Static black holes in scalar tensor gravity

合集下载

tensor toolbox使用手册

tensor toolbox使用手册

tensor toolbox使用手册摘要:1.引言2.tc4 钛合金的磁导率3.tc4 钛合金的介电常数4.相对磁导率和介电常数的关系5.结论正文:1.引言tc4 钛合金是一种高强度、低密度的金属材料,被广泛应用于航空航天、医疗和工业等领域。

了解tc4 钛合金的磁导率和介电常数对于研究其在电磁场中的行为至关重要。

本文将探讨tc4 钛合金的相对磁导率和介电常数,并分析它们之间的关系。

2.tc4 钛合金的磁导率磁导率是材料对磁场的响应能力,它描述了材料内部磁场线的分布情况。

tc4 钛合金的磁导率较低,这意味着它在磁场中的磁化程度较小。

由于tc4 钛合金是非磁性材料,其磁导率接近于真空磁导率。

3.tc4 钛合金的介电常数介电常数是材料对电场的响应能力,它描述了材料内部电场线的分布情况。

tc4 钛合金的介电常数较高,这意味着它在电场中的极化程度较大。

由于tc4 钛合金是非磁性材料,其介电常数主要取决于其电介质特性。

4.相对磁导率和介电常数的关系相对磁导率和介电常数是材料在电磁场中的两个重要参数,它们之间存在一定的关系。

相对磁导率和相对介电常数的定义分别为:相对磁导率= 介质磁导率/ 真空磁导率相对介电常数= 介质的介电常数/ 真空介电常数可以看出,相对磁导率和相对介电常数都是与真空磁导率和真空介电常数相比较的。

由于真空磁导率和真空介电常数都是常数,因此相对磁导率和相对介电常数主要反映了材料在电磁场中的特性。

5.结论tc4 钛合金是一种具有较高介电常数和较低磁导率的非磁性材料。

在电磁场中,tc4 钛合金的相对磁导率和相对介电常数可以反映其对电磁场的响应能力。

一种黑片图像亚像素边缘检测方法

一种黑片图像亚像素边缘检测方法

一种黑片图像亚像素边缘检测方法
罗敏;王琰
【期刊名称】《沈阳理工大学学报》
【年(卷),期】2010(029)002
【摘要】为了提高黑片图像边缘检测的精度,提出了利用亚像素边缘检测技术来检测黑片图像的边缘.针对Zernike矩的亚像素边缘检测算法存在计算量大和边缘定位精度低等不足,利用Sobel算子对图像进行像素级边缘提取,然后利用改进的Zernike矩算子来检测黑片图像的亚像素边缘,为了防止Sobel算子遗漏可能的亚像素点,增加了一个搜索算法来提高检测的精度.实验结果表明,该方法测量精度高,定位精确,能够应用于黑片的在线检测.
【总页数】5页(P77-81)
【作者】罗敏;王琰
【作者单位】沈阳理工大学信息科学与工程学院,辽宁,沈阳,110159;沈阳理工大学信息科学与工程学院,辽宁,沈阳,110159
【正文语种】中文
【中图分类】TN911
【相关文献】
1.一种无衍射激光图像亚像素边缘检测方法 [J], 常治学;王培昌;逢凌滨
2.基于Zernike矩的黑片图像亚像素边缘检测 [J], 罗敏;王琰
3.基于Zernike矩的黑片图像亚像素边缘检测 [J], 罗敏;王琰
4.基于Sobel黑片图像亚像素边缘检测算法研究 [J], 吕春峰;任全会
5.一种Sobel黑片图像亚像素边缘检测 [J], 黄德斌;王琰
因版权原因,仅展示原文概要,查看原文内容请购买。

人工智能核函数例题

人工智能核函数例题

人工智能核函数例题
人工智能中的核函数是一种用于支持向量机(SVM)和其他机器
学习算法的工具。

核函数可以把输入数据映射到高维空间,从而使
得原本在低维空间中线性不可分的数据在高维空间中变得线性可分。

这样一来,我们就可以使用线性分类器来处理这些数据。

举个例子,假设我们有一组二维数据点,它们在二维平面上是
线性不可分的。

但是,如果我们使用一个二次多项式核函数,它可
以将这些二维数据点映射到三维空间中,使得它们在三维空间中变
得线性可分。

这样一来,我们就可以使用一个平面来分隔这些数据点,实现了在原始的二维空间中无法实现的分类。

另一个常见的核函数是高斯核函数(也称为径向基函数)。


个核函数可以将数据映射到无限维的特征空间中,从而可以处理非
线性可分的数据。

除了上述的例子之外,核函数还可以是多项式核函数、字符串
核函数等等。

它们在不同的机器学习问题中发挥着重要的作用,能
够帮助算法更好地处理复杂的数据集。

总之,核函数在人工智能中扮演着至关重要的角色,它们可以
帮助我们处理线性不可分的数据,拓展了机器学习算法的应用范围。

通过合理选择和使用核函数,我们可以更好地解决各种复杂的实际
问题。

AdsCft在凝聚态中应用简介

AdsCft在凝聚态中应用简介

Why AdS/CMT ?
• Understand strongly coupled quantum many body systems is difficult.
(Non-fermion liquid, High T SC, interplay between disorder and interaction, metal/insulator phase transition)
The Duality Dictionary
Finite Temperature
Gauge/Gravity Duality as a LAB
Black hole full of answers (Nature 448, 1000-1001 (30 August 2007))
Some Applications
Another example: Area laws for the entanglement entropy - a review,J. Eisert, M. Cramer, M.B. Plenio, arXiv:0808.3773
Ancient thoughts源自• 天地万物莫大于秋毫。《庄子》 • 一花一世界。 •
• What is AdS/CFT?
Applied AdS/CFT
• How it works? • Two typical examples of AdS/CMT • Conclusion and future
What is Gauge/Gravity duality and the position of it
The Conclusion Of Gauge/Gravity (AdS/CFT) Duality Maldacena 1997

黑洞的准正模式(quasinormal modes)

黑洞的准正模式(quasinormal modes)

