第2讲:整式-课堂小测试
第二章 整式的加减【过关测试01】(解析版)
人教版2020年第二单元《整式的加减》过关检测(一)一.选择题(共12小题)1.代数式2(a 2﹣b )表示( )A .两倍a 的平方与b 的差B .a 的平方与b 的差的两倍C .a 的平方与b 的两倍的差D .a 与b 的平方差的两倍【分析】根据代数式的意义即可写出.【解答】解:代数式2(a 2﹣b )表示a 的平方与b 的差的两倍,故选:B .2.下列所列代数式正确的是( )A .a 与b 的积的立方是ab 3B .x 与y 的平方差是(x ﹣y )2C .x 与y 的倒数的差是y 1x -D .x 与5的差的7倍是7x ﹣5【分析】根据题意列式即可.【解答】解:(A )a 与b 的积的立方是(ab )3,故A 错误;(B )x 与y 的平方差是x 2﹣y 2,故B 错误;(D )x 与5的差的7倍是7(x ﹣5),故D 错误,故选:C .3.当21b 2a =-=,时,代数式b4a 2ab -的值等于( ) A .61 B .61- C .6 D .﹣6 【分析】把21b 2a =-=,代入b4a 2ab -,即可求出原式的值.【解答】解:把21b 2a =-=,代入b4a 2ab -得, 原式()6124121422212=---=⨯--⨯⨯-= 故选:A .4.下列各式:;;⑦;⑥;⑤;④;③;②①πy 4x 5y x 26x 2x a 18m m n 2122+-++-中,整式有( ) A .3个 B .4个 C .6个 D .7个【分析】根据整式的定义,结合题意即可得出答案. 【解答】解:在;;⑦;⑥;⑤;④;③;②①πy 4x 5y x 26x 2x a 18m m n 2122+-++-中,整式有πy 4x 5y x 26x 2x 8m m n 2122+-++-;⑦;⑥;⑤;③;②①,一共6个. 故选:C .5.下列说法正确的是( )5.下列说法正确的是( )A .单项式2x 22π-的系数是21- B .ab 的系数、次数都是1C .a44a 和都是单项式 D .单项式2πr 的系数是2π【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式2x 22π-的系数是22π-,故此选项错误;B 、ab 的系数是1,次数都是2,故此选项错误;C 、4a 是单项式,a4不是单项式,故此选项错误; D 、单项式2πr 的系数是2π,正确.故选:D .6.组成多项式6x 2﹣2x +7的各项是( )A .6x 2﹣2x +7B .6x 2,2x ,7C .6x 2﹣2x ,7D .6x 2,﹣2x ,7【分析】根据多项式的项的定义得出即可.【解答】解:组成多项式6x 2﹣2x +7的各项是6x 2,﹣2x ,7,故选:D .7.与﹣125a 3bc 2是同类项的是( )A .a 2b 3cB .21ab 2c 3C .0.35ba 3c 2D .13a 3bc 3【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,进行判断.【解答】解:A 、a 2b 3c 与﹣125a 3bc 2所含的相同字母的指数不相同,所以它们不是同类项.故本选项错误;B 、21ab 2c 3与﹣125a 3bc 2所含的相同字母的指数不相同,所以它们不是同类项.故本选项错误; C 、0.35ba 3c 2与﹣125a 3bc 2所含的相同字母的指数相同,所以它们是同类项.故本选项正确;D 、13a 3bc 3与﹣125a 3bc 2所含的相同字母c 的指数不相同,所以它们不是同类项.故本选项错误; 故选:C .8.已知﹣51x 3y 2n 与2x 3m y 4是同类项,则m +n 的值是( ) A .1 B .2 C .3 D .7【分析】先根据同类项的定义得出关于m 、n 的方程,求出m 、n 的值再代入代数式进行计算即可. 【解答】解:∵﹣51x 3y 2n 与2x 3m y 4是同类项, ∴3m =3,2n =4,解得m =1,n =2,∴原式=1+2=3.故选:C .9.下列合并同类项正确的是( )A .4a 2+3a 3=7a 6B .4a 3﹣3a 3=1C .﹣4a 3+3a 3=﹣a 3D .4a 3﹣3a 3=a【分析】根据同类项的定义和合并同类项的法则.【解答】解:A 、4a 2和3a 2不是同类项,不能合并;B 、漏掉字母部分a 3;C 、正确;D 、字母指数不对.故选:C .10.多项式﹣x +x 3+1﹣x 2按x 的升幂排列正确的是( )A .x 2﹣x +x 3+1B .1﹣x 2+x +x 3C .1﹣x ﹣x 2+x 3D .x 3﹣x 2+1﹣x【分析】根据升幂排列的定义,将多项式的各项按照x 的指数从小到大排列起来.【解答】解:按x 的升幂排列为﹣x+x3+1﹣x2=1﹣x﹣x2+x3.故选:C.11.下列式子去括号正确的是()A.﹣(2x﹣y)=﹣2x﹣yB.﹣3a2+(4a2+2)=﹣3a+4a2﹣2C.﹣[﹣(2a﹣3y)]=2a﹣3yD.﹣3(a﹣7)=﹣3a+7【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、﹣(2x﹣y)=﹣2x+y.故本选项错误;B、﹣3a2+(4a2+2)=﹣3a+4a2+2.故本选项错误;C、﹣[﹣(2a﹣3y)]=2a﹣3y.故本选项正确;D、﹣3(a﹣7)=﹣3a+21.故本选项错误;故选:C.12.将2(x+y)﹣3(x﹣y)﹣4(x+y)+5(x﹣y)﹣3(x﹣y)合并同类项得()A.﹣3x﹣y B.﹣2(x+y)C.﹣x+y D.﹣2(x+y)﹣(x﹣y)【分析】先合并同类项,再去括号.【解答】解:原式=2(x+y)﹣4(x+y)﹣3(x﹣y)+5(x﹣y)﹣3(x﹣y)=﹣2(x+y)﹣(x﹣y)=﹣2x﹣2y﹣x+y=﹣3x﹣y,故选:A .二.填空题(共4小题)13.4x 3x x 2332---是 次多项式,最高次项是 . 【分析】直接利用多项式的次数确定方法分析得出答案. 【解答】解:4x 3x x 2332---是三次多项式,最高次项是:4x 3-. 故答案为:三,4x 3-.14.如图,长方形的长、宽分别为a ,b ,试用代数式表示图中阴影部分的面积:S 阴影= .【分析】由图知三个三角形的底的和等于a 、高均为b ,据此依据三角形的面积公式可得答案.【解答】解:由图知,S 阴影=21ab , 故答案为:21ab . 15.如图,它是一个程序计算器,用字母及符号把它的程序表达出来 ,如果输入m =3,那么输出 .【分析】首先计算m 的平方,再加上2m ,除以10,最后加上﹣1,输出得数,由此列出代数式即可;把m =3代入(1)中列出的代数式求得结果即可. 【解答】解:依据计算程序可知:输出结果=110m 2m 2-+. 当m =3时,输出结果=211103232=-⨯+. 故答案为:110m 2m 2-+;21. 16.当a =21,b =31-时,代数式5(3a 2b ﹣ab 2)﹣(ab 2+3a 2b )的值是 . 【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=15a 2b ﹣5ab 2﹣ab 2﹣3a 2b=12a 2b ﹣6ab 2,当a =21,b =31-时,原式=343121*********-=⎪⎭⎫ ⎝⎛-⨯⨯-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯ 故答案为34-.三.解答题(共8小题)17.计算: (1)322a 64a 217a 3--⎪⎭⎫ ⎝⎛--; (2)()()()y 2x 4y x 2y 2x 5--++-; (3)()()22x 2y 3y x 2+--; (4)()()[]x 2x 2x x 2x x 32222---+-. 【分析】利用整式加减运算法则即可求出答案.【解答】解:(1)原式=3a 3﹣7+21a 3﹣4﹣6a 3=(3a 3+21a 3﹣6a 3)+(﹣7﹣4)=﹣25a 3﹣11. (2)原式=5x ﹣2y +2x +y ﹣4x +2y =3x +y .(3)原式=2x 2﹣2y ﹣3y ﹣6x 2=﹣4x 2﹣5y .(4)原式=3x 2﹣(x 2+2x 2﹣x ﹣2x 2+4x )=2x 2﹣3x .18.确定m ,n 的值,使关于x ,y 的多项式x m ﹣2y 2+m x m ﹣2y +nx 3y m ﹣3﹣2x n ﹣3y +m +n 是一个五次三项式. 【分析】根据多项式为五次三项式,求出m 与n 的值即可.【解答】解:∵关于x ,y 的多项式x m ﹣2y 2+m x n ﹣2y +nx 3y m ﹣3﹣2x n ﹣3y +m +n 是一个五次三项式, ∴m ﹣2+2=5,m ﹣2+1=n ﹣3+1解得m =5,n =6.19.已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求3A +6B ;(2)若3A +6B 的值与a 的取值无关,求b 的值;(3)如果A +2B +C =0,则C 的表达式是多少?【分析】(1)先把A 、B 的表达式代入,再去括号,合并同类项即可;(2)根据(1)中3A +6B 的表达式,再令a 的系数等于0,求出b 的值即可;(3)先把A 、B 的表达式代入,求出C 的表达式即可.