福建省福州一中自主招生考试数学试卷
【6套】福建省福州第一中学2020中考提前自主招生数学模拟试卷附解析【冲刺实验班】
第6题图ABCDE第7题图图②图①120°1234120°第10题图图1图22中学自主招生数学试卷一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( )A . -5B . 5C .0.5D . 0.22.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .3. 人类已知最大的恒星是盾牌座UY ,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km .那么这个数的原数是( ) A .143 344 937 km B . 1 433 449 370 km C . 14 334 493 700 km D . 1.43344937 km4.下列计算正确的是( )A .2a -3a =-1B .(a 2b 3)3=a 5b 6C .a 2 ·a 3=a 6D .a 2+3a 2=4a 2 5. 已知关于x 的分式方程mx +1x=2有解,则m 的取值范围是( ) A .m ≤1且m ≠0 B . m ≤1 C . m ≥-1 D . m ≥-1 且m ≠0 6. 如图所示,该物体的主视图为( )A .B .C .D .7. 如图所示,在Rt △ABC 中∠A =25°,∠ACB =90°,以点C 为圆心,BC 为半径的圆交AB 于一点D ,交AC 于点E ,则∠DCE 的度数为( ) A . 30° B . 25° C . 40° D . 50°8. 不等式组101103x x +>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( )A .12B .29C . 79D .3410. 如图1所示,小明(点P )在操场上跑步,B CD E 123第12题图A E B C D第14题图A EFM A 'B C D 第15题图A 弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x , 小明到右侧半圆形弯道的圆心O 的距离PO 为y ,可绘制出如图2所示函数图象,那么a -b 的值应为( ) A .4 B .52π-1 C .D .π二、填空题(3分×5=15分)11. (-3)0= .12. 如图所示,直线ABCD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= .13.二次函数y =x 2-2mx +1在x ≤1时y 随x 增大而减小,则m 的取值范围是 .14. 如图所示,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E . 连接CE ,则阴影部分的面积是 .(结果保留π)15.如图所示,正方形ABCD 中,AB =8,BE =DF =1,M 是射线AD 上的动点,点A 关于直线EM 的对称点为A ,,当△A ,FC 为以FC 为直角边的直角三角形时,对应的MA 的长为 .三、解答题(本大题共8小题,满分75分)16. (8分)先化简22442x x x x -+-÷(x -4x),然后从xx的值代入求值.17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A 类学生中随机选取一位同学,再从D 类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.D18.(9分)如图所示,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 至点D ,使CD =AC ,连接AD 交⊙O 于点E ,连接BE 、CE ,BE 交AC 于点F .⑴求证:CE =AE ⑵填空: ①当∠ABC = 时,四边形AOCE 是菱形;②若AE,AB =则DE 的长为 .19. (9分) 如图所示,放置在水平桌面上的台灯的灯臂AB 长 为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与 底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,求此时灯罩顶端C 到桌面的 高度CE 的长?(结果精确到0.1cm 1.732)20.(9分)如图所示,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =kx(x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0). ⑴求双曲线的解析式;⑵若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴 于H ,当以点Q 、C 、H 为顶点的三角与△AOB 相似 时,求点Q 的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其G F E B C DA 图1图2图3AD CBE F G GF E B CD A中甲、乙两种运动鞋的进价和售价如下表已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. ⑴求m 的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.22.(10分)等腰直角三角形ABC 中,AC =BC E 为AC 中点,以CE 为斜边作如图所示等腰直角三角形CED .(1)观察猜想: 如图1所示,过D 作DF ⊥AE 于F ,交AB 于G ,线段CD 与BG 的关系为 ;(2)探究证明:如图2所示,将△CDE 绕点C 顺时针旋转到如图所示位置,过D 作DF ⊥AE 于F ,过B 作DE 的平行线与直线FD 交于点G ,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E 、D 、G 共线时,直接写出DG 的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0), D (8,8).抛物线y =ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为1个单位长度,运动时间为t 秒.①如图1所示,过点P 作PE ⊥AB 交AC 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G ,点G 关于抛物线对称轴的对称点为H ,求当t 为何值时,△HAC 的面积为16;②如图2所示,连接EQ ,过Q 作QM ⊥AC 于M ,在点P 、Q 运动的过程中,是否存在某个t ,使得∠QEM =2∠QCE ,若存在请直接写出相应的t参考答案一、选择题(3分×10=30分) 1.A 2.C 3.B 4.D 5.B 6.B 7.C 8.A 9.C 10.D二、填空题(3分×5=15分)11.-2 12.80° 13.m ≥1 14.3-3π 15. 三、解答题(本大题共8小题,满分75分)16.解:224442x x x x x x-+÷--()= ()22(24)2x x x x x --÷-= ()()222x x x x x -⨯+-= 12x + 当x =1时,原式=1132x =+ (名),又AB =AC ,∴∠ABC =∠ACB ,∴∠CED =∠ACB ,又∠AEB 和∠ACB 都为AB 所对的圆周角,∴∠AEB =∠ACB ,∴∠CED =∠AEB ,∵AB =AC ,CD =AC ,∴AB =CD ,在△ABE 和△CDE 中,BAEDCE AEB CED ABCD∠∠∠∠⎧⎪⎨⎪⎩===∴△ABE ≌△CDE (AAS ) (2)①60当△QCH ∽△BA中学自主招生数学试卷一、选择题(本大题共8小题,共24分) 1. 2的算术平方根是( )A. B.C.D. 22. 下列运算正确的是( )A.B. C. D.3.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.4.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.8.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+()018.化简:19.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)25.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.27.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=S△OBG,连接GP,则当BO 为何值时,四边形PKBG的面积最大?最大面积为多少?答案和解析1.【答案】B【解析】解:2的算术平方根是,故选:B.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.【答案】C【解析】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.【答案】D【解析】解:将180000用科学记数法表示为1.8×105,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.【答案】A【解析】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选:A.先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.本题考查的知识点有:用样本估计总体、众数、方差以及中位数的知识,解题的关键是牢记概念及公式.6.【答案】C【解析】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.7.【答案】D【解析】解:过点P作PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO=6∴S矩形ABDO=S▱ABCD∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=-3故选:D.由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.【答案】D【解析】解:连接AC、BD、OE,∵四边形ABCD是菱形,∴AC⊥BD,AM=CM,BM=DM,∵⊙O与边AB、AD都相切,∴点O在AC上,设AM=x,BM=y,∵∠BAD<90°,∴x>y,由勾股定理得,x2+y2=25,∵菱形ABCD的面积为20,∴xy=5,,解得,x=2,y=,∵⊙O与边AB相切,∴∠OEA=90°,∵∠OEA=∠BMA,∠OAE=∠BAM,∴△AOE∽△ABM,∴=,即=,解得,OE=,故选:D.连接AC、BD、OE,根据菱形的性质、勾股定理分别求出AM、BM,根据切线的性质得到∠OEA=90°,证明△AOE∽△ABM,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、菱形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】5【解析】解:-5的相反数是5.故答案为:5.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.【答案】(2a-1)2【解析】解:4a2-4a+1=(2a-1)2.故答案为:(2a-1)2.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.11.【答案】x≥2【解析】解:由题意得:x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x-2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】30【解析】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为:30.根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD-∠AOB计算即可得解.本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.13.【答案】【解析】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】-40【解析】解:根据题意得x+32=x,解得x=-40.故答案是:-40.根据题意得x+32=x,解方程即可求得x的值.本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.【答案】(2+2)【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC-BP=(4+4)cm,∵∠EPC=180°-90°-60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.本题考查了翻折变换-折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.16.【答案】【解析】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.17.【答案】解:原式=6-8+1=-1.【解析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:==a.