Quasi-Normal Modes of Stars and Black HolesKostas D.KokkotasDepartment of Physics,Aristotle University of Thessaloniki,Thessaloniki54006,Greece.kokkotas@astro.auth.grhttp://www.astro.auth.gr/˜kokkotasandBernd G.SchmidtMax Planck Institute for Gravitational Physics,Albert Einstein Institute,D-14476Golm,Germany.bernd@aei-potsdam.mpg.dePublished16September1999/Articles/Volume2/1999-2kokkotasLiving Reviews in RelativityPublished by the Max Planck Institute for Gravitational PhysicsAlbert Einstein Institute,GermanyAbstractPerturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades.They are of partic-ular importance today,because of their relevance to gravitational waveastronomy.In this review we present the theory of quasi-normal modes ofcompact objects from both the mathematical and astrophysical points ofview.The discussion includes perturbations of black holes(Schwarzschild,Reissner-Nordstr¨o m,Kerr and Kerr-Newman)and relativistic stars(non-rotating and slowly-rotating).The properties of the various families ofquasi-normal modes are described,and numerical techniques for calculat-ing quasi-normal modes reviewed.The successes,as well as the limits,of perturbation theory are presented,and its role in the emerging era ofnumerical relativity and supercomputers is discussed.c 1999Max-Planck-Gesellschaft and the authors.Further information on copyright is given at /Info/Copyright/.For permission to reproduce the article please contact livrev@aei-potsdam.mpg.de.Article AmendmentsOn author request a Living Reviews article can be amended to include errata and small additions to ensure that the most accurate and up-to-date infor-mation possible is provided.For detailed documentation of amendments, please go to the article’s online version at/Articles/Volume2/1999-2kokkotas/. Owing to the fact that a Living Reviews article can evolve over time,we recommend to cite the article as follows:Kokkotas,K.D.,and Schmidt,B.G.,“Quasi-Normal Modes of Stars and Black Holes”,Living Rev.Relativity,2,(1999),2.[Online Article]:cited on<date>, /Articles/Volume2/1999-2kokkotas/. The date in’cited on<date>’then uniquely identifies the version of the article you are referring to.3Quasi-Normal Modes of Stars and Black HolesContents1Introduction4 2Normal Modes–Quasi-Normal Modes–Resonances7 3Quasi-Normal Modes of Black Holes123.1Schwarzschild Black Holes (12)3.2Kerr Black Holes (17)3.3Stability and Completeness of Quasi-Normal Modes (20)4Quasi-Normal Modes of Relativistic Stars234.1Stellar Pulsations:The Theoretical Minimum (23)4.2Mode Analysis (26)4.2.1Families of Fluid Modes (26)4.2.2Families of Spacetime or w-Modes (30)4.3Stability (31)5Excitation and Detection of QNMs325.1Studies of Black Hole QNM Excitation (33)5.2Studies of Stellar QNM Excitation (34)5.3Detection of the QNM Ringing (37)5.4Parameter Estimation (39)6Numerical Techniques426.1Black Holes (42)6.1.1Evolving the Time Dependent Wave Equation (42)6.1.2Integration of the Time Independent Wave Equation (43)6.1.3WKB Methods (44)6.1.4The Method of Continued Fractions (44)6.2Relativistic Stars (45)7Where Are We Going?487.1Synergism Between Perturbation Theory and Numerical Relativity487.2Second Order Perturbations (48)7.3Mode Calculations (49)7.4The Detectors (49)8Acknowledgments50 9Appendix:Schr¨o dinger Equation Versus Wave Equation51Living Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt41IntroductionHelioseismology and asteroseismology are well known terms in classical astro-physics.From the beginning of the century the variability of Cepheids has been used for the accurate measurement of cosmic distances,while the variability of a number of stellar objects(RR Lyrae,Mira)has been associated with stel-lar oscillations.Observations of solar oscillations(with thousands of nonradial modes)have also revealed a wealth of information about the internal structure of the Sun[204].Practically every stellar object oscillates radially or nonradi-ally,and although there is great difficulty in observing such oscillations there are already results for various types of stars(O,B,...).All these types of pulsations of normal main sequence stars can be studied via Newtonian theory and they are of no importance for the forthcoming era of gravitational wave astronomy.The gravitational waves emitted by these stars are extremely weak and have very low frequencies(cf.for a discussion of the sun[70],and an im-portant new measurement of the sun’s quadrupole moment and its application in the measurement of the anomalous precession of Mercury’s perihelion[163]). This is not the case when we consider very compact stellar objects i.e.neutron stars and black holes.Their oscillations,produced mainly during the formation phase,can be strong enough to be detected by the gravitational wave detectors (LIGO,VIRGO,GEO600,SPHERE)which are under construction.In the framework of general relativity(GR)quasi-normal modes(QNM) arise,as perturbations(electromagnetic or gravitational)of stellar or black hole spacetimes.Due to the emission of gravitational waves there are no normal mode oscillations but instead the frequencies become“quasi-normal”(complex), with the real part representing the actual frequency of the oscillation and the imaginary part representing the damping.In this review we shall discuss the oscillations of neutron stars and black holes.The natural way to study these oscillations is by considering the linearized Einstein equations.Nevertheless,there has been recent work on nonlinear black hole perturbations[101,102,103,104,100]while,as yet nothing is known for nonlinear stellar oscillations in general relativity.The study of black hole perturbations was initiated by the pioneering work of Regge and Wheeler[173]in the late50s and was continued by Zerilli[212]. The perturbations of relativistic stars in GR werefirst studied in the late60s by Kip Thorne and his collaborators[202,198,199,200].The initial aim of Regge and Wheeler was to study the stability of a black hole to small perturbations and they did not try to connect these perturbations to astrophysics.In con-trast,for the case of relativistic stars,Thorne’s aim was to extend the known properties of Newtonian oscillation theory to general relativity,and to estimate the frequencies and the energy radiated as gravitational waves.QNMs werefirst pointed out by Vishveshwara[207]in calculations of the scattering of gravitational waves by a Schwarzschild black hole,while Press[164] coined the term quasi-normal frequencies.QNM oscillations have been found in perturbation calculations of particles falling into Schwarzschild[73]and Kerr black holes[76,80]and in the collapse of a star to form a black hole[66,67,68]. Living Reviews in Relativity(1999-2)5Quasi-Normal Modes of Stars and Black Holes Numerical investigations of the fully nonlinear equations of general relativity have provided results which agree with the results of perturbation calculations;in particular numerical studies of the head-on collision of two black holes [30,29](cf.Figure 1)and gravitational collapse to a Kerr hole [191].Recently,Price,Pullin and collaborators [170,31,101,28]have pushed forward the agreement between full nonlinear numerical results and results from perturbation theory for the collision of two black holes.This proves the power of the perturbation approach even in highly nonlinear problems while at the same time indicating its limits.In the concluding remarks of their pioneering paper on nonradial oscillations of neutron stars Thorne and Campollataro [202]described it as “just a modest introduction to a story which promises to be long,complicated and fascinating ”.The story has undoubtedly proved to be intriguing,and many authors have contributed to our present understanding of the pulsations of both black holes and neutron stars.Thirty years after these prophetic words by Thorne and Campollataro hundreds of papers have been written in an attempt to understand the stability,the characteristic frequencies and the mechanisms of excitation of these oscillations.Their relevance to the emission of gravitational waves was always the basic underlying reason of each study.An account of all this work will be attempted in the next sections hoping that the interested reader will find this review useful both as a guide to the literature and as an inspiration for future work on the open problems of the field.020406080100Time (M ADM )-0.3-0.2-0.10.00.10.20.3(l =2) Z e r i l l i F u n c t i o n Numerical solutionQNM fit Figure 1:QNM ringing after the head-on collision of two unequal mass black holes [29].The continuous line corresponds to the full nonlinear numerical calculation while the dotted line is a fit to the fundamental and first overtone QNM.In the next section we attempt to give a mathematical definition of QNMs.Living Reviews in Relativity (1999-2)K.D.Kokkotas and B.G.Schmidt6 The third and fourth section will be devoted to the study of the black hole and stellar QNMs.In thefifth section we discuss the excitation and observation of QNMs andfinally in the sixth section we will mention the more significant numerical techniques used in the study of QNMs.Living Reviews in Relativity(1999-2)7Quasi-Normal Modes of Stars and Black Holes 2Normal Modes–Quasi-Normal Modes–Res-onancesBefore discussing quasi-normal modes it is useful to remember what normal modes are!Compact classical linear oscillating systems such asfinite strings,mem-branes,or cavitiesfilled with electromagnetic radiation have preferred time harmonic states of motion(ωis real):χn(t,x)=e iωn tχn(x),n=1,2,3...,(1) if dissipation is neglected.(We assumeχto be some complex valuedfield.) There is generally an infinite collection of such periodic solutions,and the“gen-eral solution”can be expressed as a superposition,χ(t,x)=∞n=1a n e iωn tχn(x),(2)of such normal modes.The simplest example is a string of length L which isfixed at its ends.All such systems can be described by systems of partial differential equations of the type(χmay be a vector)∂χ∂t=Aχ,(3)where A is a linear operator acting only on the spatial variables.Because of thefiniteness of the system the time evolution is only determined if some boundary conditions are prescribed.The search for solutions periodic in time leads to a boundary value problem in the spatial variables.In simple cases it is of the Sturm-Liouville type.The treatment of such boundary value problems for differential equations played an important role in the development of Hilbert space techniques.A Hilbert space is chosen such that the differential operator becomes sym-metric.Due to the boundary conditions dictated by the physical problem,A becomes a self-adjoint operator on the appropriate Hilbert space and has a pure point spectrum.The eigenfunctions and eigenvalues determine the periodic solutions(1).The definition of self-adjointness is rather subtle from a physicist’s point of view since fairly complicated“domain issues”play an essential role.(See[43] where a mathematical exposition for physicists is given.)The wave equation modeling thefinite string has solutions of various degrees of differentiability. To describe all“realistic situations”,clearly C∞functions should be sufficient. Sometimes it may,however,also be convenient to consider more general solu-tions.From the mathematical point of view the collection of all smooth functions is not a natural setting to study the wave equation because sequences of solutionsLiving Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt8 exist which converge to non-smooth solutions.To establish such powerful state-ments like(2)one has to study the equation on certain subsets of the Hilbert space of square integrable functions.For“nice”equations it usually happens that the eigenfunctions are in fact analytic.They can then be used to gen-erate,for example,all smooth solutions by a pointwise converging series(2). The key point is that we need some mathematical sophistication to obtain the “completeness property”of the eigenfunctions.This picture of“normal modes”changes when we consider“open systems”which can lose energy to infinity.The simplest case are waves on an infinite string.The general solution of this problem isχ(t,x)=A(t−x)+B(t+x)(4) with“arbitrary”functions A and B.Which solutions should we study?Since we have all solutions,this is not a serious question.In more general cases, however,in which the general solution is not known,we have to select a certain class of solutions which we consider as relevant for the physical problem.Let us consider for the following discussion,as an example,a wave equation with a potential on the real line,∂2∂t2χ+ −∂2∂x2+V(x)χ=0.(5)Cauchy dataχ(0,x),∂tχ(0,x)which have two derivatives determine a unique twice differentiable solution.No boundary condition is needed at infinity to determine the time evolution of the data!This can be established by fairly simple PDE theory[116].There exist solutions for which the support of thefields are spatially compact, or–the other extreme–solutions with infinite total energy for which thefields grow at spatial infinity in a quite arbitrary way!From the point of view of physics smooth solutions with spatially compact support should be the relevant class–who cares what happens near infinity! Again it turns out that mathematically it is more convenient to study all solu-tions offinite total energy.Then the relevant operator is again self-adjoint,but now its spectrum is purely“continuous”.There are no eigenfunctions which are square integrable.Only“improper eigenfunctions”like plane waves exist.This expresses the fact that wefind a solution of the form(1)for any realωand by forming appropriate superpositions one can construct solutions which are “almost eigenfunctions”.(In the case V(x)≡0these are wave packets formed from plane waves.)These solutions are the analogs of normal modes for infinite systems.Let us now turn to the discussion of“quasi-normal modes”which are concep-tually different to normal modes.To define quasi-normal modes let us consider the wave equation(5)for potentials with V≥0which vanish for|x|>x0.Then in this case all solutions determined by data of compact support are bounded: |χ(t,x)|<C.We can use Laplace transformation techniques to represent such Living Reviews in Relativity(1999-2)9Quasi-Normal Modes of Stars and Black Holes solutions.The Laplace transformˆχ(s,x)(s>0real)of a solutionχ(t,x)isˆχ(s,x)= ∞0e−stχ(t,x)dt,(6) and satisfies the ordinary differential equations2ˆχ−ˆχ +Vˆχ=+sχ(0,x)+∂tχ(0,x),(7) wheres2ˆχ−ˆχ +Vˆχ=0(8) is the homogeneous equation.The boundedness ofχimplies thatˆχis analytic for positive,real s,and has an analytic continuation onto the complex half plane Re(s)>0.Which solutionˆχof this inhomogeneous equation gives the unique solution in spacetime determined by the data?There is no arbitrariness;only one of the Green functions for the inhomogeneous equation is correct!All Green functions can be constructed by the following well known method. Choose any two linearly independent solutions of the homogeneous equation f−(s,x)and f+(s,x),and defineG(s,x,x )=1W(s)f−(s,x )f+(s,x)(x <x),f−(s,x)f+(s,x )(x >x),(9)where W(s)is the Wronskian of f−and f+.If we denote the inhomogeneity of(7)by j,a solution of(7)isˆχ(s,x)= ∞−∞G(s,x,x )j(s,x )dx .(10) We still have to select a unique pair of solutions f−,f+.Here the information that the solution in spacetime is bounded can be used.The definition of the Laplace transform implies thatˆχis bounded as a function of x.Because the potential V vanishes for|x|>x0,the solutions of the homogeneous equation(8) for|x|>x0aref=e±sx.(11) The following pair of solutionsf+=e−sx for x>x0,f−=e+sx for x<−x0,(12) which is linearly independent for Re(s)>0,gives the unique Green function which defines a bounded solution for j of compact support.Note that for Re(s)>0the solution f+is exponentially decaying for large x and f−is expo-nentially decaying for small x.For small x however,f+will be a linear com-bination a(s)e−sx+b(s)e sx which will in general grow exponentially.Similar behavior is found for f−.Living Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt 10Quasi-Normal mode frequencies s n can be defined as those complex numbers for whichf +(s n ,x )=c (s n )f −(s n ,x ),(13)that is the two functions become linearly dependent,the Wronskian vanishes and the Green function is singular!The corresponding solutions f +(s n ,x )are called quasi eigenfunctions.Are there such numbers s n ?From the boundedness of the solution in space-time we know that the unique Green function must exist for Re (s )>0.Hence f +,f −are linearly independent for those values of s .However,as solutions f +,f −of the homogeneous equation (8)they have a unique continuation to the complex s plane.In [35]it is shown that for positive potentials with compact support there is always a countable number of zeros of the Wronskian with Re (s )<0.What is the mathematical and physical significance of the quasi-normal fre-quencies s n and the corresponding quasi-normal functions f +?First of all we should note that because of Re (s )<0the function f +grows exponentially for small and large x !The corresponding spacetime solution e s n t f +(s n ,x )is therefore not a physically relevant solution,unlike the normal modes.If one studies the inverse Laplace transformation and expresses χas a com-plex line integral (a >0),χ(t,x )=12πi +∞−∞e (a +is )t ˆχ(a +is,x )ds,(14)one can deform the path of the complex integration and show that the late time behavior of solutions can be approximated in finite parts of the space by a finite sum of the form χ(t,x )∼N n =1a n e (αn +iβn )t f +(s n ,x ).(15)Here we assume that Re (s n +1)<Re (s n )<0,s n =αn +iβn .The approxi-mation ∼means that if we choose x 0,x 1, and t 0then there exists a constant C (t 0,x 0,x 1, )such that χ(t,x )−N n =1a n e (αn +iβn )t f +(s n ,x ) ≤Ce (−|αN +1|+ )t (16)holds for t >t 0,x 0<x <x 1, >0with C (t 0,x 0,x 1, )independent of t .The constants a n depend only on the data [35]!This implies in particular that all solutions defined by data of compact support decay exponentially in time on spatially bounded regions.The generic leading order decay is determined by the quasi-normal mode frequency with the largest real part s 1,i.e.slowest damping.On finite intervals and for late times the solution is approximated by a finite sum of quasi eigenfunctions (15).It is presently unclear whether one can strengthen (16)to a statement like (2),a pointwise expansion of the late time solution in terms of quasi-normal Living Reviews in Relativity (1999-2)11Quasi-Normal Modes of Stars and Black Holes modes.For one particular potential(P¨o schl-Teller)this has been shown by Beyer[42].Let us now consider the case where the potential is positive for all x,but decays near infinity as happens for example for the wave equation on the static Schwarzschild spacetime.Data of compact support determine again solutions which are bounded[117].Hence we can proceed as before.Thefirst new point concerns the definitions of f±.It can be shown that the homogeneous equation(8)has for each real positive s a unique solution f+(s,x)such that lim x→∞(e sx f+(s,x))=1holds and correspondingly for f−.These functions are uniquely determined,define the correct Green function and have analytic continuations onto the complex half plane Re(s)>0.It is however quite complicated to get a good representation of these func-tions.If the point at infinity is not a regular singular point,we do not even get converging series expansions for f±.(This is particularly serious for values of s with negative real part because we expect exponential growth in x).The next new feature is that the analyticity properties of f±in the complex s plane depend on the decay of the potential.To obtain information about analytic continuation,even use of analyticity properties of the potential in x is made!Branch cuts may occur.Nevertheless in a lot of cases an infinite number of quasi-normal mode frequencies exists.The fact that the potential never vanishes may,however,destroy the expo-nential decay in time of the solutions and therefore the essential properties of the quasi-normal modes.This probably happens if the potential decays slower than exponentially.There is,however,the following way out:Suppose you want to study a solution determined by data of compact support from t=0to some largefinite time t=T.Up to this time the solution is–because of domain of dependence properties–completely independent of the potential for sufficiently large x.Hence we may see an exponential decay of the form(15)in a time range t1<t<T.This is the behavior seen in numerical calculations.The situation is similar in the case ofα-decay in quantum mechanics.A comparison of quasi-normal modes of wave equations and resonances in quantum theory can be found in the appendix,see section9.Living Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt123Quasi-Normal Modes of Black HolesOne of the most interesting aspects of gravitational wave detection will be the connection with the existence of black holes[201].Although there are presently several indirect ways of identifying black holes in the universe,gravitational waves emitted by an oscillating black hole will carry a uniquefingerprint which would lead to the direct identification of their existence.As we mentioned earlier,gravitational radiation from black hole oscillations exhibits certain characteristic frequencies which are independent of the pro-cesses giving rise to these oscillations.These“quasi-normal”frequencies are directly connected to the parameters of the black hole(mass,charge and angu-lar momentum)and for stellar mass black holes are expected to be inside the bandwidth of the constructed gravitational wave detectors.The perturbations of a Schwarzschild black hole reduce to a simple wave equation which has been studied extensively.The wave equation for the case of a Reissner-Nordstr¨o m black hole is more or less similar to the Schwarzschild case,but for Kerr one has to solve a system of coupled wave equations(one for the radial part and one for the angular part).For this reason the Kerr case has been studied less thoroughly.Finally,in the case of Kerr-Newman black holes we face the problem that the perturbations cannot be separated in their angular and radial parts and thus apart from special cases[124]the problem has not been studied at all.3.1Schwarzschild Black HolesThe study of perturbations of Schwarzschild black holes assumes a small per-turbation hµνon a static spherically symmetric background metricds2=g0µνdxµdxν=−e v(r)dt2+eλ(r)dr2+r2 dθ2+sin2θdφ2 ,(17) with the perturbed metric having the formgµν=g0µν+hµν,(18) which leads to a variation of the Einstein equations i.e.δGµν=4πδTµν.(19) By assuming a decomposition into tensor spherical harmonics for each hµνof the formχ(t,r,θ,φ)= mχ m(r,t)r Y m(θ,φ),(20)the perturbation problem is reduced to a single wave equation,for the func-tionχ m(r,t)(which is a combination of the various components of hµν).It should be pointed out that equation(20)is an expansion for scalar quantities only.From the10independent components of the hµνonly h tt,h tr,and h rr transform as scalars under rotations.The h tθ,h tφ,h rθ,and h rφtransform asLiving Reviews in Relativity(1999-2)13Quasi-Normal Modes of Stars and Black Holes components of two-vectors under rotations and can be expanded in a series of vector spherical harmonics while the components hθθ,hθφ,and hφφtransform as components of a2×2tensor and can be expanded in a series of tensor spher-ical harmonics(see[202,212,152]for details).There are two classes of vector spherical harmonics(polar and axial)which are build out of combinations of the Levi-Civita volume form and the gradient operator acting on the scalar spherical harmonics.The difference between the two families is their parity. Under the parity operatorπa spherical harmonic with index transforms as (−1) ,the polar class of perturbations transform under parity in the same way, as(−1) ,and the axial perturbations as(−1) +11.Finally,since we are dealing with spherically symmetric spacetimes the solution will be independent of m, thus this subscript can be omitted.The radial component of a perturbation outside the event horizon satisfies the following wave equation,∂2∂t χ + −∂2∂r∗+V (r)χ =0,(21)where r∗is the“tortoise”radial coordinate defined byr∗=r+2M log(r/2M−1),(22) and M is the mass of the black hole.For“axial”perturbationsV (r)= 1−2M r ( +1)r+2σMr(23)is the effective potential or(as it is known in the literature)Regge-Wheeler potential[173],which is a single potential barrier with a peak around r=3M, which is the location of the unstable photon orbit.The form(23)is true even if we consider scalar or electromagnetic testfields as perturbations.The parameter σtakes the values1for scalar perturbations,0for electromagnetic perturbations, and−3for gravitational perturbations and can be expressed asσ=1−s2,where s=0,1,2is the spin of the perturbingfield.For“polar”perturbations the effective potential was derived by Zerilli[212]and has the form V (r)= 1−2M r 2n2(n+1)r3+6n2Mr2+18nM2r+18M3r3(nr+3M)2,(24)1In the literature the polar perturbations are also called even-parity because they are characterized by their behavior under parity operations as discussed earlier,and in the same way the axial perturbations are called odd-parity.We will stick to the polar/axial terminology since there is a confusion with the definition of the parity operation,the reason is that to most people,the words“even”and“odd”imply that a mode transforms underπas(−1)2n or(−1)2n+1respectively(for n some integer).However only the polar modes with even have even parity and only axial modes with even have odd parity.If is odd,then polar modes have odd parity and axial modes have even parity.Another terminology is to call the polar perturbations spheroidal and the axial ones toroidal.This definition is coming from the study of stellar pulsations in Newtonian theory and represents the type offluid motions that each type of perturbation induces.Since we are dealing both with stars and black holes we will stick to the polar/axial terminology.Living Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt14where2n=( −1)( +2).(25) Chandrasekhar[54]has shown that one can transform the equation(21)for “axial”modes to the corresponding one for“polar”modes via a transforma-tion involving differential operations.It can also be shown that both forms are connected to the Bardeen-Press[38]perturbation equation derived via the Newman-Penrose formalism.The potential V (r∗)decays exponentially near the horizon,r∗→−∞,and as r−2∗for r∗→+∞.From the form of equation(21)it is evident that the study of black hole perturbations will follow the footsteps of the theory outlined in section2.Kay and Wald[117]have shown that solutions with data of compact sup-port are bounded.Hence we know that the time independent Green function G(s,r∗,r ∗)is analytic for Re(s)>0.The essential difficulty is now to obtain the solutions f±(cf.equation(10))of the equations2ˆχ−ˆχ +Vˆχ=0,(26) (prime denotes differentiation with respect to r∗)which satisfy for real,positives:f+∼e−sr∗for r∗→∞,f−∼e+r∗x for r∗→−∞.(27) To determine the quasi-normal modes we need the analytic continuations of these functions.As the horizon(r∗→∞)is a regular singular point of(26),a representation of f−(r∗,s)as a converging series exists.For M=12it reads:f−(r,s)=(r−1)s∞n=0a n(s)(r−1)n.(28)The series converges for all complex s and|r−1|<1[162].(The analytic extension of f−is investigated in[115].)The result is that f−has an extension to the complex s plane with poles only at negative real integers.The representation of f+is more complicated:Because infinity is a singular point no power series expansion like(28)exists.A representation coming from the iteration of the defining integral equation is given by Jensen and Candelas[115],see also[159]. It turns out that the continuation of f+has a branch cut Re(s)≤0due to the decay r−2for large r[115].The most extensive mathematical investigation of quasi-normal modes of the Schwarzschild solution is contained in the paper by Bachelot and Motet-Bachelot[35].Here the existence of an infinite number of quasi-normal modes is demonstrated.Truncating the potential(23)to make it of compact support leads to the estimate(16).The decay of solutions in time is not exponential because of the weak decay of the potential for large r.At late times,the quasi-normal oscillations are swamped by the radiative tail[166,167].This tail radiation is of interest in its Living Reviews in Relativity(1999-2)。