【解答】解:(1)∵A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1,∴3A +6B =3(2a 2+3ab ﹣2a ﹣1)+6(﹣a 2+ab ﹣1)=6a 2+9ab ﹣6a ﹣3﹣6a 2+6ab ﹣6=15ab ﹣6a ﹣9;(2)3A +6B =15ab ﹣6a ﹣9=a (15b ﹣6)﹣9,∵3A +6B 的值与a 无关,∴15b ﹣6=0,∴b =52; (3)∵A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1,A +2B +C =0,∴C =﹣A ﹣2B =﹣(2a 2+3ab ﹣2a ﹣1)﹣2(﹣a 2+ab ﹣1)=﹣2a 2﹣3ab +2a +1+2a 2﹣2ab +2=﹣5ab +2a +3.20.计算某个整式减去多项式ab ﹣2bc +3a +bc +8ac 时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab +b c +8ac .请你求出原题的正确答案.【分析】设该整式为A ,求出A 的表达式,进而可得出结论.【解答】解:∵A +(ab ﹣2bc +3a +b c +8ac )=﹣2ab +b c +8ac ,∴A =(﹣2ab +b c +8ac )﹣(ab ﹣2bc +3a +b c +8ac )=﹣2ab + b c +8ac ﹣ab +2bc ﹣3a ﹣b c ﹣8ac=﹣3ab +2bc ﹣3a ,∴A ﹣(ab ﹣2bc +3a +b c +8ac )=(﹣3ab +2bc ﹣3a )﹣(ab ﹣2bc +3a +b c +8ac )=﹣3ab +2bc ﹣3a ﹣ab +2bc ﹣3a ﹣b c ﹣8ac=﹣4ab +3bc ﹣6a ﹣8ac .21.一个代数式加上3x 4﹣x 3+2x ﹣1得﹣5x 4+3x 2﹣7x +2,求这个代数式.【分析】设这个代数式是A ,再根据整式的加减法则进行计算即可.【解答】解:设这个代数式是A ,∵A +(3x 4﹣x 3+2x ﹣1)=﹣5x 4+3x 2﹣7x +2,∴A =(﹣5x 4+3x 2﹣7x +2)﹣(3x 4﹣x 3+2x ﹣1)=﹣5x 4+3x 2﹣7x +2﹣3x 4+x 3﹣2x +1=(﹣5﹣3)x 4+3x 2﹣(7+2)x +x 3+3=﹣8x 4+3x 2﹣9x +x 3+3.22.规定bc ad d c b a -=,如-232-414321=⨯⨯=.若33x 25x 35-22=-+,求11x 2﹣5. 【分析】根据题中所给出的式子列出关于x 的式子,再合并同类项即可. 【解答】解:∵规定bc ad d c b a -=,如-232-414321=⨯⨯=.若33x 25x 35-22=-+, ∴原式==-+3x 25x 35-22(﹣5)×(x 2﹣3)﹣2×(3x 2+5) =﹣5x 2+15﹣6x 2﹣10=﹣11x 2+5=3,∴﹣11x 2=3﹣5=﹣2.∴11x 2﹣5=2﹣5=﹣3.23.已知a =﹣1,b =﹣2,求代数式b a 3b a 21ab 4b a 3b a 22222+⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--的值. 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式=a 2b ﹣3a 2b +4ab 2+21a 2b +3a 2b =23a 2b +4ab 2, 当a =﹣1,b =﹣2时,原式=﹣3﹣16=﹣19.24.学习了整式的加减运算后,郑老师出了一道题课堂练习题为“当a =﹣2,b =2016时,求多项式3b 2b a 41b a b b a 41b b a 4b b a 21b a 322332233233+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛--+-+-的值.”张同学把a =﹣2抄成 a =2,韦同学没有抄错题,但他们做出的结果恰好一样,说说这是怎么回事?【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=3a 3b 3﹣21a 2b +b ﹣4a 3b 3﹣b +41a 2b +b 2+a 3b 3+41a 2b ﹣2b 2+3=﹣b 2+3, 结果与a 的取值无关,故张同学把a =﹣2抄成a =2,韦同学没有抄错题,但他们做出的结果恰好一样.。
整式章节单元测试题及答案
整式章节单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是单项式?A. 3xB. -2C. 5x²D. 4x³2. 多项式3x² - 4x + 1的次数是多少?A. 1B. 2C. 3D. 43. 多项式2x³ - x² + 5x - 3的首项系数是?A. 2B. -1C. 5D. 34. 合并同类项后,2x² + 3x - 5与3x² - 4x + 6的和是?A. 5x² - x - 1B. 5x² - x + 1C. 5x² + x - 1D. 5x² + x + 15. 如果多项式f(x) = ax³ + bx² + cx + d,其中 a = 2,b = -3,c = 4,d = -5,那么f(1)的值是?A. -2B. -1C. 0D. 1二、填空题(每题2分,共10分)6. 单项式-5x的系数是________。
7. 多项式4x³ - 2x² + 3x - 1的常数项是________。
8. 如果多项式f(x) = 2x³ - x² + 5x + 3,那么f(-1) =________。
9. 两个多项式的和是5x³ - 2x² + 3x + 1,其中一个多项式是3x³ + x² - 2x + 5,另一个多项式是________。
10. 如果多项式f(x) = 3x³ + 2x² - 5x + 7,那么f(0)=________。
三、解答题(每题5分,共30分)11. 计算多项式2x³ - 3x² + x - 5与多项式4x³ + x² - 2x + 3的差。
12. 求多项式3x³ - 2x² + 5x - 7与多项式2x³ + 3x² - 4x + 6的乘积。
人教版七年级上数学第二章《整式加减》综合测试卷(含答案)
人教版七年级上数学第二章《整式加减》综合测试卷(含答案)一、选择题1.下列式子书写正确的是( )A.a48B.x÷yabcC.a(x+y)D.112答案 C2化简-16(x-0.5)的结果是( )A.-16x-0.5B.16x+0.5C.16x-8D.-16x+8答案 D. -16(x-0.5)=-16x+8,故选择D.3.下列说法正确的是( )A.ab+c是二次三项式B.多项式2x+3y2的次数是4C.5是单项式是整式D.ba答案 Cx a+2y3与-3x3y2b-1是同类项,那么a,b的值分别是( )4.如果13A.a=1,b=2B.a=0,b=21C.a=2,b=1D.a=1,b=1答案 Ax-10)元出售,则下列说法中, 5.某商店举办促销活动,促销的方法是将原价x元的衣服以(45能正确表达该商店促销方法的是( )A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元答案 B6.当x=-2时,-(x-3)+(2-x)+(3x-1)的值为( )A.2B.3C.4D.5答案 A7.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A.4、-6、5B.4、0、-1C.2、0、5D.4、6、5答案 D8.多项式1x|n|-(n+2)x+7是关于x的二次三项式,则n的值是( )2A.2B.-2C.2或-2D.3答案 A239. 已知多项式ax 5+bx 3+cx,当x=1时多项式的值为5,那么当x=-1时该多项式的值为( )A.-5B.5C.1D.无法求出 答案 A10.已知m 、n 为常数,代数式2x 4y+mx|5-n|y+xy 化简之后为单项式,则m n的值共有( ) A.1个 B.2个 C.3个 D.4个 答案 C11.若x 2+ax-2y+7-(bx 2-2x+9y-1)的值与x 的取值无关,则-a+b 的值为( )A.3B.1C.-2D.2答案 A12.如果关于x 的代数式-3x 2+ax+bx 2+2x+3合并后不含x 的一次项,那么( )A.a+b=0B.a=0C.b=3D.a=-2 答案 D 二、填空题(每小题3分,共30分)13.一台电视机原价是2 500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.答案 2 000a14.在代数式:a 2-12,-3xy 3,0,4ab,3x 2-4,xy 7,n 中,单项式有 个.答案 5 15.多项式6x 3-xy 5+y 2中共有 项,各项系数分别为 .答案 三;6,-15,115.若单项式-2m2n x-1和5a4b2c的次数相同,则代数式x2-2x+3的值为.3答案2716.已知3a-2b=2,则9a-6b+5= .答案1117.已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2= ,a2-b2= .答案6;-2218.图2-3-1是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n(n为正整数)个图案由个▲组成.图2-3-1答案(3n+1)三、解答题19.化简:(1)2m-3n+[6m-(3m-n)] (2)(2a2-1+3a)-2(a+1-a2).答案(1)5m-2n.(2)4a2+a-3.20.已知A=-x2+5-4x,B=5x-4+2x2,C=-2x2+8x-3.(1)化简A+B-C;45(2)在(1)的结果中,若x 取最大负整数,结果是多少?答案 (1)3x 2-7x+4.(2)4.21.化简求值:12x-2(x -13y 2)+(-32x +13y 2),其中x=-2,y=-23答案 原式=-3x+y 2.当x=-2,y=-23时,原式=-3×(-2)+(-23)2=6+49=649. 22.已知m,x,y 满足:35(x-5)2+|m-2|=0,-3a 2·b y+1与a 2b 3是同类项,求整式(2x 2-3xy+6y 2)-m(3x 2-xy+9y 2)的值.答案-158.23.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?答案 相信.(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)=7a 3-6a 3b+3a 2b+3a 3+6a 3b-3a 2b-10a 3+3=(7a 3+3a 3-10a 3)+(-6a 3b+6a 3b)+(3a 2b-3a 2b)+3=3,则不管a 、b 取何值,整式的值都为3.。
