剖面计算表
剖面模数计算
56.00 50.00 50.00 72.00 50.00 50.00 84.00 50.00 50.00 50.00 91.00 91.00 50.00 50.00 50.00 50.00 50.00 50.00 60.00 60.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
zn
h
5.73 12.68680168
1.165
0.926
2.72
2.04
3.57
1.95
4.42
1.86
5.27
1.77
6.12
1.64
6.97
1.49
L400× 120×12
×23
W=1624.
0.85
12.69
4
662.22 89 cm3
L400×
120×12
×23
W=1624.
0.85
11.43
135.01 156.35 143.10 176.66 198.08 222.24 228.33 254.82 286.55 315.72 288.72 335.45 358.61
395.82 398.97 450.07 497.58 541.77 68.72 99.58 111.09 139.40 155.61 188.68 206.01 252.54 275.21 324.37 348.50 407.54 436.64 517.49 548.87
T型材计算
T型材带板面积
轧制型材计算
L63×40×4 L63×40×5 L63×40×6 L63×40×7 L75×50×5 L75×50×6 L75×50×8 L75×50×10 L90×56×5 L90×56×6 L90×56×7 L90×56×8 L100×63×6 L100×63×7 L100×63×8 L100×63×10 L100×80×6 L100×80×7 L100×80×8 L100×80×10 L110×70×6 L110×70×7 L110×70×8 L110×70×10 L125×80×7 L125×80×8
非溢流重力坝的剖面设计
三、实用剖面
1、 坝顶宽度 根据施工、交通、设备安装等条件确定。 一般B=(8~10)%H,且不小于2m。 或根据漂浮物,冰压力等对坝体的冲击力情况确定。
第5页/共10页
1、设计变量
四、实用断面的优化设计
上、下游坝面的坡率n、m,坝顶距上、下游起坡点的高度yn和ym。
2、建立目标函数V(x)
3、确定约束条件
如稳定约束、应力约束、几何约束等。
4、选择求解方法
目标函数和约束条件都是设计参数的非线性函数,因此重力坝的优化设计是一个非线性规划问题。
下一节
第6页/共10页
第2页/共10页
h1% —累积频率为1%时的波高,m。 hZ —波浪中心线至静水位的高度,m。 hc—安全超高m,见下表。
注:在计算h1%时,两种情况应采用不同的计算风速值。
相应水位
坝的安全级别
Ⅰ(1级)
Ⅱ(2、3级)
Ⅲ(4、5级)
正常蓄水位
ห้องสมุดไป่ตู้0.7
0.5
0.4
校核洪水位
第8页/共10页
上游面呈倾斜的基本三角形加坝顶,适用于坝基础摩擦系数较小的情况
倾斜的上游坝面可以增加坝体自重和利用一部分水重,以满足抗滑稳定的要求。修建在地震区的重力坝,可采用此种剖面。
第9页/共10页
感谢您的观看!
第10页/共10页
采用铅直的上游坝面,适用于坝基摩擦系数较大,由应力条件控制坝体剖面的情况。
优点:便于布置和操作坝身过水管道进口控制设备缺点:由于在上游面为铅直的基本三角形剖面上增加坝顶重量,空库时下游坝面可能产生拉应力。
剖面模数计算
剖面模数计算剖面模数是指材料或构件在剖面方向上的刚度。
它是用来计算剖面弯曲刚度或剖面截面形状对剖面变形的影响程度的一个参数。
在工程设计中,剖面模数的计算常常涉及到材料力学性质和截面形状等多个因素。
下面将详细介绍剖面模数的计算方法,并给出一些相关参考内容。
一、剖面模数的定义:剖面模数是指材料或构件在剖面方向上的刚度,表示材料或构件抵抗剖面方向上变形的能力。
剖面模数的单位通常是mm^3。
二、剖面模数的计算方法:1.矩形截面:对于矩形截面,剖面模数的计算公式为:W = bh^2/6其中,W表示剖面模数,b和h分别表示矩形截面的宽度和高度。
2.圆形截面:对于圆形截面,剖面模数的计算公式为:W = πd^3/32其中,W表示剖面模数,d表示圆形截面的直径。
3.其他复杂截面:对于其他复杂的截面形状,可以通过将其分割成多个简单的几何体来计算剖面模数,然后将结果进行相加。
例如,可以将T 形截面分割成矩形和两个L形截面,然后计算每个部分的剖面模数,并将它们相加得到总的剖面模数。
三、相关参考内容:1.《结构计算手册》(程季男著):该书对剖面模数的计算方法作了详细的介绍,涵盖了各种常见截面形状的剖面模数计算公式,同时还对剖面模数的应用进行了讲解。
2.《结构力学与结构设计》(刘妙德、吴少军著):该书对剖面模数的计算方法进行了深入的研究,重点介绍了复杂截面形状的剖面模数计算方法,并给出了实际应用案例。
3.《钢结构设计手册》(沈大成、杨智、吕玉奇著):该手册对剖面模数的计算方法进行了详细的介绍,包括各种常见钢结构截面形状的剖面模数计算公式,并对剖面模数的应用进行了实例分析。
4.《建筑结构》(许春明、王道生主编):该书对剖面模数的计算方法进行了全面的介绍,包括各种常见剖面形状的剖面模数计算公式以及计算步骤,对于各类材料的剖面模数计算均有详细说明。
以上是关于剖面模数计算的相关参考内容,读者可以根据实际需求选择参考书籍或文献来进行学习和研究。
剖面法计算储量公式
剖面法计算储量公式剖面法,又称“切割法”,是以油藏剖面为基础计算油藏储量的方法,是集物理测量、仪器数据、形态和形状参数于一体,采用软件计算实现油藏储量的一种方法。
剖面法通过对地质剖面的测量,不仅能够求出油藏的体积,而且还能够进一步确定油藏的容量等。
二、剖面法计算储量公式(1)剖面法计算储量的基本公式是:储量=质体体积 *油饱和度(2)剖面法计算油藏储量时,地质体体积的公式为:地质体体积=面面积 *面高度(3)含油饱和度的计算公式为:含油饱和度=(油层厚度-层厚度/层厚度三、剖面法计算储量的步骤(1)先,选择合适的剖面,进行剖面的测量;(2),根据地质剖面进行测算,求解出油藏的体积;(3)后,根据地质图、剖面图和测井资料,确定剖面上能够储藏油气的油层厚度及水层厚度,结合油层厚度和水层厚度,计算出含油饱和度;(4)后,将以上2步计算出来的数值带入剖面法储量计算公式,得出油藏的储量。
四、剖面法计算储量的优点(1)快速、准确:采用剖面法计算储量,能够有效提高计算的效率,可以根据不同地质环境进行有效的剖面测量,精确计算出油藏的储量;(2)省时省力:剖面法计算储量可以省去传统计算储量的大量时间,因为它可以自动计算出储量结果,可以有效地提高计算效率;(3)可以进行统计分析:采用剖面法计算储量,可以进行有效的统计分析,可以更加准确地判断油藏的资源性和开发性等。
五、剖面法计算储量的不足(1)因地质环境的原因,剖面法计算油藏储量会存在一定的误差;(2)剖面法计算油藏储量时,必须要以地质剖面为基础,而地质剖面的测量和对油藏属性的描述,都需要地质人员充分调查,这样就会增加计算储量的难度。
六、总结剖面法是一种采用软件计算实现油藏储量的方法,可以有效地提高计算效率,精确计算出油藏的储量,然而也存在计算误差的问题。
剖面法计算储量的基本公式是:储量=质体体积 *油饱和度。
此外,地质体体积的计算公式是:地质体体积=面面积 *面高度,含油饱和度的计算公式为:含油饱和度=(油层厚度-层厚度/层厚度。
剖面模数计算方法
Allowable stress to ABS MODU 2001, part 3, charpter 2, section 1, item 3.3F=Fy/F.S., whereFy = 235 N/mm2 , or 34 ksiF.S. = 1.67 for axial or bending stress2.50 for shear stressHence, F = 140.7 N/mm2 , or 20.4 ksi for axial or bending stress94.0 N/mm2 , or 13.6 ksi for shear stress1. Bulkhead1.1 Wind pressure p = f V k2.c h.c s N/m2wheref = 0.611Vk = 100 knots = 51.44 m/sc s = 1.0c h = 1.1hence p = 1778.4 N/m2or 37.13 lbf/ft21.2 Bulkhead platingPlate panel maximum size (mm)4070 by 690Plate thickness, t (mm)8Bulkhead load to wind pressure p = 1778.4 N/m2or 37.13 lbf/ft2Stress due to lateral perpendicular load:σ = kpb2/t2 wherek = 0.741 for panel size ratio of 5.9 (4070/690)p =37.13lbf/ft2, or0.26 lbf/in2b =690 mmt =8mmHenceσ =1421 lbf/in2, or 1.42ksi OK3Shear stress at support,τ = RF max/A web = 4.49N/mm2, or0.7ksi OK2. Bottom2.1. bottom platingPlate panel maximum size (mm)2650 by 830Plate thickness, t (mm)8Deck load to MODU 2001, w920 kgf/m2, or 188 lbf/ft2Stress due to lateral perpendicular load:σ = kwb2/t2 wherek = 0.718 for panel size ratio of 3.19 (2650/830)w =188lbf/ft2, or 1.31 lbf/in2b =830mmt =8mmHenceσ =10090 lbf/in2, or10.1ksi OK33. APV' lower Supporting StructureAs per contract specification 2.22G, foundations for equipment shall be designed for combined staticand dynamic load of 1.5g vertical and 0.5g horizontal for roll and pitch.According to HYDRALIFT Drawing: T2820-D1157-G0040 APV's arrangement,per WORKING APV' average weight: 2750kg,add 10% variables: 3025kg is to be used in following calculation.3.1 check supporting plate panelThe supporting plate panel, which is supported at four sides, is considered conservatively as plate beam supported at two longer edges.Plate panel concentrated load maximum size (mm)1420 by 760Plate thickness, t (mm) =25.5Deck load to MODU 2001, w =920kgf/m2, or 188 lbf/ft2Max moment due to deck load q: M q =qL/8 =925N.mwhere L =0.76mMax reaction force due to deck loa R q=qL/2=4870NLoad Case 1 (LC1): Heave at 1.5gForce due to static and dynamic load:P = ma,wherem=3025kga=14.7m/s2 (1.5g)P=44467.5NHence,Q=2P = 88935NM1max=Ql1l2/L=16605N.mwhere L=0.76ml1=0.33ml2=0.43mR1max=Ql2/L=50318NForce due to pitch:P=ma,wherem=3025kga= 4.9m/s2 (0.5g)P pitch=14822.5NHence,Q2=2.755*P/5.76 = 7090NThe force acts on plate as a longitudinal tension, as illustrated in sketchLC3: Roll at 0.5g to starboardForce due to roll:P=ma,wherem=3025kga= 4.9m/s2 (0.5g)P=14822.5NHence,Q2=2.755*P/5.76 = 7090NThe force acts on plate as a transverse tension, as illustrated in sketchLC4: Heave at 1.5g, pitch at 0.5g to forward and roll at 0.5g to starboard (LC1+LC2+LC3)moment:BM max=M1max + Mq =17530N.mshear:RF max=R1max + Rq =55188Nlongitudinal tension:TF x =14179Ntransverse tension:TF y =14179Nplate beam modulus:SM=bt2/6 =154cm3where b =142cmt = 2.55cmplate beam area:A1 =bt =362cm2A2 =at =194cm2where a =76cmBending stress,σ = BM max/SM =113.91N/mm2, or16.5ksi