北京理工大学线性代数B_A 2012-2013-1期末考试

合集下载

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷)一. 填空题(每小题2分, 共10分)1. 设⎪⎩⎪⎨⎧<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________.2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________.3. 已知),(cos 4422x o bx ax ex x ++=- 则_,__________=a .______________=b 4. 微分方程1cos2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________.二. (9分) 求极限 210)sin (cos lim xx x x x +→.三. (9分) 求不定积分⎰+dx e xx x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值.五. (8分) 判断212arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dxy d dx dy . 七. (10分) 求下列反常积分. (1);)1(122⎰--∞+x x dx (2) .1)2(10⎰--x x dx八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受到的水压力. (要求画出带有坐标系的图形)九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解.十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f xa +=+⎰)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线)(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,67π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(121=⎰xdx x f 证明在)2,0(内存在ξ 使.1)(='ξf。

北京理工大学 数理方程2013年B卷

北京理工大学 数理方程2013年B卷

课程编号: 07000125 北京理工大学2012-2013学年第二学期2011级数学物理方程与特殊函数期末试题(B 卷)班级_______________学号_______________姓名______________成绩_____________一、简答下列各题(直接写出结果,无需推导求解,每题5分,共计15分):1. 设Ω是二维空间中一物体,闭曲线S 是其边界,物体表面绝热。

请写出稳恒状态下物体的温度分布所满足的定解问题。

2.长度为1的均匀细弦作自由振动,两端固定,弦的初始位移为()f x ,初始速度为()g x . 请写出该振动的定解问题。

3.半径为R 的薄圆盘侧面绝热,圆盘边界上的温度保持为零度,初始温度为21r R ⎛⎫- ⎪⎝⎭, 其中r 为圆盘内任一点的极半径。

试写出极坐标系下圆盘的温度分布规律。

二、(15分)用分离变量法求解如下定解问题:222202cos , 0, 0,0,0.x x x x l t t t u u xx l t t x l u u u u π====⎧∂∂=+<<>⎪∂∂⎪⎨==⎪⎪==⎩三、(15分)用特征线法解下列定解问题:2222200540, , 0,|0, 2.y y u u ux y x x y y u u x y ==⎧∂∂∂++=-∞<<+∞>⎪∂∂∂∂⎪⎨∂⎪==⎪∂⎩四、(15分)用积分变换法求解如下定解问题:2200,0,,|().t u ut x t x u x ϕ=⎧∂∂-=>-∞<<+∞⎪∂∂⎨⎪=⎩24x a t-的傅里叶变换为22a teω-, 其中a 为常数。

五、(15分)求拉普拉斯方程第一边值问题在半空间x a >内的格林函数,并求解定解问题:0,()().xx yy zz u u u x a u a y z f y z y z ++=>⎧⎨=-∞<<+∞⎩,,,,, ,六、(15分) 设 (1,2,3,)i i α= 是零阶贝塞尔函数0()J x 的正零点,请将函数2()(01)f x x x =≤≤ 展开成贝塞尔函数0()i J x α的级数。

2012-2013(1)线性代数(理工)A试卷 重理工资料库

2012-2013(1)线性代数(理工)A试卷  重理工资料库

2、 5、 14
A B B A
3、 (2, 3, 4,6) 6、 20
三、计算题(第 1-6 小题每小题 6 分,第 7、8 小题每小题 8 分,共 52 分)
1、设行列式 D
3 5 2 1
1 1 0 5
1 2 3 4 1 3 1 3
,计算 A31 3 A32 2 A33 2 A34 的值,其中 Aij 表示行列式中元素 aij 的代数余子式。
(D) 8 A B )
5、设 A 为 4 阶方阵,当 R( A) 3 时,则 R( A* ) 为( (A) 3 (B) 2 (C) 1 (D) 0
6、设 A 、 B 为 n 阶方阵,且 R( A) R( B) ,则( (A) R( A B) 0 (B) R( A B) 2R( A)

三、计算题(第 1-6 小题每小题 6 分,第 7、8 小题每小题 8 分,共 52 分)
1、设行列式 D
ห้องสมุดไป่ตู้
3 5 2 1
1 1 0 5
1 2 3 4 1 3 1 3
,计算 A31 3 A32 2 A33 2 A34 的值,其中 Aij 表示行列式中元素 aij 的代数余子式。 (6 分)
x 2 0 5、设 A (6 分) 2 x 0 的一个特征值为 1 ,求 x 。 x 9 2
-2微信关注:重理工资料库
重理工资料库
重庆理工大学考试试卷
2012~ 2013 学年第一学期
班级 学号 姓名 考试科目 线性代数(理工) A卷 闭 卷 共 3 页
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 密· · · · · · · · · · · · · · · · · · · · · · · ·封· · · · · · · · · · · · · · · · · · · · · · · ·线· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 学生答题不得超过此线

