初一数学第三章测试题-2

合集下载

人教版数学七年级上册第三章测试题及答案

人教版数学七年级上册第三章测试题及答案

人教版数学七年级上册第三章测试题(时间:90分钟 总分:120分)一、选择题:(每题3分,共18分)1.下列等式变形正确的是 ( )A.如果s = 12ab,那么b = 2s a ;B.如果12x = 6,那么x = 3 C.如果x - 3 = y - 3,那么x - y = 0; D.如果mx = my,那么x = y2. 方程12x - 3 = 2 + 3x 的解是 ( ) A.-2; B.2; C.-12; D.123.关于x 的方程(2k -1)x 2 -(2k + 1)x + 3 = 0是一元一次方程, 则k 值为( )A.0B.1C.12D.2 4.已知:当b = 1,c = -2时,代数式ab + bc + ca = 10, 则a 的值为( )A.12B.6C.-6D.-125.下列解方程去分母正确的是( )A.由1132x x --=,得2x - 1 = 3 - 3x; B.由232124x x ---=-,得2(x - 2) - 3x - 2 = - 4 C.由131236y y y y +-=--,得3y + 3 = 2y - 3y + 1 - 6y; D.由44153x y +-=,得12x - 1 = 5y + 20 6.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a B.1.12a C.1.12a D.0.81a 二、填空题:(每空3分,共36分)7.x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解.8.若x = -3是方程3(x - a) = 7的解,则a = ________.9.若代数式213k --的值是1,则k = _________. 10.当x = ________时,代数式12x -与113x +-的值相等. 11. 5与x 的差的13比x 的2倍大1的方程是__________. 12. 若4a-9与3a-5互为相反数, 则a 2 - 2a + 1的值为_________.13.一次工程,甲独做m 天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_______天完成.14.解方程132x-=,则x=_______.15.三个连续偶数的和为18,设最大的偶数为 x, 则可列方程______.16.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一样多.三、解方程:(每题5分,共20分)17.70%x+(30-x)×55%=30×65% 18.511241263x x x +--=+;19.1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦; 20.432.50.20.05x x ---=.四、解答题:(共46分)21.(做一做,每题4分,共8分)已知2y + m = my - m. (1)当 m = 4时,求y 的值.(2)当y = 4时,求m 的值.22.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米? (8分)23. 一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数。

初中数学鲁教版(五四制)七年级上册第三章 勾股定理2 一定是直角三角形吗-章节测试习题(2)

初中数学鲁教版(五四制)七年级上册第三章 勾股定理2 一定是直角三角形吗-章节测试习题(2)

章节测试题1.【答题】已知下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2-1,2n,n2+1(n是大于1的整数).其中是勾股数的有()A. 1组B. 2组C. 3组D. 4组【答案】D【分析】【解答】2.【答题】有五根小木棒,其长度分别为7,15,20,25,24.现将它们摆成两个直角三角形,其中正确的是()A. B. C. D.【答案】C【分析】【解答】3.【答题】在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,则下列说法中错误的是()A. 如果∠C-∠B=∠A,那么△ABC是直角三角形,且∠C=90°B. 如果c2=a2-b2,那么△ABC是直角三角形,且∠C=90°C. 如果(c+a)(c-a)=b2,那么△ABC是直角三角形,且∠C=90°D. 如果∠A:∠B:∠C=3:2:5,那么△ABC是直角三角形,且∠C=90°【答案】B【分析】【解答】4.【题文】例1 如图,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.(1)求证:CD⊥AB;(2)求该三角形的腰的长度.【答案】见解答.【分析】本题考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(1)依据勾股定理的逆定理可得到∠BDC=90°,从而得到CD⊥AB.(2)设腰长为x,则AD=x-12.由(1)可知AD2+CD2=AC2,解方程(x-12)2+162=x2,即可得到腰长.【解答】(1)∵BC=20cm,CD=16cm,BD=12cm,∴BD2+CD2=BC2.根据勾股定理的逆定理可知∠BDC=90°,即CD⊥AB.(2)设腰长为x,则AD=x-12.由(1)可知AD2+CD2=AC2,即(x-12)2+162=x2,解得.∴腰长为cm.5.【题文】例2 如图,△ABC中,D是BC上的一点,已知AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【答案】84.【分析】此题主要考查勾股定理和勾股定理的逆定理,关键是利用勾股定理的逆定理求证△ABD是直角三角形,根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC.在Rt△ACD中,CD2=AC2-AD2=172-82=152,∴CD=15,∴.因此△ABC的面积为84.6.【答题】若△ABC的三边长分别为5,12,13,则△ABC的面积是()A. 30B. 40C. 50D. 60【答案】A【分析】【解答】7.【答题】某住宅小区有一块草坪,形状如图所示.已知AB=3m,BC=4m,CD=12m,DA=13m,且AB⊥BC,则这块草坪的面积是()A. 24m2B. 36m2C. 48m2D. 72m2【答案】B【分析】【解答】8.【答题】下列四组数中,不是勾股数的是()A. a=15,b=8,c=17B. a=9,b=12,c=15C. a=7,b=24,c=25D. a=3,b=5,c=7【答案】D【分析】【解答】9.【答题】如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为______m2.【答案】96【分析】【解答】10.【答题】已知△ABC中∠A,∠B,∠C的对边分别是a,b和c.下面给出了五组条件:①∠A:∠B:∠C=1:2:3;②a:b:c=3:4:5;③2∠A=∠B+∠C;④a2-b2=c2;⑤a=6,b=8,c=13.其中能独立判定△ABC是直角三角形的是______.(请写出所有正确的序号)【答案】①②④【分析】【解答】11.【题文】如图,在△ABC中,AB=9,AC=12,BC=15,求BC边上的高AD.【答案】【分析】【解答】∵AB2+AC2=225=BC2,∴△ABC是直角三角形.∴AB×AC=BC×AD,∴AD=7.2.12.【题文】如图,在△ABC中,AB=17cm,AC=8cm,BC=15cm.将AC沿AE折叠,使得点C与AB上的点D重合.(1)证明:△ABC是直角三角形;(2)求△AEB的面积.【答案】【分析】【解答】(1)∵AC2+BC2=82+152=289,AB2=289.∴AC2+BC2=AB2.∴△ABC是直角三角形.(2)由翻折的性质可知EC=DE,AC=AD=8cm,∠ADE=∠C=∠BDE=90°.设EC=DE=x cm,在Rt△BDE中,∵DE2+BD2=BE2,∴x2+92=(15-x)2,解得.∴,∴.13.【题文】如图,在△ABC中,AB=8,AC=6,DE是BC的垂直平分线,交BC于点D,交AB于点E,AF⊥BC于点F.(1)若∠BAC=90°,求AE的长;(2)若DF=1.4,求证:△ABC为直角三角形.【答案】【分析】【解答】(1)如图,连接CE.设AE=x,∵AB=8.∴BE=8-x.∵DE是BC的垂直平分线,∴CE=BE=8-x.∵∠BAC=90°,AC=6.∴x2+62=(8-x)2,∴,即.(2)证明:设BD=y,则CD=y.∵DF=1.4,∴BF=y+1.4,CF=y-1.4.∵AF⊥BC,∴AB2-BF2=AC2-CF2=AF2.∴82-(y+1.4)2=62-(y-1.4)2,∴y=5,∴BC=10.∵62+82=102.∴△ABC为直角三角形.14.【题文】如图,在△ABC中,D是BC的中点,点M,N分别在AB,AC上,且∠MDN=90°,延长MD到点E,使MD=DE,连接CE,EN,已知BM2+CN2=DM2+DN2.(1)求证:MN=EN;(2)求证:△ABC为直角三角形.【答案】【分析】【解答】(1)∵MD=DE,∠MDN=90°,∴ND垂直平分ME,∴MN=NE(2)∵D是BC的中点,∴BD=CD.在△BDM和△CDE中,∴△BDM≌△CDE,∴BM=CE,∠B=∠DCE.∵BM2+CN2=DM2+DN2,DM2+DN2=MN2=NE2,∴CE2+CN2=EN2,∴∠NCE=90°.∴∠B+∠ACB=∠ACB+∠BCE=90°.∴∠A=90°,∴△ABC为直角三角形.15.【答题】如果三角形的三边长a,b,c满足______,那么这个三角形是直角三角形.其中,边长为______的边所对的角是直角.【答案】【解答】16.【答题】满足a2+b2=c2的三个正整数,称为______数.请在下面的横线上任意写出四组勾股数:______.【答案】【分析】【解答】17.【答题】下列条件中,不能判断一个三角形为直角三角形的是()A. 三个角的比是1:2:3B. 三条边满足关系a2=c2-b2C. 三条边的比是2:3:4D. 三个角满足关系∠B+∠C=∠A【答案】C【分析】【解答】18.【答题】三角形的两边长为5和4,要使它成为直角三角形,则第三边长的平方为______.【答案】9或41【分析】19.【答题】小白兔每跳一次为1m,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是______.【答案】90°【分析】【解答】20.【题文】如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识判断△ABC是什么形状,并说明理由.【答案】【分析】【解答】如图,在Rt△ABF中,AB2=33+22=13.在Rt△AEC中,AC2=82+12=65.在Rt△BDC中,BC2=62+4=52,所以AB2+BC2=AC2,所以△ABC是直角三角形.。

(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(包含答案解析)(2)

(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(包含答案解析)(2)

一、选择题1.(0分)[ID :68204]某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -= D .()2182812x x ⨯-=2.(0分)[ID :68196]把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+3.(0分)[ID :68195]定义运算“*”,其规则为2*3a ba b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x =4.(0分)[ID :68161]某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元5.(0分)[ID :68159]古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋 B .6袋 C .7袋 D .8袋 6.(0分)[ID :68251]解方程-3x=2时,应在方程两边( ) A .同乘以-3 B .同除以-3 C .同乘以3 D .同除以3 7.(0分)[ID :68249]方程6x+12x-9x=10-12-16的解为( )A .x=2B .x=1C .x=3D .x=-28.(0分)[ID :68245]互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元9.(0分)[ID :68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( ) A .54 B .72 C .45 D .62 10.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-11.(0分)[ID :68238]某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折12.(0分)[ID :68231]解方程32282323x x x----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x ﹣6=16﹣4x ; ③3x +4x =16+10;④x =267.A .①B .②C .③D .④13.(0分)[ID :68212]把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律14.(0分)[ID :68173]若代数式的值为,则的值为( )A .B .C .D .15.(0分)[ID :68171]下列判断错误的是 ( ) A .若,则 B .若,则C .若,则D .若,则二、填空题16.(0分)[ID :68342]请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.17.(0分)[ID :68335]如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.18.(0分)[ID :68328]如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)19.(0分)[ID :68322]若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.20.(0分)[ID :68317]若2a +1与212a +互为相反数,则a =_____.21.(0分)[ID :68301]开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.22.(0分)[ID :68292]若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.23.(0分)[ID :68282]一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________.24.(0分)[ID :68281]完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元. 由此,列出方程_________________. 解这个方程,得x =______________. 因此每件服装的成本价是___________元.25.(0分)[ID :68280]某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.26.(0分)[ID :68271]用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.27.(0分)[ID :68279]甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.三、解答题28.(0分)[ID :68422]大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?29.(0分)[ID :68375]某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元. 问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?30.(0分)[ID:68370]学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.D4.C5.A6.B7.D8.C9.B10.B11.C12.B13.B14.A15.D二、填空题16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x﹣1)求解【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有117.12km【分析】首先设这条公路的长为xkm由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk18.【分析】设一个苹果的重量为x一个香蕉的重量为y一个砝码的重量为z分别用含z 的代数式表示xy再求即可【详解】设一个苹果的质量为x一个香蕉的质量为y一个砝码的质量为z由题意得则即则故故答案为:【点睛】此19.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m=20.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应21.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买22.【解析】【分析】先根据一元一次方程的定义列出关于a的不等式组求出a的值即可【详解】∵是关于x的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元23.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x每件服装的实际售价为:(1+40)x×80每件服装的利润为25.赚了8元【解析】【分析】根据题意设一个价钱为x元另一个价钱为y元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x元y元则x解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程26.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答27.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.D【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.3.D解析:D 【分析】根据新定义列出关于x 的方程,解之可得. 【详解】 ∵4*x=4,∴234x⨯+=4, 解得x=4, 故选:D . 【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.4.C解析:C 【分析】设这种商品每件的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果. 【详解】设这种商品每件的进价为x 元, 根据题意得:330×80%−x=10%x , 解得:x=240,则这种商品每件的进价为240元. 故选C. 【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.5.A解析:A【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.D解析:D【分析】根据合并同类项,系数化为1可得方程的解.【详解】合并同类项,得9x=-18,系数化为1,得x=-2,故选D.【点睛】此题主要考查了解一元一次方程,熟练掌握运算法则解答此题的关键.8.C解析:C【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=80.∴该商品的进价为80元/件.故选C.9.B解析:B 【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可. 【详解】设个位上的数为x ,则十位数字为()31x +,由题意得: x +(3x +1)=9, 解得:x =2, 十位数字为:6+1=7, 这个两位数是:72. 故选:B. 【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.10.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.11.C解析:C 【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 80020%800⨯-≥,解不等式可得:8x ≥.【详解】设打折x 折,由题意可得: 12000.1x 80020%800⨯-≥,解得:8x ≥. 故选C. 【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.12.B解析:B【分析】根据解一元一次方程的基本步骤依次计算可得.【详解】①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,故选:B.【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.13.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】x ,这是依据等式的性质2.将原方程两边都乘2,得2故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.14.A解析:A【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:2x+3=6,移项合并得:2x=3,解得:x=,故选:A.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.15.D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b,则a−3=b−3,正确;B. 若a=b,则7a−1=7b−1,正确;C. 若a=b,则,正确;D. 当c=0时,若,a就不一定等于b,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.二、填空题16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x﹣1)求解【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x棵,即可列方程:4x+5=5(x﹣1)求解.【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.17.12km【分析】首先设这条公路的长为xkm由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk解析:12km【分析】首先设这条公路的长为xkm,由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间,根据等量关系列出方程即可.【详解】解:设这条公路的长为xkm .由题意,得86401060x x -=-. 解得:12x =.故答案为:12km .【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.18.【分析】设一个苹果的重量为x 一个香蕉的重量为y 一个砝码的重量为z 分别用含z 的代数式表示xy 再求即可【详解】设一个苹果的质量为x 一个香蕉的质量为y 一个砝码的质量为z 由题意得则即则故故答案为:【点睛】此 解析:32【分析】设一个苹果的重量为x 、一个香蕉的重量为y 、一个砝码的重量为z ,分别用含z 的代数式表示x ,y ,再求x y 即可. 【详解】设一个苹果的质量为x ,一个香蕉的质量为y ,一个砝码的质量为z .由题意得24x z =,则2x z =,32y z x =+,即3224y z z z =+=,则43y z =, 故23423x z y z ==. 故答案为:32 【点睛】此题主要考查了等式的性质,本题先通过用z 表示x ,y ,后通过求比值而求解. 19.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m= 解析:45【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可.【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,移项得:(23)251(3)+-=+-m x x m n ,合并同类项得:(222)13-=+-m x m n ,∴222=0-m ,13=0+-m n ,∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.20.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应解析:﹣1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】 本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.21.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.22.【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组求出a 的值即可【详解】∵是关于x 的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元 解析:1-【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组,求出a 的值即可.【详解】∵()||110a a x --=是关于x 的一元一次方程, ∴1=a 且10a -≠,解得a=-1.故答案为:-1【点睛】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.23.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm 故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系解析:2π2016208x ⨯⨯=⨯【解析】【分析】等量关系为:圆柱体的体积=长方体的体积,把相关数值代入即可求解.【详解】设长方体的高为xcm ,2π2016208x ⨯⨯=⨯,故答案为:2π2016208x ⨯⨯=⨯.【点睛】此题考查一元一次方程的应用,解题关键在于找到等量关系.24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.25.赚了8元【解析】【分析】根据题意设一个价钱为x 元另一个价钱为y 元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x 元y 元则x 解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程 解析:赚了8元【解析】【分析】根据题意设一个价钱为x 元,另一个价钱为y 元,列出方程,求出未知数的值,再计算即可.【详解】解:设两种计算器进价分别为x 元,y 元,则x (160%)=64+,(120%)64y -=.解得40x =,80y =.4080120x y +=+=. 6421201281208⨯-=-=(元), 所以赚了8元.【点睛】本题主要考查列一元一次方程解决实际问题,解决本题的关键是要熟练掌握根据进价、售价与利润率之间的关系分别求出两种计算机的进价.26.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x ,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x,则长=12(14-10x)=2x,解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.27.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点解析:6, 3, 2【解析】【分析】设甲队胜了x场,则平了12x场,负了112x-场,根据一场得3分,平一场得1分,负一场得0分,共得了21分,可列方程求解.【详解】设甲队胜了x场,则平了12x场,负了112x-场,根据题意可得:11311021 22x x x⎛⎫+⨯+-⨯=⎪⎝⎭,解得:x=6,所以132x=,1122x-=,故答案为:6,3,2.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系.三、解答题28.存活期用了1600元,买债券用了3200元【分析】设存活期用了x元,则买债券用了(4800)x-元,由题意列式求解即可.【详解】解:设存活期用了x 元,则买债券用了(4800)x -元由题意,得0.35%0.6%(4800)24.8x x +-=.解得1600x =.48003200x -=.答:大明存活期用了1600元,买债券用了3200元.【点睛】本题主要考查了实际问题与一元一次方程,根据题意找出未知量,列方程是解题的关键. 29.(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析.【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠; ②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x 元,则90%×500+(x ﹣500)×80%=466,解得x =520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.30.(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(答案解析)(2)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(答案解析)(2)