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.【答案】【解析】解:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;故答案为(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【答案】解:解不等式2x>1-x,得:x>,解不等式4x+2<x+4,得:x<,则不等式组的解集为<x<.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】200 12 36 108【解析】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.由翻折的性质可知:∠EAB=∠BAC,∠DCF=∠DCA.∴∠EAB=∠DCF.∠∠在△ABE和△CDF中,∠∠∴△ABE≌△CDF(ASA),∴DF=BE.∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【解析】(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形可证明AECF是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE,得到EA=EC,于是得到结论.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.【答案】240【解析】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=-6x+300,由题意(-6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.24.【答案】150° 5【解析】解:(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A转过的角度为:360°-90°-30°-90°=150°.在直角△BCH中,∠BCH=30°,BC=10cm,则BH=BC=5cm.故答案是:150°;5;(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,则MD=AD•sin30°=×10=5(cm).∵∠DCN=30°,∴cos∠DCN=cos30°==,即=,解得EF=32.4.即箱子的宽EF是32.4cm.(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A转过的角度;通过解直角△BHC来求BH的长度;(2)通过解直角△AMD得到线段MD的长度,则DN=65-EF-DM,利用解直角△DCN来求CD的长度,即EF的长度即可.本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.25.【答案】解:(1)∵点A(,0)与点B(0,-),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°-∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA-OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA-AF=,∴点E的坐标为:(,).【解析】(1)由点A(,0)与点B(0,-),可求得线段AB的长,然后由∠AOB=90°,可得AB是直径,继而求得⊙M的半径;(2)由圆周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,易得△AEC是等边三角形,继而求得EF与AF的长,则可求得点E的坐标.此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.26.【答案】解:(1)∵二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),∴,得,∴y=x2-x-=,∴二次函数的表达式是y=x2-x-,顶点坐标是(,);(2)①点M的坐标为(,),(,-)或(,-),理由:当AM1⊥AB时,如右图1所示,∵点A(-1,0),点B(0,-),∴OA=1,OB=,∴tan∠BAO==,∴∠BAO=60°,∴∠OAM1=30°,∴tan∠OAM1=,解得,DM1=,∴M1的坐标为(,);当BM3⊥AB时,同理可得,,解得,DM3=,∴M3的坐标为(,-);当点M2到线段AB的中点的距离等于线段AB的一半时,∵点A(-1,0),点B(0,-),∴线段AB中点的坐标为(-,),线段AB的长度是2,设点M2的坐标为(,m),则=1,解得,m=,即点M2的坐标为(,-);由上可得,点M的坐标为(,),(,-)或(,-);②如图2所示,作AB的垂直平分线,于y轴交于点F,由题意知,AB=2,∠BAF=∠ABO=30°,∠AFB=120°,∴以F为圆心,AF长为半径作圆交对称轴于点M和M′点,则∠AMB=∠AM′B=∠AFB=60°,∵∠BAF=∠ABO=30°,OA=1,∴∠FAO=30°,AF==FM=FM′,OF=,过点F作FG⊥MM′于点G,∵FG=,∴MG=M′G=,又∵G(,-),∴M(,),M′(,),∴≤t≤.【解析】(1)根据二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),可以求得该函数的解析式,然后将函数解析式化为顶点式,即可得到该函数的顶点坐标;(2)①根据题意,画出相应的图形,然后利用分类讨论的方法即可求得点M的坐标;②根据题意,构造一个圆,然后根据圆周角与圆心角的关系和∠AMB不小于60°,即可求得t的取值范围.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用分类讨论和数形结合的思想解答.27.【答案】不可能【解析】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②如图2中,∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°-∠AOB,在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中,,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;③结论:OA=OE.理由:如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.。
福州一中自主招生数学试卷及答案
福州一中2014年高中招生(面向福州以外地区)综合素质测试数学试卷(满分100分,考试时间60分钟)学 校 姓 名 准考证号 注意:请将选择题、填空题、解答题的答案填写在答题卡上.......的相应位置. 一、选择题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一个选项是正确的.)1. 下列等式:①22532b a ab ab =+; ②326(5)25a a -=;③y x y x +=+; ④10112()( 3.14)|32|433π-+----=+ .其中正确的等式有(★★★)A .1个B .2个C .3个D .4个 2.某校男子足球队的年龄分布如下面的条形图所示:则这些队员年龄的众数和中位数分别是(★★★) A .31, 152 B .3115, 2 C .15, 15 D .3131, 223.右图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为等边三角形,尺寸如图所示,则该几何体的表面积为(★★★) A .2732B .123C .24D .2423+34年龄人数年龄人数4.若关于x 的方程22x c x c +=+的解是1x c =,22x c=,则关于x 的方程2211x a x a +=+++的解12 x x ,的值是(★★★) A .2,a aB .21, 1a a ++C . 2, 1a a +D .1, 1a a a -+5.如图,边长为2的菱形纸片ABCD 中,60A ∠=,将该纸片折叠,EF为折痕,点A D 、分别落在'A 、'D 处.若''A D 经过点B ,且'D F CD ⊥,则DF 的长为(★★★) A.2B.4- C.32- D6.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为(★★★)A .425B .426C .427D .428二、填空题(本大题共6小题,每小题5分,共30分.)7.计算:22222132(1)211a a a a aa a a a a +-+⋅-÷=----+★★★.8.如图,BD CE 、分别是ABC ∆的AC AB 、边上的中线,且BD CE ⊥.若4BD =,6CE =,则ABC ∆的面积等于★★★.E DCBAD 'A 'FE DCBA9.从2,1,1,2--这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k b 、,则一次函数y kx b =+的图象不经过第三象限的概率是★★★. 10. 有一列数a ,b ,c ,d ,,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若第一个数a 等于2,则第2014个数等于★★★. 11.如图,已知直线y kx =与双曲线ky x=相交于A B 、两点,过点A 作AC 垂直于x 轴,垂足为C ,且12AOCS ∆=.过原点O 作AB 的垂线交AC 的延长线于点D ,则ABD ∆的内切圆半径长等于★★★.12.规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =, {}2 4.2-=-;②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-. 若实数x 满足{}[]4 2=-x x ,则实数x 的取值范围是★★★.三、解答题(本大题共3小题,满分40分.)13.(本小题满分12分)如图,ABC ∆是⊙O 的内接三角形,AC BC =,D 为⊙O 中劣弧AB 上一点,延长DA 至点E ,使CE CD =. (1) 求证:ACE BCD ∠=∠;(2) 若60ACB ∠=,试探究CD 与AD BD +长度的大小关系,并证明你的结论.E如图,小明站在看台上的A 处,测得旗杆顶端D 的仰角为15,当旗杆顶端D 的影子刚好落在看台底部B 处时,太阳光与地面成60角.已知60ABC ∠=,4AB =米,求旗杆的高度. (点A 与旗杆DE 及其影子在同一平面内,CB E 、、三点共线且旗杆与地面垂直,不考虑小明的身高)如图,在平面直角坐标系中,A B 、为x 轴上两点(点A 在点B 的左边),C D 、为y 轴上两点,经过A C B 、、的抛物线的一部分1C 与经过A D B 、、的抛物线的一部分2C 组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点D 的坐标为(0 , 2)-,抛物线1C 的解析式为223 (0)y mx mx m m =--<.(1) 求A B 、两点的坐标;(2) 若四边形ACBD 是梯形,求m 的值;(3) 若点D 关于x 轴的对称点为1D ,试判断直线1AD 与该蛋线的公共点的个数,并证福州一中2014年高中招生(面向市区以外)综合素质测试数学参考答案二、填空题(本大题共6小题,每小题5分,共30分) 7. 1- 8.16 9.1310.211.2 12.23x ≤<三、解答题(本大题共3小题,满分40分) 13.(1)证明: ABC ∆中,AC BC = CAB CBA ∴∠=1802ACB CBA ∴∠=-∠同理CED ∆中,1802ECD CDA ∠=-∠……2分O 中,AC AC =CBA CDA ∴∠=∠…………………………………3分ACB ECD ∴∠=∠…………………………………4分 ACB ACD ECD ACD ∴∠-∠=∠-∠即 ACE BCD ∠=∠.……………………………5分(2)解:,CD AD BD =+证明如下:……………………6分在ACE ∆和BCD ∆中,AC BC ACE BCDCE CD =⎧⎪∠=∠⎨⎪=⎩ACE ∴∆≌()BCD SAS ∆…………………………8分AE BD ∴=………………………………………9分若60ACB ∠=,则60ECD ∠=、又∵CE CD =ECD ∴∆是等边三角形DE DC ∴=………………………………………10分DE AD AE =+EAE BD =∴DE AD BD =+又∵DE DC =∴CD AD BD =+.………………………………12分 14.解:过点A 作AFBD ⊥于点F ,……………………1分由题意知,15,60.DAH DBE ∠=∠= 点,,C B E 在一条直线上18060ABD ABC DBE ∴∠=-∠-∠=………2分ABF ∆中,90,4AFB AB ∠==∴cos 4cos 602,BF AB ABD =⋅∠=⋅=sin 4sin 6023AF AB ABD=⋅∠=⋅=6分AH ∥BE60HAB ABC ∴∠=∠=75BAD HAB DAH ∴∠=∠+∠=DAB ∆中,18045ADB ABD DAB ∠=-∠-∠=Rt DAF ∴∆中,tan DFAF ADB =⋅∠=2BD BF FD ∴=+=+……………………10分在Rt BDE ∆中,60DBE ∠=(sin 23DE BD DBE ∴=⋅∠=+=+∴旗杆的高度为(3+米.………………………12分15.解:(1) 在函数223y mx mx m =--中,令0y =,则 2230mx mx m --= ∵0m <∴2230x x --=解得 123, 1x x ==-∴ (1,0), (3,0)A B -……………………………2分 (2) ∵(1,0), (3,0), (0,2)A B D --∴1, 3, 2AO BO DO ===.在函数223 (0)y mx mx m m =--<中,令0x =,则3y m =-∴(0,3)C m -则3OC m =-……………………………………3分①若AC ∥BD则AOC ∆∽BOD ∆ ∴AO BOCO DO = ∴1332m =- 解得29m =-此时AC BD ≠,四边形ACBD 是梯形.……6分 ②若BC ∥AD则AOD ∆∽BOC ∆ ∴AO BODO CO = ∴1323m=- 解得2m =-此时AD BC ≠,四边形ACBD 是梯形.综上所述,229m =--或.………………………………………………9分 (3) ∵点1D 与点D 关于x 轴对称∴1(0,2)D则直线1AD 的方程为:22y x =+………………………………………11分 易知直线1AD 与抛物线2C 只有一个公共点A ,下面只要考虑直线1AD 与抛物线1C 的公共点个数. 联立直线1AD 和抛物线1C 的方程22223y x y mx mx m =+⎧⎨=--⎩得2(22)320mx m x m -+--= 解得123x m=+,21x =-…………………………………………………13分 ∵0m < ∴233m+< ①当231m +>-,即12m <-时, 直线1AD 与该蛋线有两个公共点; ②当23m +≤1-,即12-≤0m <时, 直线1AD 与该蛋线只有一个公共点A .综上所述,当12m <-时,直线1AD 与该蛋线有两个公共点; 当12-≤0m <时,直线1AD 与该蛋线有一个公共点.…………16分。
