Host guest complex of β-cyclodextrin 5-thia pentacene-14-1 for photoinitiated polymerization of

合集下载

布洛芬与环糊精的主_客体相互作用_张骞

布洛芬与环糊精的主_客体相互作用_张骞

2 结果与讨论
2.1 数据处理
数据处理由 Digitam 4.1 软件包中“Ligand Binding”程序采用多元非线性回归方法完成 , 原理和详细 步骤见前期工作的报道[ 5] 。 计算结果表明 , BFNa 的 3 种环糊精包合物的化学计量比均为 1∶1 , 同时获得 包合过程的标准焓变及实验平衡常数 。进而 , 由热力学公式 ΔG —○ =-RT ln β 和 ΔG —○ =ΔH —○ -T ΔS —○得到
(College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059)
Abstract Inclusion interactions of three cyclodextrins with ibuprofen in Tris-HCl buffer solutions (pH = 7.0)have been investigated using isothermal titration microcalorimetry at 298.15K .The thermodynamic parameters of the cyclodextrin inclusion compounds with ibuprofen are determined.The results indicate that inclusion processes of α-, β- cyclodextrins with ibuprofen are enthalpy and entropy co-driven, while complexation of γ- cyclodextrin with ibuprofen is entropy driven.A theoretical study on the inclusion processes between ibuprofen and cyclodextrins have been performed with B3LYP 6-31G * PM3 method to investigate the formation mechanism of the inclusion complexes.The results suggest that the hydrophobic part of ibuprofen molecule is inclined to enter the cavity of cyclodextrin molecules from the wide side than the narrow side .

基于β-环糊精和二茂铁主客体作用的超分子聚合物的制备及其凝胶化

基于β-环糊精和二茂铁主客体作用的超分子聚合物的制备及其凝胶化

基于β-环糊精和二茂铁主客体作用的超分子聚合物的制备及其凝胶化王亮;郭成功;王彩旗【摘要】以β-环糊精修饰的壳聚糖(CDCS)和二茂铁修饰的聚乙二醇(FCPEG)为构筑单元,以伊环糊精和二茂铁的主客体相互作用为驱动,构筑了水溶性的超分子聚合物CDCS-FCPEG。

在此基础上,加入α-环糊精(α-CD),通过其对聚乙二醇的穿环络合诱导结晶作用,制备了壳聚糖基水凝胶。

使用核磁(^1H—NMR)、紫外一可见光谱法(UV—Vis)、X射线衍射分析(XRD)和循环伏安法(CV)等手段进行了验证。

结果表明:超分子聚合物CDCS—FCPEG与共价键连接的传统聚合物一样可以和α—CD形成凝胶。

%Driven by the host-guest interaction betweenβ-cyclodextrin and ferrocene in aqueous solution, a water-soluble supramolecular copolymer CDCS-FcPEG was obtained based on β-cyclodextrin modified chitosan (CDCS) and ferrocene modified polyethylene glycol (FcPEG) as building blocks. The CDCS- FcPEG further constructed into hydrogel with α-cyclodextrin (a-CD), owing to the formation of crystalline inclusion complex of α-CD and PEG. These processes were monitored by 1 H-NMR, UV-Vis spectroscopy (UV-Vis), X-ray diffraction (XRD) and cyclic voltammetry (CV). Results show that CDCS-FcPEG can form hydrogel with a-CD like traditional copolymers linked by covalent bonds.【期刊名称】《功能高分子学报》【年(卷),期】2012(025)004【总页数】8页(P335-341,363)【关键词】壳聚糖;环糊精;二茂铁;超分子聚合物;水凝胶【作者】王亮;郭成功;王彩旗【作者单位】中国科学院大学化学与化学工程学院,北京100049;中国科学院大学化学与化学工程学院,北京100049;中国科学院大学化学与化学工程学院,北京100049【正文语种】中文【中图分类】O631环糊精(CD)是由6~8个葡萄糖单元以α-1,4-糖苷键连结而成的环状低聚糖,具有独特的内疏水、外亲水的空腔结构,能够通过疏水作用、范德华力等相互作用与许多有机和无机分子形成包合物。

环糊精结构

环糊精结构

环糊精(Cyclodextrin,简称CD)是直链淀粉在由芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,通常含有6~12个D-吡喃葡萄糖单元。

其中研究得较多并且具有重要实际意义的是含有6、7、8个葡萄糖单元的分子,分别称为alpha -、beta -和gama -环糊精。

根据X-线晶体衍射、红外光谱和核磁共振波谱分析的结果,确定构成环糊精分子的每个D(+)- 吡喃葡萄糖都是椅式构象。

各葡萄糖单元均以1,4-糖苷键结合成环。

由于连接葡萄糖单元的糖苷键不能自由旋转,环糊精不是圆筒状分子而是略呈锥形的圆环。

结构环糊精分子具有略呈锥形的中空圆筒立体环状结构,在其空洞结构中,外侧上端(较大开口端)由C2和C3的仲羟基构成,下端(较小开口端)由C6的伯羟基构成,具有亲水性,而空腔内由于受到C-H键的屏蔽作用形成了疏水区。

既无还原端也无非还原端,没有还原性;在碱性介质中很稳定,但强酸可以使之裂解;只能被α-淀粉酶水解而不能被β- 淀粉酶水解,对酸及一般淀粉酶的耐受性比直链淀粉强;在水溶液及醇水溶液中,能很好地结晶;无固定熔点,加热到约200℃开始分解,有较好的热稳定性;无吸湿性,但容易形成各种稳定的水合物;它的疏水性空洞内可嵌入各种有机化合物,形成包接复合物,并改变被包络物的物理和化学性质;可以在环糊精分子上交链许多官能团或将环糊精交链于聚合物上,进行化学改性或者以环糊精为单体进行聚合。

由于环糊精的外缘(Rim)亲水而内腔(Cavity)疏水,因而它能够像酶一样提供一个疏水的结合部位,作为主体(Host)包络各种适当的客体(Guest),如有机分子、无机离子以及气体分子等。

其内腔疏水而外部亲水的特性使其可依据范德华力、疏水相互作用力、主客体分子间的匹配作用等与许多有机和无机分子形成包合物及分子组装体系,成为化学和化工研究者感兴趣的研究对象。

这种选择性的包络作用即通常所说的分子识别,其结果是形成主客体包络物(Host-Guest Complex)。

环糊精包合物超分子材料的制备及应用研究进展

环糊精包合物超分子材料的制备及应用研究进展

环糊精包合物超分子材料的制备及应用研究进展2.山东中烟工业有限责任公司,济南 250100)摘要:环糊精是一类具有良好的水溶性、生物相容性的大环分子,其具有独特的中空截锥结构以及“内疏水、外亲水”的性质,能够通过主客体相互作用与各种有机、无机、生物分子结合形成包合物。

环糊精作为一种优良的载体材料,在化学、医学、生物学相关领域倍受关注。

本文对环糊精及其包合物材料的制备及在不应用进行了综述,并对其发展前景作出了进一步展望。

关键词:环糊精;包合;主客体相互作用;氢键;超分子中图分类号:TS202 文献标识码:AProgress in the preparation and application of cyclodextrins inclusion supramolecular materialsZHANG Chunxiao1, YU Hongxiao2, ZHANG Donghai2, YUE Yong2, ZHANG Kaiqiang1,(1. National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China;2. The China Tobacco Shandong Industrial Co., Ltd., Jinan, 250100, China)Abstract:Cyclodextrins are a class of macrocyclic molecules with good water solubility and biocompatibility. With their unique hollow truncated conical structure and "inner hydrophobic and outerhydrophilic" properties, they can form inclusion complexes withvarious organic, inorganic or biological molecules through host-guest interactions. As an excellent carrier material, cyclodextrins are of great interest in fields related to chemistry, medicine and biology. Herein,,the preparation and in application of cyclodextrins inclusion materials are reviewed, and further outlooks on their development prospects are given.Key words: cyclodextrin; inclusion; host-guest interaction; hydrogen bonding; supramolecule1 环糊精简介1.1环糊精结构与性质环糊精(CD)是由环糊精葡萄糖基转移酶作用于淀粉而产生的一系列环状低聚糖,它们由通过α-1,4糖苷键连接的D-吡喃葡萄糖单元组成[1-3]。