北京理工大学《高等数学》历年期末考试试题及答案解析(精编版)

北京理工大学《高等数学》历年期末考试试题及答案解析(精编版)

x = (t − 1)et 八. 设曲线 C 的方程为 y = 1 − t4

dy dx
,
d2y dx2
及曲线
C
在参数
t
=
0
对应点处
–2/48–
第 1 部分 北京理工大学试题集
的曲率半径.
九. 设 f ′(x).
f (x)
=
1 x

ex
1 −
1,
x
<
0
1

1 c2os x
x
,
, x
x= >0
等于
mg k
.
∫1
十一. 设 f (x) 在 [0, 1] 上连续, 在 (0, 1) 内可导, 且满足 f (1) = 2 2 xe1−x f (x)dx, 证明:
0
至少存在一点 ξ, 使得 f ′(ξ) = (1 − ξ−1) f (ξ).
1.2 2011 级秋季学期期末试卷
一. 填空题
1. 极限 lim
x→0
x
− ln(1 x2
+
x)
=
2. 设 y
=
x2 + ln x, 则
dx dy
=
dy =
∫∞
3. 广义积分
e
dx x ln2
x
=
4.
微分方程
y′′
=
1
1 + x2
的通解为
; lim
1

x
(1
+
sin
2t)
1 t
dt
=
.
x→0 x 0
√ ; 设 f 可导,y = f (tan x) + 1 − x2, 则

考研线性代数期末试卷题库(机械学部整理) (13)

考研线性代数期末试卷题库(机械学部整理) (13)

课程编号:A073003 北京理工大学2012-2013学年第一学期线性代数B 试题B 卷班级 ________ 学号 _________ 姓名 __________ 成绩 ___________一、(10分)已知⎪⎪⎪⎭⎫ ⎝⎛-=001310520A ,302404213B ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,求行列式*1002A B-的值,其中*A 为A 的伴随矩阵。

二、(10分) 例设矩阵X 满足X A AX 2+=, 其中⎪⎪⎪⎭⎫ ⎝⎛-=321011324A 。

(1)证明2A I -可逆: (2)求X 。

三、(10分)对下列线性方程组12312321231ax x x x ax x a x x ax a ++=⎧⎪⎪++=⎨⎪++=⎪⎩ 试讨论:当a 取何值时,它有唯一解?无解?有无穷多解?并在有无穷多解时求其通解。

(用导出组的基础解系表示通解)。

四、(10分)已知123(1,0,1),(0,1,0),(1,2,2),T T T ααα=== 123(1,0,0),(1,1,0),(1,1,1).T TTβββ=== (1) 求基321,,ααα到基321,,βββ的过渡矩阵; (2) 求向量T)0,3,1(=γ关于基321,,ααα的坐标。

五、(10分)已知1234(0,4,2), (1,1,0), (2,4,3), (1,1,1)T T T T αααα===-=-求生成子空间1234(,,,)L αααα的维数和一组基。

六、(10分)已知123(1,1,1),(0,1,0),(1,0,1)T T T ααα=-==,把123,,ααα化为欧氏空间3R 的标准正交基。

七、(10分)设A 与B 是同阶方阵,且A 、B 、A+B 都可逆,证明:11--+B A 也可逆。

八、(10分)实二次型AX X x x x f T =),,(321,其中已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=020212022A 。

线性代数试题(B)

线性代数试题(B)

线性代数试题(B)第一篇:线性代数试题(B)(101)北京理工大学远程教育学院2007-2008学年第一学期《线性代数》期末试卷(A卷)教学站学号姓名成绩一.填空题(每小题4分,共20分)⎛x1⎫⎛2-1⎫1.已知A=,则XTAX=_______; ,X=⎪⎪⎝-13⎭⎝x2⎭2.设向量α1=(0,1,1),α2=(0,t,2)线性相关,则t= _____;3.设A是秩为1的3阶矩阵,则齐次线性方程组AX=0 的基础解系含_____个解;⎛111⎫⎪4.已知矩阵 001⎪,则其秩为__________;001⎪⎝⎭5.已知2是矩阵A的一个特征值,则 |2E-A|= __________。