一、选择题1.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数2.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r3.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种关系,其关系图象大致为()A.B.C.D.4.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t的关系的大致图象是()A.B.C.D.5.下列说法中正确的是 ( )A.变量 x , y 满足 x + 3y = 1 ,则 y 是 x 的函数B.变量 x , y 满足23y x=--,则 y 是 x 的函数C.变量 x , y 满足∣ y ∣= x ,则 y 是 x 的函数D.变量 x , y 满足 y2 = x ,则 y 是 x 的函数6.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x7.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( )A.B.C.D.8.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x9.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.2t B.Q=20﹣0.2tC.t=0.2Q D.t=20﹣0.2Q10.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.11.在关于圆的面积的表达式S=πr2中,变量有( )A.4个B.3个C.2个D.1个12.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=2.39,BC=3.57.动点M从点A出发,沿A→B→C→D→A匀速运动,到点A停止.设点M运动的路程为x,点M到四边形EFGH的某一个顶点的距离为y,如果表示y关于x的函数关系的图象如图2所示,那么四边形EFGH的这个顶点是( )A.点E B.点F C.点G D.点H二、填空题13.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.14.函数y=中自变量x的取值范围是________.3x+15.一个三角形的面积始终保持不变,它的一边的长为xcm,这边上的高为ycm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2;-(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x 多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).16.李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=________.17.如图所示,梯形的上底长是5厘米,下底长是13厘米,当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是__________,因变量是__________. (2)梯形的面积2(cm )y 与高x (厘米)之间的关系式为__________. (3)当梯形的高由10厘米变化到1厘米时,梯形的面积由__________2cm 变化到__________2cm .18.如图,梯形的上底长是5 cm,下底长是11 cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是____________,因变量是____________; (2)梯形的面积y(cm 2)与高x(cm)之间的关系式为____________;(3)当梯形的高由10 cm 变化到1 cm 时,梯形的面积由____________变化到____________. 19.如图①,在直角梯形ABCD 中,动点P 从点B 出发,沿BC 、CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y .若y 关于x 的函数图象如图②所示,则△BCD 的面积是__.20.如图,是小明从学校到家里行进的路程s (米)与时间t (分)的函数图象.观察图象,从中得到如下信息: ①学校离小明家1000米; ②小明用了20分钟到家; ③小明前10分钟走了路程的一半; ④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).三、解答题21.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25min ,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB 、OB 分别表示父子俩送票、取票过程中离体育馆的路程()s m 与所用时间(min)t 之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O 点表示________;A 点表示________;B 点表示________.(2)从图中可知,小明家离体育馆________m ,父子俩在出发后________min 相遇. (3)你能求出父亲与小明相遇时距离体育馆还有多远? (4)小明能否在比赛开始之前赶回体育馆?22.一根长80cm 的弹簧,一端固定,如果另一端挂上物体,那么在弹性范围内,物体的质量每增加1kg ,弹簧伸长2cm . (1)填写下表: 所挂物体的质量/kg 1234… 弹簧的总长度/cm…(2)如何表示在弹性范围内所挂物体的质量(kg)与弹簧的总长度(cm)之间的数量关系? 23.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油实验,得到如下数据: 轿车行驶的路程10 20 30 40 ···()s km油箱剩余油量()w L 50 49.2 48.4 47.6 46.8 ···(1)该轿车油箱的容量为 L ,行驶100km 时,油箱剩余油量为 L(2)根据上表的数据,写出油箱剩余油量()w L 与轿车行驶的路程()s km 之间的表达式w = .(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时油箱剩余油量为26L ,求,A B 两地之间的距离?24.下图表示购买某种商品的个数与付款数之间的关系 (1)根据图形完成下列表格 购买商品个数(个) 2 4 6 7 付款数(元)(2)请写出表示付款数y (元)与购买这种商品的个数x (个)之间的关系式.25.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程 后,乙开始出发,当乙超出甲 150 米时,乙停在原地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图所示是甲、乙两人在跑步的全过程中经过的路程 y (米)与甲出发的时间 x (秒)之间关系的图象.(1) 在跑步的全过程中,甲一共跑了 米,甲的速度为 米/秒.(2)求图中标注的 a 的值及乙跑步的速度.(3)乙在途中等候了多少时间?26.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:x 121322523468…y 1343213122120763273…②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】结合表格中数据变化规律进而得出y是x的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.2.B解析:B【解析】【分析】根据常量、变量的定义,可得答案.【详解】在圆的面积公式S=πr2中,π是常量,S、r是变量,故选B.【点睛】本题考查常量与变量,常量是在事物的变化中保持不变的量.3.B解析:B【分析】理解洗衣机的四个过程中的含水量与图象的关系是关键.【详解】因为进水时水量增加,函数图象的走势向上,所以可以排除D,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除C,对于A、B,因为题目中明确说明了一开始时洗衣机内无水.故选B.【点睛】本题考查了函数的图象,关键是理解题意,从图象中准确读取信息.4.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.5.A解析:A【解析】A选项中,“若变量x、y满足x+3y=1,则y是x的函数”这种说法是正确的;B选项中,因为无论x取何值,式子y=都无意义;所以“若变量x、y满足y=,则y是x的函数”的说法是错误的;C选项中,因为当x的值为正时,和它对应的y的值有两个,所以“变量 x , y 满足| y ∣= x ,则 y 是 x 的函数”的说法是错误的;D选项中,因为当x的值为正时,和它对应的y的值有两个,所以“变量 x , y 满足 y2 = x ,则 y 是 x 的函数”的说法是错误的.故选A.点睛:判断一个含有两个变量x、y的关系式中,变量y是否是变量x的函数,需注意以下两点:(1)变量x的取值要使式子要有意义;(2)对于变量x每取定的一个值,变量y 都有唯一确定的值与之对应.6.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.7.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.8.D解析:D【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y之间的关系式为:y=8+1.8(x-3)=1.8x+2.6.故选D.9.B解析:B【分析】根据“油箱中剩余的油量=原有存油量-流出的油量”结合题中已知条件列式表达即可.【详解】由题意可得:Q=20-0.2t.故选B.【点睛】读懂题意,知道“油箱中剩余的油量=原有存油量-流出的油量”是解答本题的关键.10.C解析:C【解析】因为慢车和快车从相距500千米的甲乙两地同时出发,则时间为0小时,两车相距距离为500千米,经过4小时,两车相遇,则此时两车相距距离为0,相遇之后快车经过小时先到达甲地,此时两车相距(75+50) ×=千米>250千米,然后再经过小时,慢车到达乙地,此时两车相距500千米,故选C.11.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C. 12.C解析:C【解析】∵2.39+3.57+1.185=7.145,∴点M运动的路程为7.145时,到达G点,这个顶点是点G.故选C二、填空题13.变为【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算即可得到答案【详解】解:三角形的面积最小值为最大值为故三角形的面积变化范围是三角形的面积由15变为50故答案为:变为【点睛】解析:15变为50【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算,即可得到答案.【详解】解:三角形的面积最小值为1310 2⨯⨯,最大值为1101050 2⨯⨯=,故三角形的面积变化范围是三角形的面积由15变为50.故答案为:15变为50.【点睛】本题主要考查了三角形的面积公式,能利用三角形面积公式计算三角形面积的是解题的关键.14.x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时应该是取让两个条件都满足的公共部分【详解】根据题意得到:x+3>0解得x>-3故答案为x>-3解析:x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【详解】根据题意得到:x+3>0,解得x>-3,故答案为x>-3.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.15.(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果【详解】(1)当x越来越大时y越来越小;(2)这个三角形的面积等于xy=2cm2;(3)无论x多么的大y总是大于解析:(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果.【详解】(1)当x 越来越大时,y 越来越小;(2)这个三角形的面积等于12xy=2cm 2; (3)无论x 多么的大,y 总是大于零. 考点:本题考查的是三角形的面积公式,函数的图象【点睛】解答本题的关键是读懂题意,得到图象的特征及规律,再根据这个规律解决问题. 16.10x +20【解析】根据总费用=成人票用钱数+学生票用钱数可得y=10x+20故答案为10x+20解析:10x +20【解析】根据总费用=成人票用钱数+学生票用钱数,可得y=10x+20.故答案为10x+20.17.梯形的高梯形的面积909【解析】(1)自变量是梯形的高因变量是梯形的面积;(2)梯形的面积y(cm²)与高x(cm)之间的关系式为:y=(5+13)x×=9x ;(3)当梯形的高是l0cm 时y=9×1解析:梯形的高 梯形的面积 9y x = 90 9【解析】(1)自变量是梯形的高,因变量是梯形的面积;(2)梯形的面积y(cm²)与高x(cm)之间的关系式为:y=(5+13)x×12=9x ; (3)当梯形的高是l0cm 时,y=9×10=90,当梯形的高是l0cm 时,y=9×1=9,梯形的面积由90cm²变化到9cm².故答案为:梯形的高, 梯形的面积, y=9x , 90, 9. 18.梯形的高梯形的面积y=8x80cm28cm2【解析】(1)由题意可知:在上述变化过程中自变量是梯形的高;因变量是梯形的面积;(2)梯形的面积y(cm2)与高x(cm)之间的关系式为:;(3)∵当梯形解析:梯形的高 梯形的面积 y=8x 80cm 2 8cm 2【解析】(1)由题意可知:在上述变化过程中,自变量是“梯形的高”;因变量是“梯形的面积”;(2)梯形的面积y(cm 2)与高x(cm)之间的关系式为:1(511)82y x x =+=; (3)∵当梯形的高10x =时,梯形的面积10880y =⨯=(cm 2), 当梯形的高1x =时,梯形的面积188y =⨯=(cm 2),∴当梯形的高由10cm 变化到1cm 时,梯形的面积由80cm 2变化到8cm 2.故答案为:(1). 梯形的高 (2). 梯形的面积 (3). y=8x (4). 80cm 2 (5). 8cm 2.19.3【解析】动点P 从直角梯形ABCD 的直角顶点B 出发沿BCCD 的顺序运动则△ABP面积y在BC段随x的增大而增大;在CD段△ABP的底边不变高不变因而面积y不变化由图2可以得到:BC=2CD=3∴S△解析:3【解析】动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化,由图2可以得到:BC=2,CD=3,∴S△BCD=12×2×3=3,故答案为:3.【点睛】本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键.20.①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米故①正确;②由图象的横坐标可以看出小明用了20到家故②正确;③由图象的纵横坐标可以看出小明前10分钟走的路程较少故③错误;④由图象的纵横坐解析:①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米,故①正确;②由图象的横坐标可以看出小明用了20到家,故②正确;③由图象的纵横坐标可以看出,小明前10分钟走的路程较少,故③错误;④由图象的纵横坐标可以看出,小明后10分钟比前10分钟走得快,故④正确;故答案为①,②,④.点睛: 主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.三、解答题21.(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有900m;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间=900180=5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB 、OB 分别表示父、子送票、取票过程,∴O 点表示体育馆,A 点表示小明家;B 点表示小明与他父亲相遇的地方;(2)∵O 点与A 点相距3600米,∴小明家离体育馆有3600米,∵从点O 点到点B 用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x 米/分,则他父亲的速度为3x 米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B 点到O 点的速度为3x=180米/秒, ∴从B 点到O 点的所需时间=900180=5(分), 而小明从体育馆到点B 用了15分钟, ∴小明从点O 到点B ,再从点B 到点O 需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.故答案为:体育馆,小明家,小明与他父亲相遇的地方;3600,15;900;小明能在比赛开始之前赶回体育馆.【点睛】本题考查了函数图象:函数图象反映两个变量之间的变化情况,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.22.(1)82 84 86 88;(2)(802)cm y x =+【解析】【分析】(1)根据题意,运用代数法即可完成.(2)根据弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度,可得函数解析式.【详解】解:(1)80+1×2=82;80+2×2=84;80+3×2=86;80+4×2=88;故答案为:82 、84 、86 、88.(2)设所挂物体的质量为(0)kg x x ,弹簧从长度为y ;那么弹簧伸长的长度为2cm x ,所以弹簧的总长度: (802)cm y x =+.【点睛】本题考查了函数解析式,利用了弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度;解题的关键在于正确的审题.23.(1)50,42;(2)500.08w s =-;(3)A 、B 两地之间的距离是300km.【分析】(1)由表格中的数据可知,该轿车的油箱容量为50L ,汽车每行驶10km ,油量减少0.8L ,据此可求油箱剩余油量;(2)由表格中的数据可知汽车每行驶10km ,油量减少0.8L ,据此可求w 与s 的关系式; (3)把w =26代入(2)中的关系式求得相应的s 值即可.【详解】解:(1)由表格中的数据可知,该轿车的油箱容量为50L ,行驶100km 时,油箱剩余油量为100500.84210-⨯=(L ); 故答案是50,42; (2)观察表格在的数据可知,汽车每行驶10km ,油量减少0.8L ,据此可得w 与s 的关系式为500.08w s =-;故答案为500.08w s =-;(3)当w =26时,50-0.08s =26,解得s =300.答:A 、B 两地之间的距离是300km.【点睛】本题考查的是一次函数的应用,关键是读懂题意,找出规律,正确列出w 与s 的关系式,明确行驶路程为0时,即为油箱的容量.24.(1)4;8;12;14;(2)付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y =kx ,代入x 与y 的值即可解得k 为2,及关系式为y =2x .【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为:4;8;12;14;(2)设付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =kx , 根据题意得:4=2k ,解得k =2,∴付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【点睛】本题考查一元一次方程,根据题意列出关系式并解出k 的值是解题的关键.25.(1) 900;1.5;(2)a 的值为 750 米,乙的跑步速度为 2.5(米 / 秒);(3)100 秒【解析】试题分析:(1)由图中信息可知,甲一共跑了900米,用时600秒,由此即可求得甲的速度为1.5米/秒;(2)由图中的信息可知,第500秒时,甲共跑了a 米,由此结合(1)中所得甲的速度即可求得a 的值;(3)由图中信息结合(2)中所得a 的值,可知乙在60秒内跑了150米,由此可得乙的速度为:2.5米/秒,由此即可计算出乙从出发到休息时所用时间为750÷2.5=300(秒);由图中信息结合(1)中所得甲的速度可知,乙是在甲出发100秒后出发的;这样结合图中信息就可得乙在中途等候的时间为:500-100-300=100(秒).试题(1)由图中信息可知,甲一共跑了900米,用时600秒,∴甲的速度为:900÷600=1.5(米/秒);(2)由图中信息可得,图中:a=1.5×500=750(米);(3)由图中信息结合a=750可得:乙的速度为:(900-750)÷(560-500)=2.5(米/秒),由图中信息可得:乙出发时甲已经跑了:150÷1.5=100(秒),乙从出发到中途等候时共跑了750÷2.5=300(秒),∴乙在中途等候的时间为:500-100-300=100(秒).点睛:本题解题的要点是弄清函数图象中以下几个点的实际意义:(1)点A 表示甲跑完150米时所用的时间,也是乙出发的时间;(2)B 表示乙跑完a 米,开始休息时的时间;(3)C 点表示甲跑完a 米,追上乙时所对应的时间为500秒;(4)D 表示乙跑完全程900米时,所对应的时间是第560秒;(5)E 表示甲跑完全程900米,用时600秒. 26.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- ,由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-, (2)①根据解析式,补全下表: x 12 1 322 5234 6 8 … y 134 32 1312 1 2120 76 32 73 134 …(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,∴y 2<y 1<y 3,故答案为y 2<y 1<y 3,②观察图象得:x ≥12,图象最低点为(2,1), ∴当直线y =k 与该图象有两个交点时,1<k ≤134 , 此时x 的范围是:12≤x ≤8. 故答案为1<k ≤134,12≤x ≤8. 【点睛】 此题考查待定系数法求反比例函数的解析式,列出方程式解题关键。