OK Shear stress,τ = RF max/A1 = 1.52N/mm2, or0.2ksi OK Longitudinal tension stress:σx = TF x/A2 =0.73N/mm2, or0.1ksi OK Transverse tension stress:σy = TF y/A1 =0.39N/mm2, or0.1ksi OK3.2 Check supporting structurewhere L= 1.42mBM max = (q1+q2)L2/8 =1774kgf.mRFmax = (q1+q2)L/2 = 4997kgf3Bending stress ,σ = BM max/SM = 6.21N/mm2, or0.9ksi OK Shear stress ,τ = RF max/A1 = 6.81N/mm2, or 1.0ksi OKb. Beam A2-B2Similar to beam A1-B1, check beam A2-B2 stress is OK.R B2 =4964kgfc. Beam A3-B3Similar to beam A1-B1, check beam A3-B3 stress is OK.R B3 =2697kgfd. Beam A4-B4Similar to beam A1-B1, check beam A4-B4 stress is OK.R B4 =2482kgfe. Beam A5-B5Similar to beam A1-B1, check beam A5-B5 stress is OK.R B5 =4964kgff. Beam A6-B6Similar to beam A1-B1, check beam A6-B6 stress is OK.R B6 =4964kgfg. Beam A7-B7Similar to beam A1-B1, check beam A7-B7 stress is OK.R B7 =4964kgfh. Beam A8-B8Similar to beam A1-B1, check beam A8-B8 stress is OK.R B8 =4964kgfi. Beam A9-B9Similar to beam A1-B1, check beam A4-B4 stress is OK.R B9 =2482kgfj. Beam C1-D1Similar to beam A1-B1, check beam C1-D1 stress is OK.R C1 =4989kgfR D1 =4989kgfk. Beam C2-D2Similar to beam A1-B1, check beam C2-D2 stress is OK.R C2 =4957kgfR D2 =4957kgfl. Beam C3-D3Similar to beam A1-B1, check beam C2-D2 stress is OK.R C3 =2690kgfR D3 =2690kgf3.2.2 Check transverse girdersMax moment due to force R B1: M B1 = 0.76*1.985*R B1/2.745 =2746kgf.mMax moment due to force R B2: M B2 = 1.42*1.325*R B2/2.745 =3402kgf.mMax moment due to force R B3: M B3 = 2.08*0.665*R B3/2.745 =1359kgf.m Combined moment: BM max =6163kgf.mReaction force: R E1 = 1.985*R B1/2.745 + 1.325*R B2/2.745 + 0.665*R B3/2.745 =6663kgf Reaction force: R F1a = 0.76*R B1/2.745 + 1.42*R B2/2.745 + 2.08*R B3/2.745 =5995kgf hence,RF max =6663kgfBending stress ,σ = BM max/SM =24.00N/mm2, or 3.5ksi OK Shear stress ,τ = RF max/A WEB =8.17N/mm2, or 1.2ksi OKn. Beam E2-F2Similar to beam E1-E1, check beam E2-F2 stress is OK.Reaction force: R F2 =5984kgfDistributed load along the beam length due to bulkhead weight, q = 660kgf/mMax moment due to load q: M q =qL2/8 =622kgf.mMax moment due to force R D1: M D1 = 0.76*1.985*R D1/2.745 =2742kgf.mMax moment due to force R D2: M D2 = 1.42*1.325*R D2/2.745 =3398kgf.mMax moment due to force R D3: M D3 = 2.08*0.665*R D3/2.745 =1355kgf.mCombined moment: BM max =6774kgf.mReaction force: R E3 =7558kgfReaction force: R F3a =6890kgfhence,RF max =7558kgfBending stress ,σ = BM max/SM =26.38N/mm2, or 3.8ksi OK Shear stress ,τ = RF max/A WEB =9.27N/mm2, or 1.3ksi OKDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q = 0.165*w =151.8kgf/mMax moment due to load q: M q =q*1.4452*(1+1.3/2.745)2/8 =86kgf.mMax moment due to force R B4: M B4 = 1.445*1.3*R B4/2.745 =1699kgf.mMax moment due to force R B5: M B5 = 2.105*0.64*R B5/2.745 =3402kgf.mCombined moment: BM max =4259kgf.mReaction force: R F1b =2424kgfReaction force: R =5146kgfthk(cm)width(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)top flg 2.5516.542.075 1.27522.844135.0web1808042.5542666.748997.3btm flg0.816.513.282.950.732077.6 Combined135.27533.7125210.02520 Bending stress ,σ = BM max/SM =16.58N/mm2, or 2.4ksi OK Shear stress ,τ = RF max/A WEB = 6.31N/mm2, or0.9ksi OKDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q1 = 0.165*w =151.8kgf/mDistributed load along the beam length due to bulkhead weight, q2 = 660kgf/m BM max = (q1+q2)L2/8 =765kgf.mRFmax = (q1+q2)L/2 = 1114kgfHence,R =1114kgfBending stress ,σ = BM max/SM = 2.98N/mm2, or0.4ksi OK Shear stress ,τ = RF max/A WEB = 1.37N/mm2, or0.2ksi OKr. Beam E5-F5Similar to beam F3-E5, check beam E5-F5 stress is OK.Reaction force: R E5b =1185kgfR F5 =1185kgfDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q = 0.165*w =151.8kgf/mMax moment due to load q: M q =q*0.832*(1+2.66/3.49)2/8 =41kgf.mMax moment due to force R B6: M B6 = 0.68*2.81*R B6/3.49 =2718kgf.mMax moment due to force R B7: M B7 = 1.34*2.15*R B7/3.49 =4098kgf.mMax moment due to force R B8: M B8 = 2.0*1.49*R B8/3.49 =4239kgf.mMax moment due to force R B9: M B9 = 2.66*0.83*R B9/3.49 =1570kgf.mCombined moment: BM max =9829kgf.mReaction force: R E4b =9779kgfBending stress ,σ = BM max/SM =38.27N/mm2, or 5.6ksi OK Shear stress ,τ = RF max/A WEB =11.99N/mm2, or 1.7ksi OK3.2.3 Check longitudinal girdersDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q = 0.3*w =276kgf/mMax moment due to load q: M q =q*3.5882/2 =1777kgf.mMax moment due to force R F1a +R F1b: M F1 = 0.938*(R F1a+R F1b) =7897kgf.mMax moment due to force R F2: M F2 = 2.193*R F2 =13123kgf.mMax moment due to force R F3a +R F3b: M F1 = 3.588*(R F3a+R F3b) =29041kgf.mCombined moment: BM max =51838kgf.mReaction force: R G1 = q*3.588 + RF1a + RF1b + RF2 + RF3a + RF3b=23397kgfBending stress ,σ = BM max/SM =167.46N/mm2, or24.3ksi OK Shear stress , 1.2τ = RF max/A WEB =65.58N/mm2, or9.5ksi OKDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q1 = 0.3*w =276kgf/mLoad as Heave at 1.5gForce due to static and dynamic load:P = ma,wherem=3025kga=14.7m/s2 (1.5g)P=44468NHence,q2=2P/L = 6384kgf/mwhere L= 1.42mMax moment due to load q1: M q1 =q1*4.072/2 =2286kgf.mMax moment due to load q2: M q2 =q2*1.422/2 =6437kgf.mMax moment due to force R E4a +R E4b: M E4 = 1.42*(R E4a+R E4b) =21194kgf.mMax moment due to force R E5a +R E5b: M E4 = 4.07*(R E5a+R E5b) =9357kgf.mCombined moment: BM max =39273kgf.mReaction force: R G2 = q1*4.07 +q2*1.42 + R E4a + R E4b + R E5a + R E5b=27413kgf hence,RF =27413kgfBending stress ,σ = BM max/SM =65.74N/mm2, or9.5ksi OK Shear stress ,τ = RF max/A WEB =26.89N/mm2, or 3.9ksi OKv. Beam G3-F5Deck load to MODU 2001, w = 920kgf/m or 188 lbf/ft2Distributed load along the beam length, q1 = 0.165*w =151.8kgf/mDistributed load along the beam length due to bulkhead weight, q2 = 660kgf/m Max moment due to load q1: M q1 =q1*4.072/2 =1257kgf.mMax moment due to load q2: M q2 =q2*4.072/2 =5466kgf.mMax moment due to force R F4: M F4 = 1.42*R F4 =10964kgf.mMax moment due to force R F5: M F5 = 4.07*R F5 =4823kgf.mCombined moment: BM max =22510kgf.mBending stress ,σ = BM max/SM =62.18N/mm2, or9.0ksi OK Shear stress ,τ = RF max/A WEB =11.26N/mm2, or 1.6ksi OK4. APV' Upper