福州一中自主招生2011~2014数学试卷(含答案)
2011年福州一中自主招生一、选择题1.右图是某几何体的三视图及相关数据,则下列判断错误..的是(★★★) A .a c < B .b c < C .2224a b c += D .222a b c +=2.下列计算:①42=±;②236236a a a =;③20111||2sin 45(1)012-+-=-;④b c ba c a +=+.其中正确的个数有(★★★)A .0B .1C .2D .33.某救灾募捐活动中,文艺工作者积极向灾区捐款.其中8人捐款统计如下表:捐款数(万元) 5 10 20 50人数(人)1 2 32设这8人捐款数的众数为a ,中位数为b ,平均数为c ,则下列各式正确的是(★★★) A .a b c =< B .a b c << C .a b c => D .a b c == 4.如右图,直角坐标系中一条圆弧经过网格点A B C 、、,则该 圆弧所在圆的圆心坐标为(★★★)A .(2,0)B .(2,1)C .(1,2)D .无法确定 5.如右图,在ABC ∆中,5,4,3AB AC BC ===,经过点C 且 与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是(★★★) A .2 B .125C .52 D .226.定义:直线1l 与2l 相交于点O ,对于平面内任意一点M ,点M 到直线1l 、2l 的距离分别为p 、q ,则称有序非负实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是(★★★)A .1B .2C .3D . 4 二、填空题(本大题共6小题,每小题5分,共30分.)7.化简22221621()393x x x x x x x x --+++÷+-+的结果为 ★★★.8.如图,在两面墙之间有一根底端在A 点的竹竿,当它靠在一1yxOBAC1AC EDBAP侧墙上时,竹竿的顶端在B 点;当它靠在另一侧墙上时,竹竿 的顶端在D 点.已知60BAC ∠=,45DAE ∠=,2AC =米, 则DE 的高度为★★★米.(墙面垂直地面)9.若实数a b ,满足21a b +=,则224a b +10.如图,△ABC 的三边长分别为3、5、6,BD 是△ABC •的外角平分线,M 、N 是直线BC 且AM BD ⊥于D ,AN CE ⊥于E ,则DE 的长等于★★★.11.下面为杨辉三角系数表,它的作用之一是指导读者按规律写出形如()na b +(其中n 为正整数)展开式的系数,请你仔细观察下表中的规律,填出6()a b +展开式中所缺的系数.则 12.三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是410x y =⎧⎨=⎩,求方程组111222459459a x b y c a x b y c +=⎧⎨+=⎩的解”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组中两个方程的两边都除以9,通过换元替代的方法来解决”.参照他们的讨论,你认为这个题目的解应该是★★★ .三、解答题(本大题共3小题,满分40分.)13.(本小题满分12分)如图,矩形ABCD 中,E 是BC 边上的一点,连接AE 、DE . △DCE 沿DE 翻折后,点C 恰好落在AE 上,记为点F .(Ⅰ)求证: ADF ∆≌EAB ∆; (Ⅱ)若10AD =,1tan 3EDF ∠=,求矩形ABCD 的面积.14.(本小题满分14分)如图,双曲线ky x =与直线:(0,0)l y kx b k b =-+>>有且只有 1()a b a b +=+ 222()2a b a ab b +=++ 33223()33a b a a b ab b +=+++66542()615a b a a b a b +=+++★★★332456156a b a b ab b +++.4432234()464a b a a b a b ab b +=++++CE FDAB... ...一个公共点A ,AC x ⊥轴于C ,直线l 交x 轴于点B .(Ⅰ)求点A 的横坐标;(Ⅱ) 已知ABC ∆的面积等于1,若有一动点从原点开始移动, 假定其每次只能向上或向右移动1个单位长度(向上和向右的 可能性相同).求3次移动后,该点在直线l 上的概率.15.(本小题满分14分)已知二次函数22y ax ax c =-+的图像与x 轴交于(1,0)A -、B 两点,其顶点为M .(Ⅰ)根据图像,解不等式220ax ax c -+>;(Ⅱ)若点(3,6)D -在二次函数的图像上,试问:线段OB 上 是否存在N 点,使得ADB BMN ∠=∠?若存在,求出N 点坐 标;若不存在,说明理由.福州一中2011年高中招生(面向市区以外)综合素质测试数学参考答案一、选择题(本大题共6小题,每小题5分,共30分)题号 1 2 3 4 56 答案CBABBD二、填空题(本大题共6小题,每小题5分,共30分)7.1x 8.2 2 9.1 10.7 11. 20 12.918x y =⎧⎨=⎩ 三、解答题(本大题共3小题,满分40分) 13.(Ⅰ)证明:DCE ∆沿DE 翻折得到DFE ∆,DCE ∆∴≌DFE ∆,∴,90DC DF DFE C =∠=∠=,…………2分CE FDAB又矩形ABCD 中//AD BC ,AB CD =,90B ∠=。
2024-2025学年福建省福州一中七年级(上)开门考数学试卷(含答案)
2024-2025学年福建省福州一中七年级(上)开门考数学试卷一、选择题:本题共10小题,每小题2分,共20分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.两个因数的积是360,其中一个因数扩大到原来的4倍,另一个因数不变,积是( )A. 360B. 1240C. 1440D. 28802.把甲、乙、丙、丁四人的数学成绩绘制成条形统计图,如果用一条虚线表示四人的平均成绩,下面各图中( )画得最合理.A. B.C. D.3.今年5月,学校八年级师生参加了“走城墙,筑梦想”研究旅行活动,师生徒步绕行西安城墙一周,路程共计约13.6千米.若按比例尺1:50000缩小后,行走路程的总长度为( )A. 272cmB. 27.2cmC. 136cmD. 13.6cm4.如图,等量关系不成立的是( )A. 29+2x−x=48B. x+48=29+2xC. 48−2x=29−xD. 29+x+2x=485.小青双休日想帮妈妈做下面的事情:用洗衣机洗衣服要用17分钟;扫地要用5分钟;擦家具要用11分钟;晾衣服要用5分钟.她经过合理安排,做完这些事至少要花( )分钟.A. 8B. 27C. 28D. 226.盐水中有2克盐和50克水,如果再加2克盐,现在盐占盐水的( )A. 126B. 225C. 113D. 2277.图中,能说明“6×3+4×3”与“(6+4)×3”相等的是( )A. ①②B. ②③C. ②④D. ③④8.池塘里的睡莲的面积每天长大一倍,若经过13天就可以长满整个池塘,则这些睡莲长满半个池塘需要( )天.A. 6B. 7C. 10D. 129.文化商场同时卖出两台电子琴,每台均卖420元,以成本计算,其中一台盈利20%,另一台亏本20%,则这次出售中商场( )A. 不赔不赚B. 赚70元C. 赚35元D. 赔35元10.如图所示,平行四边形ABCD中,AB=10厘米,BC=20厘米,BC边上的高是8厘米.EF是AD和BC的平行线,图中阴影部分的面积是( )平方厘米.A. 75B. 80C. 85D. 90二、填空题:本题共8小题,每小题2分,共16分。
【2020-2021自招】福建福州第一中学初升高自主招生数学模拟试卷【4套】【含解析】
第一套:满分150分2020-2021年福建福州第一中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
2021年福州一中招生综合素质测试数学题目及详细答案
2021年福州一中招生综合素质测试数学题目及详细答案2021年福州一中招生综合素质测试数学题目及详细答案毕业学校_________________姓名____________报考号__________考生注意:1、请将正确选项填涂在答题卡上,写在测试卷上不计分。
2、测试完毕,答题卡及测试卷不得带出考室。
测试(一)数学题1. 如果在数轴上表示a, b 两个实数的点的位置如图所示,那么| a C b| + | a + b | 化简的结果为A. 2a B. C2a C. 0 D. 2b2. 右图是四棱柱和圆锥的组合体,它的主视图为a0bA. B.C. D. 3. 在△ABC中,∠C = 90°,如果sinA=35, 那么tanB的值等于A. 35 B. 5344 C. 4 D. 34. 以下五个图形中,是中心对称的图形共有A. 2个B. 3个C. 4个D. 5个5. 已知△ABC中,AB = 3,BC = 4, AC = 5, 则△ABC的外心在A. △ABC内B. △ABC 外C. BC边中点D. AC边中点6.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进学行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10生人分。
如图,是将该学生所得的三项成绩(成绩均为整数)之和进行数整理后,分成5组画出的频率分布直方图,已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46. 下列说法:① 学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5) 010.514.518.522.526.530.51分数范围内。
其中正确的说法有A.0个B.1个C.2个D.3个a32a3937.已知(4)?(?3)?3,那么ab等于bbA.?9 B. 9 C. 27 D. ?278. 用圆心角为60°,半径为24cm的扇形做成一个圆锥的侧面,那么这个圆锥底面的半径是A. 4?cmB. 8?cmC. 4cmD. 8cm9. 当x = 1 时,代数式px3 + qx + 1的值是2006,则当x = C1 时,代数式px3 + qx + 1的值是A. C 2004B. C 2005C. C 2006D. 2006 10. 以下给出三个结论①若1C1( x C 1 ) = x , 则 2 C x C 1 = 2x;2x?12x?212 = , 则=;x?2x?2x?2x?211③若x C = , 则x C 1 = C1。
福州一中2024-2025学年九年级上学期月考数学试题 (解析版)