人教版七年级数学上册第三章测试卷(附答案解析)[2]

人教版七年级数学上册第三章测试卷(附答案解析)[2]

(完整版)人教版七年级数学上册第三章测试卷(附答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)人教版七年级数学上册第三章测试卷(附答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)人教版七年级数学上册第三章测试卷(附答案解析)(word版可编辑修改)的全部内容。

人教版七年级数学上册第三章测试卷第三章一元一次方程一、选择题(每小题3分,共30分)1。

下列方程是一元一次方程的是()A.x-2=3B.1+5=6C.x2+x=1 D。

x-3y=02。

方程2x+3=7的解是( )A.x=5B.x=4 C。

x=3.5 D。

x=23.下列等式变形正确的是()A.若a=b,则a-3=3-bB.若x=y,则错误!=错误!C。

若a=b,则ac=bc D。

若错误!=错误!,则b=d4.把方程3x+2x-13=3-错误!去分母正确的是()A.18x+2(2x-1)=18-3(x+1)B。

3x+(2x-1)=3-(x+1)C.18x+(2x-1)=18-(x+1)D.3x+2(2x-1)=3-3(x+1)5.若关于x的方程x m-1+2m+1=0是一元一次方程,则这个方程的解是()A。

-5 B.-3 C。

-1 D.56.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为( )A.518=2(106+x)B.518-x=2×106C。

518-x=2(106+x) D.518+x=2(106-x)7。

最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(有答案解析)(2)

最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(有答案解析)(2)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( )A .()2,0-B .()2,2-C .()2,0D .()5,12.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( ) A .3 B .1C .1或3D .2或33.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( ) A .(-2,3)B .(2,-3)C .(3,2)D .不能确定4.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)5.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 6.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限7.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( ) A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-8.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( ) A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)9.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3-10.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 11.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47二、填空题13.下列四个命题中: ①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等; ③如果两个实数的平方相等,那么这两个实数也相等; ④当0m ≠时,点()2,P m m -在第四象限内. 其中真命题有________(填序号).14.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.15.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.16.写一个第三象限的点坐标,这个点坐标是_______________.17.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.18.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.19.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=, (1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.20.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.三、解答题21.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形 ()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OABS=?若存在,求出点B 的坐标;若不存在说明理由.22.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=.(1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积. (3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.23.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).24.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.25.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.26.已知()4,0A ,点B 在x 轴上,且5AB =. (1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABDS=,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点A 的平移规律,求出点'C 的坐标即可. 【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,,故选:C.【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.2.C解析:C【分析】根据点A到x轴的距离与到y轴的距离相等可得3m-5=m+1或3m-5=-(m+1),解出m的值.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3m-5=m+1或3m-5=-(m+1),解得:m=3或1,故选:C.【点睛】本题考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.3.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A解析:A【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2020的坐标.【详解】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2020÷4=505,所以A2020的坐标为(505×2,0),则A2020的坐标是(1010,0).故选:A.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.5.D解析:D【分析】根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D.【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.6.C解析:C【分析】确定出n+2为负数时,1-n一定是正数,再根据各象限内点的坐标特征解答.【详解】解:当n+2<0时,n<﹣2,所以,1﹣n>0,即点A的横坐标是负数时,纵坐标一定是正数,所以,点A不可能在第三象限,有可能在第二象限;当n+2>0时,n>﹣2,所以,1﹣n有可能大于0也有可能小于0,即点A的横坐标是正数时,纵坐标是正数或负数,所以,点A可能在第一象限,也可能在第四象限;综上所述:点A不可能在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.A解析:A 【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可. 【详解】解:∵230,40x y -=-= ∴x=±3,y=±2∵点(,)M x y 在第二象限 ∴x <0,y >0 ∴x=-3,y=2∴M 点坐标为(-3.2). 故答案为A . 【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键.8.C解析:C 【分析】由于线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B (-4,-1)的对应点D 的坐标. 【详解】∵线段CD 是由线段AB 平移得到的, 而点A (-1,4)的对应点为C (4,7),∴由A 平移到C 点的横坐标增加5,纵坐标增加3,则点B (-4,-1)的对应点D 的坐标为(-4+5,-1+3),即(1,2). 故选:C . 【点睛】本题考查了坐标与图形变化-平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.A解析:A 【分析】根据轴对称的性质分别求出P 1, P 2,P 3,P4,P 5,P 6的坐标,找出规律即可得出结论. 【详解】解:∵P (-3,1),∴点P 关于直线y=x 的对称点P 1(1,-3),P 1关于x 轴的对称点P 2(1,3), P 2关于y 轴的对称点P 3(-1,3), P 3关于直线y=x 的对称点P 4(3,-1), P 4关于x 轴的对称点P 5(3,1), P 5关于y 轴的对称点P 6(-3,1), ∴6个点后循环一次,∵当n=2019时, 2019÷6=336…3, ∴2019P 的坐标与P 3(-1,3)的坐标相同, 故选:A . 【点睛】本题考查的是坐标的对称变化,根据各点坐标找出规律是解答此题的关键.10.B解析:B 【分析】由题意易得121223341....2n n OA OA A A A A A A A A +=======,则根据平移方式可得每三个连续的点构成一个等边三角形的顶点,故可得2019A 所在位置,然后进行求解即可. 【详解】解:由题意及图像得:121223341....2n n OA OA A A A A A A A A +=======, 将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……,∴每三个连续的点构成一个等边三角形的顶点, ∴20193673÷=, ∴2019A 在x 轴上,()()()3694,0,8,0,12,0....A A A∴2019A 的横坐标为:6734=2692⨯, ∴()20192692,0A ;故选B . 【点睛】本题主要考查点的坐标规律,关键是根据题意得到点的坐标规律,然后进行求解即可.11.B解析:B 【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此可以作出判断. 【详解】解:∵﹣2019<0,2018>0,∴在平面直角坐标系中,点P (﹣2019,2018)所在的象限是第二象限. 故选:B .【点睛】此题主要考查了象限内点的坐标符号特征,要熟练掌握.12.B解析:B【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),所以,第2016个点的横坐标为45.故选:B.二、填空题13.①【分析】根据对顶角相等平行线的性质实数的平方不同象限内点的坐标的特征进行判断【详解】解:①对顶角相等故①是真命题;②如果两条平行线被第三条直线所截那么同位角相等故②是假命题;③如果两个实数的平方相解析:①【分析】根据对顶角相等、平行线的性质、实数的平方、不同象限内点的坐标的特征进行判断.【详解】解:①对顶角相等,故①是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,故②是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,故③是假命题;④当m≠0时,点P(m2,﹣m)在第四象限内或第一象限内,故④是假命题;故答案为:①.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向 解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.15.1或【分析】根据纵坐标相同的点平行于x 轴再分点N 在点M 的左边和右边两种情况讨论求解【详解】∵∴M 与N 两点连线与x 轴平行∴即解得:【点睛】本题考查了坐标与图形性质是基础题难点在于要分情况讨论解析:1或73-【分析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】∵2M N y m y =+=,∴M 与N 两点连线与x 轴平行,∴|23(1)|5MN m m =+--=,即|32|5m +=,325m +=±,解得:11m =,273m =-. 【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论. 16.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如( 解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.17.(ab )【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC 进行循环往复的轴对称变换∴对应图形4次循解析:(a ,b ).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同,故其坐标为:(a ,b ).故答案为:(a ,b ).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A 点变化规律是解题关键. 18.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.19.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.20.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至 解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.三、解答题21.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】(1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得 ()1232b a ab +-=, 即3b =,点B 在第一象限, 3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.22.(1)B 点坐标为(4,6),A 点坐标为(4,0),C 点坐标为(0,6);(2)3;(3)点P 的坐标为(2,32-)或(2,92). 【分析】(1)根据非负数的性质得a-b+2=0,2a-b-2=0,解得a=4,b=6,则B 点坐标为(4,6),由于线段BA ⊥x 轴于A 点,线段BC ⊥y 轴于C 点,易得A 点坐标为(4,0),C 点坐标为(0,6);(2)利用线段中点坐标公式得到点D 的坐标为(4,3),点E 的坐标为(2,32),再根据三角形面积公式和AEC AOC AOE COE S S S S =--△△△△进行计算;(3)由于点P (2,a ),点E 的坐标为(2,32),,则32PE a =-,利用三角形面积公式即可求解.【详解】(1)∵2(2)|22|0a b a b -++--=, ∴20a b -+=,220a b --=,∴4a =,6b =,∴B 点坐标为 (4,6),∵线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,∴A 点坐标为(4,0),C 点坐标为(0,6);(2)∵点D 是AB 的中点,∴点D 的坐标为(4,3),∵点E 是OD 的中点,∴点E 的坐标为(2,32), ∴AEC AOC AOE COE S S S S =--△△△△1131644622222=⨯⨯-⨯⨯-⨯⨯ 3=.(3)∵点P 的坐标为(2,a ),点E 的坐标为(2,32), ∴32PE a =-, ∵AEP AEC S S =△△, ∴132322a ⨯⨯-=, ∴32a =-或92, ∴点P 的坐标为(2,32-)或(2,92). 【点睛】本题考查了坐标与图形性质、偶次方和算术平方根的非负性质、矩形的性质等知识.记住坐标轴上点的坐标特征是解题的关键.23.(1)能,ABC 向左平移2(m -a )个单位;(2)A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【分析】(1)根据平移的性质判断能否通过平移使ABC 与222A B C △重合,根据直角坐标系和三角形的边长判断平移的单位;(2)根据平移的特点并结合直角坐标系即可确定点33A B 、坐标.【详解】(1)由图可知能通过平移使ABC 与222A B C △重合,∵点C (m ,1),BC =a又ABC 与111A B C △关于直线l 对称,∴点C 1(m -2a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点C 2(﹣m +2a ,1)∴平移单位:m -(﹣m +2a )=2(m -a )个单位使ABC 与222A B C △重合, (2)∵点C (m ,1),BC =a ,AC =b∴点A (m ,1+b ),点B (m -a ,1)又ABC 与111A B C △关于直线l 对称,∴点A 1(m -2a ,1+b ),B 1(m -a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点A 2(﹣m +2a ,1+b ),B 2(﹣m +a ,1)∵333A B C △与222A B C △关于x 轴对称∴点A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【点睛】本题主要考查平面直角坐标系,点的坐标、平面图形的平移的性质,轴对称图形的性质,解题的关键是平面图形的平移的性质,轴对称图形的性质,利用数形结合的数学思想. 24.(1)+3,+4;+2,0;+1,-2;(2)见解析【分析】(1)根据规定及实例可知A→C 记为(+3,+4),B→C 记为(+2,0),C→D 记为(+1,-2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P 的坐标,在图中标出即可.【详解】(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,+4);B→C 记为(+2,0);C→D 记为(+1,-2);故答案为:+3,+4;+2,0;+1,-2;(2)P 点位置如图所示..【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.25.儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【分析】直接利用学校的坐标是()2,5,得出原点位置进而得出答案.【详解】如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.26.(1)()1,0B -或()9,0;(2)()0,4C或()0,4-;(3)()1,6D 或()11,6D -- 【分析】(1)由题意知A 和B 都在x 轴上,根据两点间的距离可得B 的坐标;(2)设点C 的坐标为()0,C y ,则1102ABC S AB y =⋅⋅=△,求解即可; (3)由题意可得15122ABD A S B a =⋅⋅=+△,求出a 的值代入即可. 【详解】解:(1)∵()4,0A ,点B 在x 轴上,且5AB =,∴()1,0B -或()9,0;(2)设()0,C y ,则1102ABC S AB y =⋅⋅=△, 解得4y =±,∴点C 的坐标为()0,4C 或()0,4-;(3)根据题意可得15122ABD A S B a =⋅⋅=+△, 解得4a =或8a =-, ∴点D 的坐标为()1,6D 或()11,6D --.【点睛】本题考查坐标与图形,掌握三角形的面积公式是解题的关键.。

北师大版七年级上册数学第三章整式及其加减测试题2

北师大版七年级上册数学第三章整式及其加减测试题2

第三章 整式及其加减周周测2一.选择题(每小题3分,共18分) 1.下列式子中①a 3;②n m ÷53;③18%x ;④)(21n s -;⑤h -30米,符合代数式书写格式的有( ).A .1个B .2个C .3个D .4个2.某商品连续两次涨价10%后的价格为a 元,那么商品的原价是( ).A .a ×1.12元B .21.1a元 C .a ×0.92元 D .92.0a 元 3.下列叙述中:①a 是代数式,1不是代数式;②m 除以4的商与3的和的立方用代数式表示是3)34(+m ;③代数式2)11(ba +的意义是a 与b 倒数的平方和;④当m 表示整数时,2m 表示偶数,2m +1表示奇数,其中正确个数有( )A .1个B .2个C .3个D .4个4.数学课上,张老师编制了一个程序,当输入一个有理数时,显示屏上的结果总是所输入的有理数的平方与1的差的2倍.若输入-1,并将显示的结果再次输入,这时显示的结果是( ).A .0B .-1C .-2D .-45.按某种标准,多项式5x 3-3和a 2b + 2ab 2-5属于同一类,则下列哪一个多项式也属于此类( ).A .3x 3 + 2xy 4B .x 2 – 2C .m 2 + 2mn + n 2D .abc – 86.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程长是x 千米,那么x 的最大值是( ).A .5B .7C .8D .11 7.下列说法中正确的有( ).A .x 的系数是1,次数是0B .式子-0.3a 2,7522yx ,-5,t 都是单项式C .3x 4-5x 2y 2 – 6y 4 – 2是四次四项式D .一个五次多项式最多有6项 8.要使217+x 的值为整数,则整数x 的值有( ). A .-1 B .-3 C .15 D .-19二.填空题(每小题3分,共18分)9.一个教室有2扇门和6扇窗户,n 个这样的教室有___扇门和___扇窗户;一个关于x 的二次三项式,二次项系数为2,常数项与一次项系数的和为-6,且常数项是最大的负整数,则这个多项式按x 的升幂排列形式是______________.10.一个三位数+位数字是a ,个位数字上3,百位数字是b ,则这个三位数为___;若(a – 2)x 2y |a |+1是关于x 、y 的五次单项式,则a =_____;当x =4时,代数式x 2-2x +m 的值为0, 则m =_____.11.已知关于x 的多项式(m – 2)x 2 – mx –3中的x 的一次项系数为-2,则这个多项式为______;小马虎在计算50+n 时,误将“+”看成“-”,结果得32,则50+n 的值为____;当5=+-n m n m 时,代数式nm n m n m n m -+-+-)(5)(6的值是_____________.12.观察下列各式:a 1=3×1-2=1,a 2=3×2-2=4,a 3=3×3-2=7,a 4=3×4-2=10,…,据此,你可以猜想出计算a n 的式子是a n =_________.13.写出所有以m 2,n 2,2mn ,-1为项的三项多项式为______________________14.一种品牌电脑,每台成本为a 元,将成本增加25%后出售,后因电脑的更新换代而滞销,因而按售价的92%出售,则每台电脑还能盈利_____元. 三.解答题15.(8分)已知:311221+-x 04=-y ,且x n y m –1+(m –2)是关于x 、y 的五次单项式,试求多项式mn – xy – xy 2的值.16.(10分)某股民将甲、乙两种股票卖出,甲种股票卖出a 元,盈利20%,乙种股票卖出b 元,但亏损20%,(1)试用代数式表示该股民在这次交易中盈利了多少元?(2)当a =1500,b =1600时,该股民在这次交易中是盈利还是亏损,盈利或亏损了多少元?17.(10分)当a =0.5时,b =41时,求下列代数式的值: (1)(a +b )2 ; (2)a 2+2ab +b 2据以上结果,这两个代数式的值有什么关系?②当a=1,b=3时,上述结论是否仍然成立?③再给a、b一组值试一试,上述结论是否仍然成立?④你能用简便方法算出当a=0.125,b=0.875时,a2+2ab+b2的值吗?18.(8分)已知多项式mx5 +nx3+P x– 4,当x=2时,此多项式的值为5,求当x=-2时,多项式的值.19.(10分)任选一题,只计一题算入总分(1)从1开始,连续的奇数相加,和的情况如右下表;①在上面横线处填空.②根据上面规律,推测从1开始,n个连续的奇数相加的和用一个代数式表示出来.③根据(2)中的结论,求当n=100时,它们的和是多少?(2)①如果依次用a 1,a 2, a 3, a 4分别表示图中(1)、(2)、(3)、(4)中三角形的个数,那么a 1 = 3, a 2 = 8 ,a 3 = 15, a 4 = ______. ②如果按照上述规律继续画图,那么a 9与a 8之 间的关系是a 9 = a 8+______.③若n 是正整数,依据上述规律,写出a n +1与 a n 之间的关系是a n +1=______.20.(10分)任选一题,只计一题算入总分.(1)某种型号的汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:行驶路程 n (km )耗油量 Q (L ) 剩油量 A (L ) 1 0.04 20-0.04 2 0.08 20-0.08 3 0.12 20-0.12 4 0.16 20-0.16 ………写出n 表示A 的公式,并计算当n =200时,A 是多少?(2)如图,猫捉老鼠,一只老鼠沿着长方形的两边A →B →D 的路线逃跑,一只猫同时沿着阶梯A →C →D 去捉,结果在距离点C 0.6米的D 处,猫捉住了老鼠.已知老鼠的速度是猫的1411.①请将右表中每句话“译成”数学语言.(列代数式)②该题还有一个条件没有,是哪一个,你能不能利用这个条件将有关的代数式连结起来.设阶梯A ――C 的长度为 x 米 AB +BC 的长为 A →C →D 的长为 A →B →D 的长为 设猫捉老鼠所用的时间为t 秒猫的速度是 老鼠的速度是21.(15分)星期一下午,校图书馆起初有a名同学在看书.(1)后来,七(2)班组织同学阅读,第一批来了b位同学,第二批来了c位同学.若这样理解,后来两批一共来了____位同学,因而图书馆共有____位同学;若换种角度考虑,图书馆内共有____名同学.于是,可以得到一个等式________①.(2)后来有些同学因上课要离开,第一批走了b位同学,第二批又走了c位同学,若这样理解,后来两批一共走了___位同学,因而图书馆内还剩下___位同学;若换种角度考虑,图书馆内还剩下___位同学.于是,可以得到一个等式______②.(3)观察等式①、②中括号与各项符号的变化,你能得出什么结论?试用文字简述出来.(4)按上述结论,将下列代数式变形:①a+(2m– 3n) ②a– (2m–3n)22.(15分)三个球队进行单循环比赛(参加比赛的每队都与其他所有的队各赛一场),总的比赛场数应是多少?若是4个球队参加比赛呢?5个球队呢?试根据上述规律,猜想一下,写出a个球队进行单环比赛时总的比赛场数k的公式,并计算当a=8时,一共赛的场数k的值.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.5B.4C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..则菱形ABCD的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。