初级中学数学课堂学习检测-第2章-整式的加减
第二章 整式的加减测试1 代数式学习要求理解代数式的概念 , 掌握代数式的基本写法 , 能按要求列出代数式 , 会求代数式的值 .课堂学习检测一 、 填空题(用代数式表示)1 . 用代数式表示 :(1)比m 多1的数______. (2)比n 少2的数______ .(3)3与y 的差的相反数______. (4)a 与b 的和的倒数______ .(5)x 与4的差的32______. (6)a 与b 和的平方______ .(7)a 与b 平方的和______. (8)被5除商m 余1的数______ .(9)5除以x 与2和的商______. (10)除以a 2+b 的商是5x 的数______ .(11)与b +3的和是5x 的数______. (12)与6y 2的差是x +3的数______ .(13)与3x 2-1的积是5y 2+7的数______ .2 . 某工厂第一年的产量是a , 以每年x %的速度增加 , 第二年的产量是______ , 第三年的产量是_________ .3 . 一个两位数 , 个位数字是a , 十位数字是b , 如果把它的十位与个位数字交换 , 则新两位数与原两位数的差是________ .4 . 一种商品的成本价m 元 , 按成本增加25%出售时的售价为__________元 .5 . 某商品每件成本a 元 , 按高于成本20%的定价销售后滞销 , 因此又按售价的九折出售 , 则这件商品还可盈利________元 .6 . 下图中阴影部分的面积为________ .二 、 选择题7 . 下列各式中 , 符合代数式书写格式的有( ) .,5)(,322,,3,3÷+⨯⨯y x x b a a a a +b 厘米 . (A)1个 (B)2个 (C)3个 (D)4个8 . 甲 、 乙两地距离是m 千米 , 一汽车从甲地开往乙地 , 汽车速度为a 千米/时 , 现走了一半路程 , 它所行的时间是( ) . (A)m a 21 (B)a m 2 (C)a m 2 (D)a m +21 三 、 解答题9 . 一个长方形的周长为c 米 , 若该长方形的长为a 米),2(c a <求这个长方形的面积 . 10 . 当x =-3 , 31=y 时 , 求代数式x 2y 2+2x +|y -x |的值 . 综合 、 运用 、 诊断一 、 填空题(用代数式表示)11 . 如图 , (1)中阴影部分面积是______ ; (2)中阴影部分面积是________ .(1) (2)12 . 当a =0.2时 , =+a 21_______ , =a 21_______ ; 2a -1=_______ , 2(a -1)=_______ .13 . 当(x +1)2+|y -2|=0时 , 代数式xyx y -的值为_______ . 14 . 当21=a 代数式2a 2-a +1=_______ . 15 . -(a -b )2的最大值是_______ ; 当其取最大值时 , a 与b 的关系是_______ .二 、 选择题16 . 书店有书x 本 , 第一天卖出了全部的,31第二天卖出了余下的,41还剩( )本 . (A)12131--x (B)x x x 12131-- (C)x x x 4131-- (D))31(4131x x x x --- 三 、 解答题17 . 若4x 2-2x +5=7 , 求式子2x 2-x +1的值 .18 . 已知a ∶b =5∶6 , b ∶c =4∶3 , 求cb b a -+的值 . 拓展 、 探究 、 思考19 . 一个表面涂满了红色的正方体 , 在它的每个面上等距离地切两刀(刀痕与棱平行) , 可得到27个小正方体 , 而且切面均为白色 , 问 :(1)27个小正方体中 , 三面是红色 , 两面是红色 , 一面是红色 , 各面都是白色的正方体各有几块 ?(2)每面切三刀 , 上述各问的结果又如何 ? 每面切n 刀呢 ?20 . 动脑筋 , 试试能做出这道题吗 ? 某企业出售一种收音机 , 其成本24元 , 第一种销售方式是直接由厂家门市部销售 , 每台售价32元 , 而消耗费用每月支出2400元 , 第二种销售方式是委托商店销售 , 出厂价每台28元 , 第一种与第二种销售方式所获得的月利润分别用y 1 , y 2表示 , 月销售的台数用x 表示 , (1)用含有x 的代数式表示y 1与y 2 ; (2)销售量每月达到2000台时 , 哪种销售方式获得的利润多 ?测试2 整式学习要求了解整式的有关概念 , 会识别单项式系数与次数 、 多项式的项与系数 .课堂学习检测一 、 填空题1 . 把下列代数式分别填入它们所属的集合中 :.,π,5,41,17,,12,523222b a c ab x y x x m m ---+---单项式集合{ … }多项式集合{ … }整式集合{ … }2 .3 . 5x 3-3x 4-0.1x +2是______次多项式 , 最高次项的系数是_____ , 常数项是_____ , 系数最小的项是_____ .二 、 选择题4 . 下列代数式中单项式共有( ) .⋅++----5,,,1,3,5.0,,5332222ab b a c bx ax yx a xy x (A)2个 (B)3个(C)4个 (D)5个5 . 下列代数式中多项式共有( ) . ⋅-+-------221,,32,1,3,,43xabc x x a b c b a x (A)1个 (B)2个 (C)3个 (D)4个6 . 大圆半径为a 厘米 , 小圆半径比大圆半径小1厘米 , 两圆的面积和为( )(A)πa 2 (B)π(a -1)2 (C)π (D)πa 2+π(a -1)2三 、 解答题7 . 分别计算图(1) 、 (2) 、 (3)中阴影部分的面积 , 你发现了什么规律 ?(1) (2) (3)综合 、 运用 、 诊断 一 、 填空题8 . 当k =______时 , 多项式x 2-(3k -4)xy -4y 2-8中只含有三个项 .9 . 写出系数为-4 , 含有字母a , b 的四次单项式_____________ .10 . 若(a -1)x 2y b 是关于x , y 的五次单项式 , 且系数为,21-则a =______ , b =______ . 11 . 关于x 的多项式(m -1)x 3-2x n +3x 的次数是2 , 那么m =______ , n =______ .二 、 选择题12 . 下列结论正确的是( ) .(A)3x 2-x +1的一次项系数是1 (B)xyz 的系数是0(C)a 2b 3c 是五次单项式 (D)x 5+3x 2y 4-27是六次多项式13 . 关于x 的整式(n -1)x 2-x +1与mx n +1+2x -3的次数相同 , 则m -n 的值为( ) .(A)1 (B)-1 (C)0 (D)不确定三 、 解答题14 . 已知六次多项式-5x 2y m +1+xy 2-6 , 单项式22x 2n y 5-m 的次数也是6 , 求m , n 的值 .15 . 把一个多项式按某一个字母的指数从大到小的顺序排列起来 , 叫做把多项式按这个字母降幂排列 ; 反之 , 叫做按这个字母升幂排列 . 如2x 3y -3x 2y 2+xy 3是按x 降幂排列(也是按y 升幂排列) . 请把多项式3x 2y -3xy 2+x 3-5y 3重新排列 .(1)按y 降幂排列 :(2)按y 升幂排列 :拓展 、 探究 、 思考16 . 在一列数-2x , 3x 2 , -4x 3 , 5x 4 , -6x 5 … 中 , 第k 个数(k 为正整数)是________ ,第2009个数是___________ .17 . 观察下列各式 , 你会发现什么规律 ? 3×5=42-1 , 4×6=52-1 , 5×7=62-1 , 6×8=72-1 , … … 11×13=122-1 , … …第n 个等式(n 为正整数)用含n 的整式表示出来 .测试3 合并同类项学习要求掌握同类项及合并的概念 , 能熟练地进行合并 , 掌握有关的应用 .课堂学习检测一 、 填空题1 . (1)5ab -2ab -3ab =______. (2)mn +nm =______ .(3)-5x n -x n -(-8x n )=______. (4)-5a 2-a 2-(-7a 2)+(-3a 2)=_____ .(5)若2154b a m -与3a 3b n -m 是同类项 , 则m 、 n 的值为______ . (6)若m b a 232与-0.5a n b 4的和是单项式 , 则m =______ , n =_____ . (7)把(x -1)当作一个整体 , 合并3(x -1)2-2(x -1)3-5(1-x )2+4(1-x )3的结果是_______ .