二.选择题(每小题4分,共20分)1.设A与B是两个同阶可逆矩阵,则();A.(A+B)-1=A-1+B-1B.|A||B|=|B||A|C.|A+B|=|A|+|B| D.AB=BA2.设A是1⨯2矩阵,B是2阶方阵,C是2⨯1矩阵,则()A.ABC是1阶方阵B.ABC是2⨯1阶矩阵C.ABC是2阶方阵D.ABC是1⨯2阶矩阵3.已知向量组α1,α2,α3满足α3=k1α1+k2α2,则()A.k1,k2不全为零B.α1,α2线性无关 C.α3≠0D.α1,α2,α3线性相关4.设ξ1,ξ2是非齐次线性方程组AX=b的两个解,则下述说法不正确的是(); A.ξ1-ξ2是导出组AX=0的1解B.(ξ1-ξ2)是AX=0的解21C.ξ1+ξ2是AX=b的解D.(ξ1+ξ2)是AX=b的解5.设A是一个方阵,则();A.由| A | = 0可得 A = 0B.由| A | = 0可得 0是A的一个特征值C.由| A | = 1可得 A = ED.由| A | = 1可得 1是A的一个特征值三.计算题(每小题10分,共50分)131.计算行列式3233333333342.求解下列线性方程组⎧ x1-5x2+2x3=-3⎪⎨-3x1+ x2-4x3=2⎪ 5x+3x+6x=-1123⎩用导出组的基础解系表示通解。

2012~2013学年第一学期《线性代数》期末试卷(B)

2012~2013学年第一学期《线性代数》期末试卷(B)

第1页 共5页北京理工大学珠海学院2012 ~ 2013学年第一学期《线性代数》期末试卷(B )标准答案及评分标准适用年级专业: 2011级信息学院、化工与材料学院、计算机学院 (除计算机科学与技术专业)及机械与车辆学院(除机械工程及自动化专业和热能与动力工程)各专业 试卷说明:闭卷,考试时间120分钟.一、选择填空题(每小题3分,共18分)【得分: 】1.设2.34,,,,a b x x x 均为4维列向量,且2.342.34(,,,),(,,,)A B a x x x b x x x ==为4阶方阵.若行列式4,1A B ==,则 .A B +=2.设1225A ⎛⎫= ⎪⎝⎭, 则1A - =3.若22112414A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦且()2r A =,则t = 4.设a 是齐次线性方程组0A x =的解,而b 是非齐次线性方程组A x b =的解,则(32)A αβ+=_________.5.设方阵A 有一个特征值为2,则22A A E +-有一个特征值为 ___.6. 设二次型2221231213235224f x x x ax x x x x x =+++-+为正定二次型,则参第2页共6页写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写………………………………装………………………………订…………………………线……………………………………………………二、计算题(每小题12分,共36分)【得分:】1.设111123111124111051A B⎛⎫⎛⎫⎪ ⎪=-=--⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,,求2TA A B-2.计算行列式1112 1141 2461 1242-----3.设矩阵423110123A⎛⎫⎪= ⎪⎪-⎝⎭,求矩阵B使其满足矩阵方程2A B A B=+.三、解答题(每小题12分,共36分)【得分:】1.当λ为何值时,齐次方程组1231231232202030x x xx x xx x xλ+-=⎧⎪-+=⎨⎪+-=⎩有非零解?并求其通解.第4页 共6页写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写………………………………装………………………………订…………………………线……………………………………………………2.设向量组A :1234511214,,,,4622436979ααααα- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(1)求向量组A 的秩,并说明其线性相关性. (2)求向量组A 的一个最大线性无关组,并将A 的其余向量用该最大线性无关组线性表示.3.已知二次型()22212312323,,2+3+3+4f x x x x x x x x =. (1)写出二次型f 的系数矩阵;(2)用正交线性变换把二次型f 化为标准形,并写出相应的正交方阵.四、解答题(每小题5分,共10分)【得分: 】1.设123,,ααα线性无关,证明11213,2,3ααααα++也线性无关.2.已知二次型()22212312312,,(1)+(1)2+2(1)f x x x a x a x x a x x =--++的秩为 2.求a。

线性代数B期末考试题及答案

线性代数B期末考试题及答案

线性代数B期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)C. \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)D. \(\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}\)答案:C2. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(A^2 = I\),则\(A\) 一定是:A. 正交矩阵B. 斜对称矩阵C. 单位矩阵D. 对角矩阵答案:A3. 线性方程组 \(\begin{cases} x + 2y - z = 1 \\ 3x - 4y + 2z = 2 \\ 5x + 6y + 3z = 3 \end{cases}\) 的解的情况是:A. 有唯一解B. 有无穷多解C. 无解D. 不能确定答案:B4. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(\det(A) = 0\),则 \(A\) 的秩:A. 等于3B. 小于3C. 等于0D. 大于等于3答案:B二、填空题(每题5分,共20分)1. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的行列式\(\det(A) = 2\),则 \(A\) 的伴随矩阵 \(\text{adj}(A)\) 的行列式是 _______。

答案:82. 若 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的特征值为1,2,3,则 \(A\) 的迹数 \(\text{tr}(A)\) 等于 _______。