NVIDIA Tensor Core深度学习核心解析及跑分测试

NVIDIA Tensor Core深度学习核心解析及跑分测试

NVIDIA Tensor Core深度学习核心解析及跑分测试核心解析不久前,NVIDIA在SIGGRAPH 2018上正式发布了新一代GPU架构——Turing(图灵),黄仁勋称Turing架构是自2006年CUDA GPU发明以来最大的飞跃。

Turing架构的两大重要特性便是集成了用于光线追踪的RT Core以及用于AI计算的Tensor Core,使其成为了全球首款支持实时光线追踪的GPU。

不过说到AI计算,NVIDIA GPU成为最好的加速器早已是公认的事实,但将Tensor Core 印上GPU名片的并不是这次的Turing,而是他的上任前辈——V olta。

基于V olta架构的Titan V是NVIDIA在计算领域成就的集大成者。

深度学习和神经网络已成为NVIDIA GPU的背后驱动力,作为最先进的计算加速器,它集成了用于机器学习操作的内置硬件和软件加速,深度学习能力完全可以被当做Titan V和V olta的名片。

Titan V与初代基于开普勒的GeForce GTX Titan已经相去甚远,初代Titan的定位是一款万能显卡,既可作为游戏发烧友的旗舰游戏显卡,也为专业消费者提供全双精度浮点(FP64)计算能力。

在Titan V诞生之前,Titan产品线几乎都是基于这种设计方法,一颗巨大的GPU核心是NVIDIA“高大全”设计思路的最好代表。

而在Titan V上,NVIDIA再次扩展了大核心的上限。

V olta最引人注目的则是其全新的专用处理模块——Tensor Core(张量计算核心),它与V olta的其他微架构改进,以及支持深度学习和高性能计算(HPC)的软件/框架集成在一起。

凭借面积达815mm?的巨大GV100核心,Titan这一产品线变得比以往任何时候都更接近工作站级,Titan V在拥有世界最强图形渲染性能的同时,深度学习和高性能计算方面的性能都有了极大的提升,当然它的价格也达到了工作站级的3000美元。

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。

着色器编程用到的数学知识

着色器编程用到的数学知识

着色器编程用到的数学知识着色器编程是一种在计算机图形学中广泛应用的技术,它通过对图像的像素进行处理和着色,实现了各种视觉效果。

在着色器编程中,数学知识起到了重要的作用,它帮助我们理解和实现各种图形变换、光照模型、材质属性等效果。

本文将从几个重要的数学知识点出发,介绍在着色器编程中常用的数学概念和应用。

1. 向量与矩阵运算:向量是着色器编程中最常用的数据类型之一。

向量可以表示位置、方向、颜色等概念。

通过向量运算,我们可以进行图形的平移、旋转、缩放等变换操作。

矩阵则是向量运算的基础,通过矩阵乘法,我们可以将多个变换操作组合在一起,实现复杂的图形变换。

2. 线性代数:线性代数是着色器编程中不可或缺的数学基础。

它包括向量空间、矩阵理论、线性变换等内容。

在着色器编程中,我们常常需要通过线性代数的知识来计算光照效果、投影变换等。

例如,在实现光照模型时,我们需要计算表面法线与光线方向的夹角,通过向量内积可以得到它们的余弦值,从而计算出光照的强度。

3. 三角函数:三角函数是着色器编程中常用的数学工具,它可以帮助我们计算角度、距离、周期性等问题。

在图形学中,我们常常需要通过三角函数来计算旋转角度、计算点与线段之间的距离等。

例如,在实现粒子系统时,我们可以通过正弦函数来控制粒子的运动轨迹,使得粒子具有流畅的动画效果。

4. 插值与插值函数:在着色器编程中,插值是一个重要的概念。

它可以帮助我们平滑地进行颜色、纹理等属性的过渡。

在图形渲染中,我们常常需要在三角形的顶点上指定颜色或纹理坐标,然后通过插值计算出三角形内部每个像素的颜色或纹理坐标。

插值函数可以帮助我们实现这一过程,常用的插值函数有线性插值和双线性插值。

5. 坐标系与变换:在着色器编程中,我们需要理解不同坐标系之间的关系,并进行相应的坐标变换。

常见的坐标系有世界坐标系、观察坐标系、裁剪坐标系和屏幕坐标系。

通过坐标变换,我们可以将物体从世界坐标系转换到屏幕坐标系,实现物体的投影和渲染。

shader 实现雷达扫描的数学知识

shader 实现雷达扫描的数学知识

shader 实现雷达扫描的数学知识雷达扫描是一种常见的无线电波技术,用于检测和追踪目标物体。

在雷达扫描中,数学知识在shader实现中起着重要的作用。

本文将介绍一些与雷达扫描相关的数学知识,并讨论如何在shader中实现雷达扫描效果。

我们需要了解雷达扫描的原理。

雷达通过发射脉冲信号,并接收目标物体反射回来的信号来确定目标物体的位置。

在雷达扫描中,我们通常使用极坐标系来描述目标物体的位置。

极坐标系由极径和极角两个参数组成,其中极径表示目标物体与雷达的距离,极角表示目标物体相对于雷达的角度。

在shader中实现雷达扫描效果时,我们需要根据目标物体与雷达之间的距离和角度来确定像素的颜色。

为了实现这一点,我们可以使用以下数学知识:1. 极坐标转换:将笛卡尔坐标系转换为极坐标系。

在shader中,我们可以使用以下公式进行转换:极径 = sqrt(像素x^2 + 像素y^2)极角 = atan2(像素y, 像素x)2. 扇形区域判断:雷达扫描通常是以雷达为中心的扇形区域。