(8)把(m -n )当作一个整体 , 合并n m m n n m n m 33)(31)(2)(22+----+-=_______ . 二 、 选择题2 . (1)在232ab 与,232a b -2x 3与-2y3 , 4abc 与cab , a 3与43 , 32-与5 , 4a 2b 3c 与4a 2b 3中 , 同类项有( ) .(A)5组 (B)4组 (C)3组 (D)2组(2)若-5x 2n -1y 4与4821y x 能够合并 , 则代数式20002000)1459()1(--n n 的值是( ) . (A)0 (B)1 (C)-1 (D)1或-1(3)下列合并同类项错误的个数有( ) .①5x 6+8x 6=13x 12 ; ②3a +2b =5ab ;③8y 2-3y 2=5 ; ④6a n b 2n -6a 2n b n =0 .(A)1个 (B)2个 (C)3个 (D)4个三 、 解答题3 . (1)6a 2b +5ab 2-4ab 2-7a 2b(2)-3x 2y +2x 2y +3xy 2-2xy 2(3)m n mn m n mn mn n m 222238.0563--+--(4)2222)(5.0)(31)(2)(b a b a b a b a +-+-+-+ 4 . 求值(1)当a =1 , b =-2时 , 求多项式5411214929532323---+--b a ab b a ab b a ab 的值 . (2)若|4a +3b |+(3b +2)2=0 , 求多项式2(2a +3b )2-3(2a +3b )+8(2a +3b )2-7(2a +3b )的值 .综合 、 运用 、 诊断一 、 填空题5 . (1)若3a m bn +2与552b a n 能够合并 , 则m =________ , n =_______ . (2)若5a |x |b 3与-0.2a 3b |y |能够合并 , 则x =________ , y =_______ .二 、 选择题6 . 已知-m +2n =5 , 那么5(m -2n )2+6n -3m -60的值为( ) .(A)40 (B)10 (C)210 (D)807 . 若m , n 为自然数 , 多项式x m +y n +4m +n 的次数应是( ) .(A)m (B)n (C)m , n 中较大数 (D)m +n三 、 解答题8 . 若关于x , y 的多项式 : x m -2y 2+mx m -2y +nx 3y m -3-2x m -3y +m +n , 化简后是四次三项式 ,求m , n 的值 .拓展 、 探究 、 思考9 . 若1<x <2 , 求代数式xx x x x x |||1|1|2|2+-----的值 . 10 . a , b , c 三个数在数轴上位置如图 , 且|a |=|c | ,化简 : |a |-|b +a |+|b -c |+c +|c +a | .11 . 若b a x y x 1x 33,2|3|21,2|4|-+=+=-与7ba 5能够合并 , 求y -2x +z 的值 . 12 . 已知x =3时 , 代数式ax 3+bx +1的值是-2009 , 求x =-3时代数式的值 .测试4 去括号与添括号学习要求掌握去括号与添括号的方法 , 充分注意变号法则的应用 .课堂学习检测一 、 填空题1 . 去括号法则是以乘法的______为基础的即括号外面的因数是正数时 , 去括号后各项的符号与原括号内____________ ;括号外面的因数是负数时 , 去括号后各项的符号与原括号内____________ .2 . 去括号 :(1)a +(b +c -d )=______ , a -(b +c -d )=______ ;(2)a +5(b +2c -3d )=______ , a -m (b +2c -3d )=______ ;3 . 添括号 :(1)-3p +3q -1=+(_________)=3q -(_________) ;(2)(a -b +c -d )(a +b -c +d )=〔a -(_________)〕〔a +(_________)〕 .4 . 去括号且合并含相同字母的项 :(1)3+(2x -y )-(y -x )=_________ ; (2)2x -5a -(7x -2a )=_________ ;(3)a -2(a +b )+3(a -4b )=_________ ; (4)x +2(3-x )-3(4x -1)=_________ ;(5)2x -(5a -7x -2a )=_________ ; (6)2(x -3)-(-x +4)=_________ .二 、 选择题5 . 下列式子中去括号错误的是( ) .(A)5x -(x -2y +5z )=5x -x +2y -5z(B)2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2d(C)3x 2-3(x +6)=3x 2-3x -6(D)-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 26.-[-3+5(x -2y )+2x ]化简的结果是( ) .(A)3-7x +10y (B)-3-3x -2y(C)-2+x -2y (D)-3-5x +10y -2x三 、 计算7 . (1)-2(a 2-3a )+(5a 2-2a ) (2)2x -(x +3y )-(-x -y )-(x -y )(3)43321x x --- 综合 、 运用 、 诊断一 、 选择题8 . (1)当x =5时 , (x 2-x )-(x 2-2x +1)=( ) .(A)-14 (B)4 (C)-4 (D)1(2)下列各式中错误的个数共有( ) .①(-a -b +c )[a -(b +c )]=[-a -(b +c )](a -b +c )②[a -(b -c )](-a -b +c )=(a -b -c )[-a -(b -c )]③(-a -b +c )[a -(b +c )]=[-a -(b -c )](a -b -c )④(a +b +c )[-a +(b -c )]=[a +(b +c )](-a -b +c )(A)1个 (B)2个 (C)3个 (D)4个二 、 填空题9 . (1)(x +y )2-10x -10y +25=(x +y )2-10(______)+25 .(2)(a -b +c -d )(a +b -c -d )=[(a -d )+(______)][(a -d )-(______)] .(3)已知b <a <0 , 且|a |>c >0 , 则代数式|a |-|a +b |+|c -b |+|a +c |化简的结果是____________ .(4)不改变值 , 将括号前的符号变成与其相反的符号 :①x +(1-x 2+x 3)=_____________ ;②(x -y )-(-y +x -1)=_________ ; (此题第一个小括号前的符号不要求改变)③3x -[5x -(2x -1)]=_________ .三 、 解答题10 . 已知a 3+b 3=27 , a 2b -ab 2=-6 , 求代数式(b 3-a 3)+(a 2b -3ab 2)-2(b 3-ab 2)的值 .11 . 当211-=a 时 , 求代数式15a 2-{-4a 2+[5a -8a 2-(2a 2-a )+9a 2]-3a }的值 . 测试5 整式的加减学习要求会进行整式的加减运算 .课堂学习检测一 、 填空题1 . a -(2a +b )+(3a -4b )=_____________ .2 . (8a -7b )-(5a -4b )-(9b -a )=_____________ .3 . 4x 2-[6x -(2x -3)+2x 2]=_____________ .4 . =---)41(4)8(2222xy y x xy y x _____________ . 二 、 选择题5 . 下列式子中正确的是( ) .(A)2m 2-m =m (B)-4x -4x =0(C)ab 2-a 2b =0 (D)-3a -2a =-5a6 . 化简(-2x 2+3x -2)-(-x 2+2)正确的是( ) .(A)-x 2+3x (B)-x 2+3x -4(C)-3x 2-3x -4 (D)-3x 2+3x三 、 解答题7 . 如果-a |m -3|b 与ab |4n |是同类项 , 且m 与n 互为负倒数 ,求n -mn -3(-m -n )-(-m )-11的值 .8 . 已知(2a +b +3)2+|b -1|=0 , 求3a -3[2b -8+(3a -2b -1)-a ]+1的值 .9 . 设A =x 3-2x 2+4x +3 , B =x 2+2x -6 , C =x 3+2x -3 .求x =-2时 , A -(B +C )的值 .综合 、 运用 、 诊断一 、 填空题10 . 三角形三边的长分别为(2x +1)cm 、 (x 2-2)cm 和(x 2-2x +1)cm , 则这个三角形的周长是_________cm .11 . 若(a +b )2+|2b -1|=0 , 则ab -[2ab -3(ab -1)]的值是_________ .12 . m 2-2n 2减去5m 2-3n 2+1的差为________ .13 . 若a 与b 互为相反数 , c 与d 互为负倒数 , m 的绝对值是2 , 则|a +b |-(m 2-cd )+2(m 2+cd )-m 5a -m 5b 的是_________ .二 、 选择题14 . 长方形的一边等于3m +2n , 另一边比它大m -n , 则这个长方形周长是( ) .(A)4m +n (B)8m +2n (C)14m +6n (D)12m +8n15 . 已知A =x 2+2y 2-z 2 , B =-4x 2+3y 2+2z 2 , 且A +B +C =0 , 则多项式C 为( ) .(A)5x 2-y 2-z 2 (B)3x 2-5y 2-z 2(C)3x 2-y 2-3z 2 (D)3x 2-5y 2+z 216 . 在2-[2(x +3y )-3( )]=x +2中 , 括号内的代数式是( ) .(A)x +2y (B)-x +2y (C)x -2y (D)-x -2y三 、 解答题17 . 若2x 2+xy +3y 2=-5 , 求(9x 2+2xy +6)-(xy +7x 2-3y 2-5)的值 .18 . 有人说代数式(a 2-3-3a +a 3)-(2a 3+4a 2+a -8)+(a 3+3a 2+4a -4)的值与a 无关 , 你说对吗 ? 请说明你得出的结论和理由 .拓展 、 探究 、 思考19 . 有一长方体形状的物体 , 它的长 、 宽 、 高分别为a , b , c (a >b >c ) , 有三种不同的捆扎方式(如图所示的虚线) , 哪种方式用绳最少 ? 哪种方式用绳最多 ? 说明理由 .。
