PCIE基础知识word版本
(完整版)PCIe协议相关资料
1.PCIe简介PCI-Express是最新的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。
交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI—Express"。
这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。
它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。
PCI Express也有多种规格,从PCI Express 1X 到PCI Express 16X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。
能支持PCI Express 的主要是英特尔的i915和i925系列芯片组.PCI Express(以下简称PCI—E)采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。
相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI—E的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。
PCI—E的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16,而X2模式将用于内部接口而非插槽模式。
PCI—E规格从1条通道连接到32条通道连接,有非常强的伸缩性,以满足不同系统设备对数据传输带宽不同的需求.此外,较短的PCI—E卡可以插入较长的PCI—E插槽中使用,PCI-E接口还能够支持热拔插,这也是个不小的飞跃。
PCI-E X1的250MB/秒传输速度已经可以满足主流声效芯片、网卡芯片和存储设备对数据传输带宽的需求,但是远远无法满足图形芯片对数据传输带宽的需求。
因此,用于取代AGP接口的PCI-E接口位宽为X16,能够提供5GB/s的带宽,即便有编码上的损耗但仍能够提供约为4GB/s左右的实际带宽,远远超过AGP 8X的2。
PCI总线协议基础
PCI总线协议基础PCI基本总线协议传输机制是猝发成组数据传输。
一个分组由一个地址相位和一个或多个数据相位组成。
1.PCI总线的传输控制PCI总线上所有的数据传输基本上都是由以下三条信号线控制的:FRAME#:由主设备驱动,说明一次数据传输周期的开始和结束。
IRDY#:由主设备驱动,表示主设备已经作好传送数据的准备。
TRDY#:由从设备驱动,表示从设备已经作好传送数据的准备。
当数据有效时,数据源设备需要无条件设置xRDY#,接收方可以在适当的时间发出xRDY#信号。
FRAME#信号有效后的第一个时钟前沿是地址相位的开始,此时,开始传送地址信息和总线命令,下一个时钟前沿进入一个或多个数据相位。
每当IRDY#和TRDY#同时有效时,所对应的时钟前沿就使数据在主从设备之间传送。
在此期间,可由主设备或从设备分别利用IRDY#和TRDY#的无效而插入等待周期。
一旦主设备设置了IRDY#,将不能再改变IRDY#和FRAME#,直到当前的数据相位完成为止,而此期间不管TRDY#的状态是否发生变化。
一旦从设备设置了TRDY#,就不能改变DEVSEL#、TRDY#或STOP#,直到当前的数据相位完成为止。
也就是说,只要数据传输已经开始,那么在当前数据相位结束之前,不管是主设备还是从设备都不能撤消命令,必须完成数据传输。
最后一次数据传输时(可能紧接地址相位之后),主设备应撤消FRAME#信号而建立IRDY#,表明主设备已作好了最后一次数据传输的准备。
当从设备发出TRDY#信号,表明最后一次数据传输已经完成,接口转入空闲状态,此时FRAME#和IRDY#均被撤消。
对于PCI总线的传输,可总结出以下几条规则:①FRAME#和IRDY#决定总线的忙/闲状态。
当其中一个有效时,表示总线忙;两个都无效时,总线进入空闲状态。
②一旦FRAME#被置为无效,在同一传输期间不能重新置为有效。
③除非设置IRDY#,一般情况下不能设置FRAME#无效(在FRAME#无效后的第一个时钟沿IRDY#必须保持有效)。
PCIE基础知识
PCIe总线概述随着现代处理器技术的发展,在互连领域中,使用高速差分总线替代并行总线是大势所趋。
与单端并行信号相比,高速差分信号可以使用更高的时钟频率,从而使用更少的信号线,完成之前需要许多单端并行数据信号才能达到的总线带宽。
PCI总线使用并行总线结构,在同一条总线上的所有外部设备共享总线带宽,而PCIe 总线使用了高速差分总线,并采用端到端的连接方式,因此在每一条PCIe链路中只能连接两个设备.这使得PCIe与PCI总线采用的拓扑结构有所不同。
PCIe总线除了在连接方式上与PCI总线不同之外,还使用了一些在网络通信中使用的技术,如支持多种数据路由方式,基于多通路的数据传递方式,和基于报文的数据传送方式,并充分考虑了在数据传送中出现服务质量QoS (Quality of Service)问题。
PCIe总线的基础知识与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。
PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次.PCIe总线使用的层次结构与网络协议栈较为类似.1。
1 端到端的数据传递PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4-1所示。
由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成.其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。
一个PCIe链路可以由多个Lane组成.高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合.该电容也被称为AC耦合电容。
(完整word版)PCI-E的高速PCB布线规则
PCI-E 布线规则1、从金手指边缘到PCIE芯片管脚的走线长度应限制在4英寸(约100MM)以内。