北京理工大学2012级线性代数(A)A卷及答案

北京理工大学2012级线性代数(A)A卷及答案

课程编号:A073122 北京理工大学2012-2013学年第一学期线性代数A 试题 A 卷班级 ________ 学号 _________ 姓名 __________ 成绩 ___________一、(10分)已知3阶方阵123035002A ⎛⎫⎪= ⎪ ⎪⎝⎭,计算行列式*123A I+。

二、(10分) 设423110, 2123A AX A X ⎛⎫ ⎪⎪==+ ⎪ ⎪-⎝⎭, 求X 。

三、(10分)已知线性空间4][x F 的自然基为231,,,x x x 。

(1) 证明:2231,12,123,1234x x x x x x ++++++为4][x F 的一个基;(2) 求自然基231,,,x x x 到基2231,12,123,1234x x x x x x ++++++的过渡矩阵,以及23()1h x x x x =--+在后一个基下的坐标。

四、(10分)已知123(1,0,1), (2,2,0), (0,1,1)TTTααα=-==。

(1) 求向量组123,,ααα的一个极大无关组;(2) 求生成子空间123(,,)L ααα的一个标准正交基。

五、(10分)设A 是5阶方阵,且已知存在5阶可逆矩阵P ,使得111112P AP --⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭试写出A 的初等因子,同时判断P 的哪几列是A 的特征向量。

六、(10分)在多项式空间4[]R x 中定义变换σ:233012330201()()a a x a x a x a a a x a a x σ+++=-+++(1)证明:σ是4[]R x 上的线性变换;(2)求σ在4[]R x 的自然基231,,,x x x 下的矩阵,并判断σ是否可逆。

七、(10分)假设A 是m n ⨯的实矩阵,证明:()()TA A A =秩秩八 (10分)已知(1,1,1)T ξ=-是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量, (1)确定参数a , b 及特征向量ξ所对应的特征值; (2)判断A 是否可以相似对角化,说明理由。

线性代数B期末试卷及答案

线性代数B期末试卷及答案

2008 -2009学年第二学期《线性代数 B 》试卷量组1,2, ,m , 的秩为5. 设A 为实对称阵,且AI M 0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x= __________ .T6. 设 R 3 的两组基为 a 11,1,1 ,a 2 1,0, 1 ,a 3 1,0,1 ;2,3,4 , 3 3,4,3 ,则由基 a !,a 2,a 3到基 1, 2, 3的过渡矩阵为、单项选择题(共6小题,每小题3分,满分18 分)一一一-二二 -三四五六总分(共 0 0 12. A 为n 阶方阵,AA T = E 且A 0,则A E |.3•设方阵A1 2 24 t 3 , B 为三阶非零矩阵,且AB=O,则t 3114.设向量组m线性无关,向量 不能由它们线性表示,贝U 向1(1,2,1,)T ,22009年6月22日6小题,每小题3分,满分18分)、填空题 1 0 0 10 01.设D n 为n 阶行列式,则D n = 0的必要条件是[]. (A) D n 中有两行元素对应成比例; (B) D n 中各行元素之和为零; (C) D n 中有一行元素全为零;(D)以D n 为系数行列式的齐次线性方程组有非零解.2.若向量组 ,,线性无关,,, 线性相关,则[](A)必可由,, 线性表示; (B)必可由,, 线性表示; (C)必可由,, 线性表示; (D)必可由,,线性表示.3.设3阶方阵A 有特征值0,— 1,1,其对应的特征向量为P i , P 2,P 3, 令1 亠( P 1, P 2, P 3),则 P —1AP =[ ].1 0 00 0 0(A) 01 0 ;(B) 01 0 ;0 0 0 0 0 10 01 0(C) 0 10 ;(D) 0 00 .0 0 —10 0—14. 设 a 1, a, a 线性无关,则下列向量组线性相关的是[](A) a, a, a - a ;(B) a 1,a + a, a 1+ a ;(C) a +( 也, a + a, a + a ; (D) a 1- a, a - a, a - a .5. 若矩阵A a x 4有一个3阶子式不为0,则A 的秩R ( A )=[]. (A) 1; (B) 2; (C) 3;(D) 4.6. 实二次型f 二X T A X 为正定的充分必要条件是[].(A) A 的特征值全大于零; (B) A 的负惯性指数为零;(C)AI > 0 ;(D) R(A) = n .、解答题(共5小题,每道题8分,满分40分)。