华师版七年级数学上册第3章达标测试卷附答案 (2)

华师版七年级数学上册第3章达标测试卷附答案 (2)

华师版七年级数学上册第3章达标测试卷一、选择题(每题3分,共30分) 1.用代数式表示“a 与b 的差的两倍”,正确的是( )A .a -2bB .2a -bC .2(a -b )D.a -b 22.单项式-2a 2b 43的系数和次数分别是( )A .-23和6B.23和6 C .-2和6D .-23和43.下列各组中,不是同类项的是( )A .-x 2y 与2yx 2B .2ab 与12baC .-m 2n 与12mn 2D .23与324.下列运算正确的是( )A .a 3+a 2=a 5B .2x 2-3x 2=-x 2C .3a 2+4a 4=7a 6D .5a 2b -5b 2a =05.当a =b2(b ≠0)时,(8a -7b )-(4a -5b )等于( )A .0B .bC .2bD .4b 6.在下列去括号或添括号的变形中,正确的是( )A .a 2-(2a -b +c )=a 2-2a -b +cB .(a +1)-(-b +c )=a +1+b +cC .a -b +c -d =a -(b +c -d )D .3a -[5b -(2c -1)]=3a -5b +2c -17.如果一个多项式各项的次数都相同,那么这个多项式叫做齐次多项式.如:x 3+3xy 2+4xyz +2y 3是三次齐次多项式,若a x +3b 2-6ab 3c 2是齐次多项式,则x 的值为( ) A .-1 B .0 C .1 D .2 8.若A =2x 2-x +1,B =x 2-x -m 2,则A ,B 的大小关系是( )A .A <B B .A =BC .A >BD .与x 的值有关9.若M =x 2-2xy +y 2,N =x 2+2xy +y 2,则4xy 等于( )A .M -NB .M +NC .2M -ND .N -M 10.一台整式转化器原理如图所示,开始时输入关于x 的整式M ,当M =x +1时,第一次输出3x +1,继续下去,则第3次输出的结果是( )(第10题)A .7x +1B .15x +1C .31x +1D .15x +15 二、填空题(每题3分,共18分) 11.计算:-t -t -t =________.12.关于x 的多项式4x n +1-3x 2-x +2是四次多项式,则n =________.13.若M ,N 是两个多项式,且M +N =6x 2,则符合条件的多项式M ,N 可以是M=___________________,N =________________.(写出一组即可) 14.已知单项式7a m b 2与-a 4b n -1的和是单项式,那么m -n =________.15.已知A ,B 均是关于x 的整式,其中A =mx 2-2x +1,B =x 2-nx +5,当x =-2时,A -B =5,则n -2(m -1)=________.16.如图,用火柴棍拼成一排图形:第1个图形用了5根火柴棍,第2个图形用了9根火柴棍,第3个图形用了13根火柴棍,…,那么第n 个图形用了____________根火柴棍.(第16题)三、解答题(17题6分,18,20题每题8分,22题12分,其余每题9分,共52分) 17.已知多项式y 4-x 4+3x 3y -12xy 2-5x 2y 3.(1)按字母x 的降幂排列; (2)按字母y 的升幂排列.18.(1)若a =-2,b =-1,c =12,先化简,再求值:3a 2b -[3a 2b -(2abc -a 2c )-4a 2c ]-abc .(2)已知(x -3)2+|y +1|=0,先化简,再求值:4xy -2⎝ ⎛⎭⎪⎫32x 2-3xy +2y 2+3(x 2-2xy ).19.已知关于x的多项式(a-6)x4+3x-12x b-a是一个二次三项式,求:当x=-2时,这个二次三项式的值.20.若代数式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字母x的取值无关,求代数式3(a2-2ab-b2)-(4a2+ab+b2)的值.21.阅读理解:我们把形如ab 9ba(其中1≤a<b≤9且a,b为整数)的五位正整数称为“对称凸数”,形如cd 0dc(其中1≤c<d≤9且c,d为整数)的五位正整数称为“对称凹数”,例如:13 931,29 992是“对称凸数”,25 052,59 095是“对称凹数”.(1)最小的“对称凸数”为________,最大的“对称凹数”为________;(2)试说明:任意一个“对称凸数”减去它的各数位数字之和的差都能被9整除.22.对于不为0的一位数m和一个两位数n,将数m放置于两位数之前,将数m 放置于两位数的十位数字与个位数字之间就可以得到两个三位数,将较大三位数减去较小三位数的差与15的商记为F(m,n).例如:当m=1,n=68时,可以得到168,618,较大三位数减去较小三位数的差为618-168=450,而450÷15=30,所以F(1,68)=30.(1)计算F(2,17)的值;(2)若a是一位数,b是两位数,b的十位数字为x(1≤x≤8,x为自然数),个位数字为8,当16F(a,50)+12F(9,b)=8时,求a,b的值.答案一、1.C 2.A 3.C 4.B5.A 【提示】因为a =b2(b ≠0),所以(8a -7b )-(4a -5b )=8a -7b -4a +5b=4a -2b =4×b2-2b =2b -2b =0.6.D7.C 【提示】由题意,得x +3+2=6,解得x =1. 8.C 【提示】因为A =2x 2-x +1,B =x 2-x -m 2,所以A -B =(2x 2-x +1)-(x 2-x -m 2)=2x 2-x +1-x 2+x +m 2=x 2+1+m 2>0, 所以A >B .故选C. 9.D10.B 【提示】第一次输入M =x +1,得2⎝⎛⎭⎪⎫x +1+x 2+N =3x +1,整理得3x +2+N =3x +1,故2+N =1,解得N =-1.所以运算原理为⎝⎛⎭⎪⎫M +x 2×2-1.第二次输入M =3x +1,得⎝ ⎛⎭⎪⎫3x +1+x 2×2-1=7x +1.第三次输入M =7x +1,得⎝ ⎛⎭⎪⎫7x +1+x 2×2-1=15x +1.二、11.-3t 12.3 13.2x 2+1;4x 2-1(答案不唯一) 14.115.-52【提示】A -B =mx 2-2x +1-(x 2-nx +5)=mx 2-2x +1-x 2+nx -5=(m -1)x 2+(n -2)x -4.因为当x =-2时,A -B =5, 所以4(m -1)-2(n -2)-4=5, 即4m -2n =9,所以2m -n =92,所以n -2(m -1)=n -2m +2=-(2m -n )+2=-92+2=-52.16.(4n +1)三、17.解:(1)-x 4+3x 3y -5x 2y 3-12xy 2+y 4.(2)-x 4+3x 3y -12xy 2-5x 2y 3+y 4.18.解:(1)3a 2b -[3a 2b -(2abc -a 2c )-4a 2c ]-abc=3a 2b -3a 2b +(2abc -a 2c )+4a 2c -abc =2abc -a 2c +4a 2c -abc =abc +3a 2c ,当a =-2,b =-1,c =12时,原式=-2×(-1)×12+3×(-2)2×12=1+6=7.(2)4xy -2⎝ ⎛⎭⎪⎫32x 2-3xy +2y 2+3(x 2-2xy ) =4xy -3x 2+6xy -4y 2+3x 2-6xy=-4y 2+4xy .因为(x -3)2+|y +1|=0, 所以x -3=0,y +1=0, 解得x =3,y =-1, 当x =3,y =-1时,原式=-4×(-1)2+4×3×(-1) =-4-12 =-16.19.解:根据题意得a -6=0,b =2,所以a =6,b =2,则原式=3x -12x 2-6,当x =-2时,原式=3×(-2)-12×(-2)2-6=-14.20.解:(2x 2+ax -y +6)-(2bx 2-3x +5y -1)=(2-2b )x 2+(a +3)x -6y +7,由题意,得2-2b =0,且a +3=0,所以b =1,a =-3,所以3(a 2-2ab -b 2)-(4a 2+ab +b 2)=-a 2-7ab -4b 2=-(-3)2-7×(-3)×1-4×12=8. 21.解:(1)12 921;89 098(2)设“对称凸数”为mn 9nm ,则“对称凸数”可表示为10 000m +1 000n +900+10n +m ,它的各数位数字之和为m +n +9+n +m , 因为10 000m +1 000n +900+10n +m -(m +n +9+n +m )=9 999m+1 008n+891=9(1 111m+112n+99),所以任意一个“对称凸数”减去它的各数位数字之和的差都能被9整除.22.解:(1)F(2,17)=(217-127)÷15=6.(2)因为16F(a,50)+12F(9,b)=8,所以16()|100a+50-500-10a|÷15+12[(900+10x+8-100x-90-8)÷15]=8,即|a-5|+(27-3x)=8,因为|a-5|≥0,1≤x≤8,x为自然数,所以x=7或x=8.当x=7时,a=3或a=7,b=78;当x=8时,a=0(舍去)或a=10(舍去).故a=3,b=78或a=7,b=78.华师版七年级数学上册第4章达标测试卷一、选择题(每题3分,共30分)1.在如图所示方位角中,射线OA表示的方向是( )A.东偏南60°B.南偏东60°C.西偏北30° D.北偏西30°(第1题) (第2题)2.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为( )A.圆锥,正方体,三棱锥,圆柱B.正方体,圆锥,四棱锥,圆柱C.正方体,圆锥,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱3.如图,观察图形,下列结论中不正确的是( )(第3题)A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线4.已知∠AOB是平角,过点O作射线OC将∠AOB分成∠AOC和∠BOC,若∠AOC <∠BOC,则∠BOC是( )A.锐角B.直角C.钝角D.无法确定5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )6.如图,点C在线段AB上,点D是AC的中点,如果CB=2CD,AB=20 cm,那么BC的长为( )A.5cm B.8 cm C.10 cm D.12 cm(第6题) (第7题) (第8题)7.如图,∠AOC=∠BOD=80°,如果∠AOD=140°,那么∠BOC等于( ) A.20°B.30°C.50°D.40°8.如图是一个正方体的表面展开图,则这个正方体是( )A B C D9.如图,长方形纸片ABCD中,M为AD边的中点,将纸片沿BM,CM折叠,使A 点落在A1处,D点落在D1处,若∠1=40°,则∠BMC为( )A.70°B.140°C.100°D.110°(第9题) (第10题)10.如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则搭成这个几何体的小正方体的个数不可能是( )A.3 B.4 C.5 D.6二、填空题(每题3分,共18分)11.若∠α=54°12′,则∠α的补角是________°.12.计算:125°÷4=____________.(结果不含小数)13.已知线段MN=16 cm,点P为任意一点,那么线段MP与NP和的最小值是________cm.14.如图是正方体的展开图,则正方体相对两个面上的数字之和的最小值是________.(第14题) (第16题)15.已知线段AB,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,如果AB=1 cm,则CD=________cm.16.小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.三、解答题(17~20题每题8分,其余每题10分,共52分)17.如图,平面上有四个点A,B,C,D,按要求画图,并回答问题:(1)画直线AB;(2)画射线AD;(3)画线段AC、线段CD、线段BC;(4)试写出图中以C为顶点的所有小于180度的角.(第17题)18.如图,C是线段AB上一点,M是AC的中点,N是BC的中点.(1)若AM=1,BC=4,求MN的长度;(2)若MN=5,求AB的长度.(第18题) 19.如图,OC是∠AOB内部的一条射线,∠BOC=2∠AOC,OD平分∠AOC. (1)若∠AOB=120°,求∠BOC和∠BOD的度数;(2)若OE为∠BOC的平分线,说明∠DOE=12∠AOB.(第19题)20.用小立方块搭一个几何体,其主视图和俯视图如图所示,俯视图中的小正方形上的字母及数字表示该位置小立方块的个数,试回答下列问题:(1)x,z各表示多少?(2)y可能是多少?这个几何体最少由几个小立方块搭成?最多呢?(第20题)21.如图,把一根绳子对折成线段AB,从点P处把绳子剪断,已知AP∶BP=2∶3,若剪断后的各段绳子中最长的一段为60 cm,求绳子的原长.(第21题) 22.已知一副三角板按如图①方式拼接在一起,其中边OA,OC与直线EF重合,∠AOB=45°,∠COD=60°.(1)图①中∠BOD=________°.(2)如图②,三角板COD固定不动,将三角板AOB绕着点O按顺时针方向旋转一个角度α,在转动过程中两块三角板都在直线EF的上方.①当OB平分OA,OC,OD其中的两边组成的角时,求满足要求的所有旋转角度α的值.②是否存在∠BOC=2∠AOD?若存在,求此时α的值;若不存在,请说明理由.(第22题)答案一、1.B 2.D 3.B 4.C 5.B6.C 提示:由点D是AC的中点,得AC=2CD.又因为CB=2CD,所以AC=CB,则BC=12AB=10 cm.7.A 提示:因为∠AOC=80°,∠AOD=140°,所以∠COD=∠AOD-∠AOC=60°.因为∠BOD=80°,所以∠BOC=∠BOD-∠COD=80°-60°=20°. 8.C 9.D 提示:因为∠1=40°,∠AMA1+∠1+∠DMD1=180°,所以∠AMA1+∠DMD1=180°-40°=140°.由折叠的性质可知∠AMB=∠BMA1,∠DMC=∠CMD1,所以∠BMA1+∠CMD1=70°.所以∠BMC=∠BMA1+∠CMD1+∠1=110°.10.D二、11.125.8 12.31°15′13.1614.6 提示:易得2和4是相对的两个面,3和5是相对的两个面,1和6是相对的两个面,所以正方体相对两个面上的数字之和的最小值是6. 15.4 提示:如图,由题意易得BC=1 cm,AD=2 cm,则CD=AD+AB+BC=2+1+1=4(cm).(第15题)16.45°三、17.解:(1)(2)(3)如图所示.(4)∠ACB,∠ACD,∠BCD.(第17题)18.解:(1)因为N是BC的中点,M是AC的中点,AM=1,BC=4,所以CN=12BC=2,CM=AM=1,所以MN=MC+CN=3.(2)因为M是AC的中点,N是BC的中点,MN=5,所以AB=AC+BC=2CM+2CN=2(CM+CN)=2MN=10.19.解:(1)设∠AOC=x,则∠BOC=2x,所以x+2x=120°,则x=40°,即∠AOC=40°,∠BOC=80°.因为OD平分∠AOC,所以∠DOC=20°,所以∠BOD=∠DOC+∠BOC=20°+80°=100°.(2)因为OD平分∠AOC,所以∠DOC=12∠AOC.因为OE平分∠BOC,所以∠EOC=12∠BOC,所以∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=12∠AOB.20.解:(1)x=3,z=1.(2)y可能是0或1或2.这个几何体最少由10个小立方块搭成;最多由12个小立方块搭成.21.解:①当点A是绳子的对折点时,将绳子展开,如图①.由题意得2AP=60 cm,所以AP=30 cm.因为AP∶BP=2∶3,所以BP=45 cm.所以绳子的原长为2(AP+BP)=150 cm.②当点B是绳子的对折点时,将绳子展开,如图②.由题意得2BP=60 cm,所以BP=30 cm.因为AP∶BP=2∶3,所以AP=20 cm.所以绳子的原长为2(AP+BP)=100 cm.综上,绳子的原长为150 cm或100 cm.(第21题)22.解:(1)75(2)①当OB平分∠AOD时,∠AOD=2∠AOB=90°,α=∠AOE=180°-∠AOD-∠COD=30°.当OB平分∠AOC时,∠AOC=2∠AOB=90°,α=∠AOE=180°-∠AOC=90°.当OB平分∠DOC时,因为∠DOC=60°,所以∠BOC=30°,所以α=∠AOE=180°-∠BOC-∠AOB=105°.综上所述,旋转角度α的值为30°,90°,105°.②存在∠BOC=2∠AOD.当OA在OD的左侧时,∠AOD=120°-α,∠BOC=135°-α,因为∠BOC=2∠AOD,所以135°-α=2(120°-α),所以α=105°.当OA在OD的右侧时,∠AOD=α-120°,∠BOC=135°-α,因为∠BOC=2∠AOD,所以135°-α=2(α-120°),所以α=125°.综上所述,当α的值为105°或125°时,∠BOC=2∠AOD.。