2、PCIE的PERP/N,PETP/N,PECKP/N是三个差分对线,注意保护(差分对之间的距离、差分对和所有非PCIE信号的距离是20MIL,以减少有害串扰的影响和电磁干扰(EMI)的影响。
芯片及PCIE信号线反面避免高频信号线,最好全GND)。
3、差分对中2条走线的长度差最多5MIL。
2条走线的每一部分都要求长度匹配。
差分线的线宽7MIL,差分对中2条走线的间距是7MIL。
4、当PCIE信号对走线换层时,应在靠近信号对过孔处放置地信号过孔,每对信号建议置1到3个地信号过孔。
PCIE差分对采用25/14的过孔,并且两个过孔必须放置的相互对称。
5、PCIE需要在发射端和接收端之间交流耦合,差分对的两个交流耦合电容必须有相同的封装尺寸,位置要对称且要摆放在靠近金手指这边,电容值推荐为0.1uF,不允许使用直插封装。
6、SCL等信号线不能穿越PCIE主芯片。
合理的走线设计可以信号的兼容性,减小信号的反射和电磁损耗。
PCI-E 总线的信号线采用高速串行差分通信信号,因此,注重高速差分信号对的走线设计要求和规范,确保PCI-E 总线能进行正常通信。
PCI-E是一种双单工连接的点对点串行差分低电压互联。
每个通道有两对差分信号:传输对Txp/Txn,接收对Rxp/Rxn。
该信号工作在2.5 GHz并带有嵌入式时钟。
嵌入式时钟通过消除不同差分对的长度匹配简化了布线规则。
随着PCI-E串行总线传输速率的不断增加,降低互连损耗和抖动预算的设计变得格外重要。
在整个PCI-E背板的设计中,走线的难度主要存在于PCI-E的这些差分对。
图1提供了PCI-E高速串行信号差分对走线中主要的规范,其中A、B、C和D四个方框中表示的是常见的四种PCI-E差分对的四种扇入扇出方式,其中以图中A所示的对称管脚方式扇入扇出效果最好,D为较好方式,B和C 为可行方式。
第1章 PCI总线的基本知识
PCI(Peripheral Component Interconnect)总线的诞生与PC(Personal Computer)的蓬勃发展密切相关。
在处理器体系结构中,PCI总线属于局部总线(Local Bus)。
局部总线作为系统总线的延伸,主要功能是为了连接外部设备。
处理器主频的不断提升,要求速度更快,带宽更高的局部总线。
起初PC使用8位的XT总线作为局部总线,并很快升级到16位的ISA(Industry Standard Architecture)总线,逐步发展到32位的EISA(Extended Industry Standard Architecture)、VESA(Video Electronics Standards Association)和MCA(Micro Channel Architecture)总线。
PCI总线规范在上世纪九十年代提出。
这条总线推出之后,很快得到了各大主流半导体厂商的认同,迅速统一了当时并存的各类局部总线。
EISA、VESA等其他32位总线很快就被PCI总线淘汰了。
从那时起,PCI总线一直在处理器体系结构中占有重要地位。
在此后相当长的一段时间里,PC处理器系统的大多数外部设备都是直接或者间接地与PCI总线相连。
即使目前PCI Express总线逐步取代了PCI总线成为PC局部总线的主流,也不能掩盖PCI总线的光芒。
从软件层面上看,PCI Express总线与PCI总线基本兼容;从硬件层面上看,PCI Express总线在很大程度上继承了PCI总线的设计思路。
因此PCI总线依然是软硬件工程师在进行处理器系统的开发与设计时,必须要掌握的一条局部总线。
PCI总线V1.0规范仅针对在一个PCB(Printed Circuit Board)环境内的,器件之间的互连,而1993年4月30日发布的V2.0规范增加了对PCI插槽的支持。
1995年6月1日,PCI V2.1总线规范发布,这个规范具有里程碑意义。
pcie基础知识(二)
pcie基础知识(二)本文主要讲述PCIE的相关缩写、术语;不同模式、配置;枚举等基础知识。
一、designware pcie产品:Dual Mode coreRC coreEP coreSwitch core二、架构:Common Xpress Port Logic (CXPL)实现大部分的传输层逻辑,所有的数据链路层逻辑,物理层的MAC部分(包括LTSSM)。
这个module就是所说的core。
XADM和RADM都是针对传输应用添加的模块。
比如说添加传输队列,仲裁TLP transmmision。
Transmit Application-Dependent Module (XADM)Receive Application-Dependent Module (RADM)Configuration-Dependent Module (CDM)Power Management Controller (PMC)Local Bus Controller (LBC)Message Generation (MSG_GEN)Hot Plug Control (hotplug_ctrl)三、核心(CXPL)操作3.1 DM/RC/EP 模式下的初始化在reset之后,通过检测device_type输入进入到RC或者EP模式,CDM内部配置寄存器为复位值。
LTSSM前配置:keep the app_ltssm_enable signal deasserted after reset until the application is ready to establish a Link and start receiving and transmitting TLPs,在这个阶段通过DBI配置好配置寄存器。
开始LTSSM:assert app_ltssm_enable to allow the LTSSM to begin Link establishment3.2 Link EstablishmentPIPE口,和usb3.0一样。
(完整版)PCIe协议相关资料
1.PCIe简介PCI-Express是最新的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。
交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。
这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。
它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。