线性代数期末试题及答案

线性代数期末试题及答案

第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数 北京理工大学出版社 习题解答

线性代数  北京理工大学出版社  习题解答

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载线性代数北京理工大学出版社习题解答地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一章行列式学习要求1. 理解二阶与三阶行列式的概念,熟悉掌握二阶与三阶行列式的计算方法,会求二元、三元一次线性方程组的解;2. 理解级全排列、逆序数的概念和排列的奇偶性;3. 理解阶行列式的概念和阶行列式的等价定义,会用行列式的定义计算对角、三角行列式和一些简单的特殊的阶行列式;4. 掌握行列式的基本性质,会利用“化三角形”方法计算行列式;5. 理解余子式、代数余子式的概念,掌握行列式按行(列)展开定理,会用降阶法计算行列式;6. 掌握克莱姆法则,了解未知量个数与方程个数相同的方程组解的判定定理,会运用克莱姆法则讨论齐次线性方程组的解.§1.1 二阶与三阶行列式1. 计算二阶行列式:(5)2.计算三阶行列式:(2)3.求解方程解故原方程的解为4.用行列式解下列方程组:(1) (2)解(1)故所求的方程组有唯一解:(2),,故所求的方程组有唯一解:6. 当取何值时,解解得§1.3 阶行列式的定义1. 写出四阶行列式中含有因子的项.解利用阶行列式的定义来求解.行列式的阶数是四,每一项都要有4个元素相乘,题目已给出了两个已知因子,那么还有两个元素还未写出,由于因子的行标已经取了2,3,列标取2,4,所以剩下因子的行标只能取1,4,列标只能取1,3,因此未写出的因子为和.又因为,,所以四阶行列式中含有因子的项为和,即和.3. 已知,用行列式的定义求的系数.解的展开式中含的项只有一项:,故的系数为.4. 利用行列式的定义计算下列行列式:(2);解析由阶行列式的定义可知:行列式等于取自不同行不同列的元素的乘积的代数和.因为第1行只有一个非零元素1,先取,则第1行和第4列的元素不能再取了,再考虑第2行的元素,第2行只能取,则第2行和第2列的元素也不能再取了,对第3行的元素而言,此时只能取,则第3行和第1列的元素不能再取了,最后第4行的元素只能取,那么行列式的结果为;补充练习1. 由行列式的定义写出的展开式中包含和的项.解的展开式中含的项只有一项,而含的项有两项和,从而展开式中含的项为:.§1.4 行列式的性质1. 利用行列式的性质计算下列行列式:(2)(3) 由于每一行(或列)的和都是等于6,故将第2,3,4行都乘以1加到第一行,再提取公因子6,利用性质5化成三角形行列式即可求值.(4)2. 证明下列等式:(2);(3); .证明(2) 把行列式中的括号展开,第1列乘以-1加到其它列,化简行列式.;(3) 由性质4,将的第1列拆开,得,将第1个行列式的第1列乘以-1加到第2、3列,第2个行列式第1列提取,得,将第1个行列式第2、3列提取,将第2个行列式的第2列、第3列分别拆开,最后可得如下行列式,;3. 计算下列阶行列式.(1); (2);解 (1)把第列分别乘以1加到第1列,得到第1列的公因子,提取公因子之后,再给第1行乘以加到第行,化成上三角形行列式,得到行列式的值.;(2) 把第2行乘以(-1)分别加至其余各行,再把第1行乘以2加至第2行,得;4. 求方程的根.解第1行乘以加到第行,得如下行列式:再将上述行列式的第2,3,4列乘以1加到第1列,化成上三角形行列式.即可求出根:.补充练习2. 已知行列式,求行列式的值.解=.§1.5 行列式按行(列)展开1. 求行列式中元素5与2的代数余子式.解元素5的代数余子式为元素2的代数余子式为2. 已知四阶行列式第3行元素依次为4、3、0、-2,它们的余子式依次为2、1、-1、4,求行列式的值.解由行列式按行(列)展开定理,得3. 求下列行列式的值(2)(3)所求行列式为四阶范德蒙行列式,由范德蒙行列式的展开公式,得4. 讨论当为何值时,行列式.解所以,当,且,且时,.5. 计算阶行列式(3)按第1列展开,得上式右端的行列式再按第一行展开,得移项,得,递推,得从而得把上面个等式相加,得7.设四阶行列式试求的值,其中()为行列式的第4列第行的元素的代数余子式. 解根据行列式按行(列)展开定理的推论,有即§1.6 行列式的应用1. 用克莱姆法则解线性方程组(3)解:所以方程组有唯一解. 又所以方程组的解为,,, .2.满足什么条件时,线性方程组有唯一解?解由克莱姆法则知,当系数行列式,线性方程组有唯一解,当时,,即当时,题设的线性方程组有唯一解.3.当为何值时,齐次线性方程组有非零解?解齐次线性方程组有非零解,则其系数行列式,由得:,.4.和为何值时,齐次线性方程组有非零解?解齐次线性方程组有非零解,则其系数行列式,由得:或.即当或时,方程组有非零解.5.求二次多项式,使得,,.解由,,,得要求二次多项式需要求出系数,即要求出上述非齐次线性方程组的解.由其系数行列式所以可用克莱姆法则求解.由于从而,,.即所求的二次多项式为.补充练习2.系数满足什么条件时,四个平面相交于一点()?解把平面方程写成如下形式,(,),于是由四个平面相交于一点,推知齐次线性方程组有一非零解().根据齐次线性方程组有非零解的充分必要条件是系数行列式,即四个平面相交于一点的条件为3.设平面曲线通过点(1,0),(2,-2),(3,2),(4,18),求系数.解由平面曲线通过点(1,0),(2,-2),(3,2),(4,18),得我们可以通过求解上述线性方程组的解来求系数.,又,,,从而,,,.第二章矩阵学习要求1. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵以及它们的性质;2. 掌握矩阵的线性运算、乘法、转置以及它们的运算规律.了解方阵的行列式、方阵的幂与方阵的多项式的性质;3. 理解可逆矩阵的概念和性质,以及理解矩阵可逆的充要条件。