美沙拉嗪与β-环糊精的主客体相互作用及其分析应用

美沙拉嗪与β-环糊精的主客体相互作用及其分析应用

第34卷第6期化㊀学㊀研㊀究Vol.34㊀No.62023年11月CHEMICAL㊀RESEARCHNov.2023美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用张晨轩,李晓鹏,戚鹏飞,魏㊀莉∗(河北省药品职业化检查员总队(南片区),河北石家庄050000)收稿日期:2022⁃07⁃09基金项目:山西省重点研发计划项目(201903D321009)作者简介:张晨轩(1988-),男,工程师,研究方向:药物分析㊂∗通信作者,E⁃mail:earth⁃shaker@qq.com摘㊀要:采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法研究了美沙拉嗪(MSZ)与β⁃环糊精(β⁃CD)的主客体相互作用,同时测试了主客体包合物的热力学参数(ΔG㊁ΔH㊁ΔS)㊂光谱数据表明MSZ⁃β⁃CD包合物的形成,包合比为1ʒ1,包合常数K=1.362ˑ102L㊃mol-1㊂基于MSZ⁃β⁃CD包合物荧光强度的显著增大,建立了一个简单㊁准确㊁快速㊁高灵敏度测定水溶液中MSZ的荧光分析新方法㊂MSZ的浓度与MSZ⁃β⁃CD包合物的荧光强度变化值ΔF具有良好的线性关系,相关系数为0.998,线性范围为0.1 0.7mg㊃L-1,检测限为8μg㊃L-1,该方法可应用于药品中美沙拉嗪的含量测定㊂关键词:美沙拉嗪;β⁃环糊精;超分子化学;荧光分光光度法;药物分析中图分类号:R917文献标志码:A文章编号:1008-1011(2023)06-0505-06Host⁃guestinteractionofmesalazinewithβ⁃cyclodextrinanditsanalyticalapplicationZHANGChenxuan LIXiaopeng QIPengfei WEILi∗HebeiProvincePharmaceuticalProfessionalInspectorCorps SouthDivision Shijiazhuang050000 Hebei ChinaAbstract Thehost⁃guestinteractionofmesalazine(MSZ)withβ⁃cyclodextrin(β⁃CD)hasbeeninvestigatedusingabsorption,spectrofluorimetryand1HNMR.Thethermodynamicparameters(ΔG,ΔHandΔS)ofMSZ⁃β⁃CDwerealsostudied.Theinclusioncomplexformationhasbeenconfirmedbasedonthechangesofthespectralproperties,thelineardoublereciprocalplotindicatinga1ʒ1binding,andthebindingconstant(K)wasdeterminedas1.362ˑ102L㊃mol-1;Basedonthesignificantenhancementofthesupramolecularcomplexfluorescenceintensity,Asimple,accurate,rapidandhighlysensitivespectrofluorimetricmethodwasdevelopedtodeterminethecontentofMSZinaqueoussolution.Agoodlinearcorrelationwasobtainedbetweenthefluorescenceenhancement(ΔF)andtheMSZconcentrationsfrom0.1mg㊃L-1to0.7mg㊃L-1,acorrelationcoefficientof0.998andadetectionlimitof8μg㊃L-1werealsodetermined.TheproposedmethodwassuccessfullyappliedtodetermineMSZinitspharmaceuticaldosageforms.Keywords:mesalazine;β⁃cyclodextrin;supramolecularchemistry;spectrofluorimetry;pharmaceuticalanalysis㊀㊀环糊精(CD)是淀粉酶解作用下生成的一系列环状低聚糖㊂β⁃环糊精(β⁃CD,图1)由7个葡萄糖单元组成,具有疏水的内部空腔结构,外部具有良好的亲水性㊂在超分子化学领域,环糊精作为分子主体被广泛关注[1]㊂主客体包合物的形成会显著影响客体分子的物理化学性质,比如溶解性㊁光谱学和电化学性质㊂这一特性被广泛应用于分析化学和制药工业等诸多领域,旨在改善难溶性㊁易降解小分子药物的溶解性㊁稳定性和生物有效性[2]㊂此外,包合物的形成可以增强客体分子的荧光强度,促进毛细管电泳中的手性分离[3]㊂许多基于环糊精包合物的荧光特性建立的分析方法已应用于测定多种药物制剂㊁农药和金属离子[4]㊂506㊀化㊀学㊀研㊀究2023年美沙拉嗪(MSZ,图1)是一种治疗轻中度溃疡性结肠炎的药物㊂MSZ能够有效清除引起肠道炎症的活性氧自由基,抑制血小板环氧合酶和脂氧合酶途径,对中性粒细胞的某些功能也有抑制作用[5]㊂许多测定药物制剂或生物体液中MSZ含量的分析方法已见报道,如毛细管胶束电动色谱法[6]㊁微分脉冲伏安法[7]㊁高效液相色谱法[8]㊁液质联用技术[9]㊁分光光度法[10]㊂然而,荧光分光光度法测定药物制剂中美沙拉嗪含量的文献未见报道㊂鉴于荧光分光光度法具有操作简捷㊁灵敏度高以及较低费用等优势,目前该方法已经成为了最便捷的分析方法之一㊂图1㊀β⁃环糊精和美沙拉嗪的结构Fig.1㊀Structuresofβ⁃CDandMSZ本文采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法验证了美沙拉嗪和β⁃环糊精之间的主客体包合作用,研究了一系列影响主客体包合物形成的因素㊂β⁃环糊精本身无荧光,美沙拉嗪在水溶液中也不产生荧光发射信号,因此不能采用常规的荧光方法进行美沙拉嗪的定量分析,当美沙拉嗪和β⁃环糊精在水溶液中形成包合物时,溶液的荧光强度会显著增大㊂基于主客体包合物荧光强度与美沙拉嗪之间的线性关系,建立了一种新型测定药物制剂中美沙拉嗪含量的荧光分析方法㊂1㊀实验部分1.1㊀仪器与试剂㊀㊀Cary300型紫外分光光度计(美国瓦里安公司),CaryEclipse型荧光分光光度计(澳大利亚安捷伦公司),DRX⁃600MHz型核磁共振仪(瑞士布鲁克公司),pHS⁃3TC型pH计(上海雷磁公司),HH⁃6数显恒温水浴锅(常州国华公司)㊂所用化学试剂均为分析纯或色谱纯,实验用水为纯化水㊂美沙拉嗪和β⁃环糊精对照品购买自中国食品药品检定研究院㊂美沙拉嗪肠溶片购买自葵花药业集团股份有限公司,规格0.25g㊂1.2㊀对照品溶液和供试品储备液1.2.1㊀美沙拉嗪对照品溶液㊀㊀准确称量美沙拉嗪对照品0.01g至100mL容量瓶,加水30mL使溶解,摇匀,用水定容至刻度,振荡均匀,得到100mg㊃L-1的储备液㊂10mg㊃L-1的工作液由储备液加水稀释得到㊂1.2.2㊀β⁃环糊精对照品溶液准确称取β⁃环糊精对照品1.135g置于100mL容量瓶内,加水适量,振摇使溶解,再用水定容至刻度得到0.01mol㊃L-1的溶液㊂溶液临用现配㊂1.2.3㊀美沙拉嗪供试品储备液取10粒MSZ肠溶片,除去肠溶衣后,精密称定,研细,精密称取约相当于250mg的MSZ药品粉末,溶解在100mL容量瓶中,充分振荡㊂将此溶液过滤,弃去部分前滤液,移取10mL后续滤液并稀释为100mL的储备液㊂1.3㊀紫外分光光度法取2mL的MSZ工作溶液(10mg㊃L-1)两份,分别加入到10mL的容量瓶中,再分别加入1.5mL磷酸盐缓冲溶液(pH=7.0)来保持溶液pH呈中性,向其中一个容量瓶中加入β⁃CD对照品溶液(0.01mol㊃L-1)2mL,另一个不加β⁃CD对照品溶液㊂定容后在室温下放置10min测定吸收光谱㊂1.4㊀荧光分光光度法将2mL的β⁃CD溶液(0.01mol㊃L-1)分别加入到100mL容量瓶中,再分别加入不同体积的MSZ溶液和1.5mL的磷酸盐缓冲溶液(pH=7.0),制成MSZ最终浓度分别为0.1 0.7mg㊃L-1的混合溶液,在室温下放置10min后测定溶液的荧光强度㊂1.5㊀反应的化学计量学向100mL容量瓶中加入浓度为10mg㊃L-1的MSZ溶液和1.5mL磷酸盐缓冲溶液(pH=7.0),再将不同体积(0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0mL)0.01mol㊃L-1的β⁃CD溶液分别加入到容量瓶中,定容后在室温下放置10min㊂2㊀结果与讨论2.1㊀紫外吸收光谱㊀㊀MSZ溶液的紫外吸收光谱和MSZ与β⁃CD混合溶液的紫外吸收光谱如图2所示,结果表明在pH=7.0条件下,MSZ溶液的最大吸收波长为330nm,当加入β⁃CD后,混合溶液最大吸收波长没有变化,但第6期张晨轩等:美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用507㊀是吸光度增强㊂图2㊀MSZ紫外吸收光谱(黑色)和MSZ⁃β⁃CD包合物紫外吸收光谱(红色)Fig.2㊀AbsorptionspectraofMSZintheabsence(black)andpresence(red)ofMSZ⁃β⁃CD2.2㊀荧光光谱在pH=7.0条件下,MSZ溶液的最大发射波长为493nm,当MSZ溶液与β⁃CD溶液混合后,混合溶液的最大发射波长没有变化,但是荧光强度增强,如图3所示㊂这是由于MSZ分子进入了β⁃CD的疏水性空腔,通过范德华力和氢键等非共价键相互作用包合在一起,包合作用使MSZ分子的运动自由度降低,激发态分子以非辐射方式释放能量减少,因此MSZ⁃β⁃CD包合物的形成增强了溶液的荧光强度㊂图3㊀β⁃CD溶液中加入不同体积MSZ溶液后的荧光光谱Fig.3㊀VariationofthefluorescencespectraofMSZ⁃β⁃CDcomplexonadditionofdifferentconcentrationsofMSZ2.3㊀反应条件的优化2.3.1㊀pH的影响㊀㊀采用荧光分光光度法研究了不同pH对包合反应的影响,并测定包合物的荧光强度㊂结果表明,随着pH的增大,包合物荧光强度会增强㊂当pH为7时包合物的荧光强度最大㊂当pH大于7时,包合物的荧光强度会逐渐减弱㊂此外,通过非线性曲线拟合法计算出MSZ⁃β⁃CD包合物的包合常数(K)㊂2.3.2㊀温度和时间的影响分别在室温和30 90ħ水浴条件下,研究了MSZ⁃β⁃CD包合物受温度的影响㊂结果表明,在室温条件下包合物的荧光强度最强,故该反应在室温下进行㊂同时研究了室温下反应时间对包合物的影响,结果表明,在室温下的放置时间对包合物的荧光强度基本无影响㊂因此,本实验选择在室温放置10min的条件下进行㊂2.4㊀反应的化学计量学在最优实验条件下研究了主客体包合反应的化学计量学㊂假设主客体发生1ʒ1的包合反应,则化学计量学可以用Benesi⁃Hildebrand非线性曲线表示[11]:1/(F-F0)=1/(F¥-F0)K[β⁃CD]0+1/(F¥-F0)(1)㊀㊀[β⁃CD]0代表β⁃CD的浓度,F代表特定浓度下的主体分子同客体分子形成包合物时的荧光强度,F0表示客体分子单独存在时的荧光强度,Fɕ指主体分子与客体分子充分包合时的荧光强度,K就是主客体发生1ʒ1包合作用时的包合常数㊂通过做1/(F-F0)对1/[β⁃CD]0的双倒数曲线,如图4所示,可以验证包合比为1ʒ1的相互作用的存在㊂只有相互作用的包合比为1ʒ1时,双倒数曲线才具有线性,并且计算得到包合常数K=1.362ˑ102L㊃mol-1㊂图4㊀MSZ⁃β⁃CD包合物的双倒数曲线Fig.4㊀Plotof1/(F⁃F0)vs.1/[β⁃CD]oftheMSZ⁃β⁃CDcomplex2.5㊀包合物的热力学参数从热力学角度(ΔH㊁ΔS㊁ΔG)证明了包合物的形成,包合常数(K)与温度(T)的关系可以通过508㊀化㊀学㊀研㊀究2023年Van tHoff方程(lnK=-ΔH/RT+ΔS/R)描述,包合反应的焓变(ΔH)和熵变(ΔS)与MSZ⁃β⁃CD包合物的形成有关㊂将lnK与1/T进行线性回归,ΔH和ΔS可以分别通过回归方程的斜率和截距得到[12]㊂而吉布斯自由能变(ΔG)可以由公式ΔG=ΔH-TΔS求出,结果如表1所示㊂表1中,负的焓变和自由能变值表明这是一个放热且自发的过程,同时伴随着少量的熵损失,热力学参数表明了MSZ和β⁃CD的包合作用主要是受焓变驱使,这要归因于β⁃CD分子的羟基与MSZ分子间的氢键作用,主客体分子之间的范德华力以及β⁃CD分子空腔的疏水作用[13]㊂此外,构象变化和去溶剂化效应也促进了熵变㊂包合作用使得分子运动自由度降低,也导致了熵的损失[14]㊂表1㊀包合反应的热力学参数Table1㊀Thermodynamicparameterofthereaction热力学参数数值/(J㊃mol-1)ΔH-546.1ΔS-1.7ΔG-125.22.6㊀1HNMR谱图采用核磁共振验证了MSZ和β⁃CD的包合作用㊂图5分别为MSZ和MSZ⁃β⁃CD包合物的1HNMR谱图,与MSZ单独存在时的1HNMR谱图相比,包合物1HNMR谱图中MSZ的H3,H4,H6质子信号向高场移动,这一特征表明MSZ分子包合进入了β⁃CD的空腔[15]㊂图5㊀MSZ(黑色)和MSZ⁃β⁃CD(红色)包合物的1HNMR谱图Fig.5㊀1HNMRspectra(600MHz)ofMSZ(black)andMSZ⁃β⁃CDcomplex(red)inD2O2.7㊀方法学验证2.7.1㊀线性和灵敏度㊀㊀在最适实验条件下,对MSZ的浓度与MSZ⁃β⁃CD包合物荧光强度变化量ΔF的关系曲线进行线性回归,线性方程为:ΔF=719.5C+12.82,相关系数为0.998,线性范围为0.1 0.7mg㊃L-1㊂取空白溶液连续测定11次并计算荧光强度的标准偏差(SD),以3倍SD除以线性方程的斜率计算检出限为8μg㊃L-1㊂2.7.2㊀重复性精密称取同一批样品粉末适量,按 1.2.3 项下供试品储备液制备方法,平行制备6份,再分别按1.4 项下方法制备供试品溶液㊂在最适实验条件下进行测定,记录各供试品溶液的荧光强度,以荧光强度的RSD评价重复性㊂结果显示荧光强度的RSD为1.02%(n=6),表明该方法重复性良好㊂2.7.3㊀中间精密度由另一名分析人员,于不同日期使用不同的仪器,同 重复性 试验操作㊂结果显示各供试品溶液荧光强度的RSD为1.15%(n=6),表明该方法中间精密度良好㊂2.7.4㊀溶液稳定性试验取 1.2.3 项下供试品储备液适量,按 1.4 项下方法制备供试品溶液,分别于室温下放置0㊁6㊁12㊁24㊁48h,在最适实验条件下进行测定,并记录供试品溶液的荧光强度㊂结果,供试品溶液的荧光强第6期张晨轩等:美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用509㊀度的RSD为0.73%,表明供试品溶液在48h内稳定,能够满足测定需要㊂2.7.5㊀分析应用该方法可应用于药品中MSZ的含量测定㊂按1.2.3 项下供试品储备液制备方法,再按 1.4 项下方法制备供试品溶液,在最适实验条件下,测定MSZ的含量,结果满意,如表2所示,并且相对标准偏差小于2.00%,具有良好的准确性㊂表2㊀药品中MSZ的含量测定(n=5)Table2㊀DeterminationofMSZinpharmaceuticalformulation(n=5)药品规格/(mg/tablet)本法测定值/(mg/tablet)回收率/%MSZ250242.6097.0ʃ0.863㊀结论采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法研究了MSZ和β⁃CD之间的超分子相互作用,结果表明MSZ和β⁃CD可以形成1ʒ1的主客体包合物,包合常数K=1.362ˑ102L㊃mol-1㊂基于MSZ⁃β⁃CD包合物的荧光增敏作用,建立了一种简便㊁灵敏㊁准确的测定MSZ含量的荧光分析方法,该方法具有良好的精密度㊁重复性和适用性,可应用于药品中MSZ的定量分析㊂参考文献:[1]王恩举,陈光英,彭明生.NMR研究β⁃环糊精对布洛芬的手性识别[J].波谱学杂志,2009,26(2):216⁃222.WANGEJ,CHENGY,PENGMS.NMRstudiesofchiraldiscriminationofibuprofenenantiomersinβ⁃cyclodextrininclusioncomplexes[J].ChineseJournalofMagneticResonance,2009,26(2):216⁃222.[2]LINARESM,DEBERTORELLOMM,LONGHIM.Preparationandcharacterizationofsolidcomplexesofnaphtoquinoneandhydroxypropyl⁃b⁃cyclodextrin[J].Molecules,2000,5(3):342⁃344.[3]ELBASHIRAA,SULIMANFEO,SAADB,etal.Capillaryelectrophoreticseparationandcomputationalmodelingofinclusioncomplexesofβ⁃cyclodextrinand18⁃crown⁃6etherwithprimaquineandquinocide[J].BiomedicalChromatography,2010,24(4):393⁃398.[4]ELBASHIRAA,DSUGINFA,MOHMEDTOM,etal.Spectrofluorometricanalyticalapplicationsofcyclodextrins[J].Luminescence,2014,29(1):1⁃7.[5]马郑,董煜,彭涛.离子对RP⁃HPLC法测定美沙拉嗪栓的含量及有关物质[J].中国药房,2014,25(44):4209⁃4214.MAZ,DONGY,PENGT.Contentdeterminationof5⁃aminosalicylicsuppositoryanditsrelatedsubstancesbyion⁃pairRP⁃HPLC[J].ChinaPharmacy,2014,25(44):4209⁃4214.[6]GOTTIR,POMPONIOR,BERTUCCIC,etal.Determinationof5⁃aminosalicylicacidrelatedimpuritiesbymicellarelectrokineticchromatographywithanion⁃pairreagent[J].JournalofChromatographyA,2001,916(1/2):175⁃183.[7]NIGOVIC'B,ŠIMUNIC'B.Determinationof5⁃aminosalicylicacidinpharmaceuticalformulationbydifferentialpulsevoltammetry[J].JournalofPharmaceuticalandBiomedicalAnalysis,2003,31(1):169⁃174.[8]RAFAELJA,JABORJR,CASAGRANDER,etal.ValidationofHPLC,DPPHandnitrosationmethodsformesalaminedeterminationinpharmaceuticaldosageforms[J].BrazilianJournalofPharmaceuticalSciences,2007,43(1):97⁃103.[9]PASTORINIE,LOCATELLIM,SIMONIP,etal.DevelopmentandvalidationofaHPLC⁃ESI⁃MS/MSmethodforthedeterminationof5⁃aminosalicylicacidanditsmajormetaboliteN⁃acetyl⁃5⁃aminosalicylicacidinhumanplasma[J].JournalofChromatographyB,2008,872(1/2):99⁃106.[10]MADHAVIV,PANCHAKSHARIV,PRATHYUSHATN,etal.Spectrophotometricdeterminationofmesalazineinbulkandtabletdosageformsbasedondiazocouplingreactionwithresorcinol[J].InternationalJournalofPharmaceuticalSciencesReviewandResearch,2011,11(1):105⁃109.[11]NIGAMS,DUROCHERG.Spectralandphotophysicalstudiesofinclusioncomplexesofsomeneutral3H⁃indolesandtheircationsandanionswithβ⁃cyclodextrin[J].TheJournalofPhysicalChemistry,1996,100(17):7135⁃7142.[12]LIWY,LIH,ZHANGGM,etal.Interactionofwater⁃solublecalix[4]arenewithL⁃tryptophanstudiedbyfluorescencespectroscopy[J].JournalofPhotochemistryandPhotobiologyA:Chemistry,2008,197(2/3):389⁃393.[13]ZHANGQF,JIANGZT,GUOYX,etal.Complexationstudyofbrilliantcresylbluewithβ⁃cyclodextrinandits510㊀化㊀学㊀研㊀究2023年derivativesbyUV⁃visandfluorospectrometry[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopy,2008,69(1):65⁃70.[14]LIUY,HANBH,CHENYT.Molecularrecognitionandcomplexationthermodynamicsofdyeguestmoleculesbymodifiedcyclodextrinsandcalixarenesulfonates[J].TheJournalofPhysicalChemistryB,2002,106(18):4678⁃4687.[15]MOCKWL,SHIHNY.Structureandselectivityinhost⁃guestcomplexesofcucurbituril[J].TheJournalofOrganicChemistry,1986,51(23):4440⁃4446.[责任编辑:吴文鹏]。