PCI Express也有多种规格,从PCI Express 1X到PCI Express 16X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。
能支持PCI Express的主要是英特尔的i915和i925系列芯片组。
PCI Express(以下简称PCI-E)采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。
相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI-E的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。
PCI-E的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16,而X2模式将用于内部接口而非插槽模式。
PCI-E规格从1条通道连接到32条通道连接,有非常强的伸缩性,以满足不同系统设备对数据传输带宽不同的需求。
此外,较短的PCI-E卡可以插入较长的PCI-E插槽中使用,PCI-E接口还能够支持热拔插,这也是个不小的飞跃。
PCI-E X1的250MB/秒传输速度已经可以满足主流声效芯片、网卡芯片和存储设备对数据传输带宽的需求,但是远远无法满足图形芯片对数据传输带宽的需求。
因此,用于取代AGP接口的PCI-E 接口位宽为X16,能够提供5GB/s的带宽,即便有编码上的损耗但仍能够提供约为4GB/s左右的实际带宽,远远超过AGP 8X的2.1GB/s的带宽。
4.1pcie总线的基础知识
4.1 PCIe总线的基础知识与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。
PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。
PCIe总线使用的层次结构与网络协议栈较为类似。
4.1.1端到端的数据传递PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4?1所示。
由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。
其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。
一个PCIe链路可以由多个Lane组成。
高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。
该电容也被称为AC耦合电容。
PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。
与单端信号相比,差分信号抗干扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、“贴近”,而且在同层。
因此外部干扰噪声将被“同值”而且“同时”加载到D+和D-两根信号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。
因此差分信号可以使用更高的总线频率。
此外使用差分信号能有效抑制电磁干扰EMI(Electro Magnetic Interference)。
由于差分信号D+与D-距离很近而且信号幅值相等、极性相反。
这两根线与地线间耦合电磁场的幅值相等,将相互抵消,因此差分信号对外界的电磁干扰较小。
当然差分信号的缺点也是显而易见的,一是差分信号使用两根信号传送一位数据;二是差分信号的布线相对严格一些。
NGFF、MmSATA、miniPCI-e基础知识入门共28页word资料
NGFF M.2(以下下简称M2)和SATA Express(以下下简称SATAe)是用以替代当前Mini PCI-Express(以下下简称MIni PCIe)/mSATA和SATA的新一代接口。
M2接口和SATAe接口已经可以在部分新款笔记本电脑和Intel 9系列主板上见到了,因为易与现有的接口相混淆,在这里做一个简单介绍。
一、M2M2是目前常见于无线网卡、3G网卡和部分小型SSD的Mini PCIe/mSATA的替代升级版,具备小尺寸、低高度、集成度更高的优势。
M2接口、板卡因尺寸规格(长宽高)和键位(Key)不同,分为多种规格。
下面引用链接器制造商TE的一篇PDF,简单说明。
可以看出,M2是以宽度长度-高度-键位,这4个参数来区分不同规格的。
特别是最后一项键位,它特别区分了用途。
比如举例中的2242-D2-B-M,是一个宽度22mm 长度 42mm 双面各高1.35mm B+M键位的M2插卡,这块插卡应当是一块SSD,具备PCIe x2及SATA接口(当然任何M2设备只能用其中一种接口,具体使用哪个接口由主控决定)。
(上图分别是mSATA规格和M2 2280-D2-B-M规格的Intel 530 SSD)(上图是2280-D2-M规格的三星XP941 SSD)(上图分别是Mini PCIe半高规格和M2 2230-S3-A-E规格的Intel 7260无线网卡)(上图是华硕Z97杜蕾斯,可以看到PCH散热器下方靠近SATAe端口旁边有一个M2 M键插槽,可以支持M2 2260和2280两种规格的SSD)通过上面的例子可以看出M2插卡、插槽的用途可以通过键位来区分。
同时,每种规格中也包含多组数据/信号通道,供不同用途使用。
跟Mini PCIe/mSATA一样,M2接口的金手指也是两面交错排列的。
这里为了说明,给几种常见规格的针脚定义。
(上图 M2-A,键位在pin8-pin15。
具备PCIe x2、NFC、Display Port和USB 2.0通道等)(上图 M2-B,键位在pin12-pin19。
PCI-E资料(全)
TxData Command Status RxData PClk
Transaction Link xx
State machines for Link Training and Status State Machine (LTSSM) and lane0lane deskew