Supporting Structure3.1 :P pitch =14822.5NQ1pitch =7733N Load due to a APV's Roll at 0.5g to starboard has calculated as 3.1 :P roll =14822.5NQ1roll =7733N 4.1 Check APV' end box mounting structure on forward transverse bulkhead4.1.1 Check stiffener' flange subjected to tensionAs per "Yield Line Analysis of Bolted Hanging Connections", AISC, Engineering Journal, Vol.14, No.3 1977, For hanger rods, the allowable working load is the smaller of following :P1 = F y t b2(2r)1/2(1+a/b)/LFP2 = F y t b2[r(1+a/b)]1/2/LFwhere F y=235N/mm2t b=13mmr= (F y-F b)/F y =0.401F b=140.7N/mm2a=50mmb=35.5mmLF = 1.7P1 =50388NP2 =22959Nhence,the allowable total force carried by flange[ P ]=22959Nmaximal load forced on stiffener L100x75x13 is P max = 1.5Q1roll = 11600 N < [ P ]OK!4.1.2 Check stiffener subjected to compressionR max =8522N9thk(cm)plt width/sect dep(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)att plt0.85644.80.4 2.493.9section-7.515.46 5.9794.6359.7Combined60.26 1.8453.6704.3in3 Bending stress ,σ = BM max/SM =23.83N/mm2, or 3.5ksi OKR max=R F =8738Nthk(cm)plt width/sect dep(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)att plt 1.2519.2240.625 3.1196.0section-7.521.06 6.6994.6314.4Combined45.06 3.5510.3965.9in3Bending stress ,σ = BM max/SM =22.61N/mm2, or 3.3ksi OK Shear stress ,τ = RF max/A1 = 4.15N/mm2, or0.6ksi OKC. Check beam L-MR max =11934Nthk(cm)width(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)top flg00000.00.0web0.9 2.5 2.25 1.25 1.2 4.8btm flg0.97.5 6.75 2.950.5 1.7Combined9 2.5 6.530.2in3 Bending stress ,σ = BM max/SM =4145.20N/mm2, or601.6ksi OK Shear stress ,τ = RF max/A1 =53.04N/mm2, or7.7ksi OK4.2 Check APV' end box mounting structure on inboard longitudinal bulkheadAs per "Yield Line Analysis of Bolted Hanging Connections", AISC, Engineering Journal, Vol.14, No.3, 1977, For hanger rods, the allowable working load is the smaller of following :P1 = F y t b2(2r)1/2(1+a/b)/LFP2 = F y t b2[r(1+a/b)]1/2/LFwhere F y=235N/mm2t b=19mmr= (F y-F b)/F y =0.401F b=140.7N/mm2a=50mmb=35.5mmLF = 1.7hence,P1 =107634NP2 =49042Nhence,the allowable total force carried by flange[ P ]=49042Nmaximal concentrated load forced on girder T 811x12.5w P max = 3Q2roll = 23199 N < [ P ]OK!4.2.2 Check longitudinal girder' web stability under compression when roll to starboardAs per "Manual of STEEL CONSTRUCTION Allowable Stress Design", AISC,Slenderness ratio Kl/r =450> 200where K =2l =811mmr = 3.61mmAnd C c =(2*3.142E/F y)1/2 =130where E =200000MpaF y =235N/mm2here,Kl/r >C chence,the allowable stress F a = 12*3.142E/(23*(Kl/r)2 = 5.08N/mm2Compression total load forced on Girder' web section Q =12*Q2roll92796N web section area A=19625mm2RF max =92796Nthk(cm)width(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)top flg 2.5547.3120.615 1.27565.474578.2web 1.2581.1101.37543.155563.784757.5btm flg 1.911.521.8584.6 6.674705.9Combined243.8426.1234041.73939240.4in3 Bending stress ,σ = BM max/SM =17.91N/mm2, or 2.6ksi OK Shear stress ,τ = RF max/A web =9.15N/mm2, or 1.3ksi OK4.3 Check supporting APV' end box mounting structure on TF-12 transverse bulkheadBending stress ,σ = BM max/SM =72.79N/mm2, or10.6ksi OK Shear stress ,τ = RF max/A web =17.26N/mm2, or 2.5ksi OKthk(cm)width(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)top flg 1.310130.65 1.8871.8web 1.3 6.28.06 4.425.8184.0btm flg 1.957.5109.258.4532.948.7web 1.2581013.453.3262.1top flg 1.25121518.025 2.01270.1Combined155.318.8302636.726916.4in3Bending stress ,σ = BM max/SM =74.44N/mm2, or10.8ksi OK Shear stress ,τ = RF max/A web =17.26N/mm2, or 2.5ksi OK。
剖面模数计算
r=
1.151
中和轴e= 0.098 cm
惯性矩I= 36.894 cm4
对带板 W1=
7.526
cm3
对面板 W2=
376.215
cm3
槽钢
项目
t
d
面积(cm2)
距参考轴距 离Z(cm)
静距(cm3)
惯性矩(cm4)
自身惯性矩 (cm4)
带板
10 1100 78.622 -0.500 -39.311
中和轴e= 0.410 cm
惯性矩I= 358.146 cm4
对带板 W1=
50.515
cm3
对面板 W2=
873.417
cm3
组合型材
项目
t
带板
5
腹板
5
d
面积(cm2)
距参考轴距 离Z(cm)
静距(cm3)
惯性矩(cm4)
自身惯性矩 (cm4)
500 25.000
0.25
6.25
1.5625 0.520833333
静距(cm3)
惯性矩(cm4)
自身惯性矩 (cm4)
500 62.898 -0.400 -25.159
10.064
2.133
8.797
5.43
47.77
259.38
46.95
50
1.000
7.200
7.200
51.840
0.003
∑ 72.695
29.809
321.282
49.087
惯性半径
r=
2.220
惯性矩I= 621.146 cm4
对带板 W1=
64.359
剖面法计算储量公式
剖面法计算储量公式剖面法是一种常用的计算自然资源储量的方法,尤其在矿产资源的估算中被广泛应用。
剖面法通过对地质剖面的观测和测量,结合地质模型,计算出自然资源(比如矿石、煤炭、石油等)的储量。
本文将详细介绍剖面法的计算公式和计算过程。
首先,剖面法的计算公式主要包括两个部分:截面面积计算公式和割线剖面积计算公式。
一、截面面积计算公式截面面积计算公式用于计算地质剖面上截面的面积。
假设地质剖面是通过n个点(从剖面的一端到另一端)进行测量的,每个点的测量结果是x_i,对应的剖面上的宽度是w_i,则截面面积计算公式为:A=0.5*(x_1*w_1+(x_2-x_1)*w_2+...+(x_n-x_(n-1))*w_n)其中,A表示剖面的面积。
二、割线剖面积计算公式割线剖面积计算公式用于计算地质剖面中截取其中一段时,该段剖面的面积。
假设地质剖面的起点是x_0,终点是x,对应的宽度是w,则割线剖面积计算公式为:A_1=0.5*(x-x_0)*(w_0+w)其中,A_1表示剖面的面积。
三、剖面法储量计算公式根据剖面法的计算过程,储量的计算是基于剖面面积和岩石或矿石的平均容重进行的。
假设剖面上各截面的面积是A_i,对应的岩石或矿石的平均容重是ρ_i,则储量的计算公式为:V=A_0*ρ_0+(A_1-A_0)*ρ_1+...+(A_n-A_(n-1))*ρ_n其中,V表示储量的大小。
剖面法的计算过程如下:1.在研究区域内选择需要进行估算的地质剖面。
2.对剖面进行地质观测和测量,得到剖面上各点的测量结果。
3.根据测量结果计算剖面的截面面积,即使用截面面积计算公式计算每个截面的面积。
4.对剖面进行截取,选择需要计算储量的部分。
5.根据截取的部分计算割线剖面积,即使用割线剖面积计算公式计算剖面的面积。
6.根据剖面上各段的面积和对应的岩石或矿石的平均容重,使用剖面法储量计算公式进行计算,得到储量的大小。
值得注意的是,剖面法是一种相对粗略的计算方法,它基于对剖面的观测和测量,对地质条件的变化和不均匀性并没有全面考虑。
MarsRule剖面规则计算
MarsRule 剖面规则计算.doc
• load case d, • dynamic pressure (resonance due to Roll),横摇共振动压 • dynamic pressure (resonance due to Sway).摇摆共振动压 Ultimate options tab极限选项表 Choosing the Ultimate strength check calculation it is possible to require calculations based on different assumptions. The rule calculation is based on: • the net scantling for the section,剖面净规格 • the Standard control for “Solution” item,标准控制用于相应的材料特性 • the “Fixed horizontal/vertical curvatures ratio” for “Moment” item, with a ratio value equal to zero. Following parameters may be tested:采用水平和垂向曲度控制对应弯矩 • Solution材料特性
1.2 COMPUTE SECTION剖面计算
When you launch MARSRULE module or you click on the Compute section section on the File menu (Figure 18), the Compute section window is displayed:
连续纵向型材(及船底板)规格检查
剖面模数计算 -回复
剖面模数是一种用于计算齿轮参数的指标,它可以帮助确定齿轮的几何尺寸和传动性能。
剖面模数的计算公式如下:
剖面模数= 模数/ (齿数+ 2)
其中,
模数是指齿轮的模数,表示每毫米的齿数;
齿数是指齿轮的齿数。
剖面模数的单位通常与模数的单位相同,例如毫米或英寸。
需要注意的是,剖面模数是一种粗略的参数,用于估算齿轮的几何尺寸,但不考虑具体齿形等因素。
在实际设计中,还需要根据具体要求和标准选择合适的齿形参数,并进行更详细的设计和计算。
此外,剖面模数的计算方法可能因不同的标准和参考资料而有所区别。
在实际应用中,建议根据具体的标准或设计要求来确定使用何种计算方法。
剖面测量计算表