环糊精包合物的分子尺寸,纳米

环糊精包合物的分子尺寸,纳米

环糊精包合物的分子尺寸,纳米英文版Molecular Size of Cyclodextrin Inclusion Complexes, NanoscaleCyclodextrins are cyclic oligosaccharides composed of glucose units. They have a unique structure that allows them to form inclusion complexes with a variety of guest molecules. These inclusion complexes have been widely studied for their potential applications in various fields, including drug delivery, food science, and environmental remediation.One of the key properties of cyclodextrin inclusion complexes is their molecular size. The size of the inclusion complex is determined by the size of the guest molecule and the cavity size of the cyclodextrin molecule. In general, cyclodextrins can form inclusion complexes with guest molecules that are smaller than the cavity size of the cyclodextrin molecule. This results in the guest molecule being encapsulated within the cavity of the cyclodextrin molecule, forming a stable inclusion complex.The molecular size of cyclodextrin inclusion complexes is of particular interest in the field of nanotechnology. Nanoparticles formed by cyclodextrin inclusion complexes have unique properties that make them ideal for various applications. For example, the small size of these nanoparticles allows them to penetrate cell membranes easily, making them promising candidates for drug delivery systems. Additionally, the encapsulation of guest molecules within cyclodextrin nanoparticles can protect the guest molecules from degradation and improve their stability.Overall, the molecular size of cyclodextrin inclusion complexes plays a crucial rolein determining their properties and potential applications. Further research in this area is needed to fully understand the behavior of these inclusion complexes at the nanoscale.中文翻译环糊精包合物的分子尺寸,纳米环糊精是由葡萄糖单元组成的环状寡糖。

INCLUSION COMPLEX

INCLUSION COMPLEX

Material for inclusion complex

The common material for inclusion complex are Cyclodextrin and its derivative

Cyclodextrin (CD) is the product of
starch by using the Cyclodextrin glucanotransferase ,it is cyclic oligosaccharides consisting of 6-12 glucoses units, mostly α, β and γcyclodextrins (or 6,7 and 8 glucose units respectively). the main difference of the three types are the size of the cavity and the physical property
Release of inclusion complex


Inclusion complex is usually diluted in our body, and some contents in our blood or tissues can competitively replace the drug, resulting a rapid release. Drug can also be released with the degradation of the material

Structure of the β- Cyclodextrin
三种CD的基本性质


Cyclodextrin derivative is a sort of better material with some modified properties which make them easier to held guest molecules, here it can be classified into two groups: Hydrosoluble CD derivative Hydrophobic CD derivative

环糊精包合原理

环糊精包合原理

β环糊精及其衍生物包合原理与制药技术资料来源:超星电子图书馆藏书\<药剂学>第四版\毕殿洲主编第六章制剂新技术(P108-112)\陆彬编著制剂新技术涉及范围广,内容多。

本章仅对目前在制剂中应用较成熟,且能改变药物的物理性质或释放性能的新技术进行讨论,内容有包合技术、固体分散技术以及微型包囊技术。

包合技术在药剂学中的应用很广泛。

包合技术系指一种分子被包嵌于另一种分子的空穴结构内,形成包合物(inClusion Compound)的技术。

这种包合物是由主分子(host mo1eCule)和客分子(guest moleCule)两种组分加合组成,主分子具有较大的空穴结构,足以将客分子容纳在内,形成分子囊(mo1eCule Capsule)。

药物作为客分子经包合后,溶解度增大,稳定性提高,液体药物可粉末化,可防止挥发性成分挥发,掩盖药物的不良气味或味道,调节释药速率,提高药物的生物利用度,降低药物的刺激性与毒副作用等。

如难溶性药物前列腺素E 2经包合后溶解度大大提高,并可制成粉针剂。

盐酸雷尼替丁具有不良臭味,可制成包合物加以改善[1],可提高病人用药的顺从性。

陈皮挥发油制成包合物后,可粉末化且可防止挥发[2]。

诺氟沙星难溶于水,口服生物利用度低。

制成诺氮沙星-β环糊精包合物胶囊[3],该胶囊起效快,相对生物利用度提高到%。

用研磨法制得维A酸-β环糊精包合物后[4],包合物稳定性明显提高,副作用的发生率明显降低。

硝酸异山梨醇酯-二甲基β环糊精包合物片剂血药水平可维持相当长时间,说明包合物具有明显的缓释性。

目前利用包合技术生产且已上市的产品有碘口含片、吡罗昔康片、螺内酯片以及可遮盖舌部麻木副作用的磷酸苯丙哌林片等。

包合物能否形成及其是否稳定,主要取决于主分子和客分子的立体结构和二者的极性:客分子必须和主分子的空穴形状和大小相适应,包合物的稳定性主要取决于两组分间的范德华力。