在shader中,我们可以使用以下公式判断像素是否在扇形区域内:如果极径在一定范围内,并且极角在一定角度范围内,则像素在扇形区域内。

3. 距离衰减:随着目标物体与雷达的距离增加,接收到的信号强度会衰减。

在shader中,我们可以使用以下公式计算距离衰减的因子:衰减因子 = 1 / (距离^2)4. 颜色映射:根据距离衰减的因子,我们可以将像素的颜色映射为灰度值。

距离越远,灰度值越低,表示信号强度越弱。

通过使用极坐标转换、扇形区域判断、距离衰减和颜色映射等数学知识,我们可以在shader中实现雷达扫描效果。

具体实现时,我们可以遍历所有像素,并根据像素的坐标和距离衰减的因子来确定像素的颜色,从而实现雷达扫描的效果。

需要注意的是,在实际应用中,还需要考虑雷达的发射频率、接收灵敏度、目标物体的反射特性等因素。

此外,为了提高性能,还可以使用一些优化技术,如空间分割、像素剔除等。

Scalar Tensor引力下的宇宙演化

Scalar Tensor引力下的宇宙演化
2 2ω0φ
(12)
在这种情况下,状态方程可简化为
wDE =
这里的= ρ
2 1 2ω0φ > 0 。 + V (φ ) − 3 H φ φ φ
ρ DE
PDE
=−1 +
1
φ
+φ − Hφ
φ
ρ
(13)
为了便于分析,定义一个新的函数 g (φ ) ≡
2 2ω0φ
Evolution of the Universe in Scalar-Tensor Gravity
Xiaofei Zhang
Institute of Aeronautical Engineering, Binzhou University, Binzhou Shandong Received: Nov. 4 , 2017; accepted: Nov. 17 , 2017; published: Nov. 27 , 2017
(11)
3. 具体模型的数值分析
以上的推导是适用于一般的 scalar-tensor 暗能量模型的。当 K = 1,F = 1 时,就回到了广义相对论框 架下,状态方程的参数 w 在−1 到+1 之间。scalar-tensor 暗能量模型的形式有许多种,为了便于定量的分 析,我们在下面的分析中选取最简单的一种 Brans-Dicke 模型。
0 因此, k (φ ) 2= , F (φ ) φ 。 =
ω φ
DOI: 10.12677/mp.2017.76028
244
现代物理
张晓菲
根据方程(2) (6),标量场的演化行为可由以下方程决定:
+ 3H φ = φ

激光专业英语

激光专业英语

2011年技术物理学院08级(激光方向)专业英语翻译重点!!!作者:邵晨宇Electromagnetic电磁的principle原则principal主要的macroscopic宏观的microscopic微观的differential微分vector矢量scalar标量permittivity介电常数photons光子oscillation振动density of states态密度dimensionality维数transverse wave横波dipole moment偶极矩diode 二极管mono-chromatic单色temporal时间的spatial空间的velocity速度wave packet波包be perpendicular to线垂直be nomal to线面垂直isotropic各向同性的anistropic各向异性的vacuum真空assumption假设semiconductor半导体nonmagnetic非磁性的considerable大量的ultraviolet紫外的diamagnetic抗磁的paramagnetic顺磁的antiparamagnetic反铁磁的ferro-magnetic铁磁的negligible可忽略的conductivity电导率intrinsic本征的inequality不等式infrared红外的weakly doped弱掺杂heavily doped重掺杂a second derivative in time对时间二阶导数vanish消失tensor张量refractive index折射率crucial主要的quantum mechanics 量子力学transition probability跃迁几率delve研究infinite无限的relevant相关的thermodynamic equilibrium热力学平衡(动态热平衡)fermions费米子bosons波色子potential barrier势垒standing wave驻波travelling wave行波degeneracy简并converge收敛diverge发散phonons声子singularity奇点(奇异值)vector potential向量式partical-wave dualism波粒二象性homogeneous均匀的elliptic椭圆的reasonable公平的合理的reflector反射器characteristic特性prerequisite必要条件quadratic二次的predominantly最重要的gaussian beams高斯光束azimuth方位角evolve推到spot size光斑尺寸radius of curvature曲率半径convention管理hyperbole双曲线hyperboloid双曲面radii半径asymptote渐近线apex顶点rigorous精确地manifestation体现表明wave diffraction波衍射aperture孔径complex beam radius复光束半径lenslike medium类透镜介质be adjacent to与之相邻confocal beam共焦光束a unity determinant单位行列式waveguide波导illustration说明induction归纳symmetric 对称的steady-state稳态be consistent with与之一致solid curves实线dashed curves虚线be identical to相同eigenvalue本征值noteworthy关注的counteract抵消reinforce加强the modal dispersion模式色散the group velocity dispersion群速度色散channel波段repetition rate重复率overlap重叠intuition直觉material dispersion材料色散information capacity信息量feed into 注入derive from由之产生semi-intuitive半直觉intermode mixing模式混合pulse duration脉宽mechanism原理dissipate损耗designate by命名为to a large extent在很大程度上etalon 标准具archetype圆形interferometer干涉计be attributed to归因于roundtrip一个往返infinite geometric progression无穷几何级数conservation of energy能量守恒free spectral range自由光谱区reflection coefficient(fraction of the intensity reflected)反射系数transmission coefficient(fraction of the intensity transmitted)透射系数optical resonator光学谐振腔unity 归一optical spectrum analyzer光谱分析grequency separations频率间隔scanning interferometer扫描干涉仪sweep移动replica复制品ambiguity不确定simultaneous同步的longitudinal laser mode纵模denominator分母finesse精细度the limiting resolution极限分辨率the width of a transmission bandpass透射带宽collimated beam线性光束noncollimated beam非线性光束transient condition瞬态情况spherical mirror 球面镜locus(loci)轨迹exponential factor指数因子radian弧度configuration不举intercept截断back and forth反复spatical mode空间模式algebra代数in practice在实际中symmetrical对称的a symmetrical conforal resonator对称共焦谐振腔criteria准则concentric同心的biperiodic lens sequence双周期透镜组序列stable solution稳态解equivalent lens等效透镜verge 边缘self-consistent自洽reference plane参考平面off-axis离轴shaded area阴影区clear area空白区perturbation扰动evolution渐变decay减弱unimodual matrix单位矩阵discrepancy相位差longitudinal mode index纵模指数resonance共振quantum electronics量子电子学phenomenon现象exploit利用spontaneous emission自发辐射initial初始的thermodynamic热力学inphase同相位的population inversion粒子数反转transparent透明的threshold阈值predominate over占主导地位的monochromaticity单色性spatical and temporal coherence时空相干性by virtue of利用directionality方向性superposition叠加pump rate泵浦速率shunt分流corona breakdown电晕击穿audacity畅通无阻versatile用途广泛的photoelectric effect光电效应quantum detector 量子探测器quantum efficiency量子效率vacuum photodiode真空光电二极管photoelectric work function光电功函数cathode阴极anode阳极formidable苛刻的恶光的irrespective无关的impinge撞击in turn依次capacitance电容photomultiplier光电信增管photoconductor光敏电阻junction photodiode结型光电二极管avalanche photodiode雪崩二极管shot noise 散粒噪声thermal noise热噪声1.In this chapter we consider Maxwell’s equations and what they reveal about the propagation of light in vacuum and in matter. We introduce the concept of photons and present their density of states.Since the density of states is a rather important property,not only for photons,we approach this quantity in a rather general way. We will use the density of states later also for other(quasi-) particles including systems of reduced dimensionality.In addition,we introduce the occupation probability of these states for various groups of particles.在本章中,我们讨论麦克斯韦方程和他们显示的有关光在真空中传播的问题。

机械工程学专业词汇英语翻译(S)

机械工程学专业词汇英语翻译(S)