Y 3817235
H
388
导线与 走向间 夹锐角 γ°
0点坐标:X 真பைடு நூலகம் 分层 度 D /m 代号 厚度
9.68 22.37 7.40 13.49 4.77 1.91 17.47 9.01 5.85 10.97 2.53 2.63 1.75 1.97 1.53 6.31 5.04 25.77
37604695
Y 3817206 地质描述
H
385
产状 导线 方位 导线 斜距 坡度 平距 高差 累计高程 编号 角° 总长 L /m 角β ° M /m H /m 倾向° 倾角α
48.0 110.0 35.0 75.0 80.0 4--5 80.0 5--6 79.0 65.0 6--7 65.0 7--8 80.0 8--9 80.0 70.0 70.0 9--10 70.0 70.0 75.0 10--11 75.0 11--12 108.0 0--1 1--2 2--3 3--4 29.0 53.0 27.0 28.0 14.0 38.0 33.0 23.0 5.0 18.0 27.0 32.0 29.0 53.0 27.0 28.0 10.0 4.0 38.0 20.0 13.0 23.0 5.0 6.0 4.0 4.5 3.5 15.0 12.0 32.0 -4.0 -5.0 -2.0 -2.0 -3.0 -3.0 -4.0 -2.0 -2.0 3.0 1.0 -4.0 -4.0 -4.0 -4.0 -6.0 -6.0 -24.0 28.9 52.8 27.0 28.0 14.0 37.9 33.0 23.0 5.0 18.0 26.9 29.2 -2.02 -4.62 -0.94 -0.98 -0.73 -2.65 -1.15 1.20 0.09 -1.26 -2.82 -13.02 382.98 378.36 377.42 376.44 375.92 375.71 373.06 372.36 371.91 373.11 373.20 372.78 372.50 372.19 371.94 370.37 369.12 356.10 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ° 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
计算项目: 一看边坡稳定计算3-3剖面
计算项目:一看边坡稳定计算3-3剖面------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 直线滑动法不考虑地震[ [土层信息]上部土层数 1层号定位高度(m) 重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层底线倾全孔压(kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 2.700 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -10.000 ---下部土层数 1层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 2.500 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- 0.000 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力水面线段数 6 水面线起始点坐标: (0.000,-2.500)水面线号水平投影(m) 竖直投影(m)1 10.000 6.0002 10.000 8.0003 0.000 0.0004 0.000 0.0005 0.000 0.0006 0.000 0.000[计算条件]稳定计算目标: 自动搜索最危险滑裂面自动搜索时Y坐标增量: 0.500(m) 自动搜索时角度的增量: 1.000(度)破裂面的最小角度: 10.000(度) 破裂面的最大角度: 40.000(度)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------最不利破裂面:定位高度: 0.000(m);破裂面仰角: 14.000(度);安全系数 = 2.457起始x 终止x 条重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)--------------------------------------------------------------------------------------- 0.000 0.964 22.53 0.00 0.00 0.00 0.00 0.00 5.45 37.930.964 1.000 1.70 0.00 0.00 0.00 0.00 0.00 0.41 1.531.000 4.167 153.53 0.00 0.00 0.00 0.00 0.00 37.14 135.694.167 7.129 143.75 0.00 0.00 0.00 0.00 0.00 34.78 126.967.129 9.000 91.45 0.00 0.00 3.68 0.00 0.00 25.65 71.259.000 10.000 50.19 0.00 0.00 4.99 0.00 0.00 16.91 38.8710.000 11.272 66.82 0.00 0.00 13.81 0.00 0.00 28.71 51.9111.272 12.000 39.81 0.00 0.00 11.11 0.00 0.00 19.73 30.7612.000 12.875 46.93 0.00 0.00 16.44 0.00 0.00 26.30 37.1112.875 18.545 213.54 0.00 0.00 85.42 0.00 0.00 129.29 205.2618.545 20.000 28.94 0.00 0.00 11.58 0.00 0.00 17.52 41.9720.000 23.263 26.54 0.00 0.00 0.00 0.00 0.00 6.42 76.62总的下滑力 = 348.310(kN) 总的抗滑力 = 855.851(kN)土体部分下滑力 = 348.310(kN) 土体部分抗滑力 = 855.851(kN)算项目:一看边坡稳定计算4-4剖面------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 直线滑动法不考虑地震[坡面信息]坡面线段数 3坡面线号水平投影(m) 竖直投影(m) 超载数1 2.000 3.800 02 11.000 2.100 03 2.000 0.500 0[土层信息]上部土层数 1层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层底线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 3.800 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -10.000 ---下部土层数 2层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 4.800 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -35.000 ---2 14.800 25.000 25.000 100.000 60.000 20.000 20.000 --- --- --- --- 0.000 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力水面线段数 6 水面线起始点坐标: (0.000,-4.800)水面线号水平投影(m) 竖直投影(m)1 10.000 6.0002 10.000 8.0003 0.000 0.0004 0.000 0.0005 0.000 0.0006 0.000 0.000[计算条件]稳定计算目标: 自动搜索最危险滑裂面自动搜索时Y坐标增量: 0.500(m) 自动搜索时角度的增量: 1.000(度) 破裂面的最小角度: 10.000(度) 破裂面的最大角度: 40.000(度)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------最不利破裂面:定位高度: 0.000(m)破裂面仰角: 14.000(度)安全系数 = 2.855起始x 终止x 条重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------0.000 2.000 62.73 0.00 0.00 0.00 0.00 0.00 15.17 80.912.000 8.000 356.37 0.00 0.00 0.00 0.00 0.00 86.21 266.268.000 10.000 109.91 0.00 0.00 0.00 0.00 0.00 26.59 87.5110.000 12.349 123.40 0.00 0.00 0.00 0.00 0.00 29.85 101.9712.349 13.000 33.26 0.00 0.00 0.93 0.00 0.00 8.90 25.3213.000 15.000 102.88 0.00 0.00 14.55 0.00 0.00 38.11 79.7715.000 15.743 37.47 0.00 0.00 9.89 0.00 0.00 18.05 30.0515.743 15.995 12.21 0.00 0.00 3.92 0.00 0.00 6.51 10.1115.995 16.431 20.43 0.00 0.00 7.41 0.00 0.00 11.68 17.3116.431 16.500 3.18 0.00 0.00 1.26 0.00 0.00 1.91 2.7416.500 16.745 11.07 0.00 0.00 4.43 0.00 0.00 6.70 9.6416.745 20.000 118.42 0.00 0.00 47.37 0.00 0.00 71.69 116.1020.000 25.669 80.13 0.00 0.00 0.00 0.00 0.00 19.38 145.15总的下滑力 = 340.777(kN) 总的抗滑力 = 972.834(kN)土体部分下滑力 = 340.777(kN) 土体部分抗滑力 = 972.834(kN)计算项目:一看边坡稳定计算5-5剖面------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 直线滑动法不考虑地震[坡面信息]坡面线段数 3坡面线号水平投影(m) 竖直投影(m) 超载数1 1.800 3.000 02 11.000 2.100 03 4.000 1.000 0[土层信息]上部土层数 1层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层底线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 4.500 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -10.000 ---下部土层数 2层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 2.000 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -22.000 ---2 14.800 25.000 25.000 100.000 60.000 20.000 20.000 --- --- --- --- 0.000 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力水面线段数 6 水面线起始点坐标: (0.000,-2.000)水面线号水平投影(m) 竖直投影(m)1 13.200 5.2002 10.000 4.0003 0.000 0.0004 0.000 0.0005 0.000 0.0006 0.000 0.000[计算条件]稳定计算目标: 自动搜索最危险滑裂面自动搜索时Y坐标增量: 0.500(m) 自动搜索时角度的增量: 1.000(度) 破裂面的最小角度: 10.000(度) 破裂面的最大角度: 40.000(度)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------最不利破裂面:定位高度: 0.000(m) 破裂面仰角: 11.000(度) 安全系数 = 3.834起始x 终止x 条重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------0.000 1.800 45.32 0.00 0.00 0.00 0.00 0.00 8.65 70.591.800 5.077 164.65 0.00 0.00 0.00 0.00 0.00 31.42 140.135.077 9.657 228.94 0.00 0.00 0.00 0.00 0.00 43.68 195.699.657 10.022 18.18 0.00 0.00 0.00 0.00 0.00 3.47 15.5810.022 12.800 138.88 0.00 0.00 3.03 0.00 0.00 29.48 106.4212.800 13.200 20.17 0.00 0.00 0.94 0.00 0.00 4.77 15.4213.200 16.800 190.64 0.00 0.00 14.46 0.00 0.00 50.58 142.4516.800 18.731 100.15 0.00 0.00 12.15 0.00 0.00 31.05 75.9618.731 20.048 60.84 0.00 0.00 10.05 