包合过程是物理过程而不是化学反应。

药剂学常用物质英文缩写

药剂学常用物质英文缩写

药剂学常用物质英文缩写1-NEP N-乙基吡咯酮1-NMP N-甲基吡咯酮2G-β-CYD 二葡糖基-β-环糊精2-HP-β-CYD 2-羟丙基-β-环糊精5-NCP 5-羧基吡咯酮5-NMP 5-甲基吡咯酮Accelerated testing 加速试验Acrylic acid resin 丙烯酸树酯Active targeting preparation 主动靶向制剂Adersive dispersion-type TTS 粘胶分散型TTS Adhersive strength 粘附力Adhesion 粘附性Adhesives 粘合剂Aerosil 微粉硅胶Aerosol 气雾剂Aerosol of micropowders for inspiration 吸入粉雾剂Aethylis oleas 油酸乙酯Agglomerate 聚结物Aggregation 聚集Air suspension 空气悬浮法Alarm clock 闹钟Alcohol 乙醇All-trans 全反式Alterntae addition method 两相交替加入法Amebocyte lysate 变形细胞溶解物Amorphous forms 无定型Angle of repose 休止角Antiadherent 抗粘剂Antioxidants 抗氧剂Antisepesis 防腐Apparent solubility 表现溶解度Aprotinin 抑酞酶Aquacoat 乙基纤维素水分散体Aromatic waters 芳香水剂Arrhenius 方程阿仑尼乌斯方程Ascabin 苯甲酸酯Aseptic technique 无菌操作法Azone 氮酮Ball mill 球磨机Base adsorption 基质吸附率Bases 基质Beeswax 蜂蜡Bending 弯曲力BHA 叔丁基对羟基茴香醚BHT 二叔丁基对甲酚Bioavailability 生物利用度Biochemical approach 生物学方法Biopharmaceutics 生物药剂学Biotechnology 生物技术Bond学说中等粉碎(粒径)Bound water 结合水分Breakage (Bk) 脆碎度Brij 泽、聚氧乙烯脂肪醇醚Brij 聚氧乙烯脂肪醇醚Buccal tablets 颊额片Bulk density 松密度Bulk density 松密度、堆密度Burst effect 突释效应CA 醋酸纤维素CAB 醋酸纤维素丁酸酯Cabomer 羟基乙烯共聚物Caking 结饼CAP 醋酸纤维素酞酸酯CAP 邻苯二甲酸醋酸纤维素Capillary state 毛细管状Capsules 胶囊剂Carbomer 卡波姆、羧基乙烯共聚物Carbopol 卡波普Carbopol 934 卡波普Carboxymethyl cellulose sodium 羟甲基纤维素钠Carboxymethyl starch sodium CMS-Na羧甲基淀粉纳Carboxymethylcellulose sodium CMC-Na羧甲基纤维素纳CAT 醋酸纤维素苯三酸酯CD 圆二色谱法Cellulose acetate (CA) 醋酸纤维素Cellulose acetate phthalate (CAP) 醋酸纤维素酞酸醋Central composite design (CCD) 星点设计Cera aseptical pro osse bone wax 骨蜡Ceramide 神经酰胺Cetomacrogol 聚乙二醇与十六醇缩合Chemical approach 化学方法Chewable tablets 咀嚼片Chitin 壳多糖Chitosan 壳聚糖Chronopathology 时辰病理学Chronopharmacology 时辰药理学Clausius-Clapeyron方程克劳修斯-克拉珀龙方程Clinical pharmaceutics 临床药剂学Cloud point 对聚氧乙烯型非离子表面活性剂CMC-Na 羧甲基纤维素纳CMEC 羧甲乙纤维素CMS 羧甲基淀粉CMS-Na 羧甲基淀粉钠Coadminiatration of skin Meta Inh 皮肤代谢抑制剂的合用Coadministraition of chem. P Enh 化学吸收促进剂的合用Coagulation 聚沉Coated tablets 包衣片Coating material 表材Cocoa butter 可可豆脂Cohesion 凝聚性、粘着性Cohesive strength 内聚力Cold compression method 汽压法Cold-homogenization 冷却一匀化法Colon-targeted capsules 结肠靶向胶囊剂Compactibility 成形性Complex coacervation 复凝聚法Compliance 顺应性Compressed tablets 普通片Compressibility 压缩度Compression 压缩力Compressive work 压缩功Cone and plate viscometer 圆椎平板粘度计Consistency curve 稠度曲线Controllability 可控性Controlled release tablets 控释片Controlled-release preparation 控释制剂Convective mixing 对流混合Convective transport 传递透过Coordination number 配位数Copoly (latic/glycolic) acid 聚乳酸乙醇酸共聚物Core material 表心物Cosolvency 潜溶Cosolvent 潜溶剂Coulter counter method 库尔特计数法Count basis 个数基准CP 聚羧乙烯CPVP 交联聚乙烯比咯烷酮CRacemization 外消旋作用Creams 乳青剂Creep 蠕变性Cremolphore EL 聚氧乙烯蓖麻油甘油醚Critical relative humidity (CRH) 临界相对湿度Critical relative humidity(CRH)临界相对湿度Critical velocity 临界速度Critrical micell concentration CMC临界胶束浓度Croscarmellose sodium CCNa交联羧甲基纤维素纳Croscarmellose sodium (CCNa) 交联甲基纤维素钠Crospovidone 交联聚维酮Cross-liked polyvinyl pyrrolidone PVPP交联聚维酮Crushing 粉碎Crystal form 晶型Crystal habit 晶态、晶癖、结晶习性CTS 普通栓剂Cumulative size distribution 累积分布Cutting 剪切力Cyclodextrin (CYD) 环糊精Cylinder model 圆栓体模型Cytotoxicity 细胞素DDS 药物传递系统Decoction 汤剂Degree of circularity 圆形度Degree of sphericility 球形度Delipidization 角质层去脂质化Dextrin 糊精Dialysis cell method 渗析池法Dicetyl phosphate 磷酸二鲸蜡脂Dielectric constant 介电常数Differential scanning calorimetry DSC差示扫描显热法Differential thermal analysis DTA差示热分析法Diffusive mixing 扩散混合Dilatant flow 胀性流动Diluents 稀释剂、填充剂Dimethicone (silicones) 二甲基硅油、硅油、硅酮Dimethyl sulfoxide(DMSO) 二甲基亚砜Dimethylacetamide (DMA) 二甲基乙酰胺Disinfection 消毒Disintegrants 崩解剂Disk assemble method 圆盘法Disperse medium 分散介质Disperse phase 分散相Disperse system 分散体系Dispersed phase 分散相、内相、非连续相Dispersible tablets 分散片Displacement value (DV) 置换价Distilled water 蒸馏水DL-phenylalanine ethyl acetoacetate DL苯基苯胺乙醚乙酸乙酯DLVO理论引力势能与斥力势能DME 二甲醚DMSO 二甲基亚矾DM-β-CYD 二甲基-β-环糊精Donor cell 供给宝DOPE 二油酰磷脂酰乙醇胺Dosage form 药物剂型DPPC 二棕榈酰磷脂酰胆碱Drop dentifrices 滴牙剂Drug carrier 药物载体Drug-loading rate 载药量Dry bulb temperature 干球温度DSPC 二硬脂酰磷脂酰胆碱DSPE 二硬脂酰磷脂酰乙醇胺Dumping effect 突释效应EA 乙基纤维素Ear drops 滴耳剂EC 乙基纤维素EC 毛细管电泳Effect diameter Dsk,有效径Effectiveness 有效性Effervescent disintegrants 泡腾崩解剂Effervescent tablets 泡腾片Elastic deformation 弹性变形Elastic recovery (ER) 弹性复原率Elastic work 弹性功Elasticity 弹性Electro phoresis 电泳Electroporesis 电致孔法Electuary 煎膏剂EMA 甲丙烯酸乙酯Emolphor 聚氧乙烯蓖麻油化合物Emulsifer in water method 水中乳化剂法、湿胶法Emulsifier in oil method 油中乳化剂法、干胶法Emulsion 普通乳Emulsions 乳剂Enamine 烯胺Endocytosis 内呑Endotoxin 内毒素Enteric capsules 肠溶胶囊剂Enteric coated tablets 肠溶衣片Entrapment rate 包封率Epidermis 表皮Epimerization 差向异构作用EPR效应促渗滞留作用Equilibrium solubility 平衡溶解度Equilibrium water 平衡水分Equivalent specific surface DSVEquivalent volume diameter Dv,体积等价径,球相当径Ethanol 乙醇Ethical (prescription) drug 处方药Ethycellulose (EC) 乙基纤维素Ethylcellulose EC乙基纤维素Ethylene vilnylacetate copolymer 乙烯-醋酸乙烯共聚物Ethylene vinylacetate copolymer 乙烯-醋酸乙烯共聚物Eu L, Eu S 聚甲基丙烯酸Eu RL, Eu RS 聚甲基丙烯酸酯Eu RL100, Eu RS100 甲基丙烯酸酯共聚物(不溶)Eu RL100, Eu SL100 聚丙烯酸树脂系列Eu S100, Eu L100 甲基丙烯酸共聚物(肠溶)Eudragit (E, RL, RS) 甲基丙烯酸酯共聚物Eudragit L100 甲基丙烯酸共聚物Eudragit RS100, RL100, NE30D 甲基丙烯酸酸共聚物- Eudragit S100 甲基丙烯酸共聚物EVA 乙烯-醋酸乙烯共聚物Evaporation 蒸发Excipients (adjuvants) 辅料External phase 分散介质、外相、连续相Extracts 浸膏剂Eye drop 滴眼剂Eye ointments 眼膏剂Factorial design 析因设计Fatty oils 脂肪油Feret diameter 定方向接线径Ficks第一扩散公式药材提取Fillers 填充剂Film coated tablets 薄膜衣片Film dispersion method 薄分散法Films 膜剂First-pass effect 首过效应Fliud extracts 流浸膏剂Flocculation 絮凝Flocculation value 絮凝度Flow curve 流动曲线Flow velocity 流出速度Flowability 流动性Fluid-energy mills 流能磨、气流式粉碎机Fluidity buffer 流动性缓冲剂Fluidized bed coating 流化床包衣法Free water 自由水分Freely movable liquid 自由流动液体Freon 氟氯烷烓类、氟里昂Frequency size distribution 频率分布Funicular state 索带状Fusion 融合Fusion method 热烙法Garles 含潄剂GAS 气体反溶剂技术Gas adsorption method 气体吸附法Gas antisolution GASGas permeability method 气体透过法GCP 药物临床试验管理规范Gelatin 胫胶Gelatin 明胶Gelatin glycerin 甘油胫胶Gelatinization 糊化General acid-base catalysis 广义酸碱催化Geometric diameter 几何学粒子径Geometric isomerization 几何异构Ghost cell 影细胞Glidants 助流剂GLP 药物非临床研究管理规范Glycerin 甘油Glycerins 甘油剂Glyceryl monostearate 硬脂酸、甘油酯Glycolic acid 羟基乙酸GMP 药品生产质量管理规范Granule density 颗粒密度Granules 颗粒剂Graton-Fraser模型颗粒的排列模型Group number HLB基团数Guest molecules 客分子G-β-CYD 葡糖--环糊精Half life 半衰期Handerson-Hasselbach公式解离状态、pkc、ph的关系Hard capsules 硬胶囊剂Hardness 硬度HCO 氢仪蓖麻油HEC 羟乙基纤维素HEMA 甲基丙烯酸羟乙酯HES 羟乙基淀粉Heywood diameter Dh,投影面积圆相当径Higuchi方程希古契方程Host molecules 主分子HPC 羟丙纤维素HPMA 羟丙甲丙烯酸甲酯HPMC 羟丙甲基纤维素HPMC 羟丙甲纤维素HPMCAS 醋酸羟丙甲纤维素琥珀酸酯HPMCP 羟丙甲基纤维素酞酸酯HPMCP (HP-50, HP-55) 羟丙甲纤维酸酯Humidity 湿度Hydration of stratum corneum 角质层的水化作用Hydrogel 水性凝胶Hydrophile-lipophile balance 亲水亲油平衡值Hydrotropy 助溶Hydrotropy agent 助溶剂Hydroxypropyl methylcellulose 羟丙甲纤维素Hydroxypropyl methylcellulose acetate succinate 醋酸羟丙甲纤维素琥珀酸酯Hydroxypropyl methylcellulose phthalate 羟丙甲纤维素酞酸醋Hydroxypropylcellulose (HPC) 羟丙基纤维素Hydroxypropylmethyl cellulose HPMC羟丙甲基纤维素Hygroscopicity 吸湿性Hypodermic tablets 皮下注射用片ICH 国际协调会议IDDS 植入给药系统IEC 离子交换色谱法IEF 等电点聚焦Immobile liquid 不可流动液体Impact 冲击力Impact mill 冲击式粉碎机Implant tablets 植入片Inclusion compound 包含物Industrial pharmaceutics 工业药剂学Infusion solution 输液Injection 注射液In-liquid drying 液中干燥法(乳化-溶剂挥发法)Interface polycondensation 界面缩聚法intra-arterial route 动脉内注射Intradermal (ID) route 皮内注射Intramuscular (IM) route 肌肉注射Intravenous (IV) route 静脉注射Intrinsic dissolution rate 特性溶出速率Intrinsic solubility 特性溶解度Inverse targeting 反向靶向Iontophoresis 离子渗透法IR 红外Isoclectric focusing IEF等电点聚焦Isoosmotic solution 等渗溶液Isopropylpalmitate 异丙酸棕榈酯Isostearylisostearate 异硬脂酸异硬酯Isotonic solution 等张溶液Journal of Drug Targeting 药物靶向杂志Kick学说粗粉碎(体积)Krafft point 对离子型表面活性剂而言Krummbein diameter 定方向最大径Lactic acid 乳酸Lactose 乳糖Lag time 滞留时间Large unilamellar vesicles 大单室脂质体Laurocapam 月桂氮草酮Length basis 长度基准L-HPC 低取代羟丙基纤维素Limulus lysate test 鲎试验法Liniments 搽剂Liposomes 脂质体Liquid immersion method 液浸法Liquid injection 无针液体注射器Liquid paraffin 液体石蜡Long-circulating liposome 长循环脂质体Long-circulating liposomes 长循环脂质体Long-term testing 长期试验Loo-Rigelman方程双宝血药浓度-吸收率换算Lotions 洗剂Lubricants 润滑剂LUVs 大单宝脂质体。

环糊精

环糊精

环糊精胡小丹2009210660摘要简单介绍了环糊精的概念、分类、常见环糊精结构和性质。

重点综述β-环糊精的制备与应用。

关键词环糊精;分类;制备;应用。

1环糊精的概念环糊精(Cyclodextrin,简称CD)是直链淀粉在由芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,通常含有6~12个D-吡喃葡萄糖单元。