safe load 安全载荷safe seismic distance 安全震距safe stress 安全应力safety coefficient 安全系数safety element 安全元件safety explosive 安全炸药safety factor 安全因数safety limit 安全限值safety valve 安全阀saffman force 萨夫曼力sag 下弯saha equation 萨哈方程saint venant principle 圣维南原理saltation 跃移saltation velocity 跃移速度sample 试样sampling 采样sampling average 采样平均sampling error 取样误差sand heap analogy 沙堆比拟sand hill analogy 沙堆比拟sand wave 沙波sandwich 层叠物sandwich plate 多层板sandwich type shell 夹层壳satellite 卫星satellite dynamics 卫星动力学saturated air 饱和空气saturated gas 饱和气体saturated porous media 饱和多孔介质saturated steam 饱和蒸汽saturated vapor pressure 饱和蒸汽压saturated vapour 饱和蒸汽saturation 饱和saturation adiabat 饱和绝热线saturation curve 饱和曲线saturation pressure 饱和压力saturation ratio 饱和度saturation state 饱和状态saturation temperature 饱和温度saturation value 饱和值saturation vapour pressure 饱和蒸汽压sawtooth pulse 锯齿形脉冲sawtooth wave 锯齿波sawtooth wave oscillation 锯齿波形振荡scalar 标量scalar coupling 标量耦合scalar field 标量场scalar matrix 标量矩阵scalar potential 标量势scalar product 标积scalar quantity 标量scalar tensor 标量张量scale effect 尺度效应scale length 标尺长度scale of hardness 硬度计scale of turbulence 湍陵度scales 天平scaling law 标度律scattered light method 散光法scattered wave 散射波scattering 散射scattering amplitude 散射幅度scattering angle 散射角scattering coefficient 散射系数scattering cross section 散射截面scattering ellipse 散射椭圆scattering error 散射误差scattering in 内散射scattering intensity 散射强度scattering length 散射长度scattering resonance 散射共振schlieren method 纹影法schuler period 舒勒周期sclerometric hardness 刮痕硬度scleronomic constraints 与时间无关的约束scleronomous binding 与时间无关的约束scleroscope 回跳硬度计scleroscope hardness 回跳硬度scratch hardness 刮痕硬度scratch hardness test 刮痕硬度试验screw axis 螺旋轴screw dislocation 螺旋位错screw displacement 螺旋位移screw motion 螺线运动screw propeller 螺旋推进器螺旋桨sea wave 海洋波seal force 气封力seaplane 水上飞机season crack 自裂second class constraint 第二类约束second cosmic velocity 第二宇宙速度second law of dynamics 动力学第二定律second law of thermodynamics 热力学第二定律second of time 时秒second order elasticity 二阶弹性second order fluid 二阶铃second problem of dynamics 动力学知问题second viscosity coefficient 第二粘度系数secondary collision 二次碰撞secondary compression 二次压缩secondary consolidation 二次固结secondary creep 第二阶段蠕变secondary explosion 二次爆炸secondary flow 次级流secondary load 二次负载secondary moment 副力矩secondary motion 次级运动secondary principal stress 次枝力secondary resonance 次级共振secondary simulation error 二次模拟误差secondary stress 次应力secondary structure 次级结构secondary undulation 次波动secondary wave 次级波seconds pendulum 秒摆section 截面section modulus 截面模数section wave 截面波sectional area 截面积sectional drawing 切面图sectorial area 扇形面积sectorial moment of inertia 扇形惯性矩secular determinant 久期行列式secular equation 久期方程sediment runoff 泥沙运载量sedimentation 沉降sedimentation analysis 沉积分析sedimentation balance 沉积天平sedimentation flow 沉积流sedimentation velocity 沉降速度seepage 渗透seepage flow 渗流seepage pressure 渗透压力segment of a circle 弓形segmentation 分割segregation 偏析seiche 湖面波动seism 地震seismic coefficient 地震系数seismic conductivity 地震波传导性seismic effect 地震效应seismic focus 震源seismic force 地震力seismic load 地震荷载seismic pendulum 地震摆seismic pickup 地震拾波器seismic prospecting 震波勘探seismic region 地震区seismic response 地震响应seismic sea wave 地震海啸seismic spectrum 地震波谱seismic surges 地震海啸seismic system 地震系统seismic wave 地震波seismicity 地震活动度seismogram 地震记录图seismograph 地震仪selection 选择self acting control 直接控制self adjusting 自动蝶的self aligning 自的的self alignment 自行的self balancing 自动平衡的self balancing device 自平衡装置self centering 自动定心的self contraction 自收缩self correlation function 自相关函数self damping 自衰减self diffusion 自扩散self diffusion coefficient 自扩散系数self diffusion current 自扩散流self diffusion velocity 自扩散速度self energy 自能self excitation 自激self excited vibration 自激振动self heating 自热self ignition 自点火self inductance 自感self locking 自锁self lubrication 自动润滑self oscillation 自振荡self power 固有功率self radiation 自辐射self regulation 自第self rotation 本正转self scattering 自散射self similar flow 自相似流self similarity 自相似self simulation 自模拟self stress 自具应力self thermal diffusion 自热扩散selsyn 自动同步机semi analytical method 半解析法semi axis 半轴semi circle 半圆semi circular 半圆的semi classical method 半经典的方法semi elliptic spring 半椭圆形弹簧semi infinite body 半无限体semi inverse method 半逆法semi liquid state 半液态semi major axis 长半径semi permeable 半渗透的semi turbulent 半湍聊semiconductor strain gage 半导体应变仪sense of rotation 转动方向sensitivity 灵敏度sensitivity constant 灵敏度常数sensitivity to deformation speed 变形速度灵敏度sensitization 敏化sensor 传感器separated boundary layer 分离边界层separated flow 分离流separation factor 分离因子separation method 分离法separation of variables 变数分离separation point 分离点sequence 序列series 系列serviceability 适用性servo system 伺服系统set noise 机齐声set up 胆setback 后退setting 安装setting frequency 导频率settled creep 似粘性蠕变settlement 沉积settling velocity 沉降速度sextant 六分仪shading 阴影法shadow 阴影shadow factor 阴影因数shadow method 阴影法shadow zone 阴影区shadowgraph 影象图shadowgraph method 描影法shafranov kruskal criterion 沙弗拉诺夫克鲁斯卡尔判据shaft 轴shaft axis 轴心线shaft friction 表面摩擦shaft horsepower 轴马力shaft journal 轴颈shake down 振动硬化shake off effect 振动效应shaking 摇荡shaking conveyer 振动输送机shaking out 振摇萃取shaking screen 摇动筛shaking table 振动台shallow notch 浅切口shallow shell 扁壳shallow water 浅水区shallow water theory 浅水理论shallow water wave 浅水波shape anisotropy 形状蛤异性shape elasticity 形状弹性shape factor 形状因子;形状因数shape parameter of boundary layer 边界层的形状参数shape relaxation 形状弛豫shaping 成形shapiro step 夏皮罗级shattering 破碎shear 剪切shear center 剪心shear crack 剪切裂隙shear deformation 剪切应变shear difference method 剪应力差法shear elasticity 切变弹性shear failure 剪切破坏shear fracture 剪切破坏shear grade 剪切梯度shear lag 剪切滞后shear line 剪切线shear mode 剪切振模shear modulus 剪切模量shear plane 剪切面shear plane method 剪切面法shear resistance 剪切阻力shear strain 剪切应变shear strain energy 剪应变能shear strength 抗剪强度shear stress 剪应力shear stress line 剪应力线shear stress tensor 剪切应力张量shear surface 切变面shear test 剪切试验shear transfer 剪切传递shear turbulence 剪湍寥shear vibration 剪切振动shear viscosity 切变粘度shear wave 等容波sheared edge 剪切边缘shearing area 剪切面积shearing center 剪心shearing coefficient 切变系数shearing curve 剪切曲线shearing elasticity modulus 切变模数shearing error 剪切误差shearing field rheometer 剪切场龄计shearing flow 剪流shearing force 剪力shearing force diagram 剪力图shearing impact 剪切冲击shearing instability 剪切失稳shearing load 剪切载荷shearing method 剪切法shearing moment 剪切力矩shearing rigidity 抗剪刚度shearing stress 剪应力shearing velocity 剪切速度sheet 薄板sheet bar 薄板畔sheet thickness 薄板厚度shell 壳shell of many layers 夹层壳shell of revolution 旋转壳shell theory 壳理论shielding 屏蔽shift 位移shift angle 位差角shift diagram 位移图shift factor 位移因子shift matrix 位移矩阵shift structure 错列结构shift surface 位移面ship 船ship hull 船体ship oscillation 船舶振荡ship resistance 船舶阻力ship wave 船行波shoal water 浅水区shock 冲击撞击shock absorber 缓冲器缓冲装置shock absorption 冲稽收shock adiabat 冲圾热线shock angle 撞磺shock coefficient 撞坏数shock condition 冲货件shock diffuser 激波扩散器shock eliminator 缓冲器减震器shock equation 激波方程shock excitation 撞护发shock expansion 冲还开shock free 无冲荒shock front 激波前沿shock front thickness 激波前沿厚度shock isolation 冲霍离shock isolator 冲霍离器shock layer 激波层shock limitation 激波限制shock line 激波线shock load 冲簧重shock mach number 激波马赫数shock momentum 撞化量shock motion 冲凰动shock normal 冲花线shock polar 激波极线shock polaric diagram 激波极线图shock potential 冲黄shock pressure 冲还力shock proof 抗震的shock propagation 激波传播shock pulse 冲祸冲shock relaxation 激波弛豫shock resistance 冲昏力shock response 冲混应shock response spectrum 冲混应谱shock stall 激波失速shock strength 冲豢度shock stress 冲沪力shock test 冲辉验shock transfer 冲猾递shock tube 激波管shock wave 激波shock wave curvature 激波波前曲率shock wave drag 激波阻力shock wave heating 冲花加热shock wave relation 冲花关系式shockley barrier layer 肖克利势垒层shockley partial dislocation 肖克利型定域位错shoot 急流shooting flow 快速射流急流shore hardness 肖氏硬度shore scleroscope test 肖氏硬度试验short crested wave 短峰波short distance scattering 近距散射short fiber 短纤维short period perturbation 短周期扰动short range force 短程力short term strength 短期强度short time creep strength 短时蠕变强度short time test 快速试验short wave 短波short wave radiation 短波辐射shortness 脆性shot firing 点火shot peening 喷丸硬化shot point 爆破点shrinkage 收缩shrinkage allowance 收缩容许量shrinkage crack 收缩裂缝shrinkage factor 收缩因数shrinkage porosity 收缩孔隙度shrinkage pressure 收缩压强shrinkage stress 收缩应力shut down 停止shutoff 停止side displacement 侧面位移side drag 侧面阻力side overflow 横向溢流side pressure 侧压力side wave 边频波sideslip 侧滑sidewall 侧壁sidewind 侧风sieve mesh 筛孔sieve plate 筛板sign 记号signal 信号silencer 消声器silo 导弹地下仓库similar 相似的similar test 相似检验similarity 相似similarity criterion 相似准则similarity law 相似性定律similarity parameter 相似参数similarity principle 相似性原理similarity rule 相似规则similarity theorem 相似性定律similarity theory 相似理论similarity transformation 相似变换similitude 相似simple 单纯的simple beam 简支梁simple bending 单纯弯曲simple closed curve 简单闭曲线simple elastoplastic problem 简单弹塑性问题simple equivalent pendulum 单摆simple harmonic motion 简谐振动simple harmonic oscillation 简谐振动simple harmonic oscillator 简谐振子simple harmonic wave 简谐波simple hinge 单铰链simple loading 简单加载simple loading theorem 简单加载定理simple material 简单物质simple oscillation 简单振荡simple pendulum 单摆simple refraction 单折射simple shear 简单剪切simple shearing strain 简切应变simple shearing stress 简单切应力simple solid material 简单固体材料simple supported edge 简支边simple system 单一系统simple tension 简单拉伸simple torsion 简单扭转simple truss 简单桁架simple vibration 简单振荡simple wave flow 简单波流simplex interpolation 简单内插simply periodic function 简单周期函数simply supported beam 简单支撑梁simpson's rule 辛普森法则simulated process parameter 模拟过程参数simulated system parameter 模拟系参数simulation 模拟simulation error 模拟误差simulator 模拟装置simultaneity 同时性simultaneous 同时的simultaneous blasting 齐发爆破simultaneous earthquake 同时地震sine 正弦sine wave 正弦波singing 振鸣single crystal 单晶single dislocation 单一位错single force 集中力single phase 单相的single refraction 单折射single rotor 单转子single scattering 单散射single stage compression 单级压缩single stage compressor 单级压缩机single stage pump 单级泵single valuedness 单值性single wave 孤立波singular function 奇异函数singular integral 奇异积分singular perturbation method 奇异微扰法singular point 奇点singular solution 奇异解singular surface 奇异曲面singularity 奇异性sink 汇sink flow 汇流sinking speed 降落速度sinking velocity 沉降速度sintering point 软化点sinusoidal curve 正弦曲线sinusoidal law 正弦定律sinusoidal quantity 正弦量sinusoidal spiral 正弦螺线sinusoidal wave 正弦波siphon 虹吸管site 场地size 尺寸size distribution 粒度分布size reduction 破碎skeletal structure 骨架结构skeletal vibration 骨架振动skeleton 骨架skeleton diagram 方框图skeleton line 骨架线skew 倾斜的skew anisotropy 斜蛤异性skew bridge 斜桥skew distribution 非对称性分布skew lines 斜直线skew symmetry 斜对称skin 囚skin depth 囚深度skin friction 表面摩擦skin friction resistance 表面摩擦阻力skin friction stress 表面摩擦应力skin resistance 表面阻力skip phenomenon 跳跃现象skipped distance 跳跃距离slab 平板slant distance 斜距slat 前缘缝翼sleeve 轴套slender body 细长体slender profile 细长翼slender rod 细杆slender wing 小展弦比机翼slenderness 细长比slenderness ratio 细长比slide 滑动slide valve air pump 滑阀空气泵slider 滑板sliding bearing 滑动轴承sliding contact 滑动接触sliding friction 滑动摩擦sliding friction torque 滑动摩擦力矩sliding mode crack 滑移型裂纹sliding motion 滑动sliding pressure 滑动压sliding resistance 滑动阻力sliding surface 滑动面sliding vector 滑移矢量sliding weight 滑锤slight earthquake 轻微地震slip band 滑移带slip coefficient 滑恋数slip direction 滑移方向slip flow 滑流slip frequency 差频slip line 滑动线slip moment 滑动力矩slip plane 滑移面slip ratio 滑动比slip ring 滑环slip speed 转差速率slip stream 滑流slip surface 滑动面slip system 滑移系slip vector 滑移矢量slip velocity 滑临度slip zone 滑移区slippage tensor 滑僚量slipping 滑动slipstream effect 滑璃应slit 缝隙slope 倾斜slope current 倾斜流坡度流slope deflection 斜挠度slope deflection method 角变位移法slope distance 斜距slope failure 边坡破坏slope of surface 水面坡度slope resistance 坡度阻力slot 缝slow 慢的slow boundary layer 慢边界层slow flow 缓流slow motion 慢速移动slow release 慢释放slowing down 减速slowly varying component 慢变分量slug flow 慢流slurry pump 泥浆泵small amplitude oscillation 小振幅振荡small angle collision 小角碰撞small calorie 克卡small deformation 小变形small hardness 微硬度small oscillation 小振荡small scale turbulence 小尺度湍流smoke gas 烟气smoke wind tunnel 烟风洞smooth flow 平滑怜smooth pipe 光滑管道smooth surface 光滑面smooth tube 光滑管道smoothed curve 光滑曲线smoothing 平滑化smoothness 平滑度smoothness properties 平滑特性snaking 蛇行snow load 雪载soaking 浸渍soap film analogy 肥皂膜比拟soaring 滑翔soft shell 软壳softening 软化softening point 软化点soil characteristic 土的特性soil dynamics 