0.00 0.00 21.48 49.2620.048 20.450 17.36 0.00 0.00 3.35 0.00 0.00 6.60 14.6220.450 21.805 54.02 0.00 0.00 10.80 0.00 0.00 20.92 47.6421.805 23.200 48.16 0.00 0.00 9.63 0.00 0.00 18.65 46.2823.200 24.970 50.20 0.00 0.00 0.00 0.00 0.00 9.58 53.9924.970 31.382 79.92 0.00 0.00 0.00 0.00 0.00 15.25 159.20总的下滑力 = 295.569(kN) 总的抗滑力 = 1133.226(kN)土体部分下滑力 = 295.569(kN) 土体部分抗滑力 = 1133.226(kN)计算项目:一看边坡稳定计算6-6剖面------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 直线滑动法不考虑地震[坡面信息]坡面线段数 3坡面线号水平投影(m) 竖直投影(m) 超载数1 2.000 5.200 02 12.000 1.370 03 4.000 1.000 0[土层信息]上部土层数 1层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层底线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 5.200 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -10.000 ---下部土层数 2层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 2.500 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -26.000 ---2 14.800 25.000 25.000 100.000 60.000 20.000 20.000 --- --- --- --- 0.000 --- [水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力水面线段数 6 水面线起始点坐标: (0.000,-2.000)水面线号水平投影(m) 竖直投影(m)1 13.200 5.5002 10.000 5.0003 6.000 4.0004 0.000 0.0005 0.000 0.0006 0.000 0.000[计算条件]稳定计算目标: 自动搜索最危险滑裂面自动搜索时Y坐标增量: 0.500(m) 自动搜索时角度的增量: 1.000(度) 破裂面的最小角度: 10.000(度) 破裂面的最大角度: 40.000(度)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------最不利破裂面:定位高度: 0.000(m) 破裂面仰角: 36.000(度) 安全系数 = 2.266起始x 终止x 条重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------0.000 2.000 71.19 0.00 0.00 0.00 0.00 0.00 41.85 94.822.000 4.800 153.73 0.00 0.00 0.00 0.00 0.00 90.36 139.064.800 8.119 64.07 0.00 0.00 0.00 0.00 0.00 37.66 151.04总的下滑力 = 169.863(kN) 总的抗滑力 = 384.923(kN)土体部分下滑力 = 169.863(kN) 土体部分抗滑力 = 384.923(kN)计算项目:一看边坡稳定计算7-7剖面------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 直线滑动法不考虑地震[坡面信息]坡面线段数 3坡面线号水平投影(m) 竖直投影(m) 超载数1 4.000 6.100 02 10.000 2.200 03 6.000 2.000 0[土层信息]上部土层数 2层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层底线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 3.000 25.000 26.000 100.000 60.000 20.000 20.000 --- --- --- --- -23.000 ---2 6.100 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -10.000 ---下部土层数 1层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 5.000 25.000 26.000 100.000 60.000 20.000 20.000 --- --- --- --- -26.000 --- [水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力水面线段数 6 水面线起始点坐标: (2.000,3.000)水面线号水平投影(m) 竖直投影(m)1 10.000 5.0002 3.000 1.0003 3.000 1.0004 3.000 1.0005 0.000 0.0006 0.000 0.000[计算条件]稳定计算目标: 过某点某一角度的安全系数破裂点的高度: 3.000(m) 破裂面的角度: 23.000(度)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------破裂面:定位高度: 3.000(m) 破裂面仰角: 23.000(度) 安全系数 = 3.054起始x 终止x 条重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------1.9672.000 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.252.000 2.184 0.48 0.00 0.00 0.00 0.00 0.00 0.19 7.072.184 4.000 42.83 0.00 0.00 0.62 0.00 0.00 17.36 53.824.000 10.488 196.49 0.00 0.00 12.40 0.00 0.00 89.15 207.0810.488 11.500 16.19 0.00 0.00 3.37 0.00 0.00 9.69 27.4911.500 12.000 6.52 0.00 0.00 1.63 0.00 0.00 4.18 13.0912.000 13.015 11.30 0.00 0.00 1.68 0.00 0.00 6.09 25.8013.015 14.000 7.50 0.00 0.00 0.96 0.00 0.00 3.89 23.8814.000 15.000 3.82 0.00 0.00 0.49 0.00 0.00 1.98 22.9915.000 16.111 1.46 0.00 0.00 0.19 0.00 0.00 0.76 24.62总的下滑力 = 133.283(kN) 总的抗滑力 = 407.076(kN)土体部分下滑力 = 133.283(kN) 土体部分抗滑力 = 407.076(kN)计算项目:一看边坡稳定计算8-8剖面------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 直线滑动法不考虑地震[坡面信息]坡面线段数 3坡面线号水平投影(m) 竖直投影(m) 超载数1 4.000 7.000 02 10.000 2.000 03 6.000 3.400 0[土层信息]上部土层数 2层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层底线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 3.000 25.000 26.000 100.000 60.000 20.000 20.000 --- --- --- --- -26.000 ---2 7.000 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -10.000 ---下部土层数 1层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 5.000 25.000 26.000 100.000 60.000 20.000 20.000 --- --- --- --- -26.000 --- [水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力水面线段数 6 水面线起始点坐标: (0.000,3.000)水面线号水平投影(m) 竖直投影(m)1 6.000 2.8002 4.000 1.8003 6.000 3.5004 6.000 2.5005 0.000 0.0006 0.000 0.000[计算条件]稳定计算目标: 过某点某一角度的安全系数破裂点的高度: 3.000(m) 破裂面的角度: 26.000(度)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------破裂面:定位高度: 3.000(m) 破裂面仰角: 26.000(度) 安全系数 = 2.596起始x 终止x 条重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------1.7142.338 4.91 0.00 0.00 1.14 0.00 0.003.29 15.472.338 4.000 59.27 0.00 0.00 5.97 0.00 0.00 31.95 56.344.000 6.000 100.16 0.00 0.00 6.82 0.00 0.00 50.73 77.236.000 10.000 134.34 0.00 0.00 11.42 0.00 0.00 70.30 132.8310.000 11.125 22.00 0.00 0.00 4.02 0.00 0.00 13.65 32.3411.125 11.565 6.75 0.00 0.00 1.76 0.00 0.00 4.72 12.0511.565 13.265 15.77 0.00 0.00 4.60 0.00 0.00 11.50 43.1113.265 14.000 1.69 0.00 0.00 0.49 0.00 0.00 1.23 16.9214.000 16.000 4.51 0.00 0.00 1.01 0.00 0.00 2.99 46.0116.000 20.000 33.65 0.00 0.00 5.39 0.00 0.00 20.14 99.9020.000 20.987 6.18 0.00 0.00 0.99 0.00 0.00 3.70 23.97总的下滑力= 214.197(kN) 总的抗滑力= 556.162(kN) 土体部分下滑力 = 214.197(kN) 土体部分抗滑力 = 556.162(kN)计算项目:一看边坡稳定计算9-9剖面------------------------------------------------------------------------计算简图][控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 直线滑动法不考虑地震[坡面信息]坡面线段数 3坡面线号水平投影(m) 竖直投影(m) 超载数1 4.000 7.200 02 12.400 3.800 03 4.000 2.000 0[土层信息]上部土层数 2层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层底线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 3.000 25.000 26.000 100.000 60.000 20.000 20.000 --- --- --- --- -10.000 ---2 6.100 19.000 20.000 35.000 8.200 20.000 20.000 --- --- --- --- -22.600 ---下部土层数 1层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板τ 强度增十字板τ水强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 5.000 25.000 26.000 100.000 60.000 20.000 20.000 --- --- --- --- -26.000 --- 水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力水面线段数 6 水面线起始点坐标: (0.000,-3.500)水面线号水平投影(m) 竖直投影(m)1 6.000 8.0002 12.000 6.0003 4.000 2.2004 6.000 3.0005 0.000 0.0006 0.000 0.000[计算条件]稳定计算目标: 过某点某一角度的安全系数破裂点的高度: 3.000(m) 破裂面的角度: 26.000(度)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------破裂面:定位高度: 3.000(m) 破裂面仰角: 26.000(度) 安全系数 = 3.317起始x 终止x 条重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------1.6672.625 11.45 0.00 0.00 0.00 0.00 0.00 5.02 38.802.6253.389 25.53 0.00 0.00 0.00 0.00 0.00 11.19 33.053.3894.000 30.90 0.00 0.00 0.00 0.00 0.00 13.54 27.804.0005.364 76.15 0.00 0.00 0.00 0.00 0.00 33.38 62.985.3646.000 33.32 0.00 0.00 0.00 0.00 0.00 14.61 29.086.000 11.701 236.42 0.00 0.00 0.00 0.00 0.00 103.64 252.6211.701 16.400 110.71 0.00 0.00 0.00 0.00 0.00 48.53 197.3316.400 18.000 25.05 0.00 0.00 0.00 0.00 0.00 10.98 65.5518.000 20.400 38.69 0.00 0.00 0.00 0.00 0.00 16.96 98.4720.400 22.000 14.38 0.00 0.00 0.00 0.00 0.00 6.30 64.1722.000 22.170 0.13 0.00 0.00 0.00 0.00 0.00 0.06 6.63总的下滑力 = 264.213(kN) 总的抗滑力= 876.473(kN) 土体部分下滑力 = 264.213(kN) 土体部分抗滑力= 876.473(kN)。