七年级数学上册第二章整式的加减2.1整式第2课时整式二课堂小测本课件新版新人教版ppt课件
2.1 整式
第2课时 整式(二)
课堂小测本
易错核心知识循环练 1. (10分) 和它的相反数之间的整数有( C) A. 3个 B.4个 C. 5个 D. 6个 2. (10分)有理数a,b在数轴上的位置如图K2-1-1所示, 以下说法正确的是( ) D
A. a-b>0 B.
C. ab>0 D. b<-a
课堂小测本
3. (10分)在-2 ,-15,9, 0 , 这五个有理数中, 最大的数是______,最小的数是______ 1. 5 4. (10分)计算: (-10)+8×(-2)-(-4)×(-3)=______-_3.8
课堂小测本
5. (10分)填表:
2
-1.2
3
2
1
3
-2 -0.3
2
2
课堂小测本
核心知识当堂测
1. (10分)多项式1+2xy-3xy2的次数为( C)
A. 1 B. 2 C. 3 D. 5
2. (10分)组成多项式2x2-x-3的单项式是下列几组中的
( B)
A. 2x2,x,3
B. 2x2,-x,-3
C. 2x2,x,-3 D. 2x2,-x,3
课堂小测本
3. (10分)如果一个多项式的次数是5,那么这个多项式的
3
6
2
-5
27
再见
2019/11/12
任何一项的次数满足( )D
A. 都小于5
B. 都大于5
C. 都不小于5 D. 都不大于5
4. (10分)如果关于x的多项式x4-(a-1)x3+5x2-(b+3)x-1不含
x3项和x项,则a=______,b1=_____. -3
人教版七年级数学上册第二章《整式》练习题(含答案)
整式姓名一.判断题(1)x1是关于 x 的一次两项式. () 3(2)-3 不是单项式. ()(3)单项式 xy 的系数是 0.()(4)x3+y3是 6 次多项式. ()(5)多项式是整式. ()二、选择题1.在下列代数式:1ab,a b, ab2+b+1 ,3+2,22x y2)x3 + x - 3 中,多项式有(A.2 个B.3 个C.4 个D5 个2.多项式-223m- n2是()A.二次二项式B.三次二项式C.四次二项式D五次二项式3.下列说法正确的是()A. 3 x2―2x+5 的项是 3x 2, 2x, 5B.x-y与 2 x2―2xy-5 都是多项式33C.多项式- 2x2+4xy 的次数是3D.一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是()A.整式 abc 没有系数B.x+y+z不是整式2 34C.- 2 不是整式D.整式 2x+1 是一次二项式5.下列代数式中,不是整式的是()A、3x2B、 5a 4bC、3a275xD、- 20056.下列多项式中,是二次多项式的是()A、32x 1B、3x2C、3xy -1D、3x 527.x 减去 y 的平方的差,用代数式表示正确的是()A、( x y) 2B、x2y2C、x2yD、x y28.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长 S 米,同学上楼速度是 a 米/ 分,下楼速度是 b 米/ 分,则他的平均速度是()米/ 分。
A、a bB、sC、s s2a b a b2sD、s sa b9.下列单项式次数为 3 的是 ()A.3abcB.2× 3× 4C.1x3y D.52x410.下列代数式中整式有 ()1 ,2x+y, 1 a2b, x y , 5 y ,x34x0.5 ,aA.4 个B.5 个C.6 个D.7 个11.下列整式中,单项式是()A.3a+1B.2x- yC.0.1D.x 1212.下列各项式中,次数不是3的是()A .xyz+ 1B.x 2+y+1C.x2-yxy2D.x 3- x2+x-1 13.下列说法正确的是 ()A .x(x +a)是单项式 B.x21不是整式 C. 0是单项式 D.单项式-1x2y 的系数是1 3314.在多项式 x3-xy 2+25中,最高次项是 ()A .x3B. x3,xy2C.x3,- xy2D.2515.在代数式3x2y,7(x 1),1(2n1), y 2y1 483y中,多项式的个数是 ()A.1 B.2C.3 D.416.单项式-3xy2的系数与次数分别是 () 2A.- 3,3B.-1,3C.-3,2 22D.-3,3 217.下列说法正确的是 ()A .x 的指数是 0B.x 的系数是 0 C.- 10 是一次单项式D.- 10 是单项式18.已知:2x m y3与 5xy n是同类项,则代数式m 2n的值是()A、6B、5C、2D、519.系数为-1且只含有 x、 y 的二次单项式,2可以写出 ( )A.1 个B.2 个 C.3 个D.4 个20.多项式1x2 2 y 的次数是()A、1B、2C、- 1D、- 2三.填空题1.当 a=- 1 时,4a3=;2.单项式:4x2 y3的系数是,次数3是;3.多项式:4x33xy 25x2 y3y 是次项式;4.32005xy2是次单项式;5.4x23y 的一次项系数是,常数项是;6._____和_____统称整式 .7.单项式1xy2z 是_____次单项式 .2.多项式2-12-b2有_____项,其中-12 8a ab2ab2的次数是..整式①1,② 3x-y2③ 3 2④⑤πx+1y, 92, 2 x y, a,2⑥ 2 a 2,⑦x+1 中单项式有,5多项式有10. x+2xy+y 是次多项式.11.比 m 的一半还少 4 的数是;12.b 的11倍的相反数是;313.设某数为 x,10 减去某数的 2 倍的差是;14.n 是整数,用含 n 的代数式表示两个连续奇数;15.x43x3 y 6x2 y 2 2 y 4的次数是;16.当 x=2,y=- 1 时,代数式| xy || x |的值是;17.当 t=1t时, t的值等于 1;318.当 y=时,代数式3y -2 与y3 的4值相等;19.- 23ab 的系数是,次数是次.20.把代数式 2a2 b2c 和 a3 b2的相同点填在横线上:(1)都是式;(2)都是次.21.多项式 x3y2- 2xy2-4xy- 9 是次___项式,3其中最高次项的系数是,二次项是,常数项是.22. 若 1 x2y3z m与3x2y3z4是同类项,则m323.在 x2,1(x + y),1,- 3 中,单项式2是,多项式是,整式是.24.单项式5ab2c3的系数是 ____________,次数7是____________.25.多项式 x2y+xy-xy 2- 53中的三次项是____________.26.当 a=____________时,整式 x2+a-1 是单项式.27.多项式 xy-1 是 ____________次____________项式.28.当 x=- 3 时,多项式- x3+ x2-1 的值等于____________.29.如果整式 (m- 2n)x2y m+n-5是关于 x 和 y 的五次单项式,则 m+n30.一个 n 次多项式,它的任何一项的次数都____________.31.系数是- 3,且只含有字母x 和 y 的四次单项式共有个,分别是.32.组成多项式 1-x2+ xy- y2- xy3的单项式分别是.=.四、列代数式1. 5 除以 a 的商加上32的和;32. m 与 n 的平方和;3. x 与 y 的和的倒数;4. x 与 y 的差的平方除以 a 与 b 的和,商是多少。
数学人教版2024版七年级初一上册 4.1 整式 课时练02测试卷含答案