转向PCIe主要是为了实现显著增强系统吞吐量、扩容性和灵活性的目标,同时还要降低制造成本,而这 些都是基于总线的传统互连标准所达不到的。PCI Express标准在设计时着眼于未来,并且能够继续演 进,从而为系统提供更大的吞吐量。第一代PCIe规定的吞吐量是每秒2.5千兆比特(Gbps),第二代规 定的吞吐量是5.0 Gbps,而最近公布PCIe 3.0标准已经支持8.0 Gbps的吞吐量。在PCIe标准继续充分利 用最新技术来提供不断加大的吞吐量的同时,采用分层协议也便于PCI向PCIe的演进,并保持了与现有 PCI应用的驱动程序软件兼容性。
Chip Set with Root Complex
PCIe RC Controller
PHY
PHY PCIe Endpoint
Endpoint
图3:SoC芯片内的PHY和控制器运用
正如上文所述,2个端口之间的虚线代表着链路。PCIe链路是单向的,并采用了低压差分信号。PCIe规 格定义了链路可以包含多达32个并行通道,用于将PCIe 1.x(2.5Gbps)链路的吞吐量扩展至80 Gbps, 或将PCIe 2.0(5.0 Gbps)的吞吐量扩展至160 Gbps。同一链路内的每个线路(Lane)均提供了自己的 内嵌时钟信号,因而无需在PC电路板上实现线路长度匹配——这种匹配是以前PCI接口为了保持时序所 必需的。
PCIe规格内所定义的此协议遵循的是开源促进会(OSI)模型。此协议分隔成5个基本层,如图2左侧所 示。本节对机械层和物理层进行了综述;后续各节将针对链路层、事务处理层和应用层进行说明。
几个搞了好久才明白的pci驱动基本知识点
几个搞了好久才明白的pci驱动基本知识点几个搞了好久才明白的pci驱动基本知识点2008-03-17 10:42接手pci驱动已经好久了,可是长期的惰性真的很难改掉,每天工作时间算算居然不足半小时!老板不来实验室了,我就闲中更闲,kill the precious time...其实,框架我已经都搭好了,只是停留在设备地址和总线地址的解析上。
非常想弄清楚,所谓的pci配置空间,究竟是在pci总线上,还是在pci芯片卡上?现在我觉得,这个问题好像很傻冒,把总线搞的和硬件一样了。
总线难道也有寄存器么?所谓总线支持的空间,应该是总线能寻址的pc上的存储空间把!pci总线支持存储器地址空间,io地址空间和配置空间。
那这个配置空间应该也是pc上的一块存储区,通过pci总线能访问而已。
cy师兄说做驱动其实不需要担心这些问题,只要把数据按照基址+偏移传下去或传上来就行。
可是我总纠结于哪个寄存器、哪块地址空间具体在什么位置。
都是自己没做过硬件,对系统结构的知识也忘得差不多了:(我还是想弄清楚的!好不容易明白了一些东西:1、pci芯片的配置寄存器分为pci配置寄存器pci configuration registers和局部配置寄存器local configuration registers。
这个我看pci9054 databook时一直以为local configuration registers是说dsp上的寄存器。
太久没做事情了,这个英文和中文都断点了。
2、6个pci bar(0-5),其中bar2-5对应4个局部空间0-3,再加上外部rom,pci总线可以访问5个局部地址空间。
一个4个寄存器集合定义了每个空间和空间的特性:pci bar局部范围local range局部基地址local base address局部总线区域描述符local bus region descriptor(指定了局部总线特性,如总线宽度,猝发,预取,和几个等待状态)3、seeprom不能访问pci bar,seeprom可访问局部配置寄存器,bar是主机bios动态分配的。
PCIe
.1 PCIe总线的基础知识(2011-05-27 15:59:56)转载标签:分类:浅谈PCIe体系结构杂谈与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。
PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。
PCIe总线使用的层次结构与网络协议栈较为类似。
4.1.1 端到端的数据传递PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4-1所示。
由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。
其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX 部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。
一个PCIe链路可以由多个Lane组成。
高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。
该电容也被称为AC耦合电容。
PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。
与单端信号相比,差分信号抗干扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、“贴近”,而且在同层。
因此外部干扰噪声将被“同值”而且“同时”加载到D+和D-两根信号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。
因此差分信号可以使用更高的总线频率。
此外使用差分信号能有效抑制电磁干扰EMI(Electro Magnetic Interference)。
由于差分信号D+与D-距离很近而且信号幅值相等、极性相反。
这两根线与地线间耦合电磁场的幅值相等,将相互抵消,因此差分信号对外界的电磁干扰较小。
(完整word版)PCIE接口介绍-修改
PCIe接口介绍PCIe接口简介PCIe(Peripheral Component Interconnect Express)总线的诞生与PC(Personal Computer)的蓬勃发展密切相关,是由PCISIG (PCI Special Interest Group,主要是intel)推出的一种局部并行总线标准,主要应用于电脑和服务器的主板上(目前几乎所有的主板都有PCIe的插槽),功能是连接外部设备(如显卡、存储、网卡、声卡、数据采集卡等)。
PCI总线规范最早在上世纪九十年代提出,属于单端并行信号的总线,目前已淘汰,被PCIe总线(在2001年发布,采用点对点串行连接)替代。
目前PCIe的主流应用是3.0,4.0还没正式推出,但标准已经制定的差不多了。