剖面模数计算方法
Allowable stress to ABS MODU 2001, part 3, charpter 2, section 1, item 3.3F=Fy/F.S., whereFy = 235 N/mm2 , or 34 ksiF.S. = 1.67 for axial or bending stress2.50 for shear stressHence, F = 140.7 N/mm2 , or 20.4 ksi for axial or bending stress94.0 N/mm2 , or 13.6 ksi for shear stress1. Bulkhead1.1 Wind pressure p = f V k2.c h.c s N/m2wheref = 0.611Vk = 100 knots = 51.44 m/sc s = 1.0c h = 1.1hence p = 1778.4 N/m2or 37.13 lbf/ft21.2 Bulkhead platingPlate panel maximum size (mm)4070 by 690Plate thickness, t (mm)8Bulkhead load to wind pressure p = 1778.4 N/m2or 37.13 lbf/ft2Stress due to lateral perpendicular load:σ = kpb2/t2 wherek = 0.741 for panel size ratio of 5.9 (4070/690)p =37.13lbf/ft2, or0.26 lbf/in2b =690 mmt =8mmHenceσ =1421 lbf/in2, or 1.42ksi OK3Shear stress at support,τ = RF max/A web = 4.49N/mm2, or0.7ksi OK2. Bottom2.1. bottom platingPlate panel maximum size (mm)2650 by 830Plate thickness, t (mm)8Deck load to MODU 2001, w920 kgf/m2, or 188 lbf/ft2Stress due to lateral perpendicular load:σ = kwb2/t2 wherek = 0.718 for panel size ratio of 3.19 (2650/830)w =188lbf/ft2, or 1.31 lbf/in2b =830mmt =8mmHenceσ =10090 lbf/in2, or10.1ksi OK33. APV' lower Supporting StructureAs per contract specification 2.22G, foundations for equipment shall be designed for combined staticand dynamic load of 1.5g vertical and 0.5g horizontal for roll and pitch.According to HYDRALIFT Drawing: T2820-D1157-G0040 APV's arrangement,per WORKING APV' average weight: 2750kg,add 10% variables: 3025kg is to be used in following calculation.3.1 check supporting plate panelThe supporting plate panel, which is supported at four sides, is considered conservatively as plate beam supported at two longer edges.Plate panel concentrated load maximum size (mm)1420 by 760Plate thickness, t (mm) =25.5Deck load to MODU 2001, w =920kgf/m2, or 188 lbf/ft2Max moment due to deck load q: M q =qL/8 =925N.mwhere L =0.76mMax reaction force due to deck loa R q=qL/2=4870NLoad Case 1 (LC1): Heave at 1.5gForce due to static and dynamic load:P = ma,wherem=3025kga=14.7m/s2 (1.5g)P=44467.5NHence,Q=2P = 88935NM1max=Ql1l2/L=16605N.mwhere L=0.76ml1=0.33ml2=0.43mR1max=Ql2/L=50318NForce due to pitch:P=ma,wherem=3025kga= 4.9m/s2 (0.5g)P pitch=14822.5NHence,Q2=2.755*P/5.76 = 7090NThe force acts on plate as a longitudinal tension, as illustrated in sketchLC3: Roll at 0.5g to starboardForce due to roll:P=ma,wherem=3025kga= 4.9m/s2 (0.5g)P=14822.5NHence,Q2=2.755*P/5.76 = 7090NThe force acts on plate as a transverse tension, as illustrated in sketchLC4: Heave at 1.5g, pitch at 0.5g to forward and roll at 0.5g to starboard (LC1+LC2+LC3)moment:BM max=M1max + Mq =17530N.mshear:RF max=R1max + Rq =55188Nlongitudinal tension:TF x =14179Ntransverse tension:TF y =14179Nplate beam modulus:SM=bt2/6 =154cm3where b =142cmt = 2.55cmplate beam area:A1 =bt =362cm2A2 =at =194cm2where a =76cmBending stress,σ = BM max/SM =113.91N/mm2, or16.5ksi OK Shear stress,τ = RF max/A1 = 1.52N/mm2, or0.2ksi OK Longitudinal tension stress:σx = TF x/A2 =0.73N/mm2, or0.1ksi OK Transverse tension stress:σy = TF y/A1 =0.39N/mm2, or0.1ksi OK3.2 Check supporting structurewhere L= 1.42mBM max = (q1+q2)L2/8 =1774kgf.mRFmax = (q1+q2)L/2 = 4997kgf3Bending stress ,σ = BM max/SM = 6.21N/mm2, or0.9ksi OK Shear stress ,τ = RF max/A1 = 6.81N/mm2, or 1.0ksi OKb. Beam A2-B2Similar to beam A1-B1, check beam A2-B2 stress is OK.R B2 =4964kgfc. Beam A3-B3Similar to beam A1-B1, check beam A3-B3 stress is OK.R B3 =2697kgfd. Beam A4-B4Similar to beam A1-B1, check beam A4-B4 stress is OK.R B4 =2482kgfe. Beam A5-B5Similar to beam A1-B1, check beam A5-B5 stress is OK.R B5 =4964kgff. Beam A6-B6Similar to beam A1-B1, check beam A6-B6 stress is OK.R B6 =4964kgfg. Beam A7-B7Similar to beam A1-B1, check beam A7-B7 stress is OK.R B7 =4964kgfh. Beam A8-B8Similar to beam A1-B1, check beam A8-B8 stress is OK.R B8 =4964kgfi. Beam A9-B9Similar to beam A1-B1, check beam A4-B4 stress is OK.R B9 =2482kgfj. Beam C1-D1Similar to beam A1-B1, check beam C1-D1 stress is OK.R C1 =4989kgfR D1 =4989kgfk. Beam C2-D2Similar to beam A1-B1, check beam C2-D2 stress is OK.R C2 =4957kgfR D2 =4957kgfl. Beam C3-D3Similar to beam A1-B1, check beam C2-D2 stress is OK.R C3 =2690kgfR D3 =2690kgf3.2.2 Check transverse girdersMax moment due to force R B1: M B1 = 0.76*1.985*R B1/2.745 =2746kgf.mMax moment due to force R B2: M B2 = 1.42*1.325*R B2/2.745 =3402kgf.mMax moment due to force R B3: M B3 = 2.08*0.665*R B3/2.745 =1359kgf.m Combined moment: BM max =6163kgf.mReaction force: R E1 = 1.985*R B1/2.745 + 1.325*R B2/2.745 + 0.665*R B3/2.745 =6663kgf Reaction force: R F1a = 0.76*R B1/2.745 + 1.42*R B2/2.745 + 2.08*R B3/2.745 =5995kgf hence,RF max =6663kgfBending stress ,σ = BM max/SM =24.00N/mm2, or 3.5ksi OK Shear stress ,τ = RF max/A WEB =8.17N/mm2, or 1.2ksi OKn. Beam E2-F2Similar to beam E1-E1, check beam E2-F2 stress is OK.Reaction force: R F2 =5984kgfDistributed load along the beam length due to bulkhead weight, q = 660kgf/mMax moment due to load q: M q =qL2/8 =622kgf.mMax moment due to force R D1: M D1 = 0.76*1.985*R D1/2.745 =2742kgf.mMax moment due to force R D2: M D2 = 1.42*1.325*R D2/2.745 =3398kgf.mMax moment due to force R D3: M D3 = 2.08*0.665*R D3/2.745 =1355kgf.mCombined moment: BM max =6774kgf.mReaction force: R E3 =7558kgfReaction force: R F3a =6890kgfhence,RF max =7558kgfBending stress ,σ = BM max/SM =26.38N/mm2, or 3.8ksi OK Shear stress ,τ = RF max/A WEB =9.27N/mm2, or 1.3ksi OKDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q = 0.165*w =151.8kgf/mMax moment due to load q: M q =q*1.4452*(1+1.3/2.745)2/8 =86kgf.mMax moment due to force R B4: M B4 = 1.445*1.3*R B4/2.745 =1699kgf.mMax moment due to force R B5: M B5 = 2.105*0.64*R B5/2.745 =3402kgf.mCombined moment: BM max =4259kgf.mReaction force: R F1b =2424kgfReaction force: R =5146kgfthk(cm)width(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)top flg 2.5516.542.075 1.27522.844135.0web1808042.5542666.748997.3btm flg0.816.513.282.950.732077.6 Combined135.27533.7125210.02520 Bending stress ,σ = BM max/SM =16.58N/mm2, or 2.4ksi OK Shear stress ,τ = RF max/A WEB = 6.31N/mm2, or0.9ksi OKDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q1 = 0.165*w =151.8kgf/mDistributed load along the beam length due to bulkhead weight, q2 = 660kgf/m BM max = (q1+q2)L2/8 =765kgf.mRFmax = (q1+q2)L/2 = 1114kgfHence,R =1114kgfBending stress ,σ = BM max/SM = 2.98N/mm2, or0.4ksi OK Shear stress ,τ = RF max/A WEB = 1.37N/mm2, or0.2ksi OKr. Beam E5-F5Similar to beam F3-E5, check beam E5-F5 stress is OK.Reaction force: R E5b =1185kgfR F5 =1185kgfDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q = 0.165*w =151.8kgf/mMax moment due to load q: M q =q*0.832*(1+2.66/3.49)2/8 =41kgf.mMax moment due to force R B6: M B6 = 0.68*2.81*R B6/3.49 =2718kgf.mMax moment due to force R B7: M B7 = 1.34*2.15*R B7/3.49 =4098kgf.mMax moment due to force R B8: M B8 = 2.0*1.49*R B8/3.49 =4239kgf.mMax moment due to force R B9: M B9 = 2.66*0.83*R B9/3.49 =1570kgf.mCombined moment: BM max =9829kgf.mReaction force: R E4b =9779kgfBending stress ,σ = BM max/SM =38.27N/mm2, or 5.6ksi OK Shear stress ,τ = RF max/A WEB =11.99N/mm2, or 1.7ksi OK3.2.3 Check longitudinal girdersDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q = 0.3*w =276kgf/mMax moment due to load q: M q =q*3.5882/2 =1777kgf.mMax moment due to force R F1a +R F1b: M F1 = 0.938*(R F1a+R F1b) =7897kgf.mMax moment due to force R F2: M F2 = 2.193*R F2 =13123kgf.mMax moment due to force R F3a +R F3b: M F1 = 3.588*(R F3a+R F3b) =29041kgf.mCombined moment: BM max =51838kgf.mReaction force: R G1 = q*3.588 + RF1a + RF1b + RF2 + RF3a + RF3b=23397kgfBending stress ,σ = BM max/SM =167.46N/mm2, or24.3ksi OK Shear stress , 1.2τ = RF max/A WEB =65.58N/mm2, or9.5ksi OKDeck load to MODU 2001, w = 920kgf/m2 or 188 lbf/ft2Distributed load along the beam length, q1 = 0.3*w =276kgf/mLoad as Heave at 1.5gForce due to static and dynamic load:P = ma,wherem=3025kga=14.7m/s2 (1.5g)P=44468NHence,q2=2P/L = 6384kgf/mwhere L= 1.42mMax moment due to load q1: M q1 =q1*4.072/2 =2286kgf.mMax moment due to load q2: M q2 =q2*1.422/2 =6437kgf.mMax moment due to force R E4a +R E4b: M E4 = 1.42*(R E4a+R E4b) =21194kgf.mMax moment due to force R E5a +R E5b: M E4 = 4.07*(R E5a+R E5b) =9357kgf.mCombined moment: BM max =39273kgf.mReaction force: R G2 = q1*4.07 +q2*1.42 + R E4a + R E4b + R E5a + R E5b=27413kgf hence,RF =27413kgfBending stress ,σ = BM max/SM =65.74N/mm2, or9.5ksi OK Shear stress ,τ = RF max/A WEB =26.89N/mm2, or 3.9ksi OKv. Beam G3-F5Deck load to MODU 2001, w = 920kgf/m or 188 lbf/ft2Distributed load along the beam length, q1 = 0.165*w =151.8kgf/mDistributed load along the beam length due to bulkhead weight, q2 = 660kgf/m Max moment due to load q1: M q1 =q1*4.072/2 =1257kgf.mMax moment due to load q2: M q2 =q2*4.072/2 =5466kgf.mMax moment due to force R F4: M F4 = 1.42*R F4 =10964kgf.mMax moment due to force R F5: M F5 = 4.07*R F5 =4823kgf.mCombined moment: BM max =22510kgf.mBending stress ,σ = BM max/SM =62.18N/mm2, or9.0ksi OK Shear stress ,τ = RF max/A WEB =11.26N/mm2, or 1.6ksi OK4. APV' Upper Supporting Structure3.1 :P pitch =14822.5NQ1pitch =7733N Load due to a APV's Roll at 0.5g to starboard has calculated as 3.1 :P roll =14822.5NQ1roll =7733N 4.1 Check APV' end box mounting structure on forward transverse bulkhead4.1.1 Check stiffener' flange subjected to tensionAs per "Yield Line Analysis of Bolted Hanging Connections", AISC, Engineering Journal, Vol.14, No.3 1977, For hanger rods, the allowable working load is the smaller of following :P1 = F y t b2(2r)1/2(1+a/b)/LFP2 = F y t b2[r(1+a/b)]1/2/LFwhere F y=235N/mm2t b=13mmr= (F y-F b)/F y =0.401F b=140.7N/mm2a=50mmb=35.5mmLF = 1.7P1 =50388NP2 =22959Nhence,the allowable total force carried by flange[ P ]=22959Nmaximal load forced on stiffener L100x75x13 is P max = 1.5Q1roll = 11600 N < [ P ]OK!4.1.2 Check stiffener subjected to compressionR max =8522N9thk(cm)plt width/sect dep(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)att plt0.85644.80.4 2.493.9section-7.515.46 5.9794.6359.7Combined60.26 1.8453.6704.3in3 Bending stress ,σ = BM max/SM =23.83N/mm2, or 3.5ksi OKR max=R F =8738Nthk(cm)plt width/sect dep(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)att plt 1.2519.2240.625 3.1196.0section-7.521.06 6.6994.6314.4Combined45.06 3.5510.3965.9in3Bending stress ,σ = BM max/SM =22.61N/mm2, or 3.3ksi OK Shear stress ,τ = RF max/A1 = 4.15N/mm2, or0.6ksi OKC. Check beam L-MR max =11934Nthk(cm)width(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)top flg00000.00.0web0.9 2.5 2.25 1.25 1.2 4.8btm flg0.97.5 6.75 2.950.5 1.7Combined9 2.5 6.530.2in3 Bending stress ,σ = BM max/SM =4145.20N/mm2, or601.6ksi OK Shear stress ,τ = RF max/A1 =53.04N/mm2, or7.7ksi OK4.2 Check APV' end box mounting structure on inboard longitudinal bulkheadAs per "Yield Line Analysis of Bolted Hanging Connections", AISC, Engineering Journal, Vol.14, No.3, 1977, For hanger rods, the allowable working load is the smaller of following :P1 = F y t b2(2r)1/2(1+a/b)/LFP2 = F y t b2[r(1+a/b)]1/2/LFwhere F y=235N/mm2t b=19mmr= (F y-F b)/F y =0.401F b=140.7N/mm2a=50mmb=35.5mmLF = 1.7hence,P1 =107634NP2 =49042Nhence,the allowable total force carried by flange[ P ]=49042Nmaximal concentrated load forced on girder T 811x12.5w P max = 3Q2roll = 23199 N < [ P ]OK!4.2.2 Check longitudinal girder' web stability under compression when roll to starboardAs per "Manual of STEEL CONSTRUCTION Allowable Stress Design", AISC,Slenderness ratio Kl/r =450> 200where K =2l =811mmr = 3.61mmAnd C c =(2*3.142E/F y)1/2 =130where E =200000MpaF y =235N/mm2here,Kl/r >C chence,the allowable stress F a = 12*3.142E/(23*(Kl/r)2 = 5.08N/mm2Compression total load forced on Girder' web section Q =12*Q2roll92796N web section area A=19625mm2RF max =92796Nthk(cm)width(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)top flg 2.5547.3120.615 1.27565.474578.2web 1.2581.1101.37543.155563.784757.5btm flg 1.911.521.8584.6 6.674705.9Combined243.8426.1234041.73939240.4in3 Bending stress ,σ = BM max/SM =17.91N/mm2, or 2.6ksi OK Shear stress ,τ = RF max/A web =9.15N/mm2, or 1.3ksi OK4.3 Check supporting APV' end box mounting structure on TF-12 transverse bulkheadBending stress ,σ = BM max/SM =72.79N/mm2, or10.6ksi OK Shear stress ,τ = RF max/A web =17.26N/mm2, or 2.5ksi OKthk(cm)width(cm)sectionarea(cm2)ctr.dist. toplt top(cm)d(cm)I0 (cm4)mom. ofinert.