第四章 整式的加减4.1 整式一、单选题1.下列式子13ab ,2a b +,12x y +,23x x +-中,多项式有( )A .1个B .2个C .3个D .4个2.方程22690x x --=的二次项系数、一次项系数、常数项分别为( )A .22x ,6x -,9-B .22x ,6x ,9C .2,6,9D .2,6-,9-3.多项式43227x x y -+是( )A .四次三项式B .五次三项式C .三次四项式D .三次五项式4.若452x x xm +-是一个五次二项式,则m =( )A .0B .5C .0或5D .4或55.一组按规律排列的多项式:34a b -,56a b -+,78a b -,910a b -+×××,第n 个多项式是( )A .2122n n a b +++B .()21221n n n a b +++-C .()()1212211n n n n a b +++-+-D .()()2212211n n n n a b ++-+-6.在22515,1,32,π,,,51x x x x x x +--++--中,不是整式的有( )A .0个B .1个C .2个D .3个7.单项式22xy z p -的系数是( )A .―2B .2p -C .2D .2p 8.下列说法正确的是 ( )A .mn -的系数是1-B .2222x y -是六次单项式C .6ab a +-的常数项是6D .22232x y xy x ++是三次三项式二、填空题9.多项式4232346x x y x x y +--+的项数和次数之积为 .10.多项式32613x y xy -+-中二次项是 .11.观察下列图形的排列规律:依此规律,第6个图形共有 个▲12.多项式22536m n --的常数项是 .13.代数式2334432253x y x y xy x y ---有 项,其中4xy -的系数是 .14.若多项式()2321221n m x y xy xy p ---++是四次三项式,则m n -= .15.多项式23546a b ab --的四次项系数是 .16.多项式322234a b a b a -+-的次数和项数分别为 .三、解答题17.已知多项式13312(1)36m xy x y x n x +-+-+++是关于x ,y 的六次四项式,求m n -的值.18.观察下列等式:第1个等式:()22213237´+-=´;第2个等式:()222234311´+-=´;第3个等式:()222336315´+-=´;第4个等式:()222438319´+-=´;L ;按照以上的规律,解决下列问题:(1)写出第5等式:__________;(2)直接写出你猜想的第n 个等式,并证明该等式(用含字母n 的式子表示等式).19.如图,是一幅平面镶嵌图案,它由相同的黑色正方形和白色等边三角形排列而成,观察图案:第1个图案有1个正方形,4个等边三角形;第2个图案有2个正方形,7个等边三角形;第3个图案有3个正方形,10个等边三角形,以此类推…(1)第n 个图案有________个正方形,________个等边三角形.(2)现有2024个等边三角形,如按此规律镶嵌图案,要求等边三角形剩余最少,则需要正方形多少个?20.已知关于x ,y 的多项式23131093m x y x y xy x +---+-是七次五项式,n 是五次项的系数,求m ,n 的值.参考答案1.B2.D3.B4.A5.C6.C7.B8.A9.2010.2xy11.2112.12-13.41-14.1-15.4-16.五和四17.解:∵多项式13312(1)36m xy x y x n x +-+-+++是关于x ,y 的六次四项式,∴116m ++=,10n +=,即4m =,1n =-,∴4(1)5m n -=--=.18.解:(1)由第1个等式:()22213237´+-=´;第2个等式:()222234311´+-=´;第3个等式:()222336315´+-=´;第4个等式:()222438319´+-=´;则第5个等式:()2225310323´+-=´;故答案为:()2225310323´+-=´;(2)由第1个等式:()22213237´+-=´;第2个等式:()222234311´+-=´;第3个等式:()222336315´+-=´;第4个等式:()222438319´+-=´;则第5个等式:()2225310323´+-=´;L ;则第n 个等式:()()()22232343n n n +-=+;证明:左边()()()222223241294129343n n n n n n n =+-=++-=+=+,右边()343n =+,左边=右边所以等式成立.19.解:(1)第1个图案:正方形有1个,等边三角形有4个,第2个图案:正方形有2个,等边三角形有437+=(个),第3个图案:正方形有3个,等边三角形有42310+´=(个),第4个图案:正方形有4个,等边三角形有43313+´=(个),……第n 个图案:正方形有n 个,等边三角形有()()43131n n +-=+个.故答案为:n ;()31n +;(2)要使等边三角形剩余最少,则最少为1块,3112024()n \++=,674n =,∴按此规律镶嵌图案,等边三角形剩余最少1块,这时需要正方形674个.20.解:因为关于x 、y 的多项式23131093m x y x y xy x +---+-是七次五项式.所以137m ++=,所以3m =.又因为n 是五次项的系数,五次项是23x y -,所以1n=-.。
整式的测试题大全
整式的测试题整式的测试题大全以下是为您推荐的整式测试题,希望本篇文章对您学习有所帮助。
整式的测试题一、选择题(每小题3分,共45分)1.在代数式中,整式有()A.3个B.4个C.5个D.6个2.下面计算正确的是()A.B、C.D.3.多项式的各项分别是 ( )A. B. C. D.4.下列去括号正确的是()A.B.C.D.5.下列各组中的两个单项式能合并的是()A.4和4xB.C.D.6.单项式的.系数和次数分别是 ( )A.-π,5B.-1,6C.-3π,6D.-3,77.一个多项式与-2+1的和是3-2,则这个多项式为()A:-5+3 B:-+-1C:-+5-3D:-5-138.已知和是同类项,则式子4m-24的值是A.20B.-20C.28D.-289.已知则的值是()A:B:1C:-5D:1510.原产量n吨,增产30%之后的产量应为()A、(1-30%)n吨B、(1+30%)n吨C、n+30%吨D、30%n吨11.下列说法正确的是()A.是二次单项式B.和是同类项C.的系数是D.是一次单项式12.已知,则多项式的值等于()A、1B、4C、-1D、-413.若()—()=,则A、B、C的值为()A、4,-6,5B、4,0,-1C、2,0,5D、4,6,514、若多项式与多项式的和不含二次项,则m等于()A:2B:-2C:4D:-415.两个3次多项式相加,结果一定是()A、6次多项式.B、不超过3次的多项式.C、3次多项式D、无法确定.题号123456789101112131415答案二、填空题(每空3分,共15分)1.单项式的系数是____________,2、若单项式和25是同类项,则的值为____________。
3、多项式与多项式的差是_______________.4、化简得到一个x的最高次数是2的多项式了,则m的值。
5、如果时,代数式的值为2008,则当时,代数式的值是三、解答题(32分)(一)计算:(共16分)(二)、先化简下式,再求值。
第二章-整式的加减单元测试题(含答案)
第二章 整式的加减单元测试(时间:90分钟,满分120分)一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x yx m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项.求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
整式测试题及答案免费
整式测试题及答案免费一、选择题1. 下列哪个表达式不是单项式?A. 3x^2B. -5yC. 7D. 2ab2. 若a + b = 7,a - b = 3,求a^2 - b^2的值。
A. 10B. 16C. 28D. 403. 计算下列多项式乘法的结果:(x + 2)(x - 3) =A. x^2 - x - 6B. x^2 - 5x + 6C. x^2 - 5x - 6D. x^2 - x - 2二、填空题4. 将多项式3x^2 - 5x + 2进行因式分解,结果为______。
5. 已知x^2 + 4x + 4 = (x + 2)^2,求x^2 - 4x + 4的因式分解结果。
三、解答题6. 计算下列整式的加法:(3x^2 - 4x + 1) + (2x - x^2 + 5)。
7. 已知m + n = 5,求下列整式的值:2m^2 - 2mn + 2n^2。
四、综合题8. 某工厂生产一批产品,每件产品的成本为c元,销售价格为p元。
工厂计划生产x件产品。
请根据以下公式计算工厂的总利润:总利润 = (销售价格 - 成本) * 产品数量假设c = 100元,p = 150元,x = 200件,求工厂的总利润。
答案:一、选择题1. D2. C3. B二、填空题4. (3x - 2)(x - 1)5. (x - 2)^2三、解答题6. 4x^2 - 2x + 67. 根据已知条件m + n = 5,可以得出m^2 + 2mn + n^2 = 25。
由于2m^2 - 2mn + 2n^2 = 2(m^2 - mn + n^2),所以2(m^2 - mn + n^2) = 2(25 - 2mn) = 50 - 4mn。
由于m + n = 5,两边平方得到m^2 + 2mn + n^2 = 25,所以2mn = 25 - (m^2 + n^2)。
将m + n = 5代入(m - n)^2 = m^2 - 2mn + n^2得到25 - 4mn = 25 - 4(25 - m^2 - n^2) = 4(m^2 + n^2) - 100。
2022秋七年级数学上册第2章整式的加减集训课堂练素养整式化简求值的常见题型习题课件新人教版2022
13a3-2b2-14a3-3b2 =13a3-2b2-14a3+3b2 =112a3+b2, 把 a=-3,b=1 代入,得原式=112×(-3)3+12=-54.