PCI总线使用并行总线结构,在同一条总线上的所有外部设备共享总线带宽,而PCIe总线使用了高速差分总线,并采用端到端的连接方式,因此在每一条PCIe链路中只能连接两个设备.这使得PCIe与PCI总线采用的拓扑结构有所不同。
PCIe总线除了在连接方式上与PCI总线不同之外,还使用了一些在网络通信中使用的技术,如支持多种数据路由方式,基于多通路的数据传递方式,和基于报文的数据传送方式,并充分考虑了在数据传送中出现服务质量QoS (Quality of Service)问题。
每一个Lane上使用的总线频率与PCIe总线使用的版本相关.同。
PCIe总线V1。
x和V2。
0规范在物理层中使用8/10b编码,即在PCIe链路上的10 bit中含有8 bit的有效数据;而V3.0规范使用128/130b编码方式,即在PCIe链路上的130 bit 中含有128 bit的有效数据。
实际使用中,PCIe无法一直维持在峰值传输状态,因为编码方式、链路管理消耗、存储时间延迟等原因,一般只有50%~60%的效率.PCIe接口原理连接方式PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图一。
PCIe基础篇(一)、基础知识扫盲
PCIe基础篇(⼀)、基础知识扫盲1、PCIe:Peripheral Component interconnect Expess,外围组件接⼝互联,属于第三代IO总线,PCIe的传输速率指的是实际的有效传输速率,为RAW data(原始数据)的80%,因为其采⽤了8b/10b编解码技术,有效数据是原始数据的0.8,PCIe的iyidai和第⼆代采⽤8b/10b编解码技术,第三代、第四代、第五代采⽤128b/130b编解码技术。
2、PCI总线是⼀种共享总线,所以需要有特定的仲裁器(Arbiter)来决定当前时刻总线的控制权。
⼀般该仲裁器位于北桥中,⽽仲裁器(主机)通过⼀对引脚REQ#和GNT#(grant)来与各个从机连接。
PCI总线是⼀种地址和数据复⽤的总线,地址和数据占⽤同⼀组信号线。
PCIe采⽤了差分、全双⼯的传输设计,允许在同⼀时刻,同时进⾏发送进⽽接收数据,设备之间通过双向的Link连接,每个Link⽀持1~32个通道(lane),由于是串⾏总线,因此所有的数据(包括配置信息等)都是以数据包为单位进⾏发送。
PCIe中还引⼊了嵌⼊式时钟计数,发送端不再向接收端发送时钟,但是接收端可以通过8b/10b的编码从数据通道中恢复出时钟.PCIe是⼀种点对点连接的总线,不是共享总线。
但是PCIe可以通过SWITCH连接多个PCIe设备,Switch包含了多个类似于PCI总线中桥的该概念。
上图中,Root Component作为Root,是CPU和PCIe总线系统通信的媒介。
endpoint位于PCIe总线系统拓扑结构中的最末段,⼀般作为总线操作的发起作者(initiator,类似于主机)与终结者(Completers,类似于从机),endpoint只能接收上级拓扑的数据包或者向上级发送数据包。
此外,Leagcy PCIe Endpoint指的是元贝准备设计为PCI-X总线接⼝的设备,却被改为PCIe接⼝的设备,native PCIe ENDpoint指的是标准的PCIe设备。
PCI总线技术(doc 7页)
PCI总线技术(doc 7页)PCI总线技术概论各种PCI总线产品经过几年的发展,PCI总线以其优越的电性能获得了业界的一致认可。
同时利用PCI总线的电性能,结合不同的机械结构,产生了各种各样的总线。
在此做一简要介绍:CPCI总线:将PCI总线与欧规卡的机械结构相结合,具有抗振性能好、高可用性等优点,而且可以支持热插拔(Hot Swap)、后走线(Rear IO),目前在电信、军工、交通等领域正在得到广泛的应用。
PXI总线:在CPCI基础上加入同步时钟、触发等量测专用总线,在测量、控制领域正得到越来越多的应用。
PC104 Plus总线:将PCI总线与PC104板的机械结构相结合,具有效率高、维护量少、体积小型等特点,在各种嵌入式应用中很受欢迎。
另外还有笔记本电脑常用的PCMCIA总线、电信行业中最近配合CPCI使用的PMC等等,电特性都是PCI总线。
从1992年创立规范到如今,PCI总线已成为了事实上计算机的标准总线。
由PCI 总线构成的标准系统结构如图一所示。
32bit PCI系统的管脚按功能来分有以下几类:系统控制:CLK,PCI时钟,上升沿有效RST ,Reset信号传输控制:FRAME#,标志传输开始与结束IRDY#,Master可以传输数据的标志DEVSEL#,当Slave发现自己被寻址时置低应答TRDY#,Slave可以转输数据的标志STOP#,Slave主动结束传输数据的信号IDSEL,在即插即用系统启动时用于选中板卡的信号地址与数据总线:AD[31::0],地址/数据分时复用总线C/BE#[3::0],命今/字节使能信号PAR,奇偶校验信号仲裁号:REQ#,Master用来请求总线使用权的信号GNT#,Arbiter允许Master得到总线使用权的信号错误报告:PERR#,数据奇偶校验错SERR#,系统奇偶校验错当PCI总线进行操作时,发起者(Master)先置REQ#,当得到仲裁器(Arbiter)的许可时(GNT#),会将FRAME#置低,并在AD总线上放置Slave地址,同时C/BE#放置命令信号,说明接下来的传输类型。
PCIE基础知识
PCIe总线概述随着现代处理器技术的发展,在互连领域中,使用高速差分总线替代并行总线是大势所趋。
与单端并行信号相比,高速差分信号可以使用更高的时钟频率,从而使用更少的信号线,完成之前需要许多单端并行数据信号才能达到的总线带宽。
PCI总线使用并行总线结构,在同一条总线上的所有外部设备共享总线带宽,而PCIe 总线使用了高速差分总线,并采用端到端的连接方式,因此在每一条PCIe链路中只能连接两个设备。
这使得PCIe与PCI总线采用的拓扑结构有所不同。
PCIe总线除了在连接方式上与PCI总线不同之外,还使用了一些在网络通信中使用的技术,如支持多种数据路由方式,基于多通路的数据传递方式,和基于报文的数据传送方式,并充分考虑了在数据传送中出现服务质量QoS (Quality of Service)问题。
PCIe总线的基础知识与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。
PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。
PCIe 总线使用的层次结构与网络协议栈较为类似。
1.1 端到端的数据传递PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4-1所示。
由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。
其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。
一个PCIe链路可以由多个Lane组成。
高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。
该电容也被称为AC 耦合电容。
【参考文档】pci设备感叹号-word范文模板 (4页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==pci设备感叹号篇一:PCI-E板卡的设备识别问题PCI-E板卡的设备识别问题环境:一块带v5芯片的fpga板卡,使用的是pcie IP硬核,系统无法识别。
有个简单问题想询问下,是不是trn_lnk_up_n线为低,就(来自:WWw. : pci 设备感叹号 )意味着系统和板卡连接上了,系统能够识别板卡了?现在抓信号看到的trn_lnk_up_n一直为低。
还是要结合cfg_pcie_link_state_n[2:0]状态正常,才意味着系统能够识别pcie板卡!或者换个方式问,系统能够识别pcie板卡的物料标识是什么?就是具体哪些信号为什么状态后系统即可识别pcie板卡?谢谢!xduryan (201X-3-24 12:13:39)trn_lnk_up_n只代表链路训练成功完成,链路两端的设备可以进行通信了;但是板卡识别需要软件来读取pcie设备的配置空间,你的板卡插是插在pc上还是哪儿?从软件找找原因xiaoxiaofeifan (201X-3-24 12:23:47)回复 2# xduryan 插在PC上的!配置空间FPGA端不需要做特别设置吧!我理解PC即使没安装驱动,也会在扫描硬件时自动发现pci设备,只是驱动安装失败,对吧?xduryan (201X-3-24 14:43:43)回复 3# xiaoxiaofeifan 不太懂驱动和软件测的东西glace12123 (201X-3-25 00:42:00)1、在你的电脑上装1个windriver软件,这个是在电脑上没有你板卡的专用驱动时,调试PCIe口的最好工具之一,至于用法,网上自己去搜,很简单,很简单。
2、插上上电,请把link_up作为led引出来,这样上电后就能明显观察到是否建链成功,还有,bit生成的配置里,把配置速率设置到9,避免板卡启动太慢,导致PC的BIOS没有扫到PCIe设备。
PCIe总线基础
PCIe总线物理层
• 差分信号与单端信号:单端信号地平面是电流回路,差分信号
地平面也是重要的回路,之间也是电流回路。因此在设计时候要注意差分信号的地平 面也是很重要的。不要出现不连续的地平面或者没有参考地平面。
差分的好处:
1 共模抑制比高,抗干扰能力强; 2有效抑制信号传递带来的EMI干扰,极性相反;对外界的辐射相互抵消,因此产生的 噪声也是最小的。 3 逻辑状态定位准确,不受工艺和环境的影响 ;
PCIe总线带宽
PCIe总线架构
PCIe总线架构
Intel体系中的PCIe体系架构
PCIe总线层次结构
PCIe总线层次结构
software
TLP
DLLP
PLP
PCIe总线采集卡实现模式
PCIe三种实现模式
PCIe各层封装
• 各层叠加关系
各层包结构概览
• 作用:接收链路层的东西并发送到物理线路上,2,3,4………….) 2 rxnx,rxpx(x为1 ,2,3,4………….) 3 REFCLK+和REFCLK-信号 4 PERST#信号 5 WAKE#信号 6 SMCLK和SMDAT信号 7 JTAG信号 8 PRSNT1#和PRSNT2#信号
PCI总线信号
PCIe总线技术概览
PCIe总线是PCI总线的一种实现方式,从逻辑上来说他还是PCI总线, 他的大部分的概念来源于PCI总线,因此我们要从PCI总线讲起。
目录
1 2 3
PCI总线概述 PCIE总线各层 PCIE总线板卡实现
PCI技术概览
PCIE总线信号 PCIe总线架构 PCIe总线各层 PCIe总线物理层和链路层 PCIe总线事务层
pcie学习计划
pcie学习计划一、入门阶段1. 了解PCIe的基本概念和原理在入门阶段,首先要对PCIe(Peripheral Component Interconnect Express)的基本概念和原理进行了解。
PCIe是一种用于连接扩展卡和主板的高速接口标准,它是PCI总线的后继者,在传输速度、带宽和功耗方面都有了显著的提升。
了解PCIe的发展历程、工作原理和技术特点,对后续的学习和应用都有很大的帮助。
2. 学习PCIe的物理层和数据链路层PCIe接口包括物理层和数据链路层两个部分,这两个部分是理解PCIe技术的关键。
在学习物理层时,要掌握信号传输的基本原理、组成部分和接口规范;在学习数据链路层时,要了解数据传输的机制、连接管理和控制流程。
对PCIe接口的物理层和数据链路层有深入的理解,有助于后续的应用和故障排除。
3. 学习PCIe的架构和规范PCIe接口有多个版本和规范,每个版本都有其特定的架构和规范。
在入门阶段,要学习PCIe的各个版本的架构和规范,包括连接类型、带宽规格、电气特性等。
对PCIe的各个版本的架构和规范有全面的了解,有助于选择合适的接口版本和了解其应用场景。
4. 学习PCIe的设备驱动开发PCIe接口的设备驱动开发是PCIe学习的重要内容之一。
在入门阶段,要学习PCIe设备驱动的基本概念、开发流程和调试技巧。
了解设备驱动的开发原理和方法,对后续的应用和系统优化都有很大的帮助。
二、进阶阶段1. 深入学习PCIe的协议和传输层PCIe接口的协议和传输层是PCIe学习的进阶内容,包括数据传输协议、报文格式、序列管理和错误控制等。
在进阶阶段,要深入学习PCIe接口的协议和传输层,包括数据包的格式、传输流程和错误检测与纠正等。
对PCIe接口的协议和传输层有深入的了解,有助于应用和系统性能的提升。
2. 学习PCIe的性能优化和调试技巧PCIe接口的性能优化和调试技巧是PCIe学习的重要内容之一。