2024-2025九年级上数学适应性练习(1)一、选择题(每小题4分,共40分)1. ABC DEF ∽△△,若1AB =,2DE =,则ABC 与DEF 的相似比是( )A. 1:2B. 1:3C. 2:3D. 3:2 【答案】A【解析】【分析】本题考查了相似三角形的性质、相似三角形的相似比;根据相似三角形的性质及相似比的概念即可求解.【详解】解:∵ABC DEF ∽△△, ∴12AB DE =, 即相似比为1:2;故选:A .2. 下列关于图形对称性的命题,正确的是( )A. 正三角形既是轴对称图形,又是中心对称图形B. 圆既是轴对称图形,又是中心对称图形C. 线段是轴对称图形,但不是中心对称图形D. 平行四边形既是轴对称图形,又是中心对称图形【答案】B【解析】【分析】本题考查了中心对称图形与轴对称图形的识别,一个图形绕着某固定点旋转180°后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念判断即可.【详解】解:A 、正三角形既是轴对称图形,不是中心对称图形,错误,故不符合题意; B 、圆既是轴对称图形,又是中心对称图形,正确,故符合题意;C 、线段是轴对称图形,也是中心对称图形,错误,故不符合题意;D 、平行四边形不是轴对称图形,但是中心对称图形,错误,故不符合题意;故选:B .3. 若ABC DEF △△且相似比为1:4,则ABC 与DEF 的面积比为( )A. 1:4B. 4:1C. 1:16D. 16:1【答案】C【解析】【分析】利用相似三角形面积之比等于相似比的平方计算即可.【详解】解:∵△ABC ∽△DEF ,且相似比为1:4,∴△ABC 与△DEF 的面积比为1:16,故选:C .【点睛】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键.4. 如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A. 4B. 5C. 6D. 8 【答案】C【解析】【详解】解∶∵AD ∥BE ∥CF ,根据平行线分线段成比例定理可得ABDEBC EF =,即123EF =,解得:EF =6,故选:C .5. 如图,若MNP △≌MEQ △,则点Q 应是图中的( )A. 点AB. 点BC. 点CD. 点D【答案】D【解析】【分析】根据全等三角形的性质判断即可;【详解】∵MNP △≌MEQ △,∴点Q 应是图中的D 点,如图所示;故选D .【点睛】本题主要考查了全等三角形的性质,准确分析判断是解题的关键.6. 如图,ABC 中,90BAC ∠=°,AD BC ⊥于D ,若2,3AB BC ==,则CD 的长是( )A. 83B. 23C. 43 D. 53【答案】D【解析】【分析】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.根据勾股定理可得AC =AD ,再根据勾股定理即可求得答案.【详解】解:∵ABC 中,90BAC ∠=°,2AB =,3BC =,∴AC∵90BAC ∠=°,AD BC ⊥,∴90BAC ADC ∠=∠=°,∵3AD =∴AD =∴53CD故选D . 7. 下列说法正确的是( )A. 有一个角等于100°的两个等腰三角形相似B. 两个矩形一定相似C. 有一个角等于45°的两个等腰三角形相似D. 相似三角形一定不是全等三角形【答案】A【解析】【分析】A 中等于100°的角只能是等腰三角形的顶角,所以这两个等腰三角形相似;B 中两个矩形虽然角度相同,但对应的边长比不相等时,两个矩形不相似;C 中等于45°的角可以是等腰三角形的顶角或底角;D 中两个相似三角形的相似比为1时,两个三角形全等;进而判断选项的正误.【详解】解:A 中等于100°的角只能是等腰三角形的顶角,所以这两个等腰三角形相似,故正确,符合要求;B 中两个矩形虽然角度相同,但对应的边长比不相等时,两个矩形不相似,故错误,不符合要求;C 中等于45°的角可以是等腰三角形的顶角或底角,当为顶角时,三角分别为4567.567.5°°°,,;当为底角时,三角分别为454590°°°,,,故这两个等腰三角形不相似,故错误,不符合要求;D 中当两个相似三角形的相似比为1时,两个三角形全等,故错误,不符合要求;故选A .【点睛】本题考查了相似三角形,等腰三角形等知识.解题的关键在于对知识的灵活运用.8. 如图,一张矩形报纸ABCD 的长AB =a ,宽BC =b ,E ,F 分别是AB ,CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽的比等于矩形ABCD 的长与宽的比,则a :b 等于( )A. :1B.C.D.【答案】A【解析】【分析】根据相似多边形的性质解答即可【详解】解:∵E ,F 分别是AB ,CD 的中点, ∴122a AE AB ==, ∵矩形AEFD 的长与宽的比等于矩形ABCD 的长与宽的比, ∴=AD AE AB AD, ∴2.AD AE AB =, 即2212b a =, ∴222a b=,∴a :b :1.故选A .【点睛】本题考查相似多边形的性质.相似多边形对应边成比例.9. 如图正方形ABCD 中,E 、F 分别为AB 、BC 的中点,AF 与DE 交于点O ,则DO DA=( )A. 13B.C. 23D. 12【答案】B【解析】【分析】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,正方形的性质,熟练掌握正方形中的全等模型和相似模型是解题的关键.先证明ADE BAF △≌△,得出ADE BAF ∠=∠,再证明ADO FAB △∽△,即可得DO AB DA AF=,将AB 、AF 转化为BF 即可求解. 【详解】解:∵四边形ABCD 是正方形,∴DA AB BC ==,90DAE ABF ∠=∠=°,AD BC ∥,∵E 、F 分别为AB 、BC 的中点,∴1122AE BF AB BC ===, ADE 和BAF △中,DA AB DAE ABF AE BF = ∠=∠ =, ∴()ADE BAF SAS ≌,∴ADE BAF ∠=∠,∵AD BC ∥,∴DAO AFB ∠=∠,∴ADO FAB △∽△, ∴DO AB DA AF=, ∵在Rt ABF中,AF,∴DODA = 故选:B .10. 如图,在矩形ABCD 中,AB=2BC ,点M 是CD 边的中点,点E ,F 分别是边AB ,BC 上的点,且AF ⊥ME ,G 为垂足.若EB =2,BF=1,则四边形BFGE 的面积为( )A. 6152B. 8552C. 6126D. 8513【答案】B【解析】【分析】设BC a =,得到2AB a =,DM MC a ==.作MH AB ⊥于H ,先证明出Rt EMH Rt FAB ∽,利用性质建立等式解出52a=,利用勾股定理求出AF =,再根据Rt AEG Rt AFB ∽,利用相似比求出面积即可. 【详解】解:设BC a =,则2AB a =,DMMC a ==.在作MH AB ⊥于H ,则90EMH MEA FAB ∠=°−∠=∠.所以Rt Rt EMH FAB ∽△△. 所以MH AB HE BF=, 即221a a a =−, 解得52a =. 于是52BC =,5AB =.所以AF =, 11551222ABF S AB BF =×=××=△. 又Rt AEG Rt AFB ∽,所以22926AEG AFB S AE S AF == △△. 因此995452626252AEG AFB S S ==×=△△. 所以5458525252AFB AEC BFGE S S S =−=−=四边形△△. 【点睛】本题考查了矩形的性质、相似三角形的判定及性质、勾股定理,解题的关键是掌握相似三角形的判定. 二、填空题(每小题4分,共24分)11. 如图,在ABC 中,DE BC ∥,若3AD =,6DB =,则DE BC的值为__________.【答案】13【解析】【分析】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的判定是解题的关键. 根据DE BC ∥,即可判断出ADE ABC △△∽,即可求解.【详解】解:∵DE BC ∥,∴ADE ABC △△∽, ∴3193DE AD AD BC AB AD DB ====+. 故答案为:13. 12. 如图,ABC 和DEF 是位似三角形,点O 是位似中心,且9AC =,3DF =,6OA =,则OD =__________.【答案】2【解析】【分析】本题考查了位似变换,正确掌握位似图形的性质是解题的关键.根据位似图形的性质得出位似比,进而即可求解.【详解】解:∵9AC =,3DF =,∴:3:1AC DF =,∵ABC 和DEF 是位似三角形,点O 是位似中心,∴:3:1OA OD =,∵6OA =,∴2OD =.故答案为:2.13. 如图,在ABC 中,点D 、E 分别在边AB 、AC 上,且AED ABC ∠=∠,如果46AD BD AE ===,,那么AC 的长______.【答案】203##263【解析】 【分析】根据相似三角形的判定和性质求解即可.【详解】解:∵AED ABC ∠=∠,A A ∠=∠,∴AED ABC ∽△△, ∴AD AE AC AB =,即,4646AC =+, ∴203AC =. 故答案为:203. 【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定定理是解题的关键.14. 如图,在平面直角坐标系中,11A B C 与ABC 是以点C 为位似中心的位似图形,则其相似比为_______.【答案】12:【解析】【分析】由已知可得11ABC A B C ∽,利用勾股定理解得11AB A B 、的长即可解题.【详解】解:∵ABC 与11A B C 是以点C 为位似中心的位似图形,∴11ABC A B C ∽,相似比为1112A B AB ===::,故答案为:12:.【点睛】本题考查相似三角形的性质、勾股定理的应用,掌握相关知识是解题关键.15. 如图,在四边形ABCD 中,AC BC ⊥于点C ,BAC ADC ∠=∠,且34BC AC =,当4CD =,2AD =时,线段BD 的长度为______.【解析】 【分析】在AB 上截取AM=AD=3,过M 作MN ∥BC 交AC 于N ,把△AMN 绕A 逆时针旋转得△ADE ,证明△ABD ∽△ACE 和△AMN ∽△ABC ,求出相关边长,然后根据勾股定理求解即可.【详解】解:如图,在AB 上截取2AM AD ==,过M 作//MN BC 交AC 于点N ,把AMN ∆绕A 逆时针旋转得ADE ∆,连接CE ,则MN AC ⊥,DE MN =,DAE BAC ∠=∠,∴90AED ANM ∠=∠=°,又∵AC BC ⊥于点C ,BAC ADC ∠=∠,34BC AC =, ∴3tan 4BC BAC AC ∠==, ∴::3:4:5BC AC AB =,又∵//MN BC ,∴ABC AMN ∆∆∽,又∵AMN ADE ∆∆∽,∴ABC ADE ∆∆∽, ∴AB AC AD AE=,∴AB AD AC AE=, 又∵DAE CAD BAC CAD ∠+∠=∠+∠,∴BAD CAE ∠=∠, ∴ABD ACE ∆∆∽, ∴54BDAB CE AC ==, 又AMN ABC ∆∆ , ∴MN AM BC AB=, ∴36255BC MN AM AB=×=×=, ∵BAC ADC ∠=∠,∴DAE ADC ∠=∠,∴//AE CD , ∴180CDE AED ∠+∠=°,∴18090CDE AED ∠=°−∠=°,∴在Rt CDE ∆中,由勾股定理得,CE∴5544BD CE ==.【点睛】考查了相似三角形的判定与性质、旋转的性质、三角形边角关系等,熟练掌握相似三角形的判定与性质和勾股定理是解题的关键.16. 如图,已知正方形ABCD 中,点E 是BC 上的一个动点,EF ⊥AE 交CD 于点F ,以AE ,EF 为边作矩形AEFG ,若AB =4,则点G 到AD 距离的最大值是________.【答案】1【解析】【分析】因∠AEF =90°得∠AEB +∠FEC =90°,在Rt △ABE 中∠BAE +∠CEF =90°,根据同角的余角相等得∠BAE =∠FEC ,可证明△ABE ∽△ECF ;由相似三角形的性质和二次函数可求点G 到AD 距离的最大值是1.【详解】解:设BE =x ,FC =y ,∵EF ⊥AE ,∴∠AEB +∠FEC =90°,又∵四边形ABCD 是正方形,∴∠B =∠C =90°∴∠BAE +∠AEB =90°,∴∠BAE =∠FEC ,∴△ABE ∽△ECF (AA ), ∴BEAB AB CF EC BC BE==−, 即x 4y 4x=−, ()()()2x 4x 1y x 21,0x 444−==−−+≤≤, ∵点G 到AD 距离就是FC 的长度,∴点G 到AD 距离的最大值是1,故答案为1.【点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定与性质和二次函数最值等相关知识;重点掌握三角形相似的判定与性质,难点是将相似三角形的相似比相等转化为二次函数解析式求最值.三、解答题(86分)17. 计算:02(1)32−−−−.【答案】269【解析】【分析】先算乘方,再去绝对值,然后进行加减运算即可.【详解】解:原式1129=−+−269=. 【点睛】本题考查了实数的混合运算、零指数幂、负整数指数幂、去绝对值等知识.把握运算顺序和正确的计算是解决本题的关键.18. 如图,已知A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE .求证:AB =CD .【答案】见详解【解析】【分析】根据全等三角形证明△ABE ≌△CDF ,再根据全等三角形的性质解答即可.【详解】证明:∵AB ∥CD ,∴∠ACD =∠CAB ,∵AF=CE ,∴AF+EF=CE+EF ,即AE =FC ,在△ABE 和△CDF 中,ACD CAB ABE CDF AE CF ∠∠ ∠∠===∴△ABE ≌△CDF (AAS ).∴AB =CD .【点睛】此题主要考查了三角形全等的判定及性质,一般证明线段相等先大致判断两个线段所在三角形是否全等,然后再看证明全等的条件有哪些.19. 先化简,再求值:2441111m m m m −+ ÷− −−,其中2m =−.【答案】2m −;4【解析】 【分析】根据分式混合运算法则进行计算,然后代入数据进行计算即可.【详解】解:原式()2211111m m m m m −− =÷− −−−()221111m m m m −−+÷−− ()22112m m m m−−⋅−− 2m =−把2m =−代入得:原式)22224=−−=+= 【点睛】本题主要考查了分式的化简计算,熟练掌握分式混合运算法则,是解题的关键. 20.如图△ABC ∽△ACD ,∠D =90°,AC ,AD =2,求AB 及BC 的长.【答案】AB =2.5,BC 【解析】 【分析】首先利用相似三角形的对应边的比相等求得AB 的长,然后利用勾股定理求得BC 的长即可【详解】∵△ABC ∽△ACD ∴AB AC AC AD=∵AC ,AD =2= 解得:AB =2.5∵∠D =90°∴∠ACB =∠D =90°∴BC 【点睛】考查了相似三角形的性质,了解相似三角形对应边的比等于相似比是解答本题的关键,难度不大21. 