其中研究得较多并且具有重要实际意义的是含有6、7、8个葡萄糖单元的分子,分别称为alpha -、beta -和gama -环糊精(图1)。

根据X-线晶体衍射、红外光谱和核磁共振波谱分析的结果,确定构成环糊精分子的每个D(+)- 吡喃葡萄糖都是椅式构象。

各葡萄糖单元均以1,4-糖苷键结合成环。

由于连接葡萄糖单元的糖苷键不能自由旋转,环糊精不是圆筒状分子而是略呈锥形的圆环。

由于环糊精的外缘(Rim)亲水而内腔(Cavity)疏水,因而它能够象酶一样提供一个疏水的结合部位,作为主体(Host)包络各种适当的客体(Guest),如有机分子、无机离子以及气体分子等。

其内腔疏水而外部亲水的特性使其可依据范德华力、疏水相互作用力、主客体分子间的匹配作用等与许多有机和无机分子形成包合物及分子组装体系,成为化学和化工研究者感兴趣的研究对象。

这种选择性的包络作用即通常所说的分子识别,其结果是形成主客体包络物(Host-Guest Complex)。

环糊精是迄今所发现的类似于酶的理想宿主分子,并且其本身就有酶模型的特性。

因此,在催化、分离、食品以及药物等领域中,环糊精受到了极大的重视和广泛应用。

由于环糊精在水中的溶解度和包结能力,改变环糊精的理化特性已成为化学修饰环糊精的重要目的之一。

环糊精(化学式: C14H8O2),是一种安特拉归农类化学物。

环糊精的复合物存在于天然,也可以人工合成。

工业上,不少染料都是以环糊精作基体;而不少有医疗功效的药用植物,如芦荟,都含有环糊精复合物。

例如芦荟的凝胶当中的环糊精复合物,有消炎、消肿、止痛、止痒及抑制细菌生长的效用,可作天然的治伤药用。

超高效液相色谱法快速测定辣椒素类物质

超高效液相色谱法快速测定辣椒素类物质

超高效液相色谱法快速测定辣椒素类物质赵春华;侯倩慧;余季金【摘要】建立了超高效液相色谱法快速测定辣椒制品中辣椒素、二氢辣椒素、降二氢辣椒素的方法.样品以四氢呋喃-甲醇(体积比1:1)提取,采用反相高效液相色谱分离.色谱柱为BEH C18,流动相乙腈-水进行梯度洗脱;二极管阵列检测器(DAD),检测波长为280 nm.各成分在1.0 -100.0 mL/L范围内线性良好.辣椒素、二氢辣椒素测定结果的相对标准偏差分别为0.8%,1.2%(n=5),回收率分别为93.0%-100.0%,92.9% -97.4%.方法检出限为0.05 mg/mL,定量限为0.25 mg/mL.该法满足辣素等级评价相关标准的要求.%A rapid method was developed for determination of capsaicin, dihydroeapsaicin and nordihydroeapsaicin in capsa-icinoids by ultra performance liquid chromatography. The sample was extracted with tetrahydrofuran - methanol ( volume ratio was 1:1). The components were separated on a BEH C18 column by gradient elution with acetonitrile - water as the mobile phase, and detected with DAD at 280 nm. The linear range was 1.0 - 100.0 mL/L. The RSD were 0.8 % , 1.2% (n = 5) , and the recoveries were 93.0% -100.0% and 92.9% -97.4% for capsaicin and dihydroeapsaicin, respectively. LOD was0.05 mg/mL, and LOQ was 0.25 mg/mL. The method meets the requirements of pungency level evaluation on the industrial criterion.【期刊名称】《化学分析计量》【年(卷),期】2011(020)005【总页数】3页(P38-40)【关键词】超高效液相色谱;辣椒及辣椒制品;辣椒素同系物;辣味水平【作者】赵春华;侯倩慧;余季金【作者单位】青岛华测检测技术有限公司,青岛,266101;青岛普仁仪器有限公司,青岛,266046;青岛大学,青岛,266071【正文语种】中文对辣椒或其提取物中辣椒素类物质的定量分析可采用铝蓝比色法、辣椒素分光光度法、高效液相色谱法、气-质联用法、液-质联用法等多种方法。

药剂学常用物质英文缩写

药剂学常用物质英文缩写

药利学常用杨质英丈缩写1-NEPN- 乙基眈略昭1- NMP 墓眈略酩2G-P-CYD 二却競晟一0 -环糊務2- HP-p-CYD2 - 丙基一卩一环制精5-NCP 5 ?毀晟毗略附5-NMP 5 ?甲基眈略昭Accelerated testing 加速.试睑Acrylic acid resin 丙纬馥树酯Active targeting preparation 主动花向制刑Adersive dispersion-type TTS 粘胶分救型TTS Adhersive strength 粘附力Adhesion 粘附性Adhesives 粘合利Aerosil 微粉硅胶Aerosol %零刘Aerosol of micropowders for inspiration 浹入扮# 刘Aethylis oleas 油酸. 乙酯Agglomerate 聚结杨Aggregation 聚集Air suspension 空%悬浮出Alarm dock 闱钟Alcohol 乙醇All-trans 全反式Alterntae addition method 両相交菩加入比Amebocyte lysate 麦形细胞徐鮮杨Amorphous forms 无岌空Angle of repose 休止角Antiadherent 彳若粘紂Antioxidants 抗氧刘Antisepesis 陆腐Apparent solubility 表現徐解皮Aprotinin 抑駄酶Aquacoat 乙基纤维素水分散体Aromatic waters 芳香水剖Arrhenius 方程阿必尼爲斯方程Ascabin 苯屮馥酯Aseptic technique 无菌操作法Azone 気阴Ball mill 球虜机Base adsorption 基质哌附率Bases 基质Beeswax 年蜡Bending 杏曲力BHA 叔丁基对務基診香瞇BHT 二叔丁墓对甲盼Bioavailability 生物利用皮Biochemical approach 生杨学方法Biopharmaceutics 生賜药刘?学Biotechnology 生杨枝术Bond ?学说中等扮碎( 耘径丿Bound water 结合水分Breakage (Bk) 脆碎度Brij 泽. 聚氧乙纬朋肪醇瞇Brij 聚氧乙纬脂肪醇瞇Buccal tablets 颊濒片Bulk density 松密度Bulk density 松瀝度. 堆逵度Burst effect 突絆敗应CA 醋酸纤维素CAB 醋酸纤维素丁酸酯Cabomer 莪基乙纬共聚杨Caking 结饼CAP 醋酸纤维素致酸酯CAP 邻笨二屮馥醋峻纤维索Capillary state 毛细管状Capsules 肤鳶刘Carbomer 卡波蝎L 玻疑乙炜共聚物Carbopol 卡波普Carbopol 934 卡波普Carboxymethyl cellulose sodium 狡甲屋纤维素钠Carboxymethyl starch sodium CMS-Na 檢甲駅注扮纳Carboxymethylcellulose sodium CMC-Na 数甲基纤维素纳CAT 醋馥纤维素笨三酸酯CD 圓二色谱出Cellulose acetate (CA) 腊酸. 纤维紊Cellulose acetate phthalate (CAP) 醋峻纤维素致酸腊Central composite design (CCD) < 点役计Cera aseptical pro osse bone wax 骨蜡Ceramide 神经眺胺Cetomacrogol 聚乙二醇与十六醇编合Chemical approach 化学方比Chewable tablets 咀嚼片Chitin 亮多続Chitosan 亮聚鶴Chronopathology 对辰病理学Chronopharmacology 肘层药理学Clausius-Clapeyron 方程克券修斯- 克竝殉龙方程Clinical pharmaceutics 临床药刘学Cloud point 对聚氧乙炜型非窗孑哀而活性刘CMC-Na 玻屮塞纤维素纳CM EC 瞰屮乙纤维素CMS 玻甲晟法扮CMS-Na 数甲基法粉钠Coadminiatration of skin Meta Inh 皮肤代抑制剖的合用Coadministraiti on ofchem. P Enh 化学吸收促进剜的金用Coagulation 聚沉Coated tablets 色衣片Coating material 表妨Cocoa butter 可可豆脂Cohesion ;圾衆性. 粘舟性Cohesive strength 聚力Cold compression method 汽压法Cold-homogenization 冷却一匀化出Colon-targeted capsules 结肠枪向腔袤刘Compactibility 成形性Complex coacervation 复滙聚法Complianee 顺应性Compressed tablets 普通片Compressibility 庄编度Compression 庄编力Compressive work 庄编功Cone and plate viscometer 圜推平核粘度计Consistency curve 稠皮曲线Controllability 可柱性Controlled release tablets 疑猝片Controlled-release preparation 猝制利Convective mixing 对浇混合Convective transport 传逅遗过Coordination number 配佞Copoly (latic/glycolic) acid 聚乳馥乙醇酸共聚杨Core material 哀心、賜Cosolvency 潜洽Cosolvent 潜溶利Coulter counter method 库金苗计数比Count basis 个救基: 隹CP 聚玻乙炜CPVP 交朕聚乙烯比咯烧酩CRacemization 外谄淡作用Creams 乳青刘Creep 螞支性Cremolphore EL 聚氧乙烯嵬麻油甘油瞇Critical relative humidity (CRH) 尬霁相对iSL 汉Critical relative humidity (CRH 丿临界相对谡ztCritical velocity 他界速度Critrical micell concentration CMC 滋界胶束浓皮Croscarmellose sodium CCNa 交联数甲基纤维索纳Croscarmellose sodium (CCNa) 交瑶甲怎纤维素钠Crospovidone 交联聚维酮Cross-liked polyvinyl pyrrolidone PVPP 交联聚维胡Crushing 粉碎Crystal form 晶型Crystal habit 晶态. 岛弭.结甜习性CTS 普通栓刘Cumulative size distribution 累积分布Cutting 剪切力Cyclodextrin(CYD) 环糊新Cylinder model 圆桧体栈型Cytotoxicity 细胞素DDS 药賜传逅糸统Decoction 汤和Degree of circularity 圆形度Degree of sphericility 球形度Delipidization 角施层去脂质化Dextrin 糊菇Dialysis cell method 湊析池出Dicetyl phosphate 璘酸二妹蜡力&Dielectric constant 介电带数Differential scanning calorimetry DSC 差示柑描显热比Differential thermal analysis DTA 姜示热分析比Diffusive mixing 护救混金Dilatant flow 胀性浇动Diluents 种挣刘. 填尢刘Dimethicone (silicones) 二甲基爲圭油.砒油. 爲圭阳Dimethyl sulfoxide(DMSO) 二甲疑亚矶Dimethylacetamide (DMA) 二甲恳乙維胺Disinfection 谄<Disintegrants 崩解刘Disk assemble method 圖盘出Disperse medium 分散介质Disperse phase 分收相Disperse system 分敬体务Dispersed phase 分?散.相.相. 非连续相Dispersible tablets 分紋片Displacement value (DV) 置换价Distilled water 蕙镭水DL-phenylalanine ethyl acetoacetate DL 笨基笨胺乙瞇乙馥乙酯DLVO 理论引力势能与斤力势能DME 二甲瞇DMSO 二甲基亚矶DM-p-CYD 二甲基一0 - 环糊精Donor cell 供给宝DOPE 二油眺璘力&眺乙醇胺Dosage form 药杨剖世DPPC 二榇桐眺璘脂眺胆或Drop dentifrices 滿牙剎Drug carrier 药物我体Drug-loading rate 我药童Dry bulb temperature 干球温度DSPC 二硬脂犹碑脂犹胆减DSPE 二硬朋虢琲脂眺乙醇胺Dumping effect 突挣敗应EA 乙基纤维素Ear drops 满耳利EC 乙基纤维素EC 毛细管色冰Effect diameter Dsk ■有敢径Effectiveness 冇敗性Effervescentdisintegrants 泡膳崩鮮和Effervescent tablets 泡膳片Elastic deformation 弹性变形Elastic recovery (ER) 眸性复虑率Elastic work 眸性功Elasticity 暉性Electro phoresis 电尿Electroporesis 屯欢孔出Electuary 煎青利EMA 甲丙炜酸乙酯Emolphor 聚氧乙炜蒐凉油化合物Emulsifer in water method 水中苑化剖法、谡胶法Emulsifier in oil method 油中礼化和法. 干肤法Emulsion 普通乳Emulsions 乳刘Enamine 纬胺Endocytosis 吞Endotoxin 春素Enteric capsules 肠谆胶倉刘Enteric coated tablets 肠徐衣片Entrapment rate 包封率Epidermis 表皮Epimerization 妾向异构作用EPR 敗应促湊帶紹作用Equilibrium solubility 平街徐鮮皮Equilibrium water 平分Equivalent specific surface DSVEquivalent volume diameter Dv, 体积寻价段,球相生後Ethanol 乙醇Ethical (prescription) drug 处. 方药Ethycellulose (EC) 乙駅纤维素Ethylcellulose EC 乙基纤维素Ethylene vilnylacetate copolymer 乙歸?醋馥乙鳩共聚杨Ethylene vinylacetate copolymer 乙歸一醋酸乙纬共聚杨Eu L, Eu S 聚甲基丙炜馥EuRL.EuRS 聚甲基丙纬馥酯Eu RL100. Eu RS1OO 甲基丙炜馥酯共聚%( 不谑JEu RL100, Eu SL1OO 聚丙烯酸树朋糸刃Eu S100. Eu L100 甲晟丙纬馥共聚肠( 肠谊JEudragit (E, RL, RS) 甲最丙纬馥醋共聚%Eudragit L100 甲尿丙埔馥共聚杨Eudragit RS1OO. RL1OO, NE30D f 尿丙炜酸酸共聚场?Eudrag 让S100 甲基丙炜酸共聚%EVA 乙纬一醋酸乙埔共聚杨Evaporation 熱发Excipients (adjuvants) . 辅料External phase 分救介质. 外才o. 连续相Extracts 谀音利Eye drop 满艰刘Eye ointments 飛菁和Factorial design 析因设计Fatty oils 力&肪诂Feret diameter 沱方向接线径Ficks 笫一护扳公无药材堤取Fillers 填充剖Film coated tablets 薄朕衣片Film dispersion method 諒分散浪Films MidFirst-pass effect 祈过玻. 应Fliud extracts 浇淡膏利Flocculation 嚟嵌Flocculation value 菜凝度Flow curve 克动曲线Flow velocity 浇出速度Flowability 流动性Fluid-energy mills 流能康. 气浇式粉碎机Fluidity buffer 流动性级冲利Fluidized bed coating 流化床色农法Free water 自由水分Freely movable liquid fi 由浣动液体Freon 飢氣烷娃类、欽里昂Frequency size distribution 频率分布Funicular state 索带状Fusion 融合Fusion method 热烙出Carles 含漱刘GAS 气体反徐利技术Gas adsorption method %体狹附法Gas antisolution GASGas permeability method 气体透过法GCP 药场临床洪验管理规Gelatin 胫胶Gelatin 期胶Gelatin glycerin 甘油胫肤Gelatinization 糊化General acid-base catalysis r 义酸戒维化Geometric diameter 几何?学粒孑直Geometric isomerization 几何异构Ghost cell 彩细胞Glidants 助流利GLP 药賜非临床研兗管理规Glycerin 甘油Glycerins 甘油別Glyceryl monostearate 硬脂馥、甘油酯Glycolic acid 務駅乙酸GMP 药器生产质量管理规Granule density 顋花密度Granules 颗蔻利Graton-Fraser 爆型穎粒的排列核型Group number HLB 墓团数Guest molecules 瘵分孑G-p-CYD 対無一一环糊菇Half life 半表期Handerson-Hasselbach 鮮离状态.pkc 、ph 的关条Hard capsules 硬胶囊剜Hardness 哽度HCO 氢仪菟珠油HEC 轻乙基纤维素HEMA 甲晟丙炜酸轻乙酯HES 技乙基法粉Heywood diameter Dh, 投彩面积圆水]生径Higuchi 方程希古典方程Host molecules 主分孑HPC 狡丙纤维素HPMA 殘丙甲丙纬馥甲酯HPMC 殘丙屮晟纤维素HPMC 殘丙屮纤维素HPMCAS 错酸後丙甲纤维素琥珀酸酯HPMCP 狡丙甲蔓纤维素致酸酯HPMCP (HP-50, HP-55) 殘丙甲纤维酸酯Humidity 湿皮Hydration of stratum corneum 角质參的水化作用Hydrogel 水性揪胶Hydrophile-lipophile balance 亲水亲油平街值Hydrotropy 助滚Hydrotropyagent 助诲利Hydroxypropyl methylcellulose 聂丙屮纤维素Hydroxypropyl methylcellulose acetate succinate 醋酸疑丙甲纤维素琥殉酸酯Hydroxypropyl methylcellulose phthalate 務丙甲纤维素致酸醋Hydroxypropylcellulose (HPC) 殘丙压纤维素Hydroxypropylmethyl cellulose HPMC 殘丙甲晟纤维素Hygroscopicity 吸涅性Hypodermic tablets 皮下注射用片ICH 国际协调令议IDDS 植入给跖糸统1EC 离子交换色诫出1EF 等屯点聚魚Immobile liquid 不可浇动液体Impact 冲击力Impact mill 冲击丸扮碎机Implant tablets 植入片Inclusion compound 包令%Industrial pharmaceutics 工比药和?学lnfusion solution 綸液Injection 注射液ln-liquid drying 液中干燥出( 乳化一洽剜押发比丿Interface polycondensation 界而编聚比intra-arterial route 动脉注射Intradermal (ID) route 皮注射Intramuscular (IM) route 肌肉注射Intravenous (IV) route 输脉注射Intrin sic dissolution rate 对■性谆出速率Intrinsic solubility 特性滋鮮皮Inverse targeting 及向抱向Iontophoresis 离子湊遗法IR 红外Isoelectric focusing 1EF 等电点聚焦Isoosmotic solution 等湊洽液Isopropylpalmitate 异丙酸榇桐酯Isostearylisostearate 异硬脂馥异硬酯Isotonic solution 寻徐液Journal of Drug Targeting 药杨粒向杂志Kick ?学说粗粉碎(体积丿Krafft point 对富孑型裹而活性利而言Krummbein diameter 定方向澈大径Lactic acid 乳酸LactoseLag time 淨紹时间Large unilamellar vesicles 丸单圭脂质体Laurocapam 月桂氨草弼Length basis 长度基准L-HPC 低取代聂丙乐纤维素Limulus lysate test 萤次脸比Liniments 搽和Liposomes 脂质体Liquid immersionmethod 液没比Liquid injection 无针液体注射丢Liquid paraffin 液体石蜡Long-circulating liposome 长循环脂质体Long-circulating liposomes 长循环力&质体Long-term testing 长期迖睑Loo-Rigelman 玖宝血药浓度一狹收率换算Lotions 洗和Lubricants 诃滑刘LUVs 大单宜脂质体。