(完整版)北师大版七年级数学下册第三章测试题

(完整版)北师大版七年级数学下册第三章测试题

七年级单元检测博学审问慎思明辨第三章变量之间的关系单元检测题姓名:学号:成绩:一、选择题1.骆驼被称为“沙漠之舟〞,它的体温随时间的变化而变化,在这一问题中,因变量是〔〕A 、沙漠B、体温C、时间D、骆驼224cm,其中一边为x 〔其中x0〕,面积为y cm2 ,那么这样的长方形中y与 x 的关系.长方形的周长为能够写为〔〕A 、y x2B、y 12 x 2C、y 12x x图 1D 、y 2 12 x3.地表以下的岩层温度y随着所处深度x 的变化而变化,在某个地点y 与x的关系能够由公式y 35x20 来表示,那么y随 x 的增大而〔〕A 、增大B、减小C、不变 D 、以上答案都不对4.如图 1,射线l甲,l乙分别表示甲、乙两名运发动在自行车比赛中所走行程与时间的关系,那么他们行进的速度关系是〔〕A .甲比乙快B.乙比甲快C.甲、乙同速D.不用然5.为节约用水,某冲厕水箱经改造后,当水箱水满后就按必然的速度放掉水箱的一半水,随后马上按必然的速度注水,等水箱的水满后,又马上按必然的速度放掉水箱一半的水.下面的哪一幅图能够大体刻画水箱的存水量 V〔立方米〕与放水或注水的时间T〔分钟〕之间的关系〔〕A.B.C.D.6.某山区今年 6 月中旬的天气情况是:前 5 天毛毛雨,后 5 天暴雨.那么反响当地区某河流水位变化的图象大体是〔〕A.B.C.D.7.父亲节,学校“文苑〞专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时嘱咐语千万,学子满载信心去,老父怀抱希望还.〞若是用纵轴 y 表示父亲和学子在行进中离家的距离,横轴 x 表示离家的时间,那么下面与上述诗意大体相吻的图象是〔〕七年级单元检测博学 审问 慎思 明辨8.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度 b 与下降高度 d 的关系,下面能表示这种关系的式子是〔 〕d 50 80 100 150b 25 40 50 75A 、 b d2B 、 bdC 、 b 2dD 、 b d 2529. 如图是某市一天的温度随时间变化的图象,经过观察可知以下说法错误的选项是()A .这天 15 点时温度最高B .这天 3 点时温度最低C .这天 21 点时温度是 30 ℃D .这天最高温度与最低温度的差是13 ℃10. 李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修睦后,因怕耽误时间,于是加快了车速. 如用 s 表示李明离家的距离, t 为时间.在下 面给出的表示 s 与 t 的关系图中,吻合上述情况的是〔 〕11.下面说法正确的选项是〔 〕A .两个变量间的关系只好用关系式表示B .图象不能够直观的表示两个变量间的数量关系C .借助表格能够表示出因变量随自变量的变化情况D .以上说法都不对 12. 经测量,人运动时心跳速率平时和人的年龄有关.若是用 x 表示 一个人的年龄,用 Y 表示正常情况下这个人在运动时所能承受的每分 钟心跳的最高次数,那么 〔 220- x 〕,依照此关系式计算一个 18 岁的青少年所能承受的每分钟的最高心跳次数是 〔取整数〕〔 〕A .80B .100C .162D . 161 13.下面哪副图能表示切土豆的过程切 切 切 切面面 面 面的 的 的 的面 面 面 面积积积积时间时间时间时间ABCD二、填空题〔每空 2 分,共 30 分〕14.汽车以 60 千米 /时的速度行驶了 t 小时,行程 s 随着时间 t 的变化而变化,其中 ______是 自变量, ______因变量.15.△ ABC 的高是 3cm ,那么面积 S 与底边 x 间的数量关系可表示为 ______.七年级单元检测博学审问慎思明辨16.在圆的面积公式中, ______随______变化而变化, ______是自变量.17.购置单价 8.50 元的书 x 本所要的钱数 y=______.18.某种存储的年利率为 1.5%,存入 1000 元本金后,那么本息和 y〔元〕与所存年数 x 之间的关系式为 ______,3 年后的本息和为 ______元〔此利息要缴纳所得税的20%〕.19.小明和弟弟进行百米赛跑,小明比弟弟跑得快,若是两人同时起跑,小明必然赢.如图2 所示,现在小明让弟弟先跑______米,直线______表示小明的行程与时间的关系,大体______秒时,小明追上了弟弟,弟弟在此次赛跑中的速度是______米/秒.图 3图 220.若是每盒圆珠笔有 12 支,售价 18 元,用 y〔元〕表示圆珠笔的售价, x 表示圆珠笔的支数,那么y 与 x 之间的关系应该是.三、解答题〔每题10 分,共 40 分〕21. 某文具店销售书包和文具盒,书包每个定价30 元,文具盒每个定价 5 元.该店拟定了两种优惠方案;①买一个书包赠予一个文具盒;②按总价的 9 折( 总价的 90%) 付款,某班学生需购置 8 个书包、文具盒假设干 ( 很多于 8 个) ,若是设文具盒数 x( 个) ,付款数为 y( 元) .(1)分别求出两种优惠方案中 y 与 x 之间的关系式.(2) 购置文具盒多少个时,两种方案付款相同,购置文具盒数大于 8 时,两种方案中哪一种更省钱 ?22.如图,它表示甲乙两人从同一个地点出发后的情况。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (71)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (71)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案)一、解答题1.小明用的练习本可以到甲、乙两家商店购买,已知两商店该练习本的标价都是每本1元.甲商店的优惠方案是购买10本以内(包括10本)没有优惠,购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠方案是从购买第一本起按标价的80%出售.(1)若小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款______元,当小明到乙商店购买时,须付款______元;(2)买多少本练习本时,两家商店付款相同?(3)若小明要购买50本练习本,应到哪家商店购买较便宜?【答案】(1)(0.7x+3),0.8x;(2)买30本练习本时,两家商店付款相同;(3)应选择甲商店.【解析】【分析】(1)若设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款10+(x-10)•70%=0.7x+3,当到乙商店购买时,须付款0.8x;(2)利用(1)中关系式相等得出答案;(3)把50代入(1)中关系式,从而求解.【详解】解:(1)若设小明要购买x(x>10)本练习本,甲商店:10+(x-10)•70%=(0.7x+3);乙商店:0.8x;故答案为:(0.7x+3),0.8x;(2)当x≤10时,甲商店一定比乙商店贵;∴x>10∴0.7x+3=0.8x,解得:x=30;答:买30本练习本时,两家商店付款相同;(3)∴0.7×50+3=38;0.8×50=40>38.∴应选择甲商店.【点睛】此题考查一元一次方程的实际运用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.重温例题:小丽在水果店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?解决问题:(1)设所购买的苹果质量为xkg.请你将下列同学的探究过程补充完整.①小明同学列出了下表,并根据相等关系“买苹果的金额+买橘子的金额=18元”,可得方程:______.②小红、小王、小颖三位同学分别给出了不同于小明同学的表格和方程,请补充完整.(友情提醒:表格中的空格表达式不同于小明所填的,所列方程不要化简.)i小红根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程______.ii小王根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程______.iii小颖根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程______.(2)设苹果购买金额为y元,下列方程正确的是______.(填写正确的序号)①1863.2 2.6y y-+=;②y+2.6(6-183.2y-)=18;③3.2(6-182.6y-)=y;④3.2(6-182.6y-)=18-y.【答案】(1)3.2x+2.6(6-x)=18 x+18 3.22.6x-=6 18 3.22.6x- 3.2x=18-2.6(6-x)18-2.6(6-x) 2.6(6-x)=18-3.2x18-3.2x; (2) ①③【解析】【分析】(1)根据“苹果质量+橘子质量=6kg,苹果单价×苹果质量=苹果购买金额和橘子的单价×其质量=橘子购买金额”填表、列出方程即可;(2)分别根据“苹果质量+橘子质量=6kg和苹果单价×苹果质量=苹果购买金额”可得答案.【详解】(1)①设小丽买了x千克的苹果,则她买橘子(6-x)千克.由题意得:3.2x+2.6(6-x)=18;故答案为:3.2x+2.6(6-x)=18;②i补全表格如下:根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程:x+18 3.22.6x-=6,故答案为:x+18 3.22.6x-=6;ii补全表格如下:根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程:3.2x=18-2.6(6-x),故答案为:3.2x=18-2.6(6-x).iii补全表格如下:根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程:2.6(6-x)=18-3.2x,故答案为:2.6(6-x)=18-3.2x.(2)设苹果购买金额为y元,所列方程正确的是①③,故答案为:①③.【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.3.汽车从甲地到乙地,若每小时行使45千米,则要比原计划延误半小时到达;若每小时行驶50千米,则就可以比原计划提前半小时到达.请你根据以上信息,就汽车行驶的“路程”或“时间”提出一个用一元一次方程解决的问题,并写出解答过程.(1)问题:______; (2)解答:【答案】(1)求汽车从甲地到乙地的路程;(2)450km . 【解析】 【分析】(1)根据题意提出数学问题,满足题意即可;(2)设汽车从甲地到乙地的路程为xkm ,由题意列出方程,求出方程的解即可得到结果.【详解】求汽车从甲地到乙地的路程解:(1)问题:求汽车从甲地到乙地的路程; 故答案为:求汽车从甲地到乙地的路程; (2)设汽车从甲地到乙地的路程为xkm , 则11452502x x -=+, 解得:x=450,答:汽车从甲地到乙地的路程为450km . 【点睛】此题考查了一元一次方程的应用,弄清题意是解本题的关键.4.如图,边长为4的正方形ABCD 中,动点P 以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?【答案】(1)t,(2)4t,(3)4t﹣4,8﹣4t,(4)当t等于1.5时,点Q 运动到DC的中点.(5)125【解析】【分析】(1)由路程=速度×时间,可得BP的值;(2)由路程=速度×时间,可得AQ的值;(3)由DQ=点Q的路程﹣AD的长度,可得DQ的值;由QC=CD﹣DQ,可求QC的长;(4)由路程=速度×时间,可得t的值;(5)由点P路程+点Q路程=AD+CD+BC,可求t的值.【详解】(1)∵动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,∴BP=1×t=t,故答案为t,(2)∵动点Q同时以每秒4个单位的速度从点A出发,∴AQ=4×t=4t,故答案为4t,(3)∵DQ=4t﹣AD∴DQ=4t﹣4,∵QC=CD﹣DQ∴QC=4﹣(4t﹣4)=8﹣4t故答案为4t﹣4,8﹣4t(4)根据题意可得:4t=4+2t=1.5答:当t等于1.5时,点Q运动到DC的中点.(5)根据题意可得:4t+t=4×3t=125时,点P与点Q相遇.答:当t等于125【点睛】本题四边形综合题,考查了正方形的性质,一元一次方程的应用,正确理解题意列出方程是本题的关键.5.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有250m墙面未来得及粉刷,同样时间内5名二级技工粉刷了10房间之外,还多粉刷了另外的240m墙面,每名一级技工比二级技工一天多粉刷210m墙面,求每名一级技工一天粉刷墙面面积.【答案】2122m【解析】【分析】设每个一级技工每天刷xm2,则每个二级技工每天刷(x-10)m2,根据每个房间需要粉刷墙面相等列出方程解答即可.【详解】解:设每名一级技工一天粉刷墙面面积为2xm.根据题题得,()51040 350810xx--+=解得:122x=答:每名一级技工一天粉刷墙面面积为2122m.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c ﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)点P对应的数为﹣6或﹣4;(2)AB﹣BC的值不变,AB﹣BC=6.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.【详解】∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.(1)设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【点睛】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况,找出关于x的一元一次方程;(2)利用两点间的距离公式求出AB﹣BC=6.7.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)甲购书6本,乙购书9本;(2)办卡购书比不办卡购书共节省27.25元.【解析】【分析】(1)设甲购书x本,则乙购书为(15﹣x)本,再根据总价格列出方程即可;(2)先计算7.5折后的价格,加上办卡的费用,与原来的价格差即为节省的钱数.【详解】(1)甲购书x本,则乙购书为(15﹣x)本,由题意得:30x×0.9+15(15﹣x)×0.9=283.5解得:x=6.当x=6时,15﹣x=9.答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=27.25.答:办卡购书比不办卡购书共节省27.25元.【点睛】本题考查了一元一次方程应用中的打折销售问题,明确等量关系,并正确列出方程是解题的关键.8.已知|a+4|+(b﹣2)2=0,数轴上A、B两点所对应的数分别是a和b(1)填空:a=,b=(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O 点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.【答案】(1)﹣4;2(2)0或8(3)8【解析】【分析】(1)根据非负数“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C在A、B之间;点C在B的右侧.列出方程进行解答;(3)设运动时间为t秒,根据PQ=16,列出t的方程求得t,进一步再求得运动后的M、N点表示的数.【详解】解:(1)由题意得,a+4=0,b﹣2=0,解得,a=﹣4,b=2,故答案为:﹣4;2.(2)设C点表示的数为x,根据题意得,①当点C在A、B之间时,有c+4=2(2﹣c),解得,c=0;②当点C在B的右侧时,有c+4=2(c﹣2),解得,c=8.故点C表示的数为0或8;(3)设运动的时间为t秒,根据题意得,2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P:﹣4﹣2×2=﹣8,Q:2+3×2=8,M:0﹣4×2=﹣8,N:(-8+8)÷2=0,∴MN=0﹣(﹣8)=8.【点睛】本题主要考查了一元一次方程的应用,数轴上点表示的数,动点问题,两点间的距离,非负数的性质,关键是正确列出一元一次方程.(2)有两种情况,要考虑全面.9.(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)存在被框住的4个数的和为96,其中最小的数为20(3)16【解析】【分析】(1)根据三个数的大小关系,列出另两个数,再相加化简便可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96列出方程,再解方程,若方程有符合条件的解,则存在,否则不存在;(3)且m表示出a1和a2,再由|a1﹣a2|=6列出方程求解.【详解】解:(1)如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21.(2)设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20;(3)根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a 1﹣a 2|=6,∴|(6m ﹣21)﹣(3m+21)|=6,即|3m ﹣42|=6,解得,m =12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m =16,∴m =16.【点睛】本题主要考查了列代数式,一元一次方程的应用.难度不大,弄清日历横行相邻数相差1,竖列相邻两数相差7,运用这个规律和题目中的等量关系正确列出方程是解答后两题的关键.解完方程后,要验证其解符不符合实际情况,这一点很重要.10.列方程解应用题一列火车匀速行驶,经过一条长300米的隧道需要15秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是5秒,求这列火车的长度.【答案】150米【解析】【分析】设这列火车的长度是x 米,根据火车行驶的速度不变由行程问题的数量关系路程÷时间=速度建立方程求解即可.【详解】设火车的长度为x 米. 根据题意,得x x 300515+=,,解方程,得x150答:火车的长度为150米.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,行程问题的数量关系的运用,解答时根据火车行驶的速度不变建立方程是关键.。