如图,点C 、D 在线段AB 上,PCD △是等边三角形,且2CD AC DB =⋅.(1)求证:ACP PDB ∽;(2)求APB ∠的度数.【答案】(1)见解析 (2)120APB ∠=°【解析】【分析】本题考查了等边三角形的性质,相似三角形的判定与性质,掌握这两方面知识是解题的关键. (1)由等边三角形性质得PC PD CD ==,PCD PDC ∠=∠,从而有PCA BDP ∠=∠;由2CD AC DB =⋅得BDPDPC AC =,从而结论得证;(2)由相似三角形的性质及三角形角的性质即可求解.【小问1详解】证明:∵PCD △是等边三角形,∴PC PD CD ==,60PCD PDC ∠=∠=°,∴PCA BDP ∠=∠;∵2CD AC DB =⋅∴PD PC AC DB ⋅=⋅, 即BDPDPC AC =,∵PCA BDP ∠=∠,∴ACP PDB ∽;【小问2详解】解:∵ACP PDB ∽,∴APC B ∠=∠;∵60PDC B BPD CPD ∠=∠+∠=°=∠,∴APB CPD APC BPD ∠=∠+∠+∠60B BPD =°+∠+∠6060=°+°120=°.22. 如图,四边形ABCD 为平行四边形,E 为边AD 上一点,连接AC BE 、,它们相交于点F ,且ACB ABE ∠=∠.(1)求证:2AE EF BE =⋅;(2)若2AE =,1EF =,4CF =,求AB BC ,的长.【答案】(1)见解析 (2)863ABBC ==, 【解析】 【分析】本题考查了平行四边形的性质,相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.(1)证明AEF BEA ∽△△即可;(2)由(1)得4BE =,则得3BF =;再由AEF CBF ∽△△可求得BC ,AF ;再由(1)中AEF BEA ∽△△,即可求得AB .【小问1详解】证明:∵四边形ABCD 为平行四边形,∴AD BC ∥,∴EAF ACB ∠=∠;∵ACB ABE ∠=∠,∴EAF ABE ∠=∠;∵AEF BEA ∠=∠,∴AEF BEA ∽△△, ∴AE EF BE AE=, 即2AE EF BE =⋅;【小问2详解】解:由(1)有2AE EF BE =⋅,即221BE =×,∴4BE =,则3BF BE EF =−=;∵AD BC ∥,∴AEF CBF ∽△△,∴13AE AF EF BCCF BF ===, ∴36BC AE ==,1433AF CF ==; ∵AEF BEA ∽△△, ∴AE AF BE AB=, 即448323BE AB AF AE =×=×=. 23. ABC 中,45B ∠=°,60C ∠=°,将ABC 绕点A 逆时针旋转30°后至11AB C △.(1)求1BAC ∠的度数;(2)若1AB =+,线段11B C 与AB ,BC 分别交于M 、N ,求MN 的长.【答案】(1)45°(2【解析】【分析】本题考查旋转的性质,三角形内角和,等腰直角三角形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握特殊角度的直角三角形的三边关系是解题的关键.(1)利用旋转性质和三角形内角和直接求解即可;(2)过点M 作1MG AB ⊥于点G ,作MH BC ⊥于点H ,利用等腰直角三角形的性质,含30°角的直角三角形的性质得出1B G GM =,2AM GM =,AG =,结合11AB AB ==,求出1GM =,得1BM =−,再利用HMB 和HNM 分别是等腰直角三角形和含30°角的直角三角形,利用特殊三边关系即可求解.【小问1详解】解:∵45B ∠=°,60C ∠=°,∴456751800BAC °−−∠°==°°,由旋转知:130CAC ∠=°,的∴11753045BAC BAC CAC =∠−∠=°−°=°;【小问2详解】解:如图,过点M 作1MG AB ⊥于点G ,作MH BC ⊥于点H ,由旋转知1175B AC BAC ∠=∠=°,145B B ∠=∠=°,11AB AB ==+, ∴111130B AM B AC BAC ∠=∠−∠=°,1145B MG B ∠=∠=°,∴1B G GM =,2AM GM =,AG,∴)1111AB AB AG B G GM GM ==+=+=+=, 得:1GM =,∴22AM GM ==,1B M ==∴1BM AB AM =−−,∵145B B ∠=∠=°,1AMB NMB ∠=∠, ∴130MNB MAB ∠=∠=°,45BMH B ∠=∠=°,∴1BM ==−,∴HM =∴2MN HM ==−. 24. 如图1,在锐角ABC 中,D 、E 分别是AB BC 、中点,点F 为AC 上一点,且AFE A ∠=∠,MD EF ∥交AC 于点M .(1)求证:DM DA =;(2)点G 在BE 上,且BDG C ∠=∠,如图2,求证:DE EF DG EC ⋅=⋅.【答案】(1)见解析 (2)见解析【解析】【分析】(1)由MD EF ∥得DMA AFE ∠=∠,结合AFE A ∠=∠得DMA A ∠=∠,由等边对等角即可求证;(2)由D 、E 为中点及证明四边形DEFM 为平行四边形,得BD EF BE CE ==,;再证明BED BDG ∽,由相似三角形的性质得DE BD DG BE ⋅=⋅,从而证得结论成立.【小问1详解】证明:∵MD EF ∥,∴DMA AFE ∠=∠;∵AFE A ∠=∠,∴DMA A ∠=∠,∴DM DA =;【小问2详解】证明:∵D 、E 分别AB BC 、中点,BD AD BE CE ∴==,,DE AC ∥;∴C BED ∠=∠;∵MD EF ∥,∴四边形DEFM 为平行四边形,∴DM EF =;由(1)知,DM DA =,∴BD EF =;∵BDG C ∠=∠,C BED ∠=∠, ∴BDG BED ∠=∠;∵B EBD ∠=∠,∴BED BDG ∽, ∴DE EC DG EF=, 即DE BD DG BE ⋅=⋅;∴DE EF DG EC ⋅=⋅.是【点睛】本题考查了相似三角形的判定与性质,平行四边形的判定与性质,等腰三角形的判定,三角形中位线性质定理及平行线的性质,证明三角形相似是解题的关键.25. 已知抛物线y = mx 2 -(1- 4 m )x + c 过点(1,a ),(- 1,a ),(0,- 1).(1)求抛物线的解析式;(2)已知过原点的直线与该抛物线交于A ,B 两点(点A 在点B 右侧),该抛物线的顶点为C ,连接AC ,BC ,点D 在点A ,C 之间的抛物线上运动(不与点A ,C 重合).①当点A 的横坐标是4时,若△ABC 的面积与△ABD 的面积相等,求点D 的坐标;②若直线OD 与抛物线的另一交点为E ,点F 在射线ED 上,且点F 的纵坐标为- 2,求证: OE OD =FE FD . 【答案】(1)2114y x =− (2)①53,4,②见解析 【解析】【分析】(1)把(0,−1)代入解析式中得c 的值,再由(1,a ),(- 1,a )关于抛物线的对称轴对称且关于y 轴对称,可知抛物线的对称轴为y 轴,即1−4m =0,从而可求得m ,最后得到解析式;(2)①过点D 作y 轴的平行线交AB 于点H ;由点A 在抛物线上及点A 的横坐标可求得点A 的坐标,从而求得直线AB 的解析式,联立直线解析式与二次函数解析式,可求得点B 的坐标,从而可求得△ABC 的面积;设点D 的坐标为21,14n n −,则可得点H 的坐标,从而求得DH 的长,由ABD BHD AHD ABC S S S S =+= ,即可求得n 的值,从而求得点D 的坐标;②由题意知,点D 在第四象限,设OD 的解析式为y =kx ,11(,)D x y ,22(,)E x y ,联立OD 的解析式与二次函数解析式,可得关于x 的一元二次方程,利用根与系数的关系可得12x x +及21x x 的值,从而可得12y y +及12y y 的值,可得12111y y +=−;过点E 作y 轴的平行线交x 轴于点G ,过点D 、F 作x 轴的平行线交EG 于点N 、M ,则由平行线分线段成比例定理可得:21y OE OD y =−,2122y FE FD y +=+,由12111y y +=−可证结论成立.【小问1详解】把(0,−1)代入解析式中,得c =−1∵(1,a ),(- 1,a )关于抛物线的对称轴对称,且又关于y 轴对称∴抛物线的对称轴为y 轴,即1−4m =0∴14m = 故所求函数解析式为2114y x =− 【小问2详解】过点D 作y 轴的平行线交AB 于点H ,如图∵点A 在抛物线上,点A 的横坐标4 ∴214134y =×−= ∴点A 的坐标为(4,3)设直线AB 的解析式为y =ax ,把点A 坐标代入得:34a =即直线AB 解析式为34y x = 联立34y x =与二次函数2114y x =−,即234114y x y x = =−消去y ,得2340x x −−=解得121,4x x =−=(舍去) ∴34y =− 即点B 的坐标31,4−−∵OC =11151114222ABC OBC OAC S S S =+=××+××= 设点D 的坐标为21,14n n − ,则可得点H 的坐标为3,4n n∴223113114444DH n n n n =−−=−++∵52ABD BHD AHD ABC S S S S =+== ∴115(1)(4)222DH n DH n ×++×−= 即15522DH ×= ∴DH =1即2131144n n −++= 解得n =3,n =0(舍去)当n =3时,2153144×−= ∴点D 坐标为53,4②由题意知,点D 在第四象限,点E 在第二象限设OD 的解析式为y =kx ,11(,)D x y ,22(,)E x y ,则1122,y kx y kx == 联立2114y kx y x = =−消去y 得关于x 的一元二次方程2440x kx −−=由题意知,12,x x 是此一元二次方程的两个实数根由根与系数的关系可得:124x x k +=,124x x =− ∴21212()4y y k x x k +=+=,2212124y y k x x k ==− ∴121212111y y y y y y +=+=− 即21111y y =−− 过点E 作y 轴平行线交x 轴于点G ,过点D 、F 作x 轴的平行线交EG 于点N 、M ,如图则DN ∥FM ∥OG ∴21y OE EG OD NG y ==−,2122y FE EM FD NM y +==+的的∵22211221211211y y y y y +=+=+−−=−−,111221y y y +=−−− ∴121222y y y y ++=− 即221122y y y y +=−+ ∴OE OD = FE FD【点睛】本题是二次函数的综合,考查了待定系数法求二次函数解析式,解一元二次方程及二元方程组,一元二次方程根与系数的关系,平行线分线段成比例定理,割补法求图形面积等知识,这里尽管设了D 、E 的坐标,但没有求出其坐标,这是一种设而不求的重要方法,本题有较大的运算量,对运算能力提出了较高的要求.。
2024-2025学年福州市一中高一数学上学期10月考试卷及答案解析
2024-2025学年第一学期福州第一中学第一次月考高一数学(完卷时间:120分钟;满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.1. 已知全集(](]0,4,2,4U U A B A C B =⋃=⋂=,则集合B =( )A. (],2∞- B. (),2∞- C. (]0,2 D. ()0,2【答案】C【解析】【分析】集合运算可得()=I U U B C A C B ,即可求出结果【详解】(0,4]A B = ,(2,4]=I U A C B 所以()(0,2]==I U U B C A C B 故选:C2. 某城新冠疫情封城前,某商品的市场需求量y 1(万件),市场供应量y 2(万件)与市场价格x (百元/件)分别近似地满足下列关系:150y x =-+,2210y x =-,当12y y =时的需求量称为平衡需求量,解封后,政府为尽快恢复经济,刺激消费,若要使平衡需求量增加6万件,政府对每件商品应给予消费者发放的消费券补贴金额是( )A. 6百元B. 8百元C. 9百元D. 18百元【答案】C【解析】【分析】求出封城前平衡需求量,可计算出解封后的需求量,利用需求量计算价格差距即为补贴金额.【详解】封城前平衡需求量时的市场价格x 为5021020x x x -+=-⇒=,平衡需求量为30,平衡价格为20,解封后若要使平衡需求量增加6万件,则11365014x x =-+⇒=,223621023x x =-⇒=,则补贴金额为23149-=.故选:C.3. 设[]x 表示不超过x 的最大整数,对任意实数x ,下面式子正确的是( )A. []x = |x|B. []xC. []x >-xD. []x > 1x -【答案】D 的【解析】【详解】分析:[]x 表示不超过x 最大整数,表示向下取整,带特殊值逐一排除.详解:设 1.5x =,[]1x =, 1.5x =1.5=,10.5x -=,排除A 、B ,设 1.5x =-,[]2x =-, 1.5x -=,排除C .故选D点睛:比较大小,采用特殊值法是常见方法之一.4. 已知函数2943,0()2log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数(())y f f x =的零点所在区间为( )A. (1,0)- B. 73,2⎛⎫ ⎪⎝⎭ C. 7,42⎛⎫ ⎪⎝⎭ D. (4,5)【答案】B【解析】【分析】当0x …时,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,根据()f x 为增函数,且(3)0f =可得函数(())y f f x =的零点为3()2log 12x g x x =+-的零点,根据零点存在性定理可得结果.