11 已知三个有理数a,b,c在数轴上的位置如图所示,且 |a|=2,|b|=3,|c|=1.求a-b+c的值.
解:由题意及数轴可知a= -2,b=-3,c=1.
7 已知a2-a-4=0,求4a2-2(a2-a+3)-(a2-a-4)- 4a的值. 解:原式=4a2-2a2+2a-6-a2+a+4-4a=a2-a-2. 又因为a2-a-4=0,所以a2-a=4, 所以原式=4-2=2.
8 若当 x=1 时,多项式 ax3+bx+1 的值为 5,那么当 x
(1)a0+a1+a2+a3+a4;
解:将x=1代入(2x+3)4=a0x4+a1x3+a2x2+a3x+a4, 得a0+a1+a2+a3+a4=(2+3)4=625.
(2)a0-a1+a2-a3+a4;
解:将x=-1代入(2x+3)4= a0x4+a1x3+a2x2+a3x+a4, 得a0-a1+a2-a3+a4=(-2+3)4=1.
(3)a0+a2+a4.
解:因为(a0+a1+a2+a3+a4)+(a0-a1+a2-a3+ a4)=2(a0+a2+a4), 所以625+1=2(a0+a2+a4),所以a0+a2+a4=313.
【点拨】 本题中直接求各项系数所组成式子的值是行不通
的,观察各式的特点可以发现,通过赋予x特殊值可 以求出式子的值.
解:由题意,得m+1+1=6,7-m+3n=6, 解得m=4,n=1,所以m2+n2=42+12=17.
(2)若a=-1,b=-2,求该多项式的值. 解:当 a=-1,b=-2 时,多项式的值为(-1)3+12×(- 1)×(-2)4-(-1)5×(-2)-6=-1-8-2-6=-17.
七年级数学上册 3.3《整式概念》测试(含解析)北师大版
整式的概念测试时间:40分钟总分:60一、选择题(本大题共6小题,共18.0分)1.下列各式,,,,0 ,,,,是整式的有A. 5个B. 6个C. 7个D. 8个2.下列说法正确的是A. a,,,都是整式B. 和都是单项式C. 和都是多项式D. 的项是3x和13.在式子,中,整式有A. 3个B. 4个C. 5个D. 6个4.下列单项式中正确的是A. 单项式的次数和系数都是0B. 是整式C. 的系数是D. 多项式是五次三项式5.下列说法中正确的是A. 0不是单项式B. 是单项式C. 的次数是4D. 是整式6.下列各式中,不属于整式的是A. B. x C. D.二、填空题(本大题共6小题,共18.0分)7.下列式子,,,,,,,中,是单项式的有______ ;是整式的有______ 只填序号8.在,,0,,,,,中,单项式有___ ___ ,多项式有 _____ ,整式有_____ .9.单项式的次数是指______ ,系数是指______ ,______ 与______ 统称为整式.10.下列各式;;;;中,整式的个数有______ 个11.下列各式,3xy,,,,0,中,是整式的是______ ,是单项式的是______ ,是多项式的是______ ,是常数项的是______ .12.在代数式,3x,,,,,,中,单项式有______ 个,多项式有______ 个,整式有______ 个三、解答题(本大题共3小题,共24.0分)13.下列代数式中:;;0;;;;;;.单项式:______多项式:______整式:______ .14.已知下列式子:;;;;;;.其中哪些是单项式?分别指出它们的系数和次数;其中哪些是多项式?分别指出它们的项和次数;其中哪些是整式?指出下列各式中哪些是单项式,哪些是多项式,哪些是整式?,,,10,,,,,单项式:______多项式:______整式:______答案1. C2. A3. B4. B5. D6. C7. ;8. ,0,,;,;,0,,,,9. 所有字母的指数和;单项式中的数字因数;单项式;多项式10. 两11. ,3xy,,,0,;,3xy,,0,;;,012. 3;4;713. 0;;;;;;;;;0;;;;;;14. 解析、、是单项式,系数分别为、、1,次数分别是3、4、1.、是多项式,的项分别是、、,次数为2,的项分别为、、,次数为3、1、0.、、、、是整式,15. ,10,;,,,;,10,,,,,如有侵权请联系告知删除,感谢你们的配合!。
2018秋七年级数学上册2.2整式的加减第2课时整式的加减二课堂小测本课件新人教版
5. (10分)合并同类项:
核心知识当堂测 1. (10分)下列去括号正确的是( C A. +(a-b+c)=a+b+c B. +(a-b+c)=-a+b-c C. -(a-b+c)=-a+b-c D. -(a-b+c)=-a+b+c )
2a-(5a-3)=_________. -3a+3
5. (10分)先去括号,再合并同类项:
2(2b-3a)+3(2a-3b). 解: 2(2b-3a)+3(2a-3b) =4b-6a+6a-9b =-5b.
¥11111111111111111111111111111112222222222222222222222222222222222222222222222222222222233333333333333333333333333333 33333333333333333333333333333333333333344444$§¦β↓×√㎜ɡ©≥≧ɑ←‰®↓←≠¥θ¥®÷㎝½¼ ¥$§¦β↓×√㎜② ¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧-¥¾½¼ ¥$§¦β↓×√㎜½¼ ¥$§¦β↓×√㎜↓←≠¥θ¥®÷㎝②¥◎…ɡ©≥≧ɑ←‰®½¼¥$ §¦β↓×√㎜ɡ©≥≧ɑ←‰®↓←≠¥θ¥®÷㎝½¼ ¥$§¦β↓×√㎜②¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧-¥¾½¼ ¥$§¦β↓×√㎜ ½¼ ¥$§¦β↓×√㎜≧ɑ←‰ɡ©≥←‰®½¼↓←≠¥θ¥®÷㎝②¥◎…ɡ©≥≧ɑ←‰®½¼¥$§¦β↓×√㎜ɡ©≥≧ɑ←‰®↓←≠¥θ¥®÷㎝½¼ ¥$§¦β↓×√ ㎜②¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧-¥¾½¼ ¥$§¦β↓×√㎜½¼ ¥$§¦β↓×√㎜¥$§¦β↓×√㎜½¼ ¥$§¦β↓×√㎜¥$ §¦β↓×√㎜½¼ ¥$§¦β↓×√㎜↓×√㎜↓←②¥←‰®½¼←‰®½¼←‰®½¼←‰®½¼←‰®½¼←‰®½↓←≠¥θ¥®÷㎝② ¥◎…ɡ©≥≧ɑ←‰®½¼¥$§¦β↓×√㎜ɡ©≥≧ɑ←‰®↓←≠¥θ¥®÷㎝½¼ ¥$§¦β↓×√㎜②¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧ -¥¾½¼ ¥$§¦β↓×√㎜½¼ ¥$§¦β↓×√㎜¥$§¦β↓×√㎜½¼ ¥$§¦β↓×√㎜¥$§¦β↓×√㎜½¼ ¥$§¦β↓×√㎜↓×√㎜↓←② ¥←‰®½¼←‰®½¼←‰®½¼←‰®½¼←‰®½¼←‰®½¼↓←≠¥θ¥®÷㎝②¥◎…ɡ©≥≧ɑ←‰®½¼¥$§¦β↓×√㎜ɡ©≥≧ɑ←‰®↓←≠¥θ¥®÷ ㎝½¼ ¥$§¦β↓×√㎜②¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧¥◎…ɡ©≥≧ɑ←‰®ɡ©≥≧-¥¾½¼ ¥$§¦β↓×√㎜½¼ ¥$§¦β↓×√㎜¥$§¦β↓×√㎜½¼ ¥$ §¦β↓×√
第二章整式
第二章整式教学目标知识与技能1、理解单项式、多项式和整式及相关概念,弄清它们之间的区别和联系。
2、理解同类项的概念,能熟练的合并同类项。
3、掌握去括号法则,能准确地去括号。
4、熟练地实行整式的加减运算。
1、通过丰富的实例,经历观察、分析、交流、概括出单项式、多项和整式等相关概念。
2、经历类比有理数的运算律,探索整式的加减运算法则。
3、发展有条理的思考及语言表达水平和用数学知识解决实际问题的水平。
情感、态度与价值观1、培养学生主动探究,合作交流的意识。
2、通过将数的运算推广到整式的运算,在整式的运算中又持续地使用数的运算,使学生感受到理解事物是一个由特殊到一般,由一般到特殊的辩证过程,培养学生初步的辩证唯物观点。
重点难点理解整式的概念,会实行整式的加减运算;准确区分单项式的次数与多项式的次数;掌握去括号法则。
课时安排:6课时2.1 整式(1)教学目标1、能用代数式表示实际问题中的数量关系;能够对一些整式实行分析.能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.2、通过丰富有趣的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心.重难点从具体问题中抽象出数量关系,并用代数式表示实际问题中的数量关系。