2019-2020学年七年级上册数学第三章检测试卷及答案人教版

2019-2020学年七年级上册数学第三章检测试卷及答案人教版

2019-2020学年七年级上册数学第三章检测试卷及答案人教版注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程属于一元一次方程的是A .3x =4B .3x –2y =1C .1–x 2=0D .3x =42.在下列方程中,解是2的方程是A .3x =x +3B .–x +3=0C .2x =6D .5x –2=83.y 比x 的2倍大5,列方程是A .52y x+=B .52y x -=C .25y x+=D .25y x-=4.方程x –4=3x +5移项后正确的是A .x +3x =5+4B .x –3x =–4+5C .x –3x =5–4D .x –3x =5+45.下列运用等式的性质,变形正确的是A .若x 2=6x ,则x =6B .若2x =2a –b ,则x =a –bC .若a =b ,则ac =bcD .若3x =2,则x =326.解方程123123x x -+-=,去分母正确的是A .3(x –1)–4x +3=1B .3(x –1)–2(x +3)=1C .3x –1–4x +3=6D .3(x –1)–2(2x +3)=67.若x =–8是方程3x +8=4x –a 的解,则a 的值为A .–14B .14C .30D .–308.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有A .6个B .5个C .4个D .3个9.一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其他人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的45优惠”,由此可以判断A .甲比乙优惠B .乙比甲优惠C .甲乙收费相同D .以上都有可能10.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是A .B .C .D .第Ⅱ卷二、填空题(本题共10小题,每小题3分,共30分)11.若方程21385m x x +-+=是一元一次方程,则m =________.12.一个两位数的个位上的数字是a ,十位上的数字比个位上的数字大1,则这个两位数是________.13.若代数式2x –1与x +2的值相等,则x =________.14.幼儿园阿姨给x 个小朋友分糖果,如果每人分4颗则少13颗;如果每人分3颗则多15颗,根据题意可列方程为________.15.按图中的程序计算,若输出的值为–1,则输入的数为________.16.当x =________时,代数式21x +与58x -的值互为相反数.17.当x=________时,式子x–32的值与式子3(12x–4)的值相等.18.今年爷爷78岁,孙子24岁,________年前爷爷的年龄是孙子的4倍.19.如图,点A、B在数轴上,它们所对应的数分别是12x-和5,且点A、B到原点的距离相等,则x的值为________.20.有一个两位数,十位上的数字为a,个位上的数字比十位上的数字大5,用代数式表示这个两位数是________,当4a=时,这个两位数是________.三、解答题(本题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分6分)解下列方程:(1)2(x+3)=5(x–3);(2)13(2x–1)=15(4–3x)–x.24.(本小题满分8分)一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.25.(本小题满分8分)某超市计划购进甲、乙两种型号的节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为46000元,那么可以购进甲、乙两种型号节能灯各多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?26.(本小题满分8分)小彬买了A、B两种书,单价分别是18元、10元.(1)若两种书共买了10本付款172元,求每种书各买了多少本;(2)买10本时付款可能是123元吗?请说明理由.27.(本小题满分8分)某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始由4名一级技工来铺瓷砖,3天后,学校根据实际情况要求2天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要再安排多少名二级技工才能按时完成任务.28.(本小题满分10分)如图是用棋子摆成的“上”字.(1)依照此规律,第4个图形需要黑子、白子各多少枚?(2)按照这样的规律摆下去,摆成第n个“上”字需要黑子、白子各多少枚?(3)请探究第几个“上”字图形白子总数比黑子总数多15枚.加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

初一数学第三章测试卷(新北师大版附答案)

初一数学第三章测试卷(新北师大版附答案)

初一数学第三章测试卷(新北师大版附答案)数学是整个初中学习的基础,也是最主要最重要的一门课程。

下面小编为大家整理了初一数学第三章测试卷(新北师大版附答案),欢迎大家参考!一、选择题(每小题3分,共30分)1.用语言叙述1a-2表示的数量关系中,表达不正确的是()A.比a的倒数小2的数B.比a的倒数大2的数C.a的倒数与2的差D.1除以a的商与2的差2.下列各式中:m,-12,x-2,1x,x2,-2x2y33,2+a5,单项式的个数为()A.5B.4C.3D.23.一个两位数是a,在它左边加上一个数字b变成三位数,则这个三位数用代数式表示为()A.10a+100bB.baC.100baD.100b+a4.下列去括号错误的是()A.3a2-(2a-b+5c)=3a2-2a+b-5cB.5x2+(-2x+y)-(3z-u)=5x2-2x+y-3z+uC.2m2-3(m-1)=2m2-3m-1D.-(2x-y)-(-x2+y2)=-2x+y+x2-y25.合并同类项2mx+1-3mx-2(-mx-2mx+1)的结果是()A.4mxx+1-5mxB.6mx+1+mxC.4mx+1+5mxD.6mx+1-mx6.已知-x+2y=6,则3(x-2y)2-5(x-2y)+6的值是()A.84B.144C.72D.3607.已知A=5a-3b,B=-6a+4b,即A-B等于()A.-a+bB.11a+bC.11a-7bD.-a-7b8.x表示一个两位数,y表示一个三位数,如果把x放在y的左边组成一个五位数,那么这个五位数就可以表示为()A.xyB.x+yC.1 000x+yD.10x+y9.当代数式x2+4取最小值时,x的值应是()A.0B.-1C.1D.410.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则完成工作提前的天数为()A.(aba+c-b)天B.(ba+c-b)天C.(b-aba+c)天D.(b-ba+c)天二、填空题(每小题4分,共40分)11.用代数式表示:(1)钢笔每支a元,m支钢笔共________元;(2)一本书有a页,小明已阅读b页,还剩________页.12.-2x2y33+x3的次数是________.13.当x=-12时,代数式1-3x2的值是________.14.代数式6a2-7b2+2a2b-3ba2+6b2中没有同类项的是________.15.如果|m-3|+(n-2)2=0,那么-5xmyn+7x3y2=________.16.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.17.如图①,边长为a的大正方形中有一个边长为b的小正方形,若将图①中的阴影部分拼成一个长方形,如图②.比较图①和图②中的阴影部分的面积,你能得到的公式是________________.18.若-3xmy2与2x3yn是同类项,则m=________,n=________.19.当m=-3时,代数式am5+bm3+cm-5的值是7,那么当m=3时,它的值是________.20.下面由火柴棒拼出的一列图形中,摆第1个图形要4根火柴棒,摆第二个图形需要7根火柴棒,按照这样的方式继续摆下去,摆第n个图形时,需要________根火柴棒.三、解答题(共80分)21.(16分)化简下列各式:(1)4x2-8x+5-3x2+6x-2;(2)5ax-4a2x2-8ax2+3ax-ax2-4a2x 2;(3)(3x4+2x-3)+(5x4-7x+2);(4)5(2x-7y)-3(3x-10y). 22.(14分)先化简,再求值:(1)(a2-ab+2b2)-2(b2-a2),其中a=-13,b=5;(2)3x2y-[2x2y-3(2xy-x2y)-xy],其中x=-1,y=-2.23.(10分)已知m是绝对值最小的有理数,且-2am+2by+1与3axb3是同类项,试求多项式2x2-3xy+6y2-3mnx2+mxy-9my2的值.24.(12分)如图所示,某长方形广场的四角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)请用代数式表示空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π).25.(14分)有足够多的长方形和正方形的卡片,如图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是____________________.(2)小明想用类似的方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片________张,3号卡片________张.26.(14分)观察下列等式:第1个等式:a1=11×3=12×(1-13);第2个等式:a2=13×5=12×(13-15);第3个等式:a3=15×7=12×(15-17);第4个等式:a4=17×9=12×(17-19);请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含n的代数式表示第n个等式:an=________=________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.第三章评估测试卷一、选择题1.B 考查倒数的定义.2.B m,-12,x2,-2x2y33是单项式.3.D 考查代数式的列法.4.C 考查去括号的法则.5.D 合并同类项时把系数相加减,字母和字母的指数不变.6.B 由-x+2y=6可知x-2y=-6,故原式的值是144.7.C A-B=(5a-3b)-(-6a+4b)=5a-3b+6a-4b=11a-7b.8.C 考查代数式的列法.9.A 当x=0时,x2+4的值最小为4.10.C 考查代数式的列法.二、填空题11.(1)am (2)(a-b)12.5 13.14 14.6a2 15.2x3y2 16. 17.a2-b2=(a+b)(a-b)18.3 219.-17 ∵当m=-3时,am5+bm3+cm-5=7,∴am5+bm3+cm=12.当m=-3时,am5+bm3+cm=-12,∴am5+bm3+cm-5=-12-5=-17.20.(3n+1)三、解答题21.解:(1)x2-2x+3 原式=(4x2-3x2)+(-8x+6x)+(5-2)=x2-2x+3;(2)-8a2x2-9ax2+8ax原式=(-4a2x2-4a2x2)+(-8ax2-ax2)+(5ax+3ax)=-8a2x2-9ax2+8 ax;(3)8x4-5x-1 原式=3x4+2x-3+5x4-7x+2=(3x4+5x4)+(2x-7x)+(-3+2)=8x4-5x-1;(4)x-5y 原式=10x-35y-9x+30y=(10x-9x)+(-35y+30y)=x-5y.22.解:(1)原式=a2-ab+2b2-2b2+2a2=(a2+2a2)+(2b2-2b2)-ab=3a2-ab.当a=-13,b=5时,原式=3×-132--13×5=13+53=2;(2)原式=3x2y-2x2y+3(2xy-x2y)+xy=3x2y-2x2y+6xy-3x2y+xy=(3x2 y-2x2y-3x2y)+(6xy+xy)=-2x2y+7xy当x=-1,y=-2时,原式=-2×(-1)2×(-2)+7×(-1)×(-2)=4+14=18.23.解:由题意有m=0,m+2=x,y+1=3,即x=2,y=2,则原式=2x2-3xy-6y2=2×22-3×2×2-6×22=-28.24.解:(1)(ab-πr2)平方米;(2)ab-πr2=300×200-π×102=(60 000-100π)(平方米),所以空地的面积为(60 000-100π)平方米.25.解:(1)如图,a2+3ab+2b2=(a+b)(a+2b);(2)3 726.解:根据观察知答案分别为:(1)19×11 12×(19-111)(2)12n-12n+1 12×(12n-1-12n+1)(3)a1+a2+a3+a4+…+a100=12×(1-13)+12×(13-15)+12×(15-17)+12×(17-19)+…+ 12×(1199-1201)=12(1-13+13-15+15-17+17-19+…+1199-1201)=12(1-1201)=12×201901=100201.以上就是查字典数学网为大家整理的初一数学第三章测试卷(新北师大版附答案),大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。

(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(答案解析)(2)

(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(答案解析)(2)

一、选择题1.(0分)[ID :68205]某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-2.(0分)[ID :68201]已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=183.(0分)[ID :68195]定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =- B .3x = C .2x =D .4x = 4.(0分)[ID :68194]小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .5.(0分)[ID :68161]某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元 6.(0分)[ID :68159]古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋 7.(0分)[ID :68250]若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .120 8.(0分)[ID :68246]已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2 B .x =2 C .x =-12 D .x =129.(0分)[ID :68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .62 10.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- 11.(0分)[ID :68232]关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2 B .34 C .2 D .43- 12.(0分)[ID :68228]已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或113.(0分)[ID :68223]对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.14.(0分)[ID :68217]如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 2 15.(0分)[ID :68212]把方程112x =变形为2x =,其依据是( )A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律二、填空题16.(0分)[ID :68353]已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____17.(0分)[ID :68344]方程 2243x -=的解是__________ 18.(0分)[ID :68337]一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;19.(0分)[ID :68323]若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.20.(0分)[ID :68319]对于实数a ,b ,c ,d ,规定一种运算 a bc d =ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.21.(0分)[ID :68316]对任意四个有理数a ,b ,c ,d ,定义:a bad bc c d =-,已知24181-=x x ,则x =_____.22.(0分)[ID :68308]一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____. 23.(0分)[ID :68303]一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.24.(0分)[ID :68270]将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.25.(0分)[ID :68268]已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.26.(0分)[ID :68266]校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.27.(0分)[ID :68275]小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.三、解答题28.(0分)[ID :68427]解方程:(1)36156x x -=--;(2)45173x x +=-;(3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 29.(0分)[ID :68397]一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?30.(0分)[ID :68455]已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.B3.D4.B5.C6.A7.C8.A9.B10.B11.C12.C13.D14.D15.B二、填空题16.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故17.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是18.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之19.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n的值再根据二次项系数为0一次项系数不等于0求出a的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代20.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x的方程然后解方程即可求出x的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(21.3【分析】首先看清这种运算规则将转化为一元一次方程2x-(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x-(﹣4x)=186x=18解得:x =3故答案为:3【点睛22.【分析】设火车的长度为x米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x米则火车的速度为依题意得:45×=600+x解得:x=300故答案为:300【点23.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x=﹣4解得:x=﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相24.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x厘米由题意得:解得:x=15625答:锻压后25.5【解析】【分析】此题用m替换x解关于m的一元一次方程即可【详解】∵x=m∴3m−2=2m+3解得:m=5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数26.3x+(8-x)=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x)=18故答案为:3x+(8-x)=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本27.4【解析】【分析】直接设每千克苹果的售价是x元则每千克香蕉售价2x元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x元则每千克香蕉售价2x元根据题意可得:三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),故选:B.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.2.B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x 元,那么练习本的单价为(x ﹣2)元,则6(x ﹣2)+4x =18,故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.3.D解析:D【分析】根据新定义列出关于x 的方程,解之可得.【详解】∵4*x=4, ∴234x ⨯+=4, 解得x=4,故选:D .【点睛】 本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.4.B解析:B【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A 、设最小的数是x .x+x+7+x+7+1=19∴x=43,故本选项错误; B 、设最小的数是x .x+x+6+x+7=19,∴x=2,故本选项正确.C 、设最小的数是x .x+x+1+x+7=19,∴x=11,故本选项错误.3D、设最小的数是x.x+x+1+x+8=19,∴x=10,故本选项错误.3故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.5.C解析:C【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【详解】设这种商品每件的进价为x元,根据题意得:330×80%−x=10%x,解得:x=240,则这种商品每件的进价为240元.故选C.【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.6.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.C解析:C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m ,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C .【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键. 8.A解析:A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+,去括号,得646x x -=+,移项,得646x x -=+,合并同类项,得510x -=,系数化为1,得2x =-,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.9.B解析:B【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可.【详解】设个位上的数为x ,则十位数字为()31x +,由题意得:x +(3x +1)=9,解得:x =2,十位数字为:6+1=7,这个两位数是:72.故选:B.【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 10.B解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程. 11.C解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.【详解】 解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】 本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义. 12.C解析:C【分析】直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 13.D解析:Dax+b=0(a,b为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A、当a≠0时,方程的解是x=-ba,故错误;B、当a=0,b≠0时,方程无解,故错误;C、当a=0,b=0,方程有无数解,故错误;D、以上都不正确.故选D.【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.14.D解析:D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab,4个小正方形的面积为4x2,∴剩余部分的面积为:ab-4x2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键.15.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x ,这是依据等式的性质2.故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.二、填空题16.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故解析:52 91根据比例设这三个数分别为2x,4x,7x,再根据这三个数的和是169列方程即可求解.【详解】设这三个数分别为2x,4x,7x,则2x+4x+7x=169,解得x=13,所以这三个数分别为26,52,91.故答案为:26,52,91.【点睛】此题主要考查列一元一次方程解应用题,根据比例设未知数是解题关键.17.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.18.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之解析:x+3【分析】根据顺水速度=静水中的速度+水速,即可列出代数式.【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系.19.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n 的值再根据二次项系数为0一次项系数不等于0求出a的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代解析:4或0 ≠-1【分析】根据一元一次方程的定义可知,二次项系数为0,则12+=n ,求出n 的值,再根据二次项系数为0,一次项系数不等于0,求出a 的值即可.【详解】解:根据一元一次方程的定义可知,二次项系数为0,则12+=n ,解得n=1或-3, 把12+=n 代入方程得:2253-+=+ax bx x x ,整理得:()()23150-+--+=a x b x , ∴a-3=0,-b-1≠0,解得:a=3,b≠-1,∴a+n=4或0,故答案为:4或0;≠,-1.【点睛】本题是对一元一次方程定义的考查,熟练掌握一元一次方程是解决本题的关键. 20.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x 的方程然后解方程即可求出x 的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x 的方程,然后解方程即可求出x 的值.【详解】解:∵(1)(2)(3)(1)x x x x ++--=27,∴(x +1)(x -1)-(x +2)(x -3)=27,∴x 2-1-(x 2-x -6)=27,∴x 2-1-x 2+x +6=27,∴x =22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.21.3【分析】首先看清这种运算规则将转化为一元一次方程2x -(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x -(﹣4x)=186x =18解得:x =3故答案为:3【点睛解析:3【分析】 首先看清这种运算规则,将24181-=x x 转化为一元一次方程2x -(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x -(﹣4x) =186x =18解得:x =3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.【分析】设火车的长度为x 米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x 米则火车的速度为依题意得:45×=600+x 解得:x=300故答案为:300【点解析:【分析】设火车的长度为x 米,则火车的速度为15x ,根据列车的速度×时间=列车长度+隧道长度列方程,求解即可.【详解】设火车的长度为x 米,则火车的速度为15x ,依题意得: 45×15x =600+x 解得:x =300.故答案为:300.【点睛】本题考查了一元一次方程的应用,学生理解题意的能力,根据隧道顶部一盏固定灯在火车上垂直照射的时间为15秒钟,可知火车的速度为15x ,根据题意可列方程求解. 23.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x 的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x =﹣4解得:x =﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相解析:﹣49. 【分析】 利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4, 解得:x =﹣49. 故答案为:﹣49. 【点睛】 本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.24.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x 厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 25.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.26.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.27.4【解析】【分析】直接设每千克苹果的售价是x 元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x 元则每千克香蕉售价2x 元根据题意可得: 解析:4【解析】【分析】直接设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键.三、解答题28.(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可.(2)先移项,再合并同类项,最后系数化为1即可.(3)先移项,再合并同类项,最后系数化为1即可.(4)先移项,再合并同类项,最后系数化为1即可.【详解】(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=. 合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点睛】 本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 29.5【分析】设两队合作x 个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】 解:设两队合作x 个月完成,由题意,得[112(1+40%)+115(1+25%)]x =1, 解得x =5.答:两队合作,5个月可以完工.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.30.(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.。