【详解】当0x …时,()430x f x =+>,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,293()2log 92log 9x x f x x x =+-=+-为增函数,且(3)0f =.令(())0(3)f f x f ==,得3()2log 93x f x x =+-=,即32log 120x x +-=,令3()2log 12x g x x =+-,则函数(())y f f x =的零点就是3()2log 12x g x x =+-的零点,因为()3332log 31230g =+-=-<,72377()2log 1222g =+-37log 1202=+->,所以函数(())y f f x =的零点所在区间为73,2⎛⎫ ⎪⎝⎭.故选:B.【点睛】本题考查了分段函数的零点问题,考查了根据零点存在性定理判断零点所在的区间,考查了根据的解析式判断函数的单调性,属于中档题.5. 设函数()2,11,1x a x f x x x -⎧≤⎪=⎨+>⎪⎩,若()1f 是f(x)的最小值,则实数a 的取值范围为( )A [)1,2- B. []1,0- C. []1,2 D. [)1,+∞【答案】C【解析】【分析】由1x >,求得()f x 的范围;再求得||()2x a f x -=的单调性,讨论1a <,1a …时函数()f x 在1x …的最小值,即可得到所求范围.【详解】解:函数2,1()1,1x a x f x x x -⎧⎪=⎨+>⎪⎩…,若1x >,可得()12f x x =+>,由()1f 是()f x 的最小值,由于||()2x a f x -=可得在x a >单调递增,在x a <单调递减,若1a <,1x …,则()f x 在x a =处取得最小值,不符题意;若1a …,1x …,则()f x 在1x =处取得最小值,且122a -…,解得12a ……,综上可得a 的范围是[1,2].故选:C .【点睛】本题考查分段函数的最值的求法,注意运用分类讨论思想方法,以及指数函数的单调性,考查运算能力,属于中档题.6. 已知函数()f x 的定义域为R ,且()()()()0f x y f x y f x f y ++--=,()11f -=,则( )A. ()00f = B. ()f x 为奇函数C. ()81f =- D. ()f x 的周期为3【答案】C【解析】【分析】令 0x y ==,则得(0)2f =,再令0x =即可得到奇偶性,再令1y =-则得到其周期性,最后根.据其周期性和奇偶性则得到()8f 的值.【详解】令 0x y ==, 得()()22000f f -=得 (0)0f = 或 (0)2f =,当 (0)0f = 时,令0y =得 ()0f x = 不合题意, 故 (0)2f =, 所以 A 错误 ;令 0x = 得 ()()f y f y =-, 且()f x 的定义域为R ,故 ()f x 为偶函数, 所以B 错误 ;令 1y =-, 得 (1)(1)()f x f x f x -++=, 所以 ()(2)(1)f x f x f x ++=+,所以 (2)(1)f x f x +=--, 则(3)()f x f x +=-,则()(6)(3)f x f x f x +=-+=,所以 ()f x 的周期为 6 , 所以 D 错误 ;令 1x y ==, 得 2(2)(0)(1)f f f +=, 因为()()111f f -==所以 (2)1f =-,所以 ()(8)21f f ==-, 故C 正确.故选:C 【点睛】关键点点睛:本题的关键是利用赋值法得到其奇偶性和周期性,并依此性质求出函数值即可.7. 函数()(),f x g x 的定义域均为R ,且()()()()4488f x g x g x f x +-=--=,,()g x 关于4x =对称,()48g =,则()1812m f m =∑的值为( )A. 24- B. 32- C. 34- D. 40-【答案】C【解析】【分析】利用已知、方程、函数的对称性、周期性进行计算求解.【详解】因为()()44f xg x +-=①, ()()88g x f x --=②,对于②式有:()()88g x f x +-=③,由①+③有:()()8412g x g x ++-=,即()()1212g x g x +-=④,又()g x 关于4x =对称,所以()()8g x g x =-⑤,由④⑤有:()()81212g x g x -+-=,即()()81212g x g x +++=,()()4812g x g x +++=,两式相减得:()()1240g x g x +-+=,即()()124g x g x +=+,即()()8g x g x +=,因为函数()g x 的定义域为R ,所以()g x 的周期为8,又()48g =,所以()()()412208g g g ==== ,由④式()()1212g x g x +-=有:()66g =,.所以()()()614226g g g ==== ,由()48g =,()()1212g x g x +-=有:()84g =,所以()()()816244g g g ==== ,由⑤式()()8g x g x =-有:()()266g g ==,又()()8g x g x +=,所以()()1026g g ==,由②式()()88g x f x --=有:()()88f x g x =+-,所以()()()()()()()18122436101244818m f m f f f g g g ==+++=+++-⨯∑ ()686446881834=+++⨯++-⨯=-,故A ,B ,D 错误.故选:C.8. 已知函数()()()lg 2240f x x a x a a =+--+>,若有且仅有两个整数1x 、2x 使得()10f x >,()20f x >,则a 的取值范围是( )A. (]0,2lg 3- B. (]2lg 3,2lg 2--C. (]2lg 2,2- D. (]2lg 3,2-【答案】A【解析】【分析】由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,然后利用数形结合思想得出()20lg 33224a a a ->⎧⎨≤-+-⎩以及0a >,由此可得出实数a 的取值范围.【详解】由()()lg 2240f x x a x a =+--+>,得()lg 224x a x a >-+-.由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点.如下图所示:由图象可知,由于()()()22422y a x a a x =-+-=--,该直线过定点()2,0.要使得函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,则有()20lg 33224a a a ->⎧⎨≤-+-⎩,即22lg 3a a <⎧⎨-≥⎩,解得2lg 3a ≤-,又0a >,所以,02lg 3a <≤-,因此,实数a 的取值范围是(]0,2lg 3-.故选A.【点睛】本题考查函数不等式的求解,解题的关键利用数形结合思想找到一些关键点来得出不等关系,考查数形结合思想的应用,属于难题.二、多项选择题:本题共3小题,每小题6分,共18分.9. 下列命题正确的是( )A. “1a >”是“21a >”的充分不必要条件B. “M N >”是“lgM lgN >”的必要不充分条件C. 命题“2,10x R x ∀∈+<”的否定是“x R ∃∈,使得210x +<”D. 设函数()f x 的导数为()f x ',则“0()0f x '=”是“()f x 在0x x =处取得极值”的充要条件【答案】AB【解析】【分析】根据定义法判断是否为充分、必要条件,由全称命题的否定是∀→∃,否定结论,即可知正确的选项.【详解】A 选项中,211a a >⇒>,但211a a >⇒>或1a <-,故A 正确;B 选项中,当0M N >>时有lgM lgN >,而lgM lgN >必有0M N >>,故B 正确;C 选项中,否定命题为“x R ∃∈,使得210x +≥”,故C 错误;D 选项中,0()0f x '=不一定有()f x 在0x x =处取得极值,而()f x 在0x x =处取得极值则0()0f x '=,故D 错误;故选:AB【点睛】本题考查了充分、必要条件的判断以及含特称量词命题的否定,属于简单题.10. 若函数()f x 的定义域为R ,且()()2()()f x y f x y f x f y ++-=,(2)1f =-,则( )A. (0)0f =B. ()f x 为偶函数C. ()f x 的图象关于点(1)0,对称 D. 301()1i f i ==-∑【答案】BCD【解析】【分析】对于A ,令2,0x y ==,可得(0)1f =;对于B ,令0,x y x ==,可得()()f x f x =-,即可判断;对于C ,令1x y ==得f (1)=0,再令1,x y x ==即可判断;对于D ,根据条件可得()()2f x f x =--,继而()()2f x f x =-+,进一步分析可得函数周期为4,分析求值即可.【详解】对于A ,令2,0x y ==,则()()()22220f f f =⋅,因为(2)1f =-,所以()220f -=-,则(0)1f =,故A 错误;对于B ,令0,x y x ==,则()()()2(0)()2f x f x f f x f x +-==,则()()f x f x =-,故B 正确;对于C ,令1x y ==得,()()()220210f f f +==,所以f (1)=0,令1,x y x ==得,(1)(1)2(1)()0f x f x f f x ++-==,则()f x 的图象关于点(1)0,对称,故C 正确;对于D ,由(1)(1)0f x f x ++-=得()()2f x f x =--,又()()f x f x =-,所以()()2f x f x -=--,则()()2f x f x =-+,()()24f x f x +=-+,所以()()4f x f x =+,则函数()f x 的周期为4,又f (1)=0,(2)1f =-,则()()()3310f f f =-==,()()401f f ==,则f (1)+f (2)+f (3)+f (4)=0,所以()()301()12701i f i f f ==++⨯=-∑,故D 正确,故选:BCD.11. 已知函数()y f x =是R 上的奇函数,对于任意x R ∈,都有(4)()(2)f x f x f +=+成立,当[)0,2x ∈时,()21=-x f x ,给出下列结论,其中正确的是( )A. (2)0f =B. 点(4,0)是函数()y f x =的图象的一个对称中心C. 函数()y f x =在[6,2]--上单调递增D. 函数()y f x =在[6,6]-上有3个零点【答案】AB【解析】【分析】由(4)()(2)f x f x f +=+,赋值2x =-,可得(4)()f x f x +=,故A 正确;进而可得(4,0)是对称中心,故B 正确;作出函数图象,可得CD 不正确.【详解】在(4)()(2)f x f x f +=+中,令2x =-,得(2)0f -=,又函数()y f x =是R 上的奇函数,所以(2)(2)0f f =-=,(4)()f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以(4,0)也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[6,2]--上不具单调性,故C 不正确;函数()y f x =在[6,6]-上有7个零点,故D 不正确.故选:AB【点睛】本题考查了函数的性质,考查了逻辑推理能力,属于基础题目.三、填空题:本大题共3小题,每小题5分,共15分12. 设函数()()x x f x e ae a R -=+∈,若()f x 为奇函数,则a =______.【答案】-1【解析】【分析】利用函数为奇函数,由奇函数的定义即可求解.【详解】若函数()x xf x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-.故答案为:-1【点睛】本题主要考查函数奇偶性的应用,需掌握奇偶性的定义,属于基础题.13. 422log 30.532314964log 3log 2225627--⎛⎫⎛⎫⎛⎫⋅-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=______【答案】1-【解析】【分析】利用指数幂的运算性质和对数的运算性质计算即可求解.【详解】原式=4123232log 3494122563-⨯⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=42log 379121616-++131=-+1=-.故答案为:1-.14. 设m 为实数,若{}22250()|{30()|250x y x y x x y x y mx y -+≥⎧⎫⎪⎪-≥⊆+≤⎨⎬⎪⎪+≥⎩⎭,,,则m 的取值范围是 .【答案】403m ≤≤【解析】【详解】如图可得440033m m -≤-≤∴≤≤四、解答题:本题共5小题,共77分.15. 阅读下面题目及其解答过程.已知函数23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)求f (-2)与f (2)的值;(2)求f(x)的最大值.解:(1)因为-2<0,所以f (-2)= ① .因为2>0,所以f (2)= ② .(2)因为x≤0时,有f(x)=x +3≤3,而且f (0)=3,所以f(x)在(,0]-∞上的最大值为 ③ .又因为x >0时,有22()2(1)11f x x x x =-+=--+…,而且 ④ ,所以f(x)在(0,+∞)上最大值为1.