2012—2013学年第二学期《线性代数B1》期末考试试卷

2012—2013学年第二学期《线性代数B1》期末考试试卷
x3 = 1}为R3的线性子空间. (F) 7. 设S是 数 域F 上n维 线 性 空 间V 上 的 线 性 变 换, 并 且 对 于 任 意α = β ∈ V 都
有S(α) = S(β). 那么, 任给V 的一组基α1, α2, · · · , αn, S(α1), S(α2), · · · , S(αn)也 是V 的一组基. (T)
六、 设α是n维欧氏空间V 中的非0向量, 定义V 上的线性变换Aα:
Aα(β)
=
β

2(α, β) (α, α)
α.
证明:
1. Aα是一个正交变换. 2. 存在标准正交基,使得Aα在该基下的矩阵为diag(−1, 1, · · · , 1).
七、 设n为大于1的整数, S是数域F 上n维线性空间V 上的线性变换, 且存在α ∈ V 使 得
五、 设V = {(a2x2 + a1x + a0)ex : a2, a1, a0 ∈ R},V 中元素按函数通常的数乘与加
法构成的线性空间。对任意f (x)

V,
定义V 上的变换:A
:
p(x)
−→
d dx
p(x),
对任
意p(x) ∈ V .
1. 证明:A是V 上的线性变换; 2. 求A 在基ex, xex, x2ex下的矩阵; 3. 求A的特征值与特征向量。
...................................................................装 订 线 • 答 题 时 不 要 超 过 此 线..........................................................
.

2012-2013-1-线性代数A 期末试卷及答案

2012-2013-1-线性代数A 期末试卷及答案

②若秩 (A) ≥ 秩 (B) ,则 Ax = 0 的解均是 Bx = 0 的解;
③若 Ax = 0 与 Bx = 0 同解,则秩 (A) = 秩 (B) ;
④若秩 (A) = 秩 (B) ,则 AX = 0 与 BX = 0 同解。
以上命题中正确的是

(A)①②
(B)①③
(C)②④
(D)③④
5. 方阵 A 与 B 相似的充分必要条件是
北京科技大学 2012--2013 学年第一学期
线性代数 试卷(A 卷)
院(系)
班级
学号
姓名
试卷卷面成绩
题 号














小计
占课程 考核成 绩 70%
平时 成绩 占 30%
课程考 核成绩
注意事项: (1)本试卷共八道大题,共八页,请认真核对。 (2)正确填写学院、班级、姓名、学号等个人信息,空填或错填的试卷为无效试卷。 (3)请使用钢笔、签字笔或者圆珠笔答卷,使用铅笔答卷无效。
(A)2000
(B)-2000
。 (C)2300
(D)-2300
3.设向量组α1,α2 ,α3 线性无关,向量 β1 可由α1,α2 ,α3 线性表示,而向量 β2 不能由α1,α2 ,α3 线性表示,
则对于任意常数 k ,必有

(A)α1,α2 ,α3, kβ1 + β2 线性无关;
(B)α1,α2 ,α3, kβ1 + β2 线性相关;
⎟ ⎟ ⎟
,
α
3

=
⎜ ⎜
0 7

北京理工大学数学专业离散数学期末试题

北京理工大学数学专业离散数学期末试题

(完整word版)北京理工大学数学专业离散数学期末试题(MTH17068,MTH17175)亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。

下面是本文详细内容。

最后最您生活愉快 ~O(∩_∩)O ~课程编号:MTH17068 北京理工大学2012-2013学年第一学期2011级离散数学试题A 卷一、选择题(本大题共10小题,每小题2分,共20分)1.下列不是命题的是A.7能被3整除B.5是素数当且仅当太阳从西边升起C.x+7<0D.北京理工大学位于北京市西城区2.设p :王平努力学习,q :王平取得好成绩。