人教版七年级上册数学第三章测试卷(附答案)

人教版七年级上册数学第三章测试卷(附答案)

人教版七年级上册数学第三章测试卷(附答案)人教版七年级上册数学第三章测试卷(附答案)一、单选题(共12题;共36分)1.如果$x=0$是关于$x$的方程$3x-2m=4$的解,则$m$值为()A。

$2$ B。

$-2$ C。

$4$ D。

$-2$2.若$x=-3$是方程$2(x-m)=6$的解,则$m$的值是()A。

$6$ B。

$-6$ C。

$12$ D。

$-2$3.下列方程的变形中正确的是()A.由$x+5=6x-7$得$x-6x=7-5$B.由$-2(x-1)=3$得$-2x-2=3$C.由$2x=-1$得$x=-\frac{1}{2}$D.由$3x+5=12$得$x=2$4.某商品涨价$20\%$后欲恢复原价,则必须下降的百分数约为()A。

$17\%$ B。

$18\%$ C。

$19\%$ D。

$20\%$5.下列等式的变形中,不正确的是()A.若$x=y$,则$x+5=y+5$B.若$(a\neq 0)$,则$\frac{x}{a}=\frac{y}{a}$C.若$-3x=-3y$,则$x=y$D.若$mx=my$,则$x=y$6.解方程,去分母正确的是()A。

$2-(x-1)=1$ B。

$2-3(x-1)=6$ C。

$2-3(x-1)=1$ D。

$3-2(x-1)=6$7.包装厂有$42$名工人,每人平均每天可以生产圆形铁片$120$片或长方形铁片$80$片.为了每天生产的产品刚好制成一个个密封的圆桶,应该分配多少名工人生产圆形铁片,多少名工人生产长方形铁片?设应分配$x$名工人生产长方形铁片,$(42-x)$名工人生产圆形铁片,则下列所列方程正确的是()A。

$120x=2\times 80(42-x)$ B。

$80x=120(42-x)$C。

$2\times 80x=120(42-x)$ D。

$3\times 80x=2\times120(42-x)$8.有一种足球是由$32$块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形.设白皮有$x$块,则黑皮有$(32-x)$块,要求出黑皮、白皮的块数,列出的方程是()A。

初中数学冀教版七年级上册第三章 代数式3.2 代数式-章节测试习题(2)

初中数学冀教版七年级上册第三章 代数式3.2 代数式-章节测试习题(2)

章节测试题1.【答题】如图,是用积木摆放的一组图案,观察图案并探索:第五个图案中共有______块积木,第n个图案中共有______块积木.【答案】25,n2【分析】观察积木摆放的一组图案特征,可知第一个图案有12=1块积木,第二个图案有22=4块积木,第三个图案有32=9块积木,依此类推,第五个图案有52=25块积木,第n个图案有n2块积木.【解答】解:根据以上分析第五个图案中共有52=25块积木,第n个图案中共有n2块积木.故答案为25,n22.【答题】如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c=______,d=______.【答案】9,37【分析】第n行的第一个数和行数相等,第二个数是1+1+2+…+n﹣1=+1.所以当a=8时,则c=9,d=9×4+1=37.【解答】解:当a=8时,c=9,d=9×4+1=37.3.【答题】表2是从表1中截取的一部分,则a=______.表11 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………表210a21【答案】18【分析】表1中,第一行分别为1的1,2,3…的倍数;第二行分别为2的1,2,3…的倍数;第三行分别为3的1,2,3…的倍数;…;表2中,第一行为5的2倍,第三行为7的3倍;故a=6×3=18【解答】解:a=6×3=184.【答题】今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为______元/千克.【答案】0.9a【分析】因为原来鸡肉价格为a元/千克,现在下降了10%,所以现在的价格为(1﹣10%)a,即0.9a元/千克.【解答】解:∵原来鸡肉价格为a元/千克,现在下降了10%,∴五月份的价格为a﹣10%a=(1﹣10%)a=0.9a,故答案为:0.9a.5.【答题】如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有______个正方形.【答案】91【分析】观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…从而得到答案.【解答】解:观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第6个有1+4+9+16+25+36=91个正方形,故答案为:916.【题文】如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a m,计算:(1)窗户的面积;(2)窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).【答案】(1)m2;(2)(15+π)a m;(3)502元【分析】(1)窗户的面积=4个小正方形的面积+半圆的面积;(2)窗框用料的总长度为所有小正方形的边长之和+半个圆的弧长+3条半径;(3)总费用为:玻璃钱+窗框钱.【解答】解:(1)窗户的面积为a2m2.(2)窗框的总长为(15+π)a m.(3) a2×25+(15+π)a×20=×12+(300+20π)×1=400+π≈502.答:制作这种窗户需要的费用约是502元.方法总结:本题考查了列代数式表示实际问题,关键分清数量关系,抓住关键词语,正确的列出代数式,然后再代入求值即可.7.【题文】暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,则共需交旅游费多少元(用含字母的式子表示)?并计算当a=300,b=200时的旅游费用.【答案】150元【分析】教师旅游费每人a元,按8折优惠,那么教师每人0.8a元;学生每人b 元,按6.5折优惠,那么学生每人0.65a元,然后根据钱数=单价×人数计算即可.【解答】解:共需交旅游费为0.8a×2+0.65b×8=(1.6a+5.2b)(元).当a=300,b=200时,旅游费用为1.6×300+5.2×200=1520(元).8.【题文】根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,应交电费元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?【答案】(1)0.6122.5;(2)0.9x-82.5;(3)0.62元【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【解答】解:(1)∵100<150,∴100a=60,∴a=0.6.若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元).(2)当x>300时,应交的电费为150×0.6+(300-150)×0.65+0.9(x-300)=0.9x-82.5.(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x-150)=0.62x,解得x=250;当该居民用电处于第三档时,0.9x-82.5=0.62x,解得x≈294.6<300(舍去).综上所述,该居民用电不超过250千瓦时时,其当月的平均电价每千瓦时不超过0.62元.方法总结:本题考查了列代数式和一元一次方程的应用,解题的关键是:(1)根据数量关系正确列式;(2)根据总电费=单价×数量列出关于x的一元一次方程.9.【题文】已知y=3xy+x,求代数式的值.【答案】【分析】根据已知条件y=3xy+x,求出x-y=-3xy,然后将分子,分母整理成x-y与xy和的形式,将x-y的值整体代入求解.【解答】解:因为y=3xy+x,所以x-y=-3xy.当x-y=-3xy时,.方法总结:首先根据已知条件得到x-y=-3xy,再把要求的代数式化简成含有x -y的式子,然后整体代入,使代数式中只含有xy,约分后得解.10.【题文】某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a元代销费,同时商店每销售一件产品有b元提成,该商店一月份销售了m件,二月份销售了n件.(1)用式子表示这两个月公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.【答案】(1)这两个月公司应付给商店的钱数为[2a+(m+n)b]元;(2)该商店这两个月销售此种产品的收益为1300元.【分析】(1)每月应付费用为:a元代销费+b×销售件数,所以这两个月公司应付给商店的钱数=2×a+b×两个月销售件数;(2)把a=200,b=2,m=200,n=250,代入(1)中的式子即可.【解答】解:(1)这两个月公司应付给商店的钱数为[2a+(m+n)b]元;(2)当a=200,b=2,m=200,n=250时,2a+(m+n)b=2×200+(200+250)×2=1300(元),答:该商店这两个月销售此种产品的收益为1300元.11.【题文】2014年5月30日,云南盈江发生6.1级地震.接到灾情报告后,某武警部队迅速组织了两个救援中队赶赴灾区救援.第一中队有x人,第二中队的人数比第一中队的少30人.(1)两个中队共有多少人?(2)由于第一中队任务较重,指挥部决定临时从第二中队调出10人到第一中队,则调动后第一中队的人数比第二中队多多少人?【答案】(1)两个中队共有人;(2)调动后第一中队的人数比第二中队多人.【分析】(1)用x表示出第一中队的人数,再把两式相加即可;(2)先用x表示出第一二中队的人数,再把两式相加即可.【解答】解:(1)∵第一中队有x人,第二中队比第一中队人数的少30人,∴第二中队的人数是(x-30)人,∴两个中队共有x+(x-30)=x+x-30=(x-30)(人).答:两个中队共有x-30(人);(2)∵从第二中队调出10人到第一中队,∴调动后第一中队的人数是(x+10)人,第二中队的人数是(x-40)人,∴(x+10)-(x-40)=x+10-x+40=(x+50)(人).答:调动后第一中队的人数比第二中队多(x+50)人.12.【题文】自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A、B两种款式的布质环保购物袋,每天生产4500个,两种购物袋的成本和售价如下表,若设每天生产A种购物袋x个.(1)用含x的整式表示每天的生产成本,并进行化简;(2)用含x的整式表示每天获得的利润,并进行化简(利润=售价-成本);(3)当x=1500时,求每天的生产成本与每天获得的利润.【答案】(1)每天的生产成本为(-x+13 500)元;(2)每天获得的利润为(3)每天的生产成本为12 000元;每天获得的利润为1 950元.【分析】(1)A种购物袋x,则B种是4500-x,利用单个成本个数=总成本,列式.(2)利用单个售价-单个成本=单个利润,单个利润个数=总利润,列式.(3)代入(1)(2)求解.【解答】解:(1)2x+3(4500-x)=-x+13500,即每天的生产成本为(-x+13500)元.(2)(2.3-2)x+(3.5-3)(4500-x)=-0.2x+2250,即每天获得的利润为(-0.2x+2250)元.(3)当x=1 500时,每天的生产成本:-x+13500=-1500+13 500=12000元;每天获得的利润:-0.2x+2250=-0.2×1500+2 250=1950(元).13.【题文】已知=2,求代数式的值。

初中数学冀教版七年级上册第三章 代数式3.1 用字母表示数-章节测试习题(2)

初中数学冀教版七年级上册第三章 代数式3.1 用字母表示数-章节测试习题(2)