综上,f(x)的最大值为 ⑤ .以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置(只需填写“A”或“B”).空格序号选项①A .(-2)+3=1 B .2(2)2(2)8--+⨯-=-②A.2+3=5 B .22220-+⨯=③A.3B.0④A .f (1)=1 B .f (1)=0的⑤ A.1 B.3【答案】(1)①A ; ②B ;(2)③A ; ④A ; ⑤B .【解析】【分析】依题意按照步骤写出完整的解答步骤,即可得解;【详解】解:因为23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)因为20-<,所以()2231f -=-+=,因为20>,所以()222220f =-+⨯=(2)因为0x ≤时,有()33f x x =+≤,而且()03f =,所以()f x 在(,0]-∞上的最大值为3.又因为0x >时,有22()2(1)11f x x x x =-+=--+…,而且()11f =,所以()f x 在(0,+∞)上的最大值为1.综上,()f x 的最大值为3.16. 如图,某小区要在一个直角边长为30m 的等腰直角三角形空地上修建一个矩形花园.记空地为ABC V ,花园为矩形DEFG .根据规划需要,花园的顶点F 在三角形的斜边BC 上,边DG 在三角形的直角边AC 上,顶点G 到点C 的距离是顶点D 到点A 的距离的2倍.(1)设花园的面积为S (单位:2m ),AD 的长为x (单位:m ),写出S 关于x 的函数解析式;(2)当AD 的长为多少时,花园的面积最大?并求出这个最大面积.【答案】(1)()()2303,010S x x x =-<<(2)当AD 的长为5m 时,花园的面积最大,最大面积为1502m .【解析】【分析】(1)根据矩形面积即可求解,(2)根据基本不等式即可求解.【小问1详解】,AD x =则2CG GF x ==,302303GD x x x =--=-,所以()()2303,010S GD GF x x x =⋅=-<<【小问2详解】()()()233032223033303150332x x S x x x x +-⎡⎤=-=⋅-≤=⎢⎥⎣⎦,当且仅当3303x x =-,即5x =时等号成立,故当AD 的长为5m 时,花园的面积最大,最大面积为1502m .17. 已知定义在R 上的奇函数f (x )满足:0x ≥时,21()21x x f x -=+.(1)求()f x 的表达式;(2)若关于x 的不等式()2(23)10f ax f ax ++->恒成立,求a 的取值范围.【答案】(1)21()21x x f x -=+ (2)(]4,0-【解析】【分析】(1)根据函数的奇偶性求得当0x <时的解析式,即可得到结果;(2)根据定义证明函数()f x 在R 上单调递增,然后再结合()f x 是定义在R 上的奇函数,化简不等式,求解即可得到结果.【小问1详解】设0x <,则0x ->,因为0x ≥时,21()21x x f x -=+,所以()21122112x xx xf x -----==++又因为()f x 是定义在R 上的奇函数,即()()12211221x x x x f x f x --=--=-=++所以当0x <时,21()21x x f x -=+综上,()f x 的表达式为21()21x x f x -=+【小问2详解】由(1)可知,212()12121x x x f x -==-++,设在R 上任取两个自变量12,x x ,令12x x <则()()121222112121⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭x x f x f x ()()()1221212222221212121x x x x x x -=-=++++因为12x x <,则12220x x -<,所以()()()()12120f x f x f x f x -<⇒<所以函数()f x 在R 上单调递增.即()()22(23)10(23)1f ax f ax f ax f ax ++->⇒+>--,由()f x 是定义在R 上的奇函数,可得()()2211f ax f ax ---=即()21(23)f ax f ax >-+,由函数()f x 在R 上单调递增,可得22231240ax ax ax ax +>-⇒--<恒成立,当0a =时,即40-<,满足;当0a ≠时,即20Δ4160a a a <⎧⎨=+<⎩,解得40a -<<综上,a 的取值范围为(]4,0-18. 已知0,a b a c d >≥≥≥,且ab cd ≥.(1)请给出,,,a b c d 的一组值,使得2()a b c d ++≥成立;(2)证明不等式a b c d ++≥恒成立.【答案】(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明见解析【解析】【分析】(1)找到一组符合条件的值即可;(2)由a c d ≥≥可得()()0a c a d --≥,整理可得2()a cd c d a ++≥,两边同除a 可得cd a c d a ++≥,再由ab cd ≥可得cd b a ≥,两边同时加a 可得cd a b a a+≥+,即可得证.【详解】解析:(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明:由题意可知,0a ≠,因为a c d ≥≥,所以()()0a c a d --≥.所以2()0a c d a cd -++≥,即2()a cd c d a ++≥.因为0a b >≥,所以cd a c d a++≥,因为ab cd ≥,所以cd b a≥,所以cd a b a c d a +++≥≥.【点睛】考查不等式的证明,考查不等式的性质的应用.19. 对于非负整数集合S (非空),若对任意,x y S ∈,或者x y S +∈,或者x y S -∈,则称S 为一个好集合.以下记S 为S 的元素个数.(1)给出所有的元素均小于3的好集合.(给出结论即可)(2)求出所有满足4S =的好集合.(同时说明理由)(3)若好集合S 满足2019S =,求证:S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【答案】(1){0},{0,1},{0,2},{0,1,2}.(2){0,,,}b c b c +;证明见解析.(3)证明见解析.【解析】【分析】(1)根据好集合的定义列举即可得到结果;(2)设{},,,S a b c d =,其中a b c d <<<,由0S ∈知0a =;由0d c S <-∈可知d c c -=或d c b -=,分别讨论两种情况可的结果;(3)记1009n =,则21S n =+,设{}1220,,,,n S x x x =⋅⋅⋅,由归纳推理可求得()1i x im i n =≤≤,从而得到22n M x nm ==,从而得到S ,可知存在元素m 满足题意.【详解】(1){}0,{}0,1,{}0,2,{}0,1,2.(2)设{},,,S a b c d =,其中a b c d <<<,则由题意:d d S +∉,故0S ∈,即0a =,考虑,c d ,可知:0d c S <-∈,d c c ∴-=或d c b -=,若d c c -=,则考虑,b c ,2c b c c d <+<= ,c b S ∴-∈,则c b b -=,{},,2,4S a b b b ∴=,但此时3b ,5b S ∉,不满足题意;若d c b -=,此时{}0,,,S b c b c =+,满足题意,{0,,,}S b c b c ∴=+,其中,b c 为相异正整数.(3)记1009n =,则21S n =+,首先,0S ∈,设{}1220,,,,n S x x x =⋅⋅⋅,其中1220n x m x x M <=<<⋅⋅⋅<=,分别考虑M 和其他任一元素i x ,由题意可得:i M x -也在S 中,而212210,n n M x M x M x M --<-<-<⋅⋅⋅<-<,()21i n i M x x i n -∴-=≤≤,2n M x ∴=,对于1i j n ≤<≤,考虑2n i x -,2n j x -,其和大于M ,故其差22n i n j j i x x x x S ---=-∈,特别的,21x x S -∈,2122x x m ∴==,由31x x S -∈,且1313x x x x <-<,3213x x x m ∴=+=,以此类推:()1i x im i n =≤≤,22n M x nm ∴==,此时(){}0,,2,,,1,,2S n m nm n m nm =⋅⋅⋅+⋅⋅⋅,故S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.。
福州一中自主招生试卷 福州一中自主招生考试_——数学试卷
福州一中自主招生试卷 2011福州一中自主招生考试_——数学试卷福州一中2011年高中招生综合素质测试数学试卷(满分100分,考试时间60分钟)学校姓名准考证号注意:请将选择题、填空题、解答题的答案填写在答题卡的相应位置上(一、选择题(本大题共6小题,每小题5分,共30分(在每小题给出的四个选项中,只有一个选项是正确的() 1(右图是某几何体的三视图及相关数据,则下列判断错误的是( ) ((A(4a,b c D(a,b c b c C(a c B(22;?2a3a 6a;?|2136222222|~2sin45 ,(~1)2011 0;?b,cb(其中正确的个数有( ) a,caA(0 B(1 C(2D(33(某救灾募捐活动中,文艺工作者积极向灾区捐款(其中8人捐款统计如下表: 设这8人捐款数的众数为a,中位数为b,平均数为c,则下列各式正确的是( ) A(a b c B(a b c C(a b cD(a b c4(如右图,直角坐标系中一条圆弧经过网格点A、B、C,则该圆弧所在圆的圆心坐标为( )2A((2,0) B((2,1) C((1,2)D(无法确定5(如右图,在 ABC中,AB 5,AC 4,BC 3,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是( )125A(2 B( C( D(25A6(定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”(根据上述定义,“距离坐标”是(1,2)的点的个数是( )A(1 B(2 C(3D( 4二、填空题(本大题共6小题,每小题5分,共30分()BD1x2~x~6x2,2x,1,) 7(化简(2的结果为。
x,3xx2~9x,38(如图,在两面墙之间有一根底端在A点的竹竿,当它3靠在一侧墙上时,竹竿的顶端在B点;当它靠在另一侧墙上时,竹竿的顶端在D点(已知BAC 60 , DAE 45 ,(墙面垂直地面) AC 2米,则DE的高度为米(9(若实数a,b满足a,b 1,则a,4b的最小值是。
2021年福建省福州一中(市外、追梦计划)自主招生数学试卷
2021年福建省福州一中(市外、追梦计划)自主招生数学试卷一、选择题(本大题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一个选项是正确的)1.若﹣|x|=1,则|x|的值是()A.B.C.D.或12.现有5瓶溶液标签缺失,已知其分别为HCl,H2SO4,HNO3,NaOH,KOH,若从中任取2瓶混合,则会发生中和反应的概率为()A.B.C.D.3.△ABC中,∠A和∠B均为锐角,且AC=6,BC=3,若sin A=,则sin B的值为()A.B.C.D.4.“无体艺,不福一”,我校高二(1)到高二(4)的班级篮球代表队准备举行友谊赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“(3)班得冠军,(4)班得第三”;乙说:“(1)班得第三,(3)班得亚军”;丙说:“(1)班得第四,(4)班得冠军”.赛后得知,三人的预测都只有一半正确,则得冠军的是()A.(1)班B.(2)班C.(3)班D.(4)班5.如图,在矩形ABCD中,AB=6,BC=8,EO分别与AD,DC,CB三边相切于点E、F、G,若过点B 作EO的切线交AD于点Q,则BQ的长为()A.2B.3C.D.6.“剪纸”是我国一项传统民间艺术,现有一张正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……,以此类推,为了得到了9个十三边形和一些多边形纸片,则至少要剪()A.88刀B.89刀C.90刀D.91刀二、填空题(本大题共4小题,每小题4分,共16分)7.若不等式组的解集为a<x<3,则实数a的取值范围为.8.化简+的值为.9.如图,四边形ABCD的顶点都在坐标轴上,且AB∥CD,△AOB与△COD的面积分别为4和9,若双曲线y=恰好经过BC的中点E,则k的值为.10.若函数y=﹣x(x﹣1)(x2+mx+n)图象的一条对称轴为x=﹣1,则m+n的值是.三、解答题(本大题共4小题,每小题10分,共40分。
福州一中招生综合素质测试(一)
年福州一中招生综合素质测试(一)( 测试时间: 分钟全卷满分分)毕业学校姓名报考号考生注意:、本卷共有题,全部为单项选择题,其中第—题每题. 分,第—题每题分。
、请将正确选项填涂在答题卡上,写在测试卷上不计分。
、测试完毕,答题卡及测试卷不得带出考室。
. 如果在数轴上表示, 两个实数的点的位置如图所示,那么–化简的结果为. . –. .. 右图是四棱柱和圆锥的组合体,它的主视图为. .. .. 在△中,∠°,如果53, 那么的值等于.53.45.43.34. 以下五个图形中,是中心对称的图形共有. 个. 个. 个. 个. 已知△中,,, , 则△的外心在. △内. △外. 边中点. 边中点.某校为了了解学生的身体素质情况,对初三()班的名学生进行了立定跳远、铅球、米三个项目的测试,每个项目满分为分。