命题“除非王平努力学习,否则他不能取得好成绩”的符号化形式为A.p q →B.p q ⌝→C.q p →D.q p ⌝→3.下列4个推理定律中正确的是A.A A B ⇒∨(附加律)B.()A B A B ∨∧⌝⇒(析取三段论)C.()A B A B →∧⇒(假言推理)D.()A B B A →∧⌝⇒(拒取式) 4.设解释I 如下:个体域{}()()()()1,2,1,12,20,1,22,11D F F F F =====。

在此解释下,下列各式真值为1的是A.(),x yF x y ∀∃B.(),x yF x y ∃∀C.(),x yF x y ∀∀D.(),x yF x y ⌝∃∃ 5.下列4个命题为真的是 A.Φ∈Φ B.{}a Φ∈ C.{}{}Φ∈ΦD.Φ⊆Φ6.设{},,A a b c =上的二元关系{},,,,,R a a b b a c =<><><>,则关系R 的对称闭包()s R 为A.A R IB.RC.{},R c a <>D.A R I7.设{},,A a b c =,则下列是A 的划分的是A.{}{}{},,b c cB.{}{}{},,,a b a cC.{}{},,a b cD.{}{}{},,a b c8.下列编码是前缀码的是A.{1,11,101}B.{1,001,0011}C.{1,01,001,000}D.{0,00,000}9.下列图既是Euler 图又是Hamilton 图的是 A.9K B.10K C.2,3KD.3,3K10.下列图一定是平面图的是A.5KB.,,9,22G V E V E =<>==C.3,3KD.,,10,8G V E V E =<>==二、填空题(本大题共10小题,每小题2分,共20分)1.若对命题P 赋值1,对命题Q 赋值0,则命题P Q ↔的真值为_______________。

2012-2013线性代数(32学时)期末试卷A卷答案 本科

2012-2013线性代数(32学时)期末试卷A卷答案 本科
1 1 1 1 1 1 1 1 1 1 1 1 ~ 0 0 0 0 1 1 1 1 0 0 0 0
所以
2 0 1 1 2 1 B ( A E ) ( A E ) ( A E ) ( A E )( A E ) A E 0 3 0 (6 分) 1 0 2
14、 (10 分)计算行列式 D
0 0 d2 c2
解:在等式两边同时左乘 A1 ,得: X A1 B (2 分) , 因为: A 34 0 ,所以 A 可逆, (4 分)
21 19 4 , 又因为 A 的伴随矩阵是: A 19 35 2 4 2 4
=( a 2 b2 - d 2 c 2) ( a1b1 - d1c1) (10 分)
21 19 4 1 故 A 19 35 2 (7 分) 34 2 4 4
1
21 19 4 1 -3 -29 -21 1 1 所以 X A B 19 35 2 2 -2 57 -15 (10 分) 34 34 12 2 4 4 4 3 -1
0 0 0
1
2 0 0 1 1 3 0 2 2 1 4 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 r3 1 0 0 r4 3 r3 0 2 r2 0 1 0 r4 1 r3 4 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 2 2 1 1 1 2 6 3 5 1 1 8 24 12
1
五、
阅卷教师 得分
计算题(共 3 题,共 24 分)

(完整word版)北京理工大学数学专业高等代数Ⅱ期末试题(MTH17063)

(完整word版)北京理工大学数学专业高等代数Ⅱ期末试题(MTH17063)

课程编号:MTH17063 北京理工大学2010—2011学年第一学期2009级数学类高等代数期末考试试题A 卷班级 学号 姓名 成绩一、(25分)设()n n M F ⨯表示域F 上的所有n 阶矩阵构成的F 上的线性空间.取定()n n A M F ⨯∈,对于任意的()n n X M F ⨯∈,定义()X AX XA σ=-. (1)证明:σ为()n n M F ⨯上的一个线性变换.(2)证明:对于任意的,()n n X Y M F ⨯∈都有()()()XY X Y X Y σσσ=+。

(3)当a b A c d ⎡⎤=⎢⎥⎣⎦时,求σ在给定基 1112212201101111,,,11110110F F F F ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦下的矩阵表示。

(4)当1402A -⎡⎤=⎢⎥⎣⎦时,求()Ker σ的一组基与维数. 二、(15分)设数域K 上3维线性空间V 的线性变换A 在V 的一个基123,,ααα下的矩阵为010440212A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.求线性变换A 的Jordan 标准形。