弱相互作用调控表面活性剂自组装(Ⅰ)——弱相互作用的分类

弱相互作用调控表面活性剂自组装(Ⅰ)——弱相互作用的分类

弱相互作用调控表面活性剂自组装(Ⅰ)——弱相互作用的分类任姝静;郑利强;孙继超【摘要】表面活性剂是依靠分子间的弱相互作用实现自组装的,包括疏水相互作用、氢键作用力、主客体相互作用、静电相互作用、π-π堆积相互作用、金属配位相互作用和电荷转移相互作用等.通过调节分子间的相互作用可以实现对两亲分子自组装的调控,本文介绍了弱相互作用对两亲分子自组装形成有序分子聚集体结构和功能的影响.【期刊名称】《日用化学工业》【年(卷),期】2018(048)011【总页数】7页(P611-616,655)【关键词】表面活性剂;弱相互作用;自组装;聚集行为;有序分子聚集体【作者】任姝静;郑利强;孙继超【作者单位】山东大学胶体与界面化学教育部重点实验室,山东济南250100;山东大学胶体与界面化学教育部重点实验室,山东济南250100;山东大学胶体与界面化学教育部重点实验室,山东济南250100【正文语种】中文【中图分类】TQ658表面活性剂(surfactant)被称为“工业味精”,从人类最早接触的表面活性剂—肥皂到现在的各种功能化的新型表面活性剂,其应用与人们的生活、生产密切相关。

一般来说,表面活性剂是一种活跃在表面和界面上,具有极高的降低表、界面张力的能力和效率的物质;表面活性剂在溶液中达到一定浓度以上,会形成分子有序聚集体,从而产生一系列应用功能[1,2]。

一直以来,表面活性剂因其特殊的结构和性能吸引了众多研究者的目光,其中溶液中表面活性剂的自组装是主要的研究内容之一。

1 表面活性剂自组装表面活性剂具有不对称的分子结构,整个分子一般可分为两部分,一端为亲油的非极性基团,又叫做疏水基(hydrophobic group)或亲油基;另外一端为亲水的极性基团,又叫做亲水基(hydrophilic group)或疏油基,因此表面活性剂分子具有两亲性质,被称为两亲分子(amphiphile)[1]。

在一定浓度下它可以以极性基团向水、非极性基团远离水的方式聚集,通过自发的非共价相互作用自组装形成多种不同结构、形态和大小的有序分子聚集体。

最新浅谈超分子自组装精品文档

最新浅谈超分子自组装精品文档
16
• 在以往的研究中,主要集中在反应灵敏度和刺激性反应, 在自愈性方面始终难有突破。
17
Scheme 1.Cartoon representations of a) polymer1, b) cross-linkers 2 and 3, and c) supramolecular gels 4 and 5. When 10.0 mm 1and 36.0 mm 2 were mixed,supramolecular gel 4 formed immediately, However,supramolecular gel 5 constructed from polymer 1 and cross-linker 3 was prepared by heating for 30 days and stirring at room temperature for another 45 days .
[2] Feng Wang, Jinqiang Zhang, Xia Ding. Metal Coordination Mediated Reversible Conversion between Linear and Cross-Linked Supramolecular Polymers. Angew. Chem. 2010, 122, 1108–1112
Jiang, J. Q, Qi, B, Lepage, M, Zhao, Y. Macromolecules 2007, 40, 790
25
环糊精由于它的无毒、生物降解、对光无吸收等性能而受到 广泛的关注, 越来越多地被应用在生物、光学和传感器等 方面。
26
3.3 杯芳烃主体
杯芳烃,是2,6位由亚甲基桥联取代酚形成的大环化合物 ,因其分子形状与希腊圣杯相似,且由多个苯环构成的芳 香族分子,C. D. Gutsch将其命名为为杯芳烃。

多西他赛与β-环糊精及羟丙基-β-环糊精包合作用的研究

多西他赛与β-环糊精及羟丙基-β-环糊精包合作用的研究
作者简介: 李香 ( 1980 ) , 女, 硕 士研 究生. E m ai:l lix iang19800204@ yahoo. com 通讯作者: 林秀丽. E m ai:l lix iu l@i sdu. edu. com
( 40 g /L) 是采用吐温 80作溶剂, 同时配有含 13% 乙醇的溶媒, 由于吐温 80 具有溶血 性, 且黏性 大, 临床 ! 期实 验中大多数患者 产生了明显的 过敏反 应; 另外, 吐温 80可以干 扰 p糖 蛋白表达, 会与一 些联合使用的药物发生瞬间相互作用。因此有必要 针对 DTX 研发新的制剂。
1 仪器与材料
UV 2401PC 型紫外 可 见分光 光度 计 ( 日 本岛 津 ) ; DSC822e 型热分析仪 ( 瑞士梅特勒 - 托利多 ) ; 傅立叶变换红外光谱议 ( 美国尼高利 ) ; Fu 1000型 冷冻干燥机 ( 日本东京 ), 微型涡旋混合仪 ( 上海泸 西 ) ; 2002型震荡器 ( 常州国华电器有限公司 ); 80 2 离心沉淀器 ( 上海 ) ; 多西他赛原料药 ( 齐鲁制药厂, 纯度 99% ) ; CD ( 山东恒台新大精 细化工有限公 司, 纯度 !98% ); H P CD (山东恒台新大精细化工 有限公司, 纯度 ! 98. 6% , 平均取代度 6) ; 其他试剂 均为分析纯。
Joum a l o f Pharm aceutica l P ractice V o.l 26 2008 N o. 2
定、溶血性低 tr in, H P CD ) [ 6, 7] 为包合材料, 采用冷冻干 燥法、研磨法制备包合物, 红外分光光度法 ( IR ) 和 差示扫描量热法 ( DSC ) 对包合物进行鉴定。同时对 包合过程中相关的热力学参数进行考察, 为今后研 制多西他赛包合物制剂提供理论依据。