如图,是将该学生所得的三项成绩(成绩均为整数)之和进行整理后,分成组画出的频率分布直方图,已知从左至右前个小组的频率分别为,,,.下列说法:①学生的成绩≥分的共有人;②学生成绩的众数在第四小组()内;0ba010.514.518.526.522.530.5分数学生人数③学生成绩的中位数在第四小组()范围内。
其中正确的说法有.个 .个 .个 .个.已知3)()(33243=-÷ba b a ,那么39b a 等于. 9- . . . 27-. 用圆心角为°,半径为的扇形做成一个圆锥的侧面,那么这个圆锥底面的半径是. π . π . . . 当 时,代数式 的值是,则当 – 时,代数式 的值是. – . – . – . . 以下给出三个结论①若– 21( – ) , 则 – – ;②若21-+x x 222-+x x , 则21-x 22-x ; ③若 – 11-x x-11, 则 – –。
其中正确的结论共有. 个 . 个 . 个 . 个 . 若方程组⎩⎨⎧=-+=+3)1(134y a ax y x 的解与相等,则的值等于. . . .. 在△中,∠ : ∠ : ∠ , ⊥于 ,则等于.4a . 3a .2a .43a . 若 ,21x 21y ( > ) , 则 ( )的值为 . ( – ) . ( ) . ( – ) . ( ). 要得到函数2x y =的图像,只要把函数2)2(x y -=的图像.向左平移个单位 .向右平移个单位 .向上平移个单位 .向下平移个单位 . 函数 (-) 和xk( ≠) 在同一平面直角坐标系中的图像可能是 xyxyxyxy. . . ..下列加点字的注音全都正确的一项是( ).歼.灭(ā) 隽.永(à) 刚愎.自用(ì) 病入膏肓.(ā).狭隘.(à)犒.劳(à)茅塞.顿开(è)风驰电掣.(ì).迸.发(è)毗.邻(í)休戚.与共(ī)百舸.争流(ě).高亢.(á)恪.守(è)作茧自缚.(ù)为虎作伥.(ā).下列词语有两个错别字的一项是(). 针灸疗法真知卓见过犹不及记忆犹新. 纰漏百出芸芸众生出奇致胜恶意诅咒. 敲榨勒索良辰美景趋炎附势得陇忘蜀. 成规陋习伤心病狂无事生非见风驶舵.“萧伯纳知道有人管他叫驴子的时候,他并不生气,反而当作是一种美德,高兴的接受了,他更以驴子自勉。
2020年福州一中自主招生数学试卷(样卷)
2020年福州一中自主招生数学试卷(样卷)一、选择题(共8小题,每小题5分,共40分.每道小题均给出了代号为A、B、C、D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.(5分)设,则代数式x(x+1)(x+2)(x+3)的值为()A.0B.1C.﹣1D.22.(5分)对于任意实数a,b,c,d,定义有序实数对(a,b)与(c,d)之间的运算“△”为:(a,b)△(c,d)=(ac+bd,ad+bc).如果对于任意实数u,v,都有(u,v)△(x,y)=(u,v),那么(x,y)为()A.(0,1)B.(1,0)C.(﹣1,0)D.(0,﹣1)3.(5分)已知A,B是两个锐角,且满足,,则实数t所有可能值的和为()A.B.C.1D.4.(5分)设S=+++……+,则4S的整数部分等于()A.4B.5C.6D.75.(5分)方程x2+2xy+3y2=34的整数解(x,y)的组数为()A.3B.4C.5D.66.(5分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A.B.C.D.7.(5分)已知实数a,b满足a2+b2=1,则a4+ab+b4的最小值为()A.B.0C.1D.8.(5分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所有可能的值之和为()A.0B.C.﹣1D.二、填空题(共8小题,每小题5分,共40分)9.(5分)已知互不相等的实数a,b,c满足,则t=.10.(5分)使得5×2m+1是完全平方数的整数m的个数为.11.(5分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.12.(5分)已知实数a、b、c满足abc=﹣1,a+b+c=4,++=,则a2+b2+c2=.13.(5分)两条直角边长分别是整数a,b(其中b<2011),斜边长是b+1的直角三角形的个数为.14.(5分)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8.同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是.15.(5分)如图,双曲线(x>0)与矩形OABC的边CB,BA分别交于点E,F,且AF=BF,连接EF,则△OEF的面积为.16.(5分)设四位数满足a3+b3+c3+d3+1=10c+d,则这样的四位数的个数为.三、解答题(共4题,17、18每题15分,19、20每题20分,共70分)17.(15分)如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且P A=,PB=5,PC=2,求△ABC的面积.18.(15分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B (x2,0)(x1<x2)两点,与y轴交于点C,P A是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.19.(20分)如图,P A为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,证明:AD2=BD•CD.20.(20分)若从1,2,3,…,n中任取5个两两互素的不同的整数a1,a2,a3,a4,a5,其中总有一个整数是素数,求n的最大值.。
2020年福建省福州第一中学高中提前自主招理科素养测试数学试题
2020年福州一中高中招生测试理科素养测试(测试时间120分钟满分120分)学校姓名准考证号数学试卷(满分80分)注意:请将选择题、填空题、解答题的答案填写在答题卡上.......的相应位置.一.选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一个选项是正确的)1.下列计算一定正确的是()A.24833a a a ⋅= B.2416(2)16a a = C.824a a a ÷= D.248()a a --=2.为了解新冠肺炎疫情防控期间,学生居家进行“线上学习”情况,某班进行了某学科单元基础知识“线上测试”,其中抽查的10名学生的成绩如图所示,关于这10名学生的成绩的结论:①中位数是95分;②众数是90分;③平均数是91分;④方差是15.其中说法正确的是()A.①②B .①③C .②③D .②④3.斐波那契螺旋线,又称“黄金螺旋线”.如图,长为13的长方形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.则在矩形ABCD 内的这段斐波那契螺旋线的长为()A.192πB.10πC.19πD.20π4.直线32-=x y 与直线2)1(2-++=k x k y (k 为任意实数)的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,O ⊙内的点A 在弦MN 上,点B 在O ⊙上,AB OA ⊥,若4=AN ,10=AM ,则AB 的长等于()A.10 B.27C.7 D.66.把棱长为4的正方体分割成43个棱长为整数的小正方体,则其中棱长为1的小正方体有()A.38个 B.39个 C.40个 D.41个二.填空题(本大题共4小题,每小题4分,共16分)7.设225a a +=,225b b +=,且a b ≠,则代数式2211a b +的值是_________.8.已知实数0x 既是方程072=--kx x 的解又是方程0162=---k x x 的解,则实数=k _________.9.如图,矩形ABCD 中,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,点P 在矩形ABCD 内.若4=AB ,6=BC ,3==CG AE ,4==DH BF ,四边形AEPH 的面积为6,则四边形PFCG 的面积是_________.10.设函数⎪⎩⎪⎨⎧>≤+=1,21,1x xx x y ,若直线y x b =-+与已知函数的图象有且只有一个公共点,则实数b 的取值范围是.三.解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤)11.(1)若关于x 的不等式组13325x x a x x+⎧>-⎪-⎨⎪+≥-⎩有且只有三个整数解,求实数a 的取值范围;(2)求方程22(2)(324)5x x x x +--=-的所有实数解.12.如图,在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)证明:2222cos a b c ab C +-=;(2)若点D 是BC 的中点,且4a =,23b =22c =,求中线AD 的长.13.如图,圆内接五边形ABCDE 满足AB CD =,BE 与AD的交点为Q ,CQ ∥ED ,设AD 与CE 的交点为P .(1)求证:ECAC ED QD =;(2)求证:22CQ AC ED CE =.14.已知抛物线342+-=x x y 与x 轴交于点A 、B (A 在B 的左侧),一次函数b kx y +=的图象经过点A ,并与抛物线交于另一点M .(1)当0>k 时,若一次函数的图象上存在点N ,满足BN BM ⊥且BN BM 2=,求一次函数的解析式;(2)将一次函数的图象向上平移2个单位,平移后的图象与已知抛物线交于P 、Q 两点,求APQ ∆的面积的最小值.。
高中自主招生考试数学试题(含答案详解)
一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一个选项是正确的.)
1.如图是某几何体的三视图及相关数据,则下列判断错误的是()
A.a<c B.b<c C.4a2+b2=c2D.a2+b2=c2
2.下列计算:①
4
=±2;②2a2×3a3=6a6;③|
1
1-
2
|-2sin45°+(-1)2011=0;④
b+c
a+c
=
b
a
.其中正确的个数有()
A.0 B.1 C.2 D.3
3.某救灾募捐活动中,文艺工作者积极向灾区捐款.其中8人捐款统计如下表:捐款数(万元) 5 10 20 50
人数(人) 1 2 3 2
设这8人捐款数的众数为a,中位数为b,平均数为c,则下列各式正确的是()A.a=b<c B.a<b<c C.a=b>c D.a=b=c
4.如图,直角坐标系中一条圆弧经过网格点A、B、C,则该圆弧所在圆的圆心坐标为()
A.(2,0)B.(2,1)C.(1,2)D.无法确定
5.如图,在△ABC中,AB=5,AC=4,BC=3,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()
A.2 B.
12
5
C.
5
2
D.2
2
6.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()
A.1 B.2 C.3 D.4
二、填空题(本大题共6小题,每小题5分,共30分.)
7.化简(
1
x2+3x
+
x2-x-6
x2-9
)÷
x2+2x+1
x+3
的结果为
8.如图,在两面墙之间有一根底端在A点的竹竿,当它靠在一侧墙上时,竹竿的顶端在B点;当它靠在另一侧墙上时,竹竿的顶端在D点.已知∠BAC=60°,∠DAE=45°,AC=2米,则DE的高度为
米.(墙面垂直地面)
9.若实数a,b满足a+b2=1,则a2+4b2的最小值是
.
10.如图,△ABC的三边长分别为3、5、6,BD 与CE都是△ABC的外角平分线,M、N是直线BC上两点,且AM⊥BD于D,AN⊥CE 于E,则DE的长等于
.
11.下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.
(a+b)=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
则(a+b)6=a6+6a5b+15a4b2+
a3b3+15a2b4+6ab5+b6.
12.三个同学对问题“若方程组
a1x+b1y=c1
a2x+b2y=c2
的解是
y=10
,求方程组
4a1x+5b1y=9c1
4a2x+5b2y=9c2
的解”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组中两个方程的两边都除以9,通过换元替代的方法来解决”.参照他们的讨论,你认为这个题目的解应该是
.
三、解答题(本大题共3小题,满分40分.)
13.如图,矩形ABCD中,E是BC边上的一点,连接AE、DE.△DCE沿DE翻折后,点C恰好落在AE上,记为点F.
(Ⅰ)求证:△ADF≌△EAB;
(Ⅱ)若AD=10,tan∠EDF=
1
3
,求矩形ABCD的面积.
14.如图,双曲线y=
k
x
与直线l:y=-kx+b(k>0,b>0)有且只有一个公共点A,AC⊥x轴于C,直线l交x轴于点B.
(Ⅰ)求点A的横坐标;
(Ⅱ)已知△ABC的面积等于1,若有一动点从原点开始移动,假定其每次只能向上或向右移动1个单位长度(向上和向右的可能性相同).求3次移动后,该点在直线l上的概率.
15.已知二次函数y=ax2-2ax+c的图象与x轴交于
A(-1,0)、B两点,其顶点为M.
(Ⅰ)根据图象,解不等式ax2-2ax+c>0;
(Ⅱ)若点D(-3,6)在二次函数的图象上,试问:线段OB上是否存在N点,使得∠ADB=∠BMN?若存在,求出N点坐标;若不存在,说明理由.。