土动力学soil erosion 土壤侵蚀soil humidity 土壤水分soil mechanics 土力学soil moisture 土壤水分soil pressure 土压soil suction force 土壤抽吸力soil temperature 土壤温度solar tidal wave 太阳潮汐波solar wind 太阳风solid 固体solid angle 立体角solid body 固体solid friction 固体摩擦solid gas interface 固气界面solid liquid interface 固液界面solid mechanics 固体力学solid of revolution 旋转体solid of rotation 旋转体solid phase 固相solid physical mechanics 固体物理力学solid plastic 固塑性的solid propellant rocket 固体燃料火箭solid solid interface 固固界面solid state 固态solidification 凝固solidification heat 凝固热solidification point 凝固点solidification shrinkage 凝固收缩solidity 固态solifluction 泥流solitary wave 孤立波solute boundary layer 溶质边界层solution 解sonic bang 声击sonic barrier 声障sound absorption 声吸收sound damping coefficient 声阻尼系数sound energy 声能sound insulating material 隔声材料sound oscillation 声振荡sound pressure 声压sound pressure level 声压级sound proof 隔音的sound velocity 声速sound wave 声波source 源source flow 源流source function 源函数source of seismic wave 地震波源space centrode 固定瞬心轨迹space cone 定瞬轴锥面space coordinates 空间坐标space craft 宇宙飞船space curve 空间曲线space distribution 空间分布space flight 宇宙飞行space framework 立体构架space inversion 空间反演space lattice structure 空间晶格结构space motion 空间运动space perception 空间感受space potential 空间势space problem 空间问题space reflection 空间反演space system 空间系space tensor 空间张量space time coordinates 时空坐标系space time correlation 时空关联space time curve 时空曲线space time law 路径时间定律space time structure 时空结构space truss 空间桁架space vehicle 宇宙飞船space velocity 空间速度space wave 空间波spacecraft 宇宙飞船spacing wave 间隔波spallation 破碎spallation cross section 散裂截面span 跨距span length 跨长spar 翼梁spare 备件spark hardening 放电硬化spatial expansion 空间膨张spatial kinematic chain 空间运动链spatial shear wave 空间切变波special perturbation 特殊微扰special relativity theory 狭义相对论specific action potential 比酌势specific deformation energy 比形变能specific destruction work 比破坏功specific discharge 通量密度specific elongation 延伸率specific entropy 比熵specific flow 比量specific flow rate 比潦specific force 比力specific free energy 比自由能specific gravity 比重specific head 比压头specific heat 比热specific heat at constant pressure 恒压比热specific heat at constant volume 恒容比热specific impulse 比推力specific internal energy 比内能specific kinetic energy 比动能specific mass 比质量specific plastic 比塑性specific potential 比势specific power 比功率specific pressure 比压specific resistance 比阻力specific speed 比速率specific stiffness 比刚度specific strain energy 比应变能specific strength 比强度specific stress 比应力specific surface 比表面specific surface energy 比表面能specific thrust 比推力specific unbalance 比不平衡specific viscosity 比粘度specific volume 比容specific volumetric dilatation 体积膨胀率specific weight of engine 每马力重量specific wind pressure 比风压specimen 试样speckle 散斑speckle holography 散斑全息照相术speckle interferometry 散斑干涉法spectral condition 谱条件spectral curve 谱曲线spectral density 谱密度spectral displacement 谱位移spectral distribution 谱分布spectral frequency 谱频率spectral function 谱函数spectral line 谱线spectral method 谱方法spectral position 谱位置spectral shift 谱位移spectral theory 谱理论spectrum 谱spectrum matrix 谱矩阵spectrum tensor 谱张量speed 速率speed change 变速speed control 速率第speed error 速率误差speed governor 蒂机speed indicator 速度计speed limiting device 限速器speed of autorotation 自转速度speed of heat propagation 热传播速率speed of light 光速speed of perception 感觉速率speed of response 响应速度speed of sound 声速speed per hour 时速speed range 变速范围speed reduction 减速speed regulation 速度第speed regulator 蒂机speedometer 转速表sphere 球sphere of reflection 反射球sphere shaped 球形的spherical angle 球面角spherical bearing 球面支承spherical coordinates 球面坐标spherical function 球面函数spherical joint 球形接头spherical motion 球面运动spherical pendulum 球摆spherical shell 球壳spherical shock wave 球面激波spherical space 对映空间spherical strain tensor 球面应变张量spherical stress tensor 球面应力张量spherical surface 球面spherical tensor 球面张量spherical top 球形陀螺spherical wave 球面波spheroidal wave function 球波函数spillway 溢淋spillway dam 溢劣spin angle 自旋角spin angular momentum 自旋角动量spin axis 自旋轴spin coordinate 自旋坐标spin eigenfunction 自旋本寨数spin eigenstate 自旋本宅spin interaction 自旋相互酌spin orbit potential 自旋轨道势spin relaxation 自旋弛豫spin resonance 自旋共振spin resonance frequency 自旋共振频率spin slip spectrum 自旋反转谱spin tensor 自旋张量spin tensor operator 自旋张量算符spin wave 自旋波spin wave theory 自旋波理论spindle 轴spinning 尾旋spinning detonation 旋焰爆炸spinning obstacle 旋转障碍spinning top 旋转陀螺spinning wind tunnel 螺旋风洞spinor field 旋量场spinor gravitation 旋量引力spinor wave 旋量波spinor wave equation 旋量波方程spinor wave function 旋量波函数spiral 螺线spiral dislocation 螺旋形位错spiral fiber structure 螺旋形纤维结构spiral flow 螺旋流spiral of archimedes 阿基米德螺线spiral orbit 螺线轨道spiral propeller 螺旋推进器spiral spring 螺旋形弹簧spiral trajectory 螺线轨道spiral vortex 螺旋形涡流spiral vortex model 螺旋涡模型spire 尖塔spirit level 水准器split hopkinson bar 分离式霍普金森杆split pattern 分离模式splitting 分裂spoiler 绕菱sponge 海绵spongy 海绵状的spontaneous combustion 自燃spontaneous crack propagation 自发裂缝传播spontaneous emission 自发发射spout 瘤口spouted bed 喷出床spouting spring 喷泉spray 喷雾spray pump 喷淋泵spray resistance 喷雾阻力spraying effect 雾化效应spraying nozzle 喷雾嘴spring 弹簧spring back 弹性回复spring balance 弹簧秤spring buffer 弹簧绶冲器spring constant 弹簧常数spring dynamometer 弹簧秤spring force 弹簧弹力spring hammer 弹簧锤spring manometer 弹簧式压力计spring model 弹簧模型spring oscillator 弹簧振子spring pressure 弹簧压力spring pressure gage 弹簧式压力计spring ring 弹簧圈spring scales 弹簧秤spring tension 弹簧张力spurious frequency 寄生频率spurious oscillation 寄生振荡spurious scattering 虚散射squagging 自锁square measure 面积单位square wave 方形波square wave oscillation 矩形波振荡square wave pulse 矩形脉冲squashing 压碎squeezing 压榨stability 稳定性stability condition 稳定性条件stability constant 稳定性常数stability curve 稳定性曲线stability layer 稳定层stability limit 稳定性极限stability line 稳定性曲线stability of equilibrium 平衡稳定性stability of motions 运动稳定性stability of parallel flow 平行寥定性stability of stratified flow 分层寥定性stability of structures 结构稳定性stability of vibration 振动稳定性stability tensor 稳定性张量stability theorem 稳定性定理stabilization 稳定化stabilized equilibrium 稳定平衡stabilizer 稳定器stabilizing force 稳定力stabilizing gyroscope 稳定陀螺stable axis 稳定轴stable equilibrium 稳定平衡stable equilibrium position 稳定平衡位置stable motion 稳定运动stable orbit 稳定轨道stable state 稳定状态stable system 稳定系stable wave 稳定波stage 阶段stage discharge curve 水位量曲线stage efficiency 分级效率staged rocket 多级火箭staggered arrangement 交错配置staggered riveting 交错铆接staggering 摇摆stagnant water 静水stagnation 停滞stagnation curve 静水曲线stagnation density 滞止密度stagnation point 驻点stagnation point flow 驻点流stagnation pressure 驻点压力stagnation temperature 滞止温度stake 杆stalled airfoil 失速机翼stalled condition 失速条件stalled flow 失速流stalled wing 失速机翼stalling 失速stalling angle 失速迎角stalling characteristics 失速特性stalling flight 失速飞行stalling point 失速点stalling speed 失速速率stand by power 备用功率standard atmosphere 标准大气standard condition 标准条件standard density 标准密度standard deviation 标准偏差standard equation 正规方程standard frequency 标准频率standard frequency spectrum 标准频谱standard isobaric surfaces 标准等压面standard linear solid 标准线形固体standard load 正常负载standard measure 标准衡器standard orifice plate 标准孔板standard pressure 标准压力standard resistance 标准阻力standard solid 标准固体standard state 标准状态standard test specimen 标准试样standard water column 标准水柱standard wave 标准波standard wind 标准风standing wave 驻波star connection y 形接法starboard 右舷starling hypothesis 斯塔林假说start up time 起动时间starting air 起动空气starting lever 起动杆starting of oscillations 振荡起动starting oscillation 起动振动starting period 起动时间starting power 起动功率starting pulse 起动脉冲starting resistance 起动阻力starting torque 起动转矩state continuity 状态连续性state curve 状态曲线state equation 物态方程state feedback control 状态反馈控制state function 态函数state of aggregation 聚集状态state of energy 能量状态state of plane stress 平面应力状态state of rest 静态state of strain 应变状态state of stress 应力状态state of suspension 悬浮状态state parameter 状态参数state space 状态空间state vector 态矢量static 静的static accuracy 静态准确度static balance 静态平衡static balancing 静力平衡static balancing machine 静平衡试验机static constraint reaction 静反力static deflection 静载挠度static elasticity 静弹性static equilibrium 静态平衡static fatigue 静疲劳static field 静场static fracture 静态破裂static friction 静摩擦static head 静压头static hysteresis curve 静态滞后曲线static imbalance 静力不平衡static indeterminateness 超静定性static instability 静力不稳定性static lift 静升力static load 静负载static magnetic field 静磁场static modulus of elasticity 静弹性模量static moment 静力矩static moment of the surface 静力表面矩static pressure 静压static pressure tube 静压管static reaction 静反酌static rolling friction 静滚动摩擦static slip 静滑移static stability 静力稳定性static strength 静力强度static stress 静应力static surface tension 静表面张力static temperature 静温static unbalance 静力不平衡statical condition 静力条件statically defined 静定的statically determinate 静定的statically determinate beam 静定梁statically determinate reaction 静定反力statically determinate structure 静定结构statically determinate system 静定系statically indeterminate beam 静不定梁statically indeterminate structure 静不定结构statically indeterminate system 静不定系statics 静力学stationary axle 固定轴stationary blade 固定叶片stationary creep 定常蠕变stationary distribution 定常分布stationary equilibrium 定常平衡stationary field 恒定场stationary flow 定常流stationary motion 定常运动stationary orbit 静止轨道stationary point 平稳点stationary potential 稳定势stationary random process 平稳随机过程stationary satellite 静止卫星stationary state 平稳态stationary vibration 平稳振动stationary vortex 定常涡旋stationary wave 驻波statistic test 统计检验statistical accuracy 统计精度statistical analysis 统计分析statistical fluctuation 统计涨落statistical mechanics 统计力学statistical noise 统计噪声statistical theory of turbulence 湍脸计理论statistical thermodynamics 统计热力学statistical weight 统计重量statistics 统计学staude cone 斯陶德锥面steady detonation 定常爆轰steady flow 定常流steady free surface flow 定常无压流steady gas flow 定常气流steady load 不变负荷steady motion 定常运动steady potential 稳定势steady precession 稳定旋进steady rest 稳定架steady state 平稳态steady state creep 定常蠕变steady state magnetic field 稳定磁场steady state oscillation 稳态振荡steady vorticity 定常涡流steam 蒸汽steam bleeding 抽汽steam drive 蒸汽传动steam ejector 蒸汽喷射器steam extraction 抽汽steam hammer 蒸汽锤steam injector 蒸汽喷射器steam jet 蒸汽喷流steam meter 蒸汽量计steam nozzle 蒸汽喷嘴steam power 汽力steam pressure 蒸汽压steep throw 陡抛steepness of wave edge 波前陡度steering angle 转向角steering column 转向柱steiner theorem 平行轴定理stellar dynamics 恒星动力学stellar energy 恒星能量stellar guidance 天文导航stellar structure 恒星结构step disturbance 阶跃扰动step rocket 多级火箭step velocity 阶跃速度stepped shaft 梯级式轴stepwise loading 逐步加载stereographic net 伍尔夫经纬圈stereographic projection 球面投影stereophotogrammetry 立体照相测量术steric acceleration 空间加速度stiff chain 刚链stiff joint 刚节点stiffener 加劲材stiffening 加劲stiffening plate 加强板stiffening rib 加强肋stiffening ring 加强环stiffness 刚度stiffness coefficient 刚度系数stiffness matrix 刚度矩阵stiffness method 刚度法stiffness modulus 劲度模量stiffness reactance 劲度力抗stiffness rotor 刚性转子stiffness term 刚度项stochastic acceleration 随机加速度stochastic force 随机力stochastic hydraulics 随机水力学stochastic process 随机过程stochastic similarity 随机相似stochastic simulation 随机模拟stockmayer potential 史托克梅耶势stokes approximation 斯托克斯近似stokes flow 斯托克斯怜stokes fluid 斯托克斯铃stokes law 斯托克斯定律stokes stream function 斯托克斯怜数stokes theorem 斯托克斯定理stokes wave 斯托克斯波stoma 小孔stone stream 岩石流stop 停止stopping distance 停止距离storage 存储storage modulus 存储模量stored energy 储能stored energy function 储能函数storm surge 风暴潮storm wave 风暴波straight angle 平角straight line motion 直线运动straight line plot of the bending stress 弯曲应力直线图straight line wedge 直线楔straightening 矫正straightness 平直度strain 应变strain ageing 应变时效strain amplitude 应变幅度strain anisotropy 应变蛤异性strain anneal method 应变退火法strain component 应变分量strain crack 应变裂缝strain deviator 形变偏量strain ellipsoid 应变椭球strain energy 应变能strain energy density 应变能密度strain energy function 应变能函数strain energy method 应变能法strain energy theory 应变能理论strain fatigue 应变疲劳strain field 应变场strain free lattice 无应变点阵strain gage 应变计strain gradient 应变梯度strain hardening 应变硬化strain hardening capacity 应变硬化能力strain hardening coefficient 应变硬化系数strain hardening curve 应变硬化曲线strain hardening index 应变硬化指数strain history 应变历程strain intensity 应变强度strain invariant 应变不变量strain matrix 应变矩阵strain measure 应变量度strain measurement 应变测定strain potential 应变势strain rate 应变率strain rate effect 应变率效应strain rate history 应变率历程strain relaxation 应变弛豫strain space 应变空间strain tensor 应变张量strain theory 应变理论。