环糊精与十二烷基硫酸钠的包结作用实验报告电导率

环糊精与十二烷基硫酸钠的包结作用实验报告电导率

环糊精与十二烷基硫酸钠的包结作用实验报告电导率实验目的:通过测量环糊精与十二烷基硫酸钠的包结作用实验的电导率,了解两者之间的相互作用。

实验原理:环糊精是一种多糖类物质,具有较强的包结能力。

十二烷基硫酸钠是一种表面活性剂,具有良好的溶液电导性。

当环糊精与十二烷基硫酸钠发生包结作用时,可以观察到电导率的变化。

实验步骤:1. 用天平称取一定质量的环糊精,并溶解在一定量的去离子水中,制备出环糊精溶液。

2. 用天平称取一定质量的十二烷基硫酸钠,并溶解在一定量的去离子水中,制备出十二烷基硫酸钠溶液。

3. 依次选取一定体积的环糊精溶液和十二烷基硫酸钠溶液混合,得到一系列不同浓度的混合溶液。

4. 使用电导仪测量每个混合溶液的电导率,并记录数据。

5. 根据电导率数据,分析环糊精与十二烷基硫酸钠的包结作用。

实验结果:根据实验数据得到的电导率数据,可以绘制出环糊精与十二烷基硫酸钠的包结作用图。

通常情况下,随着混合溶液中环糊精浓度的增加,电导率呈现先增加后减小的趋势。

当环糊精与十二烷基硫酸钠的包结作用达到最大值时,电导率达到峰值。

讨论与分析:通过分析电导率数据,可以推测环糊精与十二烷基硫酸钠的包结作用机制。

当环糊精与十二烷基硫酸钠溶液混合时,两者中的分子之间会发生相互作用,形成包结复合物。

这种包结作用会影响溶液的电导性能。

随着环糊精浓度的增加,包结作用逐渐增强,电导性能逐渐增加。

当包结作用达到最强时,电导性能达到峰值。

随着环糊精浓度的继续增加,包结作用逐渐减弱,电导性能逐渐降低。

结论:环糊精与十二烷基硫酸钠之间存在包结作用。

通过测量混合溶液的电导率可以了解该包结作用的强度。

电导率在包结作用强度最大时达到峰值。

存在的问题和改进方向:1. 实验过程可能存在误差,可能会影响电导率的正确测量。

可以加强实验操作技巧,提高测量精度。

2. 实验中仅测量了电导率,对包结作用的性质没有做进一步的表征。

可以通过其他方法,如红外光谱等,对包结复合物的性质进行深入分析。

环糊精类化合物主客体相互作用理论研究

环糊精类化合物主客体相互作用理论研究
最后,采用密度泛函理论和 PM3 半经验方法研究环糊精对溴化反应的局域选择 性和产率影响。相比 α-环糊精,β-环糊精与底物 1(3-甲苯-四溴甲醚)形成的包合物 更为稳定。在提高反应底物比率方面 β-环糊精也要强于 α-环糊精。1/β-环糊精在稳定 性方面好于 2/β-环糊精和 3/β-环糊精说明了溴化反应的取代更容易发生在对位而不是 邻位,这是因为 β-环糊精限制了反应试剂进入甲氧基的邻位。底物 1 从 β-环糊精空 腔的窄端(主羟基一端)进入比从阔端(次羟基一端)进入所形成的包合物更为稳定。 在一个大气压和 298.15K 的条件下用统计热力学的计算方法来计算负焓变,结果表明 整个包合过程是一个熵焓驱动的过程。分子模拟计算的结论与实验结果一致。 关键词:环糊精;密度泛函理论(DFT);PM3;分层计算;局域选择性
Jin Xin Professor Wang Xue-Ye
Chemistry Physical Chemistry Theory and Computational Chemistry Master of Science Xiangtan UniversityMay, 2011 Nhomakorabea 湘潭大学
学位论文原创性声明
其 次 , 采 用 密 度 泛 函 理 论 (DFT) 和 PM3 半 经 验 方 法 对 环 糊 精 与 尼 氟 酸 (2-[3-(trifluoromethyl) anilino]nicotinicacid, NA) 的包合物进行理论研究。结果表明与 α-环糊精,γ-环糊精,HP-β-环糊精(Hydroxypropyl-beta-cyclodextrin)相比,β-环糊精是 尼氟酸最合适的包合主体。尼氟酸 (NA) 从 β-环糊精空腔的阔端(次羟基一端)进 入比从窄端(主羟基一端)进入所形成的包合物更为稳定。在一个大气压和 298.15K 的条件下用统计热力学的计算方法来计算负焓变,其结果表明由于 HP-β-环糊精中的 羟丙级可能在空间上阻止了尼氟酸(NA)进入环糊精的空腔,导致 HP-β-环糊精的负焓 变小于 β-环糊精。另外,从计算结果观察到尼氟酸(NA)中的苯基和吡啶基团完全插 入了 β-环糊精的大环空腔内。

