-13x 3+32x 2⎪⎪⎪30=92.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当 x∈
1 0, 4
时, f′ (x)<14× 4- e0= 0,
1 因此 f( x)在 0,4 上单调递减,排除 C,故选 D.
4.(2016 天·津 )已知 f(x)是定义在 R 上的偶函数, 且在区间 (-∞,0)上单调递增 .若实数 a 满足 f(2|a-1|)>f(- 2),则 a 的取值范围是 ________.
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
第 8 练 突难点 —— 抽象函数与函数图象
[题型分析 ·高考展望 ] 抽象函数即没有函数关系式, 通过对函数性质的描述, 对函数相关知
识进行考查,此类题目难度较大,也是近几年来高考命题的热点
.对函数图象问题,以基本
________. 答案 0 2 2- 3 解析 f(f(- 3)) = f(1) = 0.当 x≥ 1 时, f(x)=x+ 2x- 3≥ 2 2- 3< 0,当且仅当 x= 2时,取等 号; 当 x< 1 时, f(x)= lg( x2+ 1)≥lg 1 = 0,当且仅当 x= 0 时,取等号 .∴ f(x)的最小值为 2 2- 3.
答案
12,
3 2
解析 ∵ f(x)是偶函数,且在 (- ∞ ,0) 上单调递增,
∴在 (0,+ ∞ )上单调递减, f (- 2)= f( 2),
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
7 =0 有 4 个不同的解,即函数 y=b 与函数 y= f( x)+ f(2- x)的图象有 4 个公共点,由图象知 4 <b< 2. 3.(2016 课·标全国乙 )函数 y= 2x2- e|x|在 [ - 2, 2] 的图象大致为 ( )
答案 D 解析 f(2) = 8- e2>8- 2.82>0 ,排除 A ; f(2)= 8- e2<8-2.72<1,排除 B ; 当 x>0 时, f(x)= 2x2- ex, f′ (x)= 4x-ex,
高考必会题型
题型一 与函数性质有关的简单的抽象函数问题 例 1 已知函数 f(x)是定义在 R 上的偶函数,且以 2 为周期,则“ f( x)为 [0,1]上的增函数” 是“ f(x)为 [3, 4]上的减函数”的 ( )
A. 既不充分也不必要条件 B.充分而不必要条件 C.必要而不充分条件 D.充要条件 答案 D 解析 ①∵ f(x)在 R 上是偶函数, ∴f (x)的图象关于 y 轴对称 . ∵f (x)为 [0, 1]上的增函数,
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
变式训练 1
已知定义在区间
(0,+∞ ) 上的函数
∴f (x)为 [ - 1, 0]上的减函数 . 又∵ f(x)的周期为 2, ∴f (x)为区间 [ - 1+ 4, 0+ 4]= [3, 4]上的减函数 .
②∵ f(x)为 [3, 4]上的减函数,且 f(x)的周期为 2, ∴f (x)为 [ - 1, 0]上的减函数 . 又∵ f(x)在 R 上是偶函数, ∴ f(x)为 [0, 1]上的增函数 .
1
∴f (2|a-1|)>f( 2), ∴ 2|a-1|< 2=2 2 ,
∴|a- 1|<12,即-
1 2<
a-
1<12,即
13 2< a <2.
5.(2015 浙·江 )已知函数
2 f (x)= x+ x- 3,x≥ 1,
lg x2+ 1 , x<1,
则 f (f( - 3))= ________ , f(x) 的最小值是
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
2-|x|+ x2, x< 0, 所以 f( x)+ f(2- x)= 4-|x|- |2- x|, 0≤ x≤ 2,
2-|2- x|+ x- 2 2, x> 2, x2+ x+ 2, x< 0, 即 f(x)+ f(2- x)= 2, 0≤x≤ 2, x2- 5x+ 8, x> 2. y=f(x)- g(x)= f(x)+ f(2- x)- b,所以 y= f(x)-g(x)恰有 4 个零点等价于方程 f( x)+ f(2- x)- b
函数为主, 由基本函数进行简单的图象变换, 主要是平行变换和对称变换, 这样的题目都离
不开函数的单调性与奇偶性 .
体验高考
ax + b
1.(2015 安·徽 )函数 f(x)= x+ c 2的图象如图所示,则下列结论成立的是 (
)
A. a>0, b>0, c<0
B. a<0, b>0, c>0
C.a<0,b>0, c<0 答案 C
D. a<0, b<0, c<0
解析 函数定义域为 { x|x≠ - c} ,结合图象知- c>0 ,
∴c<0.令 x= 0,得 f(0) =cb2,又由图象知 f(0)>0 ,
∴b>0. 令 f(x) =0,得 x=- ba,结合图象知-
b a>0,
∴a<0. 故选 C.
2- |x|, x≤ 2, 2.(2015 天·津 )已知函数 f( x)= x- 2 2,x> 2, 函数 g( x)= b- f (2- x),其中 b∈R .若函数 y
由①② 知 “ f(x)为 [0, 1]上的增函数 ” 是 “ f(x)为 [3, 4]上的减函数 ” 的充要条件 .
点评 抽象函数的条件具有一般性,对待选择题、填空题可用特例法、特值法或赋值法
.也
可由函数一般性质进行推理 .

你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
=f (x)- g(x)恰有 4 个零点,则 b 的取值范围是 ( )
A.
7,+∞ 4
B. -∞, 7 4
7 C. 0, 4
D.
7, 2 4
答案 D
2- |x|, x≤ 2, 解析 由 f(x)=
x- 2 2, x> 2,
2- |2- x|, x≥ 0, 得 f(2- x)=
x2, x< 0.
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
相关文档
最新文档