卡梅伦液压数据手册(第 20 版)说明书

卡梅伦液压数据手册(第 20 版)说明书
11
iv

CONTENTS OF SECTION 1
☰ Hydraulics
⌂ Cameron Hydraulic Data ☰
Introduction. . . . . . . . . . . . . ................................................................ 1-3 Liquids. . . . . . . . . . . . . . . . . . . ...................................... .......................... 1-3
4
Viscosity etc.
Steam data....................................................................................................................................................................................... 6
1 Liquid Flow.............................................................................. 1-4
Viscosity. . . . . . . . . . . . . . . . . ...................................... .......................... 1-5 Pumping. . . . . . . . . . . . . . . . . ...................................... .......................... 1-6 Volume-System Head Calculations-Suction Head. ........................... 1-6, 1-7 Suction Lift-Total Discharge Head-Velocity Head............................. 1-7, 1-8 Total Sys. Head-Pump Head-Pressure-Spec. Gravity. ...................... 1-9, 1-10 Net Positive Suction Head. .......................................................... 1-11 NPSH-Suction Head-Life; Examples:....................... ............... 1-11 to 1-16 NPSH-Hydrocarbon Corrections.................................................... 1-16 NPSH-Reciprocating Pumps. ....................................................... 1-17 Acceleration Head-Reciprocating Pumps. ........................................ 1-18 Entrance Losses-Specific Speed. .................................................. 1-19 Specific Speed-Impeller. .................................... ........................ 1-19 Specific Speed-Suction...................................... ................. 1-20, 1-21 Submergence.. . . . . . . . . ....................................... ................. 1-21, 1-22 Intake Design-Vertical Wet Pit Pumps....................................... 1-22, 1-27 Work Performed in Pumping. ............................... ........................ 1-27 Temperature Rise. . . . . . . ...................................... ........................ 1-28 Characteristic Curves. . ...................................... ........................ 1-29 Affinity Laws-Stepping Curves. ..................................................... 1-30 System Curves.. . . . . . . . ....................................... ........................ 1-31 Parallel and Series Operation. .............................. ................. 1-32, 1-33 Water Hammer. . . . . . . . . . ...................................... ........................ 1-34 Reciprocating Pumps-Performance. ............................................... 1-35 Recip. Pumps-Pulsation Analysis & System Piping...................... 1-36 to 1-45 Pump Drivers-Speed Torque Curves. ....................................... 1-45, 1-46 Engine Drivers-Impeller Profiles. ................................................... 1-47 Hydraulic Institute Charts.................................... ............... 1-48 to 1-52 Bibliography.. . . . . . . . . . . . ...................................... ........................ 1-53

黑洞与几何

黑洞与几何
n5 D - 5branes n1 D -1branes nKK Kaluza - Klein momentum
与Bekenstein-Hawking 熵一致
35
Is everything understood in strings? No!
• 一旦 D-branes 在黑洞内, 那么黑洞外的观测者将无法看到. 那为什么这些自由度在外面的观测者看来表现为黑洞熵呢? • 信息佯谬还没解决.
19

Immirzi参数问题

自旋网络
j1 j 2 v j3 1
j
S
20
QNMs的解决方案

对于高衰减似正频率,数值计算结果有:
21

玻尔对应原理
A QNM 4 ln 3
且 SU(2) OR SO(3)?
22

半解析方法: 03年Motl等人利用Monodromy方法,成功地 证明了Hod 的猜想, 对于自旋j
Israel 首先提出黑洞不可避免地塌缩成球形,后来 Wheeler 把这 推广到任意初始质量分布的恒星塌缩成黑洞后,它将丧失任 何关于恒星形状的信息。
稳态黑洞只有三个量:质量、 电荷和转动惯量!
7
奇点定理

1964,Penrose提出,任何有物质的 时空,只要广义相对论正确,因果 性成立,都至少存在一个奇点。按 此,恒星塌缩成黑洞后,在其中心 会产生一个奇点,它的能量密度为∞, 在这一点,传统的广义相对论失效。 后来霍金给出了另外的证明,并且 认识到,奇点应该认为是时间的开 始或终结!奇点不属于时空,时空 中任何一条经过那里的曲线都会在 那断掉。
11
黑洞扰动
perturbed BH QNMs
BH

opencv中scalar函数

opencv中scalar函数

opencv中scalar函数在OpenCV库中,scalar函数是一个非常基础和常见的函数。

它用来表示一个四维的向量,其中每个维度代表一个颜色通道。

在图像处理中,通常会以此来表示像素的颜色。

scalar函数的调用形式为:Scalar(scalarValue),其中scalarValue可以是一个单独的数值或者是一个长度为3或4的array或vector。

这个函数还提供了一些重载版本,可以传入不同数量和类型的参数,以便于适应各种不同的使用场景。

在实际的图像处理应用中,scalar函数可以用来进行像素的颜色填充、颜色转换、颜色加权等一些基础的图像操作。

同时,由于它的基础性和通用性,scalar函数还可以作为其他一些高级函数的底层实现方式。

对于scalar函数的使用,需要注意它的数据类型和数据范围。

通常情况下,scalar函数会根据具体的使用场景来自动选择合适的数据类型和数据范围。

但是在一些特殊的场合下,比如需要进行高精度的数值计算时,我们需要手动指定scalar函数的数据类型和数据范围。

最后,在使用scalar函数的同时,我们也要注意代码的效率和性能。

由于scalar函数是一个比较基础的函数,因此它在不同的OpenCV版本中可能会有不同的性能表现。

所以,我们需要在实际的应用中进行充分的测试和优化,以确保代码的效率和性能。

总的来说,scalar函数是OpenCV库中一个非常基础和通用的函数,它在图像处理中有着广泛的应用。

对于初学者来说,掌握scalar函数的基本使用方法是十分重要的。

而对于更加高级的应用场景,我们还需要对scalar函数的底层实现和性能进行深入的研究和优化。

数据通信原理实验指导书

数据通信原理实验指导书

实验一编码与译码一、实验学时:2学时二、实验类型:验证型三、实验仪器:安装Matlab软件的PC机一台四、实验目的:用MATLAB仿真技术实现信源编译码、过失操纵编译码,并计算误码率。

在那个实验中咱们将观看到二进制信息是如何进行编码的。

咱们将要紧了解:1.目前用于数字通信的基带码型2.过失操纵编译码五、实验内容:1.经常使用基带码型(1)利用MATLAB 函数wave_gen 来产生代表二进制序列的波形,函数wave_gen 的格式是:wave_gen(二进制码元,‘码型’,Rb)此处Rb 是二进制码元速度,单位为比特/秒(bps)。

产生如下的二进制序列:>> b = [1 0 1 0 1 1];利用Rb=1000bps 的单极性不归零码产生代表b的波形且显示波形x,填写图1-1:>> x = wave_gen(b,‘unipolar_nrz’,1000);>> waveplot(x)(2)用如下码型重复步骤(1)(提示:能够键入“help wave_gen”来获取帮忙),并做出相应的记录:a 双极性不归零码b 单极性归零码c 双极性归零码d 曼彻斯特码(manchester)x 10-3x 10-3图1-1 单极性不归零码图1-2双极性不归零码x 10-3x 10-32.过失操纵编译码(1) 利用MATLAB 函数encode 来对二进制序列进行过失操纵编码, 函数encode 的格式是:A .code = encode(msg,n,k,'linear/fmt',genmat)B .code = encode(msg,n,k,'cyclic/fmt',genpoly)C .code = encode(msg,n,k,'hamming/fmt',prim_poly)其中A .用于产生线性分组码,B .用于产生循环码,C .用于产生hamming 码,msg 为待编码二进制序列,n 为码字长度,k 为分组msg 长度,genmat 为生成矩阵,维数为k*n ,genpoly 为生成多项式,缺省情形下为cyclpoly(n,k)。