章节测试题1.【答题】为了帮助地震灾区重建家园,某班全体师生积极捐款,捐款金额共3150元,其中5名教师人均捐款a元,则该班学生共捐款______元(用含有a的代数式表示).【答案】3150-5a【分析】学生捐款数=捐款总数-教师捐款总数.【解答】解:根据“学生捐款数=捐款总数-教师捐款总数”得:学生捐款数为:(3150-5a)元.故答案是:(3150-5a).2.【题文】利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.你能利用数形结合的思想解决下列问题吗?(1)如图①,一个边长为1的正方形,依次取正方形面积的,,,…, ,根据图示我们可以知道: ++++…+=________.(用含有n的式子表示)(2)如图②,一个边长为1的正方形,依次取剩余部分的,根据图示:计算: +++…+=________.(用含有n的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算: ++++…+=________.(用含有n的式子表示)【答案】 1- 1- 1-【分析】解:(1)根据题意找出规律进行计算即可;(2)根据题干给出图形,依次取正方形面积的,,…找出规律即可;(3)根据题干给出图形,依次取正方形面积的,,…找出规律即可.【解答】解:(1) ++++…+=1-.(2) +++…+=1-×=1-.(3) ++++…+=1-.3.【题文】某学校初一年级参加社会实践课,报名第一门课的有x人,第二门课的人数比第一门课的少10人,现在需要从报名第二门课的人中调出10人学习第一门课,那么:(1)报两门课的共有多少人?(2)调动后,报名第一门课的人数为人,第二门课人数为人.(3)调动后,报名第一门课比报名第二门课多多少人?计算出代数式后,请选择一个你觉得合适的x的值代入,并求出具体的人数.【答案】(1)(x﹣20)人;(2)第一门课的人数为:(x+10)人;第二门课的人数为:( x﹣30)人;(3)( x+40)人;当x=40时,x+40=48人.【分析】(1)由第二门课的人数比第一门课的(少20人,可知报第二门课的人数为:(( x﹣20)人,所以报两门课的人数为:x+( x﹣20人;(2)由从报名第二门课的人中调出10人学习第一门课,可知,第一门课多了10人,第二门课少了10人,据此解答即可;(3)把(2)得到的结果相减,选一个与班级人数相符的数代入计算即可.【解答】解:(1)∵第二门课的人数比第一门课的少20人,∴报第二门课的人数为:(x﹣20)人,∴报两门课的人数为:x+x﹣20=(x﹣20)人;(2)由题意可知,第一门课多了10人,第二门课少了10人,故调动后,第一门课的人数为:(x+10)人;第二门课的人数为:(x﹣30)人;(3)调动后,第一门课比第二门课多了:(x+10)﹣(x﹣30)=(x+40)人;当x=40时, x+40=48人.4.【题文】用3根火柴棒搭成1个三角形,接着用火柴棒按如图所示的方式搭成2个三角形,再用火柴棒搭成3个三角形、4个三角形…(1)若这样的三角形有6个时,则需要火柴棒根.(2)若这样的三角形有n个时,则需要火柴棒根.(3)若用了2017根火柴棒,则可组成这样图案的三角形有个.【答案】9,2n+1,1008.【分析】(1)(2)按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n-1)个,那么此时火柴棒的根数应该为:3+2(n-1)进而得出答案.(3)构建方程即可解决问题;【解答】(1)根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;当三角形的个数为5时,火柴棒的根数为11;当三角形的个数为6时,火柴棒的根数为13;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.(2)当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.(3)由题意2n+1=2017,∴n=1008故答案为:9,2n+1,1008.【方法总结】考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.5.【题文】小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2 016吗?如能,写出这五个数,如不能,说明理由.【答案】(1)十字框中的五个数的和为中间的数16的5倍;(2)十字框中的五个数的和为5x;(3)不能框住五个数,使它们的和等于2016,理由见解析.【分析】(1)将5个数相加,找出其与16的关系即可;(2)设中间的数为x,则另外四个数分别为x-10、x-2、x+2、x+10,将五个数相加即可得出结论;(3)假设能够框出满足条件的五个数,设中间的数为x,由(2)的结论可得出关于x的一元一次方程,解之即可得出x的值,由x不为整数即可得出假设不成立,即不能框住五个数,使它们的和等于2016.【解答】解:(1)十字框中的五个数的和为6+14+16+18+26=80=16×5,∴十字框中的五个数的和为中间的数16的5倍.(2)设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10,∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x.(3)假设能够框出满足条件的五个数,设中间的数为x,根据题意得:5x=2016,解得:x=403.2.∵403.2不是整数,∴假设不成立,∴不能框住五个数,使它们的和等于2016.【方法总结】运用了一元一次方程的应用以及规律型中数字的变化类,解题的关键是:(1)求出十字框中的五个数的和;(2)根据中间数为x,用含x的代数式表示出其它四个数;(3)结合(2)的结论列出一元一次方程.6.【题文】下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有★个,第六个图形共有★个;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2017个★?【答案】(1)13,19;(2)1+3n;(3)672.【分析】(1)(2)把五角星分成两部分,顶点处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中五角星的个数的关系式;(3)然后把2017代入(2)中的结论进行计算即可求解.【解答】解:(1)观察发现,第1个图形五角星的个数是,1+3=4,第2个图形五角星的个数是,1+3×2=7,第3个图形五角星的个数是,1+3×3=10,…第4个图形五角星的个数是,1+3×4=13,第6个图形五角星的个数是,1+3×6=19,故答案为:13,19;(2)第n个图形五角星的个数是,1+3×n=3n+1,故答案为:1+3n;(3)3n+1=2017,解得n=672,答:第672个图形中有2017个★.7.【题文】请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有个正方形,每一竖列共有个正方形;(2)在铺设第n个图形时,共有个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3),(n+2);(2)(n+2)(n+3);(3)388.【分析】(1)根据第n个图形的瓷砖的每行有(n+3)个,每列有n+2个;(2)每行的块数乘以每列的块数即可得到总块数;(3)求出白木板和黑木板的数量,再进一步计算总价钱.【解答】解:(1)第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);(2)所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);(3)当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).8.【题文】如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:(2)某同学用若干根火柴棒按上图呈现的规律摆图案,摆完了第1个,第2个,…,第n个图案后剩下了69根火柴棒,若要摆完第n+1个和第n+2个图案刚好差2根火柴棒.问最后能摆成的图案是哪二个图案?【答案】(1)13,16,19,3n+1;(2)这位同学最后摆的图案是第11个和第12个图案.【分析】(1)易得组成一个正方形都需要4根火柴棒,找到组成1个以上的正方形需要的火柴棒的根数在4的基础上增加几个3即可得;(2)根据(1)的规律得出3(n+1)+1+3(n+2)+1=69+2,解出n即可.【解答】解:(1)按如图的方式摆放,每增加1个正方形火花图案,火柴棒的根数相应地增加3根,若摆成4个、5个、6个、n个同样大小的正方形火花图案,则相应的火柴棒的根数分别是13根、16根、19根、(3n+1)根.正方形个1 2 3 4 5 6 …n数火柴棒根13 16 19 …3n+1 数(2)∵当他摆完第n个图案时剩下了69根火柴棒,要摆完第n+1个图案和第n+2个图案刚好差2根火柴棒.依题意可列方程为:3(n+1)+1+3(n+2)+1=69+2,解得n=10,∴这位同学最后摆的图案是第11个和第12个图案.9.【题文】某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副68元,乒乓球每盒12元.经商谈后,甲商店每买一副乒乓球拍赠一盒乒乓球,乙商店全部按定价的9折优惠.这个班级需要球拍5副,乒乓球x盒(x≥5).(1)分别求甲、乙两家商店购买这些商品所需的费用(用含x的代数式表示).(2)当x=40时,购买所需商品去哪家商店合算?请通过计算说明理由.【答案】(1)在甲店购买所需的费用:12x+280,在乙店购买所需的费用:306+10.8x;(2)去乙家商店合算.【分析】(1)首先根据题意分别表示出去甲、乙两店购买所需的费用,在甲店购买所需的费用=68×乒乓球拍5副+需要花钱的球数×12,在乙店购买所需的费用=68×乒乓球拍5副×90%+球数×12×90%;(2)根据(1)中的代数式,把x=40代入计算出钱数即可.【解答】解:(1)在甲店购买所需的费用:68×5+12(x-5)=12x+280在乙店购买所需的费用:68×5×0.9+0.9×12x=306+10.8x(2)当x=40时,在甲店购买所需的费用:12×40+280=760(元)在乙店购买所需的费:306+10.8×40=738(元)∴在乙商店花钱少.即:购买所需商品去乙家商店合算.方法总结:列代数式解决实际问题,关键是分清两个商店花钱的方式,列出代数式.10.【题文】红星中学九年级(1)班三位教师决定带领本班a名学生利用假期去某地旅游,枫江旅行社的收费标准为:教师全价,学生半价;而东方旅行社不管教师还是学生一律八折优惠,这两家旅行社的全价都是500元.(1)用含a的式子表示三位教师和a位学生参加这两家旅行社所需的费用各是多少元;(2)如果a=55时,请你计算选择哪一家旅行社较为合算?【答案】(1)250a+1500;400a+1200;(2)参加枫江旅行社合算.【分析】(1)参加枫江旅行社的总费用=3×500+学生数×500×0.5;参加东方旅行社的总费用=师生总人数×500×0.8,把相关数值代入化简即可;(2)把a=55代入(1)得到的2个代数式中,计算后比较即可.【解答】解:(1)参加枫江旅行社的总费用为:3×500+250a=250a+1500;参加东方旅行社的总费用为:(3+a)×500×0.8=400a+1200;答:参加枫江旅行社的总费用为(250a+1500)元,参加东方旅行社的总费用为(400a+1200)元;(2)当a=55时,参加枫江旅行社的总费用为250×55+1500=15250(元);参加东方旅行社的总费用为:400×55+1200=23200(元).∴参加枫江旅行社合算.答:参加枫江旅行社合算.11.【题文】某电动车厂一周计划生产2100辆电动车,平均每天计划生产300辆,由于各种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负).(1)根据记录可知本周前三天共生产电动车多少辆?(2)本周产量最多的一天比产量最少的一天多生产电动车多少辆?(3)该厂实行每周计件工资制,每生产一辆电动车可得a元,若超额完成,则超额部分每辆再奖b元(b<a),少生产一辆扣b元,求该厂工人这一周的工资总额.(注:第(1)、(2)小题列出算式,并计算)【答案】(1)899辆;(2)26辆;(3)(2109a+9b)元【分析】(1)表示出三天的每一天生产的数量相加即可;(2)比较7个数据的大小,用最大的数据减去最小的数据即可;(3)算出一周的生产的总数量,与一周的计划产量相比写出代数式即可.【解答】解:(1)300×3+[(+5)+(-2)+(-4)]=899(辆);(2)(+16)-(-10)=26(辆);(3)该厂工人这一周的工资总额为(2109a+9b)元.方法总结:此题考查了有理数的混合运算的实际应用,此类题常常结合生产、生活中的热点问题,是近几年中考的常考题型,认真阅读,正确理解题意是解此类题的关键.12.【题文】如图,正方形ABCD与正方形BEFG,且A,B,E在一直线上,已知AB=a,BE=b(b<a).(1)用a、b的代数式表示△ADE的面积.(2)用a、b的代数式表示△DCG的面积.(3)用a、b的代数式表示阴影部分的面积.【答案】(1)a(a+b);(2)b(a﹣b);(3)a2+b2﹣ab.【分析】(1)由S△ADE=AD·(AB+BE)列式表达即可;(2)由S△DCG=DC·(BC-BG)列式表达即可;(3)由S阴影=两个正方形的面积之和-S△ADE-S△GEF-S△CDG列式即可;【解答】解:(1)∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,A,B,E在一直线上,∴AB=AD=a,∠A=90°,∠EBG=∠ABC=90°,AE=AB+BE=a+b,∴S△ADE=AD·AE=;(2)∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴AB=DC=BC=a,∠C=90°,BG=BE=b,∴CG=BC-BG=a-b,∴S△DCG=DC·CG=;(3)∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴S正方形ABCD+S正方形BEFG=.又∵S△ADE=,S△DCG=,S△EFG=EF·FG=,∴S阴影=-S△ADE-S△GEF-S△CDG==.方法总结:解第3小题的关键是由图得到:S阴影=S正方形ABCD+S正方形BEFG-S△ADE-S△GEF-S△CDG.13.【题文】如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律摆.(1)第5个“广”字中的棋子个数是.(2)第n个“广”字需要多少枚棋子?【答案】(1)15(2)(2n+5)枚【分析】观察图形,通过归纳与总结,得到其中的规律.【解答】解:(1)由题目得:第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是7+(2-1)×2=9;第3个“广”字中的棋子个数是7+(3-1)×2=11;第4个“广”字中的棋子个数是7+(4-1)×2=13;发现第5个“广”字中的棋子个数是7+(5-1)×2=15…(2)进一步发现规律:第n个“广”字中的棋子个数是7+(n-1)×2=2n+5.14.【题文】【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为.【答案】【规律探究】2n+1,,;【解决问题】1345.【分析】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;运用以上结论,将原式变形为,化简计算即可得.【解答】解:由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1;=,,故答案为:2n+1,,;【解决问题】=.【方法总结】本题主要考查数字的变化类问题,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.15.【题文】正整数按照如图规律排列,请问①18这个数排在第排,第个位置,100 这个数排在第排,第个位置。

七年级数学上学期第三章测试卷-初中一年级数学试题练习、期中期末试卷-初中数学试卷_2

七年级数学上学期第三章测试卷-初中一年级数学试题练习、期中期末试卷-初中数学试卷_2

七年级数学上学期第三章测试卷-初中一年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载七年级数学第三章测试卷一.填空题1.x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解.2.若x = -3是方程3(x - a) = 7的解,则a = ________.3.若式子的值是1,则k = _________.4.当x = ________时,式子与的值相等.5. 5与x的差的比x的2倍大1的方程是__________.6. 若4a-9与3a-5互为相反数, 则2a + 1的值为_________.7.一次工程,甲独做m天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_______天完成.8.解方程,则x=_______.9.三个连续偶数的和为18,设最大的偶数为x, 则可列方程______.10.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x小时后, 乙池有水________吨,甲池有水_______吨,________小时后,甲池的水与乙池的水一样多.11.若a+8=b+8,则a=b,这是根据,在等式两边都.12.若4x=-8,则x=-2,这种变形是在等式两边都其根据是.13. 在公式v=v0+at中,已知v=15,v0=5,t=4,则a=_______二.解方程1.2x+8=5-x2.6y+2=7y3.6-3x=8-x4.15-(7-5x)=2x+(5-3x)5. 7a+2(3a-3)=206. 8x-3(3x+2)=67.y-=2-.8.+=9. +1=x-110. 11. =x+512.0.8x+(x+2)=16三. 应用题1.某水果商贩买进水果若干筐,每筐进价3元,如果按照每筐4元的价钱卖出, 那么卖出全部水果的一半又10筐时,已收回全部成本,一共买进水果多少筐?2. 某商品的进价为200元,标价为300元,折价销售时利润为5%此商品是按几折销售的?3. 王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米?4. 一架飞机在两城之间飞行,风速为24千米/时。

七年级上册数学第三章测试卷【含答案】

七年级上册数学第三章测试卷【含答案】

七年级上册数学第三章测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{5}{7}$C. $\frac{6}{8}$D. $\frac{7}{9}$5. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 36厘米B. 26厘米C. 46厘米D. 42厘米二、判断题(每题1分,共5分)6. 任何两个偶数相加的和都是偶数。

()7. 一个正方形的对角线把它分成两个相等的直角三角形。

()8. 任何一个合数都可以分解为几个质数的乘积。

()9. 如果两个角是对顶角,那么这两个角一定相等。

()10. 在三角形中,最长边所对的角一定是直角。

()三、填空题(每题1分,共5分)11. 一个数的因数是______和______。

12. 一个长方体的表面积是______。

13. 等边三角形的每个内角是______度。

14. 如果一个数是6的倍数,那么这个数最小可能是______。

15. 1千米等于______米。

四、简答题(每题2分,共10分)16. 请简述质数和合数的区别。

17. 什么是等腰三角形?它有什么特点?18. 请解释长方体的体积是如何计算的。

19. 什么是比例?请给出一个比例的例子。

20. 请解释什么是平行线,并给出一个例子。

五、应用题(每题2分,共10分)21. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。

22. 一个等边三角形的周长是24厘米,求这个三角形的边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学第三章测试题
一、选择题 (每题3分,共30分)
1、下列代数式,一定表示正数的是 ( )
A、2a B、 a+9 C、 a 2+1 D、 1+a
2、 若代数式-3a n b 3
与5a 2b m
是同类项,则=-n m 32 。

3、对于代数式2x +3y 的解释,错误的是 ( )
A、一个日记本2元,一枝圆珠笔3元,买x 个笔记本,买y 枝圆珠笔共需多少元
B、弟弟每秒跑2米,哥哥每秒跑3米,弟弟跑x 秒,哥哥跑y 秒,两人一共跑了多少米 C、小明读一本书,前2天每天读x 页,后3天每天读y 页,阵本书一共多少页?
D、一次数学考试,做对一道选择题得2分,做对一道填空题得3分,小颖做对了x 道题,y 道填空题,共得了多少分? 4、球的体积是2
3
4R V =
,当R=3时,这个球的体积为 ( ) A、4π B、12 π C、 36π D、36 5、下列各组代数式中,不是同类项的是 ( )
A、9m 2 与8 m 2 B、2a 2b 3与ca 2b
3
C、─4a 2b 与―5ba 2 D、25
与52
6、 代数式3 a 2 ― b 2 与a 2 + b 2 的差是 ( )
A 、2a 2
B 、2a 2―2 b 2
C 、4 a 2
D 、4 a 2―2b 2 7、 若a ― b = - 3, c + d = 2 ,则( b + c )- (a –d )的值是 ( ) A 、- 1 B 、 -5 C 、 5 D 、 1 8、如果xy≠0,且
3
1xy2+axy2
=0,则a的值是( ) A.0 B.3 C.-3 D.-3
1
9、一列火车长a 米,以 v 米/秒的速度通过长为 b 米的大桥,用代数式表示火车过桥的时间为 ( )秒
A 、 v a
B 、 v a b -
C 、 v b
a + D 、 无法确定
10、已知下列一组数:1,
4
3 ,95,167,259 ……,则第n 个数是 ( )
A、n n 12- B、 2
24
n n - C、212n n - D、212n n +
二、填空题 (每题3分,共 24 分 )
11、某商品原价为x 元,提价 8% 的价格为 _____________ 元。

12、已知x=1,y=-1时,ax +by =3,那么当x=1,y=-1时,ax +by -3= 。

13、如图的数字转换机输入x → ― 3 → 平方 → 输出如果输入-1 ,则输出的结果为_________.
14、一枚古硬币的正面是一个半径为r 厘米的圆形,中间是一个边长为a 厘米的的小方孔,枚这古币正面的面积为_________.
15、代数式 - 2x m y 与5x 3y 是同类项,则( 9m – 28 )2001
的值为_______
16、当p = 3 ,q = 1 时,代数式 – p 2
- q 的值为________. 17、三个连续奇数中,中间的一个为n ,用代数表示这三个奇数的和为________;当n =13时,这个代数式的值是__________
18、观察下列等式:⑴ 12
+ 1 = 1 × 2 ⑵ 22
+ 2 = 2 × 3 ⑶ 32
+ 3 = 3 × 4 …… . 请你写出第n 式子________________.
三、简答题. (第19题5分;第20题6分;第21题6分;第22题9分;第23题10分;第24题10分.)
19、化简 ]-[a)-6(a -3a)-(5a a 5a 222+
20、已知123+-=a a A ,2433
+--=a a B ,求 B A -3
21、先化简,再求值.
(1)3x - y 2
+( 4y 2
– xy )- 2( x – xy ),其中x = -
2
1
,y = 3 (2)3(ab -5b 2
+2a2)-(7ab +16a2-25b2),其中|a -1|+(b +1)2=0.
22、观察图形,找规律,填写下表.
23、某校初一的三个班级参加植树活动,一班植树x 棵,二班比一班得倍少8棵,三班植的棵数比一班的一半多6棵
(1)用代数式表示三个班的植树总棵数
(2)若一班植树120棵,则三个班共植树多少棵?
24、某地电话拨号入网收费方式,用户可以任选一种:A、计时制,0.05元/分
B、包月制,50元/月.此外,每一种上网方式都要加收0.02元/分的通信费
(1)某用户上网的时间为x小时,请你用代数式表示良种收费方式下该用户应支付的费用.
(2)若该用户估计一个月上网时间为20小时,你认为采用哪种付费方式合算?。

相关文档
最新文档