(cm4)SM(cm3)top flg 1.310130.65 1.8871.8web 1.3 6.28.06 4.425.8184.0btm flg 1.957.5109.258.4532.948.7web 1.2581013.453.3262.1top flg 1.25121518.025 2.01270.1Combined155.318.8302636.726916.4in3Bending stress ,σ = BM max/SM =74.44N/mm2, or10.8ksi OK Shear stress ,τ = RF max/A web =17.26N/mm2, or 2.5ksi OK。
地质实测剖面计算公式
(°) (m) H=l"² β ' tanβ ' 4.993 0.6086 4.993 0.6086 4.993 0.6521 4.993 0.2174 7.489 1.6928 7.489 0.3906 7.489 1.0417 11.62 2.4009 11.62 1.7149 15.25 0.2492 15.25 3.2398 4.495 0.6266 4.495 0.1175 4.495 1.1357 14.99 2.1974 14.99 4.007 24.02 1.9317 24.02 5.7952 30.3 4.2481 30.3 6.747 22.98 2.7319 22.98 3.9028 22.98 1.9514 30.56 3.9308 30.56 6.2514 30.56 0.2368 25.48 4.7301
年
月
日
第
页
18 视 平 距
②
19 分层 视平 距
20 累计 视平 距 (m) ∑L" 23.71 47.596 71.482 95.368 119.14 142.91 166.68 186.69 206.7 219.5 232.3 256.21 280.12 304.03 327.21 350.38 367.72 385.06 403.88 422.69 442.94 463.19 483.43 501.08 518.72 536.37 546.29
1-2
2-3 3-4 4-5
黑色 炭质板岩 灰白色 石英砂岩 黑色 灰黄色 灰色 黑色 灰色 黑色 红褐色 炭质板岩
5-6 6-7 7-8 8-9
Bp1-10-1 粉砂板岩 变质岩屑砂岩 炭质板岩 变质石英砂岩 炭质板岩 复成分砾岩 Bp1-12-1 Bp1-13-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
78 78 66 66 66 66 46 46 46 86 76 80 80 80 80 80 75 75 71 71 60 60 63 22 67 67 67 55 55 55 79
第 2 页,共 62 页
项目负责:周贤旭
组长:周贤旭
记录人:周贤旭
计算人周贤旭
检查人:周贤旭
日期:2008年11月12日
447.58 466.80 469.26 500.07 508.47 476.73 514.87 545.92 560.47 563.38 611.32 645.60 653.32 667.89 669.60 679.89 681.57 686.61 690.20 710.34 730.81 723.04 703.00 762.79 811.87 817.76 860.95 861.50 839.60 888.75 910.58
5.89 43.19 49.63 30.77 18.86 48.91 3.91 42.06 2.93 49.73 22.87 26.85 49.38 37.86 21.92 15.94 46.03 48.30 49.24 21.67 27.57 49.93 49.93 16.98 32.95 45.55 18.82 26.74 37.79 30.83
10
项目负责:周贤旭
组长:周贤旭
记录人:周贤旭
计算人周贤旭
检查人:周贤旭
日期:2008年11月12日
11
12
13 14 15
16
17
18 19
20
21
340 340 328 328 328 328 311 311 311 348 338 2 2 2 2 2 25 25 25 25 36 36 36 77 32 32 32 44 44 44 20
第 1 页,共 62 页
剖面位置及起点座标:X:4731150; Y:1448 导线方向 分 与走向夹 层 倾角 角 号 31 31 31 31 31 31 45 45 45 39 39 39 39 39 39 39 39 39 39 22 22 22 75 75 75 90 90 90 69 69 69 82 85 85 85 90 88 78 81 81 81 76 78 78 0 1 2 2 3 4 6
352 352 352 352 352 352 355 355 355 352 352 352 352 352 352 352 10 10 6 6 6 6 9 9 9 9 9 9 9 9 9
22 22 22 22 22 22 55 55 55 55 55 55 55 55 55 55 56 56 58 58 58 58 62 62 62 62 62 62 62 62 62
2.99 19.37 19.75 6.77 21.68 30.14 7.60 30.62 30.76 35.37 10.00 33.44 43.19 46.50 48.42 49.81 66.04 78.98 87.66 91.48 96.34 90.28 92.89 93.78 95.51 99.30 96.43 99.27 103.27 99.67
江西省地质勘查开发局赣西北大队 实测地层剖面登记簿 图幅号: 横路幅11-44-42-丁 导 导线方 线 位角 号 1 10 10 10 2 355 355 355 3 350 350 350 4 5 349 352 352 352 6 7 8 9 357 355 9 6 6 6 6 340 340 斜距 水平距m 起 0 0 19 50 50 61 94 94 109 139 179 179 201 229 279 312 352 352 374 376 395 395 止 50.00 19.00 50.00 94.00 61.00 94.00 139.00 109.00 139.00 179.00 229.00 201.00 229.00 279.00 312.00 352.00 395.00 374.00 376.00 395.00 441.00 406.00 48.91 18.58 30.32 43.99 11.00 32.99 40.45 13.48 26.96 38.64 48.91 21.52 27.39 49.38 31.72 37.09 39.28 20.10 1.83 17.36 44.22 10.57 累积平距 m 48.91 67.49 97.81 92.90 103.90 136.89 133.35 146.83 173.79 171.98 220.89 242.41 248.28 270.28 302.00 339.08 378.37 398.46 400.29 417.65 422.58 433.16 剖面编号:AKP10 坡度角± -12 -12 -12 -1 -1 -1 26 26 26 15 12 12 12 -9 -16 -22 -24 -24 -24 -24 -16 -16 高 差 m -10.40 -3.95 -6.45 -0.77 -0.19 -0.58 19.73 6.58 13.15 10.35 10.40 4.57 5.82 -7.82 -9.10 -14.98 -17.49 -8.95 -0.81 -7.73 -12.68 -3.03 累积 高差 m -10.40 -14.35 -20.79 -11.16 -11.36 -11.93 8.56 15.14 28.29 18.92 29.31 33.89 39.71 21.49 12.39 -2.59 -20.08 -29.03 -29.84 -37.57 -32.76 -35.79 820 岩层产状及位置 位置 倾向 m 715 355 355 355 355 355 355 11 11 11 357 357 357 357 357 357 357 357 357 357 352 352 352
14.42 19.23 46.68 30.81 8.40 7.47 45.60 31.05 14.55 48.51 47.93 34.29 7.71 14.57 1.71 10.29 35.97 5.04 3.60 20.14 49.24 36.44 12.80 31.98 49.08 5.89 43.19 49.63 21.84 27.79 49.08
406 421 441 441 474 483 491 491 523 538 588 636 636 645 662 664 676 696 703 708 726 736 773 776 808 818 824 858 868 890 918
421.00 441.00 491.00 474.00 483.00 491.00 538.00 523.00 538.00 588.00 636.00 676.00 645.00 662.00 664.00 676.00 726.00 703.00 708.00 736.00 776.00 773.00 786.00 808.00 858.00 824.00 868.00 908.00 890.00 918.00 968.00
检查人:周贤旭
日期:2008年11月12日
34 35
36 37 38
39 40
18 50 28 28 28 35 56 0 0 0 0 8 10 10 10
1533 1540 1590 1590 1608 1640 1690 1736 1736 1743 1758 1786 1836 1836 1847
-39.93 -45.44 -50.68 -62.50 -65.73 -53.54 -62.05 -69.79 -73.42 -74.14 -76.66 -56.05 -51.42 -42.66 -41.63 -35.45 -21.32 -16.46 -12.99 6.46 -12.64 -10.03 -10.73 -11.52 -1.98 -0.84 7.56 4.11 1.84 10.97 13.65
845.49 931.94 960.21 876.26 950.80 1009.12 880.17 992.86 1012.05 1058.84 903.04 1019.71 1108.23 1146.08 1168.00 1183.94 1192.11 1240.40 1289.64 1311.31 1338.88 1339.58 1389.51 1406.48 1439.44 1435.06 1425.30 1466.18 1472.85 1456.13
22
23
20 20 25 25 25 0 0 0 0 12 12 12 6 27 27 27 354 340 340 340 340 358 336 336 336 340 340 340 18 18
918 924 968 968 999 1018 1018 1022 1065 1068 1068 1091 1118 1168 1168 1190 1206 1256 1306 1306 1328 1356 1406 1406 1423 1456 1456 1475 1502 1502
1540.00 1590.00 1640.00 1608.00 1640.00 1690.00 1736.00 1786.00 1743.00 1758.00 1786.00 1836.00 1886.00 1847.00 1886.00
6.96 49.63 49.93 17.98 31.96 49.88 45.82 49.63 6.95 14.89 27.79 49.38 49.08 10.80 38.28
79 71 66 66 66 89 89 89 89 79 79 74 80 59 59 59 88 60 74 74 74 88 74 74 74 78 78 78 64 64
第 3 页,共 62 页
24
ห้องสมุดไป่ตู้
25 26
27 28 29
30 31