在进阶阶段,要学习PCIe 接口的性能优化技巧,包括传输速度、带宽利用和延迟控制等。
(完整word版)PCI与PCI-E
PCI与PCI-E有什么区别?PCI-E 16X 又是什么意思?PCI插槽是基于PCI局部总线(Pedpherd Component Interconnect,周边元件扩展接口)的扩展插槽,其颜色一般为乳白色,位于主板上AGP插槽的下方,ISA插槽的上方。
其位宽为32位或64位,工作频率为33MHz,最大数据传输率为133MB/sec(32位)和266MB/sec(64位)。
可插接显卡、声卡、网卡、内置Modem、内置ADSL Modem、USB2.0卡、IEEE1394卡、IDE接口卡、RAID卡、电视卡、视频采集卡以及其它种类繁多的扩展卡。
PCI插槽是主板的主要扩展插槽,通过插接不同的扩展卡可以获得目前电脑能实现的几乎所有外接功能PCI-Express是最新的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。
交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。
这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。
它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。
PCI Express也有多种规格,从PCI Express 1X到PCI Express 16X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。
能支持PCI Express的主要是英特尔的i915和i925系列芯片组。
当然要实现全面取代PCI和AGP也需要一个相当长的过程,就象当初PCI 取代ISA一样,都会有个过渡的过程。
PCI-E 16X新的PCI Express总线的技术:PCI-E 16X是全双工接口,可同时在两个方向上传输数据,而AGP接口只是半双工的,数据上下行操作无法同时进行,AGP总线只能提供266MB/S的上行能力,相比之下PCI-E 16X就能充分显示其4GB/S上下行能力的优势◆PCI-E到PCI-E 2.0的演变从2002年PCI-E总线规范的推出,就预示着显卡的总线接口PCI和AGP时代的即将结束,而现今随着第一款用在8800GT身上的PCI-E2.0总线接口显卡的出现,也就说明PCI-E 2.0总线接口的时代的即将到来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCIe总线概述随着现代处理器技术的发展,在互连领域中,使用高速差分总线替代并行总线是大势所趋。
与单端并行信号相比,高速差分信号可以使用更高的时钟频率,从而使用更少的信号线,完成之前需要许多单端并行数据信号才能达到的总线带宽。
PCI总线使用并行总线结构,在同一条总线上的所有外部设备共享总线带宽,而PCIe 总线使用了高速差分总线,并采用端到端的连接方式,因此在每一条PCIe链路中只能连接两个设备。
这使得PCIe与PCI总线采用的拓扑结构有所不同。
PCIe总线除了在连接方式上与PCI总线不同之外,还使用了一些在网络通信中使用的技术,如支持多种数据路由方式,基于多通路的数据传递方式,和基于报文的数据传送方式,并充分考虑了在数据传送中出现服务质量QoS (Quality of Service)问题。
PCIe总线的基础知识与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。
PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。
PCIe 总线使用的层次结构与网络协议栈较为类似。
1.1 端到端的数据传递PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4-1所示。
由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。
其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。
一个PCIe链路可以由多个Lane组成。
高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。
该电容也被称为AC 耦合电容。
PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。
与单端信号相比,差分信号抗干扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、“贴近”,而且在同层。
因此外部干扰噪声将被“同值”而且“同时”加载到D+和D-两根信号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。
因此差分信号可以使用更高的总线频率。
此外使用差分信号能有效抑制电磁干扰EMI(Electro Magnetic Interference)。
由于差分信号D+与D-距离很近而且信号幅值相等、极性相反。
这两根线与地线间耦合电磁场的幅值相等,将相互抵消,因此差分信号对外界的电磁干扰较小。
当然差分信号的缺点也是显而易见的,一是差分信号使用两根信号传送一位数据;二是差分信号的布线相对严格一些。
PCIe链路可以由多条Lane组成,目前PCIe链路可以支持1、2、4、8、12、16和32个Lane,即×1、×2、×4、×8、×12、×16和×32宽度的PCIe链路。
每一个Lane上使用的总线频率与PCIe 总线使用的版本相关。
第1个PCIe总线规范为V1.0,之后依次为V1.0a,V1.1,V2.0和V2.1。
目前PCIe总线的最新规范为V2.1,而V3.0正在开发过程中,预计在2010年发布。
不同的PCIe总线规范所定义的总线频率和链路编码方式并不相同,如表4-1所示。
表4-1 PCIe总线规范与总线频率和编码的关系PCIe总线规范总线频率1[1] 单Lane的峰值带宽编码方式1.x 1.25GHz2.5GT/s 8/10b编码2.x 2.5GHz 5GT/s 8/10b编码3.0 4GHz 8GT/s 128/130b编码如上表所示,不同的PCIe总线规范使用的总线频率并不相同,其使用的数据编码方式也不相同。