教学过程一、情境导入[投影]青藏铁路线(西宁至拉萨)上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100 千米/时,在非冻土地段的行驶速度能够达到120 千米/时,请根据这些数据回答下列问题:(1)列车在冻土地段行驶时,2 小时能行驶多少千米?3 小时呢?t 小时呢?(2)在西宁到拉萨路段,列车通过非冻土地段所需要时间是通过冻土地段所需要时间的2.1 倍,如果通过冻土地段所需要t 小时,能用含t 的式子表示这段铁路的全长吗?(3)在格里木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5 小时,如果通过冻土地段需要u 小时,则这段铁路的全长能够怎样表示?冻土地段与非冻土地段相差多少千米?我们在小学学过用字母表示数,请你用这种方法回答上面的问题。
初一数学第二章-整式练习题(含答案)
初一数学第二章-整式练习题(含答案)2.1 整式1.判断题1) x+1是关于x的一次两项式。
(错误,应该是一次一项式)2) -3不是单项式。
(正确)3) 单项式xy的系数是1.(正确)4) x^3+y^3是6次多项式。
(错误,应该是3次多项式)5) 多项式是整式。
(正确)2.选择题1.在下列代数式:1a+b/3.2ab。
ab^2+b+1.x^3+x^2-3中,多项式有(4个)。
2.多项式-23m-n^2是(二次二项式)。
3.下列说法正确的是(选项A)。
4.下列说法正确的是(选项D)。
5.下列代数式中,不是整式的是(5a-4b/3a+2)。
6.下列多项式中,是二次多项式的是(3x^2)。
7.x减去y的平方的差,用代数式表示正确的是(x^2-2xy+y^2)。
8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b米/分,则他的平均速度是((2ab)/(a+b))米/分。
9.下列单项式次数为3的是(3abc)。
10.下列代数式中整式有(5个)。
11.下列整式中,单项式是(2x-y)。
12.下列各项式中,次数不是3的是(x^2+y+1)。
13.下列说法正确的是(选项B)。
14.在多项式x^3-xy^2+25中,最高次项是(x^3)。
1.当a=-1时,4a^3=-42.单项式:-4/3xy,系数是-4/3,次数是33.多项式:4x^3,次项式是4x^34.xy^2是次单项式5.一次项系数是4,常数项是-3y6.单项式和多项式统称整式7.单项式xy^2z是三次单项式8.多项式a^2-ab^2-b^2有3项,其中-ab^2的次数是29.整式①有0次单项式,②有一次单项式,③有二次单项式,④有零次单项式,⑤有一次单项式,⑥有二次单项式,⑦有一次单项式。
多项式有三项。
10.x+2xy+y是二次多项式11.比m的一半还少4的数是m/2-412.b的1倍的相反数是-b13.10减去某数的2倍的差是10-2x14.两个连续奇数可以表示为n和n+215.-x^4+3x^3y-6x^2y^2-2y^4的次数是416.当x=2,y=-1时,代数式|xy|-|x|的值是017.当t=1/3时,t-(1+t)/(3t+1)的值等于118.当y=4时,代数式3y-2与y+3的值相等19.-23ab的系数是-23,次数是120.代数式2a^2b^2c和a^3b^2的相同点是都是含有a和b 的项,都是二次项21.多项式x^3y^2-2xy^2-4xy-9是三次四项式,其中最高次项的系数是1,二次项是0,常数项是-922.若-x^2y^3zm与3x^2y^3z^4是同类项,则m=423.在x^2.(x+y)。
第二章整式的加减(培优)(解析版)
人教7年级 数学 第二章 整式 (培优).一、单选题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2【答案】B2.单项式﹣5x 2yz 2的系数和次数分别是( )A .5,4B .,5,5C .5,5D .,5,,5 【答案】B3.如果3ab 2m -1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0 【答案】A4.当x=1时,ax +b +1的值为−2,则(a +b −1)(1−a −b )的值为A .− 16B .− 8C .8D .16 【答案】A5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B6.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-4【答案】D7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样 【答案】C8.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3【答案】D9.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ,A .+2abB .+3abC .+4abD .-ab【答案】A10.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B二、填空题 11.已知多项式x |m |+,m ,2,x ,10是二次三项式,m 为常数,则m 的值为_____,【答案】-212.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.【答案】-613.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.【答案】114.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金__________元.【答案】(0.60.5)n + 5.615.若单项式-12a 2x b m 与a n b y -1可合并为12a 2b 4,则xy -mn=___________, 【答案】-3三、解答题 16.已知A ,2x 2,1,B ,3,2x 2,求A ,2B 的值.【答案】6x 2-717.已知有理数a ,b 在数轴上的位置如图所示,化简:232a b a b b a +----,【答案】73a b -+18.已知xy x y+=2,求代数式3533x xy y x xy y -+-+-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲整式
(时间:40分,满分100分)
班级姓名得分
一、选择题(每题3分,共30分)
1.下列运算正确的是()
A. a3•a2=a6 B.(2a)3=6a3 C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a2
2. 3x2可以表示为()
A.9x B.x2•x2•x2C.3x•3x D.x2+x2+x2
3.下列计算正确的是()
A. a+a2=a3 B.(3a)2=6a2 C.a6÷a2=a3 D.a2•a3=a5
4.下列计算正确的是()
A. 2a3+a2=3a5 B.(3a)2=6a2 C.(a+b)2=a2+b2 D.2a2•a3=2a5
5.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B. 3 C. 1 D.﹣7
6.下列计算正确的是()
A. a2•a=a2 B.a2÷a=a C.a2+a=a3 D. a2﹣a=a
7.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()
A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D. 5(a+b)元
8.下列运算中,计算结果正确的是()
A. m﹣(m+1)=﹣1 B.(2m)2=2m2 C. m3•m2=m6 D.m3+m2=m5
9.下列运算正确的是()
A.-2(a-1)=-2a-1 B.(-2a)2=-2a2 C.(2a+b)2=4a2+b2D. 3x2-2x2=x2
10.下列计算正确的是( )
A .235x x x +=
B .236x x x ⋅=
C .236()x x =
D .632x x x ÷=
二、填空题(每题4分,共24分)
1.“x 的2倍与5的和”用代数式表示为 .
2.妈妈给小明买笔记本和圆珠笔.已知每本笔记本4元,每支圆珠笔3元,妈妈买了m 本笔记本,n 支圆珠笔.妈妈共花费 元.
3.已知2a -3b 2=5,则代数式7-4a +6b 2的值为 .
4.如果单项式232x y a
b ---与3221a b y x +是同类项,那么y x 43+的值为 . 5.计算:2m 2•m 8=
6.若m+n=0,则2m+2n+1= .
三、解答题(1-5题每题5分,6-8题每题7分,共46分)
1.化简:()()()x x 11x 1x -+-+
2.计算:()()23a 3a a +-+.
3.化简:()()2
x 2x x 3+--.
4.化简:2(a b)(a b)(a b)2ab ++-+-;
5.计算)3)(1(2)2(2+---x x x
6.先化简,再求值:()()()2a a 3b a b a a b -++--,其中1a 1b 2==-,.
7.先化简,再求值:x (x+3)﹣(x+1)2,其中x=
+1.
8.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y .。