环糊精包合物的制备工艺流程

环糊精包合物的制备工艺流程

环糊精包合物的制备工艺流程英文回答:Preparation process of inclusion complexes with cyclodextrins.To prepare inclusion complexes with cyclodextrins, several steps need to be followed. Firstly, the appropriate cyclodextrin needs to be selected based on the properties of the guest molecule. Cyclodextrins are cyclic oligosaccharides with a hydrophobic cavity, which can accommodate guest molecules of appropriate size and shape. Commonly used cyclodextrins include alpha-cyclodextrin, beta-cyclodextrin, and gamma-cyclodextrin.Once the cyclodextrin is selected, the next step is to dissolve it in a suitable solvent. The solvent should be chosen based on the solubility of both the cyclodextrin and the guest molecule. For example, if the guest molecule is hydrophobic, a nonpolar solvent such as chloroform ordichloromethane can be used. On the other hand, if the guest molecule is hydrophilic, a polar solvent such as water or ethanol may be more appropriate.After the cyclodextrin is dissolved, the guest molecule is added to the solution. The solution is then stirred or sonicated to facilitate the formation of inclusion complexes. The guest molecule enters the hydrophobic cavity of the cyclodextrin, forming a stable complex. This complexation process is driven by the hydrophobic effect, as the guest molecule seeks to minimize its contact with the surrounding solvent.Once the inclusion complexes are formed, they can be isolated and purified. This can be done through various techniques such as filtration, centrifugation, or evaporation. The purified complexes can then be characterized using techniques such as nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallography to confirm their structure and stability.In conclusion, the preparation process of inclusioncomplexes with cyclodextrins involves selecting the appropriate cyclodextrin, dissolving it in a suitable solvent, adding the guest molecule, and facilitating the complexation through stirring or sonication. The formed complexes can be isolated and purified before being characterized. This process allows for the encapsulation of guest molecules within the hydrophobic cavity of cyclodextrins, leading to the formation of stable inclusion complexes.中文回答:制备环糊精包合物的工艺流程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Photochemistry and Photobiology A:Chemistry200(2008)377–380Contents lists available at ScienceDirectJournal of Photochemistry and Photobiology A:Chemistryj o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/j p h o t o c h em Host/guest complex of␤-cyclodextrin/5-thia pentacene-14-one for photoinitiated polymerization of acrylamide in waterDemet Karaca Balta,Nergis Arsu∗Yildiz Technical University,Department of Chemistry,Davutpasa Campus,34210Istanbul,Turkeya r t i c l e i n f oArticle history:Received11June2008Received in revised form9August2008 Accepted31August2008Available online7September2008Keywords:Anthracene␤-CyclodextrinSinglet oxygenPhotopolymerizationThioxanthone a b s t r a c t␤-Cyclodextrin(␤-CD)was used to complex the photoinitiator,5-thia pentacene-14-one(TX-A),yielding a water-soluble host/guest complex.IR,UV–Vis andfluorescence spectroscopy were employed to char-acterize complexed␤-CD/TX-A.Photoinitiated polymerization of acrylamide in water was achieved with ␤-CD/TX-A in the presence of N-methyldiethanolamine(MDEA).Excellent polymerization yields were observed in air saturated solutions when MDEA was added.©2008Elsevier B.V.All rights reserved.1.IntroductionCyclodextrins(CDs)are cyclic oligosaccharides built from six, seven,eight or nine optically active glucopyranose units(␣-CD,␤-CD,␥-CD or␦-CD,respectively)with a hydrophobic cavity and hydrophilic exterior[1].Because of their special molecular structure,these molecules have the capability to enclose small hydrophobic molecules into their cavity and consequently to form host/guest compounds in aqueous solution and in emulsion[2–5].Photoinitiated free radical polymerization is a well-accepted technology whichfinds industrial application in coatings on var-ious materials,adhesives,printing inks and photoresists[6–10]. Environmental issues involving conventional organic solvents are one of the major concerns in such applications.Photopolymeriza-tion in aqueous solution is a highly effective approach using water instead of organic solvents.Pioneering work by Ritter demonstrated that hydrophobic vinyl monomers became water soluble due to the inclusion/complexation of CD and can easily be polymerized in aqueous solution in the presence of a water-soluble thermal free radical initiator[11].During polymerization,the CD gradually slipped off from the growing chain and remained in an aqueous phase.The concomitantly precipitated polymer was obtained in high yields.Photoinitiators play a vital role in photopolymeriza-tion as they generate initiating species upon photolysis.The same ∗Corresponding author.Tel.:+902123834186;fax:+902123834134.E-mail address:narsu@.tr(N.Arsu).research group also showed that the complexation of a Type I (␣-cleavage)photoinitiator,namely2-hydroxy-1-phenylpropan-1-one,with methylated␤-CD(Me-␤-CD)results in the formation of a water-soluble host/guest complex[12].Compared to the bare photoinitiator,this complex exhibited a much higher initiation efficiency in the polymerization of the water-soluble monomer, N-isopropylacrylamide[12].In another study,Li et al.[13]demon-strated that the host/guest complexation of Me-␤-CD with the more hydrophobic photoinitiator,2,2-dimethoxy-2-phenyl acetophe-none(DMPA),gave a stable water-soluble compound with high photoactivity and the same efficiency of polymerization.Yin et al. also prepared a similar water-soluble supramolecular-structured photoinitiator between Me-␤-CD and DMPA.The efficiency of Me-␤-CD/DMPA was found to be a more efficient photoinitiator than DMPA[14].We reported previously the photoactivity of TX groups chemically attached to␤-CD and their efficiency in the pho-topolymerization of methyl methacrylate(MMA)which can form a host/guest complex with these molecules[15](see Scheme1).As a continuing interest in synthesizing novel photoinitiators, thioxanthone-anthracene(TX-A),namely5-thia-pentacene-14-one,possessing respective photochromic groups was synthesized and it was found that TX-A is an efficient photoinitiator for free rad-ical polymerization of acrylic and styrenic type monomers in the presence of oxygen(see Scheme2)[16].UV–Vis,FT-IR andfluorescence spectroscopic and polymer-ization studies revealed that photoinitiation occurs through the anthracene chromophore.In contrast to thioxanthone based1010-6030/$–see front matter©2008Elsevier B.V.All rights reserved. doi:10.1016/j.jphotochem.2008.08.017378 D.K.Balta,N.Arsu /Journal of Photochemistry and Photobiology A:Chemistry 200(2008)377–380Scheme 1.Structure of thioxanthone-␤-cyclodextrin (TX-␤-CD).Scheme 2.Photoinitiated free radical polymerization by using thioxanthone-anthracene (TX-A).photoinitiators,TX-A does not require an additional hydrogen donor for the initiation.In this study,TX-A was used as initiator and prepared as an inclusion complex with ␤-CD in water.The photoinitiated poly-merization of acrylamide with ␤-CD/TX-A complex was achieved in an air atmosphere.2.Experimental part 2.1.Materials␤-Cyclodextrin (Aldrich)and N -methyldiethanolamine (MDEA)(Aldrich),acrylamide (AAm,97%,Merck)and methanol (Merck)were used as received.5-Thia pentacene-14-one (TX-A)was pre-pared as indicated in literature [16].Distilled water was used as solvent for acrylamide plexation of photoinitiator0.57g (0.5mmol)of ␤-CD was dissolved in 100mL of distilled water in 50◦C and 0.0312g (0.1mmol)of photoinitiator was added.The colorless dispersion was sonicated for 30min yielding a clear yellow solution of the complexed photoinitiator.The host/guest complex was prepared with ␤-CD/TX-A molar ratios of 5:1;10:1;50:1and 100:1,respectively.2.3.Photopolymerization in waterAppropriate solutions of the acrylamide (1.0M)as monomer and the host/guest complex of ␤-CD/TX-A in water with MDEA were irradiated in an air atmosphere in a photoreactor consisting of a 400W medium pressure mercury lamp and a water cooling sys-tem.Polymers were obtained after precipitation in methanol and drying in vacuo .Conversions for all samples were calculated gravi-metrically.2.4.CharacterizationGel permeation chromatography (GPC)measurements were performed at room temperature with a setup consisting of a pump (HP 1050),a refractive index detector (HP 1047A),and three high resolution Waters columns (AQ3.0,AQ4.0and AQ5.0).The effec-tive molecular weight ranges were 1000–60,000,10,000–400,000and 50,000–4,000,000,respectively.Water was used as eluent at a flow rate of 0.5mL/min at room temperature.Data analyses were performed with HP Chemstation Software.Calibration with lin-ear polyethylene oxide standards (Polymer Laboratories)was used to estimate the molecular weights.UV–Vis spectra were taken on an Agilent 8453.Fluorescence spectra were recorded on a Jobin Yvon–Horiba Fluoromax-P.3.Results and discussionTX-A is a novel oil soluble photoinitiator and it turned out to be fully water soluble after complexation with ␤-CD.Several methods were applied to the characterization of ␤-CD/TX-A com-plex.The IR spectrum indicated the formation of ␤-CD/TX-A paring the spectra of TX-A with the complexed ␤-CD/TX-A it became obvious that the characteristic signal for the carbonyl group of TX-A had significantly shifted to higher frequencies (from 1630to 1651)due to the influence of the ␤-CD host component [12].The UV spectra of TX-A in DMF and the complexed ␤-CD/TX-A in water,are given in Fig.1.UV–Vis absorption spectra of both uncomplexed TX-A and complexed ␤-CD/TX-A proved the inclusion complex (see Fig.1).As can be seen from Fig.1,the absorption spectra had simi-lar spectral shapes and lower intensity.Fluorescence spectroscopy was also employed to characterize the inclusion complex of ␤-CD/TX-A.The emission spectrum represents the characteris-tics of the anthracene moiety rather than thioxanthone (see Fig.2).We used Benesi–Hildebrand’s method to obtain information on the stoichiometry of the ␤-CD/TX-A complex [17–19].The enhance-ment of the fluorescence intensity was measured as a function of host concentration,while the total concentration of TX-A remained constant.It is interesting to note that the increase in fluores-cence intensity of TX-A with increasing ␤-CD concentration is attributed to the incorporation of TX-A into the nonpolar cavity.The enhancement of fluorescence intensity was observed up to a certain concentration of CD;with further increases of host concentration,some errors occurred (see Fig.3).Fig.1.Absorption spectra of TX-A [1×10−4mol L −1]in DMF and ␤-CD/TX-A complex [2×10−4mol L −1]and ␤-CD [1×10−3mol L −1]in water.D.K.Balta,N.Arsu /Journal of Photochemistry and Photobiology A:Chemistry 200(2008)377–380379Fig.2.Fluorescence spectra of TX-A [1×10−4mol L −1]in DMF and ␤-CD/TX-A [2×10−4mol L −1]complex in water exc =360nm.Fig.3.Effect of ␤-CD on the fluorescence spectrum of TX-A [1×10−3mol L −1]in DMSO.The data in Fig.4can be treated using the Benesi–Hildebrand equation for 1:1(Eq.(1))binding model or 2:1model (Eq.(2)).1I −I 0=1I 1−I 0+1(I 1−I 0)K [ˇ−CD](1)1I −I 0=1I 1−I 0+1(I 1−I 0)K [ˇ−CD]2(2)Fig.4.The Benesi–Hildbrand plot of 1/(I −I 0)vs.1/[␤-CD]2.Table 1Photoinitiated polymerization of acrylamide with ␤-CD/TX-A complex in water [TX-A](mol L −1)[␤-CD](mol L −1)Conversion (%)M n a ×10−4(g mol −1)M w /M n a 5.0×10−55×10−350.918.9 2.441.0×10−45×10−324.812.7 3.755.0×10−45×10−324.811.5 4.021.0×10−35×10−314.09.64.25t irr :15min.[MDEA]:5×10−3mol L −1.aDetermined by GPC using polyethylene oxide standards.[Aam]=1.0M.where I and I 0are the initial fluorescence intensities of TX-A in thepresence and absence of CD,respectively,and I 1is the expected fluorescence intensity when all quest molecules are included in a complex.According to Eq.(2),a plot of 1/I −I 0versus 1/[␤-CD]2,produces a good straight line (Fig.4),from which K was calculated to be 5.6×106M −1.The linearity in the plot (R 2=0.98)reflects the formation of a 2:1complex between ␤-CD and TX-A.The linearity of the plot obtained from Eq.(1)was not very satisfying,hence the possibility of a 1:1complex formation is ruled out.The resulting homogenous aqueous reaction mixture,included ␤-CD/TX-A complex and N -methyldiethanolamine as co-initiator for the polymerization of acrylamide in water,using a medium pressure mercury lamp as the polychromatic light source for irra-diation (see Table 1).Photoinitiated polymerization of AAm in water with ␤-CD/TX-A was not achieved in an air atmosphere compared to TX-A itself.There is no similarity in the polymerization results between uncomplexed TX-A and complexed ␤-CD/TX-A.Previously,it was found that TX-A is an efficient photoinitiator for the polymerization of methyl methacrylate and styrene in the presence of oxygen with-out a co-initiator such as MDEA [16],in contrast to thioxanthone types of photoinitiators.According to the results obtained from IR,UV–Vis and fluores-cence spectroscopy,the anthracene part seems to be included in the CD cavity and the phenyl group on the other side of the carbonyl was trapped with another CD,and the carbonyl group as a photoactive site is situated in the exterior of the cavity of cyclodextrin.The highest conversion percentage values were obtained espe-cially at low initiator concentrations of complex (see Table 1).The increase of the concentration of the photoinitiator led to a decrease in the conversion percentage.High concentrations of photoinitiator may lead to an absorption of light in the upper region of the film or solution,which decreases the rate of polymerization due to radical termination.Also if the light does not penetrate the whole film or solution,radical production will not occur in all of the polymer-izable material [20–22].Polymerization in water did not occur in air atmosphere without adding MDEA to the solution of complex.Therefore,additional photopolymerization studies using ␤-CD/TX-A complex in H 2O and D 2O were also performed in air atmosphere (see Table 2).Anthracene derivatives are known to form instable endoperox-ides upon irradiation.These endoperoxides decompose throughTable 2Photoinitiated polymerization of acrylamide with ␤-CD/TX-A complex in H 2O and D 2O Run [AAm](mol L −1)D 2O Conv.%H 2O Conv.%[MDEA](mol L −1)11 1.2––2167.550.95×10−330.5–––40.536.032.05×10−350.25–––60.2510.3<15×10−3t irr :15min.[TX-A]:5×10−5M,[␤-CD]:5×10−3M.380 D.K.Balta,N.Arsu /Journal of Photochemistry and Photobiology A:Chemistry 200(2008)377–380Fig.5.Absorption spectra of TX-A [1×10−4mol L −1]in DMF and poly-(acrylamide)obtained by photoinitiated polymerization of AAm with ␤-CD/TX-A complex inwater.Scheme 3.Photoinitiated free radical polymerization of acrylamide with ␤-CD/TX-A complex in the presence of MDEA in water.radical intermediates,which could initiate the polymerization of the monomers.It is known that singlet oxygen lives much longer in deuterated solvents (D 2O)[23,24].As can be seen from Table 2,at 1M concentration of Aam,polymerization occurred without adding MDEA to the D 2O solution.When amine was added to the formula-tion,a higher conversion percentage value was obtained compare to H 2O solution.When low monomer concentration was used,no polymer was obtained in the absence of MDEA.But higher conver-sion percentage values,for various monomer concentrations,were obtained for photopolymerization of complex in D 2O.The oxygen concentration in water is about one order of magnitude lower than in regular organic solvents so oxygen quenching should be slower,and less singlet oxygen is formed in water.In addition,the life-time of singlet oxygen in water is much shorter than in most other organic solvents.Hence,the chance of reaction of singlet oxygen with the anthracene to form the endoperoxide is much lower.The obtained results confirmed this (see Table 2).Furthermore,the 9,10position of the anthracene could be shielded by the CD so that endoperoxide formation is hindered.As a result,the complex ␤-CD/TX-A exhibited a different photoini-tiation mechanism compared with the uncomplexed TX-A.Indeed,the UV–Vis spectrum of the resulting poly-(acrylamide)confirmed that the photoinitiator (TX-A)was not attached to the polymer and the possible initiating radical is an ␣-aminoalkyl radical (see Fig.5).The carbonyl group of complexed ␤-CD/TX-A abstracted hydro-gen from the tertiary amine (MDEA)and resulted in ␣-aminoalkyl radical initiated polymerization of the acrylamide and the proposed mechanism is given in Scheme 3.In conclusion,from the results,it was demonstrated that host/guest complexation of ␤-CD with hydrophobic photoinitiator TX-A gave a stable water-soluble complex with high photoini-tiation reactivity.The initiation mechanisms,uncomplexed and complexed TX-A,were different from each other;complexed TX-A with ␤-CD initiates polymerization of acrylamide according to a Type II mechanism.In contrast,uncomplexed TX-A initiated poly-merization of MMA in the presence of oxygen and possibly via endoperoxide formation.AcknowledgementsThe authors thank TUBITAK,DPT and Yildiz Technical Univer-sity Research Foundation for their financial support and Dr.Steffen Jockusch for helpful discussions.References[1]G.Wenz,Angew.Chem.106(1994)851–870.[2]A.Harada,Acta Polym.49(1998)3–17.[3]J.Jeromin,H.Ritter,Macromolecules 32(1999)5236–5239.[4]H.Ritter,J.Storsberg,Macromol.Rapid Commun.21(2000)236–241.[5]J.Leyrer,W.Machtle,Macromol.Chem.Phys.201(2000)1235–1243.[6]S.P.Pappas,UV Curing Science and Technology,Technology Marketting Corp.,Norwalk,CT,1978.[7]J.P.Fouassier,Photoinitiation,Photopolymerization and Photocuring,Hanser Verlag,Munich,1995.[8]K.Dietliker,Chemistry &Technology of UV &EB Formulation for Coatings,vol.III,Inks &Paints,SITA Technology Ltd.,London,1991.[9]R.S.Davidson,Exploring the Science,Technology and Applications of UV and EB Curing,SITA Technology Ltd.,London,1999.[10]M.K.Mishra,Y.Yagci,Handbook of Radical Vinyl Polymerization,Marcel Dekker Inc.,New York,1998(Chapter 7).[11]J.Storsberg,H.Ritter,Macromol.Rapid Commun.21(2000)236–241.[12]I.C.Alupei,V.Alupei,H.Ritter,Macromol.Rapid Commun.23(2002)55–58.[13]S.J.Li,F.P.Wu,M.Z.Li,E.J.Wang,Polymer 46(2005)11934–11939.[14]Y.Wang,X.Jiang,J.Yin,J.Appl.Pol.Sci.105(2007)3817–3823.[15]D.K.Balta,E.Bagdatli,N.Arsu,N.Ocal,Y.Yagci,J.Photochem.Photobiol.A:Chem.196(2008)33–37.[16]D.K.Balta,N.Arsu,Y.Yagci,S.Jockusch,N.J.Turro,Macromolecules 40(2007)4138–4141.[17]V.K.Indirapriyadharshini,P.Karunanithi,P.Ramamurthy,Langmuir 17(2001)4056–4060.[18]A.A.Abdel-Shafi,Spectrochim.Acta Part A 66(2007)732–738.[19]M.Mukhopadhyay,D.Banerjee,A.Koll,A.Mandal,A.Filarowski,D.Fitzmaurice,R.Das,S.Mukherjee,J.Photochem.Photobiol.A:Chem.175(2005)94–99.[20]N.Arsu,M.Aydin,Die.Angew.Makromol.Chem.266(1999)70–74.[21]N.Arsu,J.Photochem.Photobiol.A:Chem.153(2002)129–133.[22]S.Keskin,N.Arsu,Polym.Bull.57(2006)643–650.[23]N.J.Turro,N.Modern Molecular Photochemistry,University Science Books,Sausalito,CA,1991.[24]T.A.Jenny,N.J.Turro,Tetrahedron Lett.23(1982)2923–2926.。

相关文档
最新文档