PCIe总线V1.x和V2.0规范在物理层中使用8/10b编码,即在PCIe链路上的10 bit中含有8 bit的有效数据;而V3.0规范使用128/130b编码方式,即在PCIe链路上的130 bit中含有128 bit的有效数据。
由上表所示,V3.0规范使用的总线频率虽然只有4GHz,但是其有效带宽是V2.x的两倍。
下文将以V2.x规范为例,说明不同宽度PCIe链路所能提供的峰值带宽,如表4-2所示。
由上表所示,×32的PCIe链路可以提供160GT/s的链路带宽,远高于PCI/PCI-X总线所能提供的峰值带宽。
而即将推出的PCIe V3.0规范使用4GHz的总线频率,将进一步提高PCIe链路的峰值带宽。
在PCIe总线中,使用GT(Gigatransfer)计算PCIe链路的峰值带宽。
GT是在PCIe链路上传递的峰值带宽,其计算公式为总线频率×数据位宽×2。
在PCIe总线中,影响有效带宽的因素有很多,因而其有效带宽较难计算。
尽管如此,PCIe 总线提供的有效带宽还是远高于PCI总线。
PCIe总线也有其弱点,其中最突出的问题是传送延时。
PCIe链路使用串行方式进行数据传送,然而在芯片内部,数据总线仍然是并行的,因此PCIe 链路接口需要进行串并转换,这种串并转换将产生较大的延时。
除此之外PCIe总线的数据报文需要经过事务层、数据链路层和物理层,这些数据报文在穿越这些层次时,也将带来延时。
在基于PCIe总线的设备中,×1的PCIe链路最为常见,而×12的PCIe链路极少出现,×4和×8的PCIe设备也不多见。
Intel通常在ICH中集成了多个×1的PCIe链路用来连接低速外设,而在MCH中集成了一个×16的PCIe链路用于连接显卡控制器。
而PowerPC处理器通常能够支持×8、×4、×2和×1的PCIe链路。
PCIe总线物理链路间的数据传送使用基于时钟的同步传送机制,但是在物理链路上并没有时钟线,PCIe总线的接收端含有时钟恢复模块CDR(Clock Data Recovery),CDR将从接收报文中提取接收时钟,从而进行同步数据传递。
值得注意的是,在一个PCIe设备中除了需要从报文中提取时钟外,还使用了REFCLK+和REFCLK-信号对作为本地参考时钟,这个信号对的描述见下文。
1.2 PCIe总线使用的信号PCIe设备使用两种电源信号供电,分别是Vcc与Vaux,其额定电压为3.3V。
其中Vcc为主电源,PCIe设备使用的主要逻辑模块均使用Vcc供电,而一些与电源管理相关的逻辑使用Vaux供电。
在PCIe设备中,一些特殊的寄存器通常使用Vaux供电,如Sticky Register,此时即使PCIe设备的Vcc被移除,这些与电源管理相关的逻辑状态和这些特殊寄存器的内容也不会发生改变。
在PCIe总线中,使用Vaux的主要原因是为了降低功耗和缩短系统恢复时间。
因为Vaux在多数情况下并不会被移除,因此当PCIe设备的Vcc恢复后,该设备不用重新恢复使用Vaux 供电的逻辑,从而设备可以很快地恢复到正常工作状状态。
PCIe链路的最大宽度为×32,但是在实际应用中,×32的链路宽度极少使用。
在一个处理器系统中,一般提供×16的PCIe插槽,并使用PETp0~15、PETn0~15和PERp0~15、PER--]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]n0~15共64根信号线组成32对差分信号,其中16对PETxx信号用于发送链路,另外16对PERxx信号用于接收链路。
除此之外PCIe总线还使用了下列辅助信号。
1 PERST#信号该信号为全局复位信号,由处理器系统提供,处理器系统需要为PCIe插槽和PCIe设备提供该复位信号。
PCIe设备使用该信号复位内部逻辑。
当该信号有效时,PCIe设备将进行复位操作。
PCIe总线定义了多种复位方式,其中Cold Reset和Warm Reset这两种复位方式的实现与该信号有关,详见第1.5节。
2 REFCLK+和REFCLK-信号在一个处理器系统中,可能含有许多PCIe设备,这些设备可以作为Add-In卡与PCIe插槽连接,也可以作为内置模块,与处理器系统提供的PCIe链路直接相连,而不需要经过PCIe插槽。
PCIe设备与PCIe插槽都具有REFCLK+和REFCLK-信号,其中PCIe插槽使用这组信号与处理器系统同步。
在一个处理器系统中,通常采用专用逻辑向PCIe插槽提供REFCLK+和REFCLK-信号,如图4-2所示。
其中100Mhz的时钟源由晶振提供,并经过一个“一推多”的差分时钟驱动器生成多个同相位的时钟源,与PCIe插槽一一对应连接。
PCIe插槽需要使用参考时钟,其频率范围为100MHz±300ppm。
处理器系统需要为每一个PCIe 插槽、MCH、ICH和Switch提供参考时钟。
而且要求在一个处理器系统中,时钟驱动器产生的参考时钟信号到每一个PCIe插槽(MCH、ICH和Swith)的距离差在15英寸之内。
通常信号的传播速度接近光速,约为6英寸/ns,由此可见,不同PCIe插槽间REFCLK+和REFCLK-信号的传送延时差约为2.5ns。
当PCIe设备作为Add-In卡连接在PCIe插槽时,可以直接使用PCIe插槽提供的REFCLK+和REFCLK-信号,也可以使用独立的参考时钟,只要这个参考时钟在100MHz±300ppm范围内即可。
内置的PCIe设备与Add-In卡在处理REFCLK+和REFCLK-信号时使用的方法类似,但是PCIe 设备可以使用独立的参考时钟,而不使用REFCLK+和REFCLK-信号。
在PCIe设备配置空间的Link Control Register中,含有一个“Common Clock Configuration”位。
当该位为1时,表示该设备与PCIe链路的对端设备使用“同相位”的参考时钟;如果为0,表示该设备与PCIe链路的对端设备使用的参考时钟是异步的。
在PCIe设备中,“Common Clock Configuration”位的缺省值为0,此时PCIe设备使用的参考时钟与对端设备没有任何联系,PCIe链路两端设备使用的参考时钟可以异步设置。
这个异步时钟设置方法对于使用PCIe链路进行远程连接时尤为重要。
在一个处理器系统中,如果使用PCIe链路进行机箱到机箱间的互连,因为参考时钟可以异步设置,机箱到机箱之间进行数据传送时仅需要差分信号线即可,而不需要参考时钟,从而极大降低了连接难度。