Universal Aspects of Gravity Localized on Thick Branes

Universal Aspects of Gravity Localized on Thick Branes


J. Robert Oppenheimer Fellow
1. Introduction
The proposal of Randall and Sundrum (RS) [1,2] to localize gravity in the vicinity of a brane with non-vanishing tension in anti-de Sitter (AdS) space has recently attracted enormous attention (see, for example [3, 4], for previous relevant work, [5–24], for more recent generalizations, [25–30], for work on smooth brane scenarios, [31–37], for embeddings in string theory and supergravity, [38–47], for the general relativity aspects and finally [48–52], for cosmological and phenomenological aspects). RS found that in a setup with a single brane, a negative bulk cosmological constant and a single large extra dimension (with the cosmological constant and brane tension tuned such that the effective four-dimensional cosmological constant vanishes) the solution to Einstein’s equation results in a single graviton zero mode, which is a consequence of the unbroken four-dimensional Poincar´ e invariance, and a continuum of Kaluza-Klein (KK) modes. Normally the presence of these continuum modes would render a setup like this unrealistic due to the large deviation from Newton’s Law the low energy continuum modes tend to induce. However, RS found that due to the suppression of the wavefunctions of the continuum modes close to the brane, their contribution to the Newton potential is highly suppressed, and therefore a realistic model with uncompactified extra dimensions could be built. This model has been generalized in [5] to models with intersecting branes with more than one uncompactified extra dimension, and also to include brane junctions [6, 7]. The branes in the RS setup and its generalizations mentioned above are included as static point-like external sources in the extra dimensions, with no dynamics to produce them. As was done in [26–29, 33], one can find solutions to Einstein’s equation coupled to a single scalar field, where the scalar creates a domain wall—a “thick brane”—while the metric away from the brane asymptotes to a slice of AdS5 . Such domain wall solutions are obtained if the scalar potential originates from a superpotential (although as recently discussed in [37] this does not necessarily imply that the theory is embeddable into a five-dimensional supergravity theory). In this case the solutions found in [26–28] originate from a BPS equation. These domain walls were first found in [25]. It has been shown in [26–28] that, just like for the case of the infinitely thin branes of RS, there is a single normalizable graviton bound-state with zero energy. A particularly nice example of this sort has been recently worked out in detail in [30]. Similar BPS equations for intersecting domain walls in more than one extra dimension were found in [8, 9]; however, no explicit solutions to these equations are known yet. In this paper we study generic properties of localized gravity on thick branes. In the first part of the paper we consider thick branes in one extra dimension and then generalize to an arbitrary number of extra dimensions. Instead of starting with a coupled gravity-scalar system, as in [27,28], we “smear” the RS solution and its generalizations in such a way that the non-dynamical source terms correspond to a smeared (thick) brane in the background of a slowly varying negative bulk cosmological constant. We examine the spectrum of graviton modes and find necessary
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:g r-qc/954v 115Sep2DTP/00/81gr-qc/0009054Static black holes in scalar tensor gravity Caroline Santos 1Centre for Particle Theory,Department of Mathematical Sciences South Road,Durham,DH13LE.Abstract We study static black hole solutions in scalar tensor gravity.We present exact solutions in hiperextended models with a quadratic scalar potential.1IntroductionThe fact that the ratio between the electrostatic and gravitational forces between one proton and one electron in the vacuum is of the same order as the ratio between the atomic time for the electron in its classical description and the Hubble time,impressed Dirac in such a way that he postulated those relations as fundamental constants in Nature[1]. To keep them independent of the cosmological time and to not reformulate the Atomic Physics,Dirac postulated[1]a time variation for the gravitational constant,but his theory is in conflict with the observational results[2].Partially motivated by the Dirac’s idea and the possible existence of extra dimensions of the space-time purposed by Kaluza and Klein[3],Jordan[4]formulated a gravity theory introducing the variations of the gravitational constant as an extra degree of freedom but,again,this theory is in conflict with the observational results[2].These ideas culminated with the work of Brans and Dicke[5]who formulated a scalar tensor theory for gravity,the so called Jordan Brans Dicke theory.Meanwhile Penrose and Hawking[6]proved a set of theorems that showed the existence of an initial singularity of the Universe and of thefinal state of a collapsing star,named by Wheeler as black hole[7].Using a theorem due to Israel[8]and some results from Doroshkevich,Zel´dovich and Novikov[7],Wheeler conjectured that a black hole had no hair meaning that it would rapidly reach a stationary state uniquely determined by three parameters:its mass,angular momentum and electric charge,independently of the details of the body that had collapsed.This conjecture was rigorously proved later by the works of Israel,Carter,Hawking and Robinson[9].Scalar tensor gravity seems to be the most promising alternative to Einstein’s theory of general relativity,at least at sufficiently high energy scales.Even this one is extremely successful at describing the dynamics of our solar system,and indeed the observable universe.These theories are indistinguished by the observational tests in the Solar system [10]and therefore one has to look for their implications in other regimes such as in cosmological contexts,gravitational waves,neutron starts or black holes.In particular Hawking studied in reference[11]static black holes in the Jordan Brans Dicke theory and comparing them with those in Einstein gravity,he showed that they are equivalent.This result is stated as the Hawking theorem.In this letter we review the Hawking’s theorem and generalize it to hiperextended Jordan Brans Dicke theories.Therefore the layout of this letter is as follows:Wefirst present some generalities for the hiperextended Jordan Brans Dicke theories.In Sec.III we review the Hawking’s theorem for the Jordan Brans Dicke theory and in Sec.IV we generalize it for some hiperextended theories.2The hiperextended Jordan Brans Dicke theoriesIn scalar tensor theories of gravity,the gravitational coupling is proportional to the inverse of a dynamical scalarfield[5],φ,or in general to a function of a scalarfield[12]which couples to the geometry by a generic coupling function,ω(φ),and that can self interact in a scalar potential,V(φ).These theories can be classified as extended or hiperextended depending on whether the coupling function is or is not a constant respectively.In the canonical representation,the hiperextended theories,also known as the gener-alised Jordan Brans Dicke theories,are described by the action:S[gµν,φ,χ]= d4x√φ(∇φ)2+V(φ)+16πL matter[gµν,χ]](1) whereχdenotes generically nongravitationalfields described by the Lagrangean density L matter[gµν,χ].Varing the action S with respect to the Jordan Brans Dickefield and to the metric one obtains the equations of motion:R−ω(φ)φ2φ+dV(φ)dφ1φ2 ∇µφ∇νφ−1φ(∇µ∇νφ−gµν2φ)+V(φ)φT matterµν(2b)where T matterµνis the energy-momentum tensor of the matter.Contracting equation(2b)and substituting the expression for R into equation(2a) one obtains an equation for the scalarfield:2φ=T matter 8πdφ 1dφ(∇φ)212(nonsingular model).3The Hawking’s theoremLetω(φ)be a constant and V(φ)=0in the action in(1).This is the Jordan Brans Dicke action or the action for the minimum model[5].Outside the horizon of a static black hole it is vacuum and therefore one gets∇φ=0.(4) Letϕ=φ−φ0withφ0the scalarfield at far distances from the horizon.Its equation of motion is also:∇ϕ=0(5) Multiply both members of(5)byϕand integrate covariantly by parts between two Cauchy surfaces,one placed on the horizon and the other on a distant region far from that.One obtains:d4x√.(7)3+2ω(φ)This is the Hawking theorem[11].4Generalisation of the Hawking theoremThe Hawking theorem can be immediately generalized to extended models with V(φ)= V0φ2,where V0is a constant,because the equation of motion for the scalarfield is the same as for the minimum model.Let us now suppose V(φ)=0,andω(φ)a generic“well behaved”function.This is the Nordtvedt model[13].Proceeding as in the previous section one concludes that the Hawking theorem is verified when[14]:−1+(φ−φ0)dω(φ)3+2ω(φ)=0.(8)Combining these results it is immediate to generalize the Hawking theorem to hiperex-tended models with V(φ)=V0φ2andω(φ)a generic“well behaved”function,i.e.,satis-fying the constraint in(8).When the Hawking theorem is applicable asφis constant(equals toφ0)the“Einstein′s”equations become:Gµν=V(φ0)r +Λr2r+Λr22V0φ0.This is a Schwarzschild’s type metric with a cosmological constantΛ.Now let us check that this is a metric of a black hole.Calculating the invariant scalar I=RκλµνRκλµν,with Rκλµνthe Rieman tensor curvature[15]one obtains:I(r)=48M23Λ2(11)and therefore there is a singularity placed at r=0[15].The horizon is given byr0=1+3 −ΛM+√√−3√−1−9ΛM2(12)with M the mass which is greater than the critical mass M critical:M critical= 9Λ,(13) Assuming that the Cosmic Censor Conjecture[15]is valid one concludes that this is indeed a black hole type singularity.5Acknowledgements.C.S.would like to thank to Mrs.Susan Percival for the reading of this manuscript and Dr.Ruth Gregory for helpful discussions.This work was supported by a JNICT fellowship BD/5814/95(C.S.). References[1]P.A.M.Dirac,Nature,1393231937.P.A.M.Dirac,Proc.Roy.Soc.,A1651991938.[2]S.Weinberg Gravitation and Cosmology:Principles and Applications of the GeneralTheory of Relativity(John Wiley Sons,1972).[3]Kaluza.T.Sit.Z.Preuss.Akad.Wiss.1921966.O.Z.Klein,Phys.378951926.[4]P.Jordan,Nature1646371947.P.Jordan Schwerkraft und Weltfall(Vieweg und Sohn,Braunschweig1955).[5]C.Brans,R.H.Dicke,Phys.Rev.1249251961.[6]S.W.Hawking,Astr.J.145,5441966.Hawking,S.W.,Singularities and the geometry of space-time,Adams Prize Essay (unpublished).S.W.Hawking,Proc.Roy.Soc.Lond.A300,1871967.S.W.Hawking,G.F.R.Ellis,Phys.Lett.17,2461965.S.W.Hawking,R.Penrose,Proc.Roy.Soc.Lond.A3145291970.R.Penrose,Phys.Rev.Lett.14,571965.R.Penrose,Revista del Nuovo Cimento12521976.[7]S.W.Hawking,W.Israel General Relativity-an Einstein Centenary Survey(Cam-bridge University Press,1979).[8]W.Israel,Phys.Rev.16417761967.[9]S.W.Hawking,Phys.Rev.Lett.2613441971.S.W.Hawking Comm.Math.Phys.251521972.W.Israel,Phys.Rev.16417761967.W.Israel,Comm.Math.Phys.82451968.B.Carter,Phys.Rev.Lett.263311970.D.C.Robinson,Phys.Rev.D104581974.[10]C.M.Will Theory and experiment in gravitational physics(Cambridge UniversityPress,1993).[11]S.W.Hawking,Commun.Math Phys.251671972.[12]P.J.Steinhardt and F.S.Accetta Phys.Rev.Lett.6427401990.J.D.Barrow and K.Maeda,Nucl.Phys.B3412941990.[13]K.Jr.Nordtvedt,Astrophys.J.161,10591970.[14]C.Santos Black-holes and the gravitational collapse in scalar tensor theories ofgravity,(Ms Thesis,Instituto Superior T´e cnico-1994).[15]R.M.Wald General Relativity,(Chicago University Press,1984).。

相关文档
最新文档