三、(20分)设A 是域F 上n 维线性空间V 上的一个线性变换,证明:(1)如果W 是A 的一维不变子空间,那么W 中任何一个非零向量都是A 的特征向量;反之,如果ξ是A 的一个特征向量,那么ξ生成的子空间ξ<>是A 的一维不变子空间。

(2)A 可以对角化的充分必要条件是V 可以分解成A 的一维不变子空间的直和. 四、(20分)设22()V M F ⨯=,在V 中取一个基11122122,,,E E E E . (1)求它的对偶基11122122,,,f f f f ,要求写出ij f 的表达式. (2)求V 上任意一个线性函数f 的表达式.五、(20分)证明:n 维酉空间V 上的线性变换A 是Hermite 变换A 当且仅当在V 的任意一个标准正交基下的矩阵是Hermite 矩阵。

北理工数理统计期末考试题及答案

北理工数理统计期末考试题及答案

)
=
Pq
(
X 1
-0 /3
3C)
=
1-
P0
(
X 1
-0 /3
�< 3C)
=
1-
F(3C
)
=
0.05
\ F(3C) = 0.95
1
1.645
\ C = 3 u0.05 = 3 » 0.5483
\ 犯第一类错误概率为:
aj* (m) = ìïíïïîïbj0(,m),
H 0成立 H1成立
=
íïïïîìïF(30,C),
北京理工大学 2012-2013 年学年第二学期
å 1 n
x = n i=1 Xi 是 l 的 UMVUE。
三.设总体
X
~
N (m1,s2 )

X1,
X
2
,
X
n
是抽自总体的简单随机样本;总体
Y ~ ( ) N m2,s2 , Y1,Y2,Yn 是抽自总体Y 的简单随机样本,两组样本相互独立,且
s
2
step3 : L− S → UMVUE
X1, X 2 , X n 的联合概率密度为:
n
( ) ( ) P(
X1
=x1 , X 2
=x2 ,…, X n
=xn
)
λ =e ∑ −nλ
xi
i=1
( x1!x2! )xn! −1
=h( x)
g
t
x λ 1
f (= x1θ ) P= ( X1 x1 ) P= ( X 2 x2 )P= ( X n xn )
n
å 即 bj (m) = Pm ( XC) = P( xi3C) = P(3X -3m3C -3m) =1-F(3C -3m) 。 i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有唯一解?无解?有无穷多解?并求出有无穷多解时的通解(用导出组的基础解系表示通解). 四、 (10 分)已知
1 (1,0,1,0) T , 2 (1,1,1,0) T , 3 (0,1,0,1) T , 4 (2,1,2,1) T
(1) 求向量组 1 , 2 , 3 , 4 的秩和一个极大无关组; (2) 用所求的极大无关组线性表出剩余向量。 五、 (10 分)已知 1 , 2 , 3 是向量空间 R 3 的一个基, 1 2 1 2 , 2 1 2 , 3 3 . (1) 证明 1 , 2 , 3 为 R 3 的一个基; (2) 求基 1 , 2 , 3 到基 1 , 2 , 3 的过渡矩阵; (3) 求向量 1 2 3 关于基 1 , 2 , 3 的坐标。
A 1 2 1 2 3 , A 2 1 2 2 3 , A 3 1 2 2 3
(1) 计算行列式 A I 的值; (2) 求 A 的特征值; (3) 求可逆矩阵 P 和对角矩阵 ,使得 P AP 。
1
2
A* 0
的值。
2 1 0 A 1 2 0 ,矩阵 X 满足 AXA 1 2 XA 1 I ,其中 I 为 3 阶单位 二、 (10 分)已知矩阵 0 0 3
矩阵,求 X。 三、 (10 分)问 a, b 为何值时,线性方程组
x3 x 4 0 x1 x 2 x2 2 x3 2 x 4 1 x 2 (a 3) x3 2 x 4 b x3 ax 4 1 3x1 2 x 2
(1) 求 A 的特征值和特征向量; (2) 判断 A 是否可以相似对角化。
4 2 2 T 八、 (10 分)已知实二次型 f ( x1 , x 2 , x3 ) X AX ,其中 A 2 4 2 。 2 2 4
(1) 求一正交变换 X QY ,将二次型 f ( x1 , x2 , x3 ) 化为标准形; (2) 判断二次型 f ( x1 , x2 , x3 ) 是否正定。 九、 (10 分) 已知 A, B 都是 3 阶矩阵,A [ , , ], B [ , , ] , A 2, B 3 , 求行列式 A B 的值。 十、 (10 分)设 A 是 3 阶矩阵, 1 , 2 , 3 是线性无关的 3 元列向量组,并且满足
课程编号:A073003
北京理工大学 2012-2013 学年第一学期
线性代数 B 试题 A 卷
班级 ________ 学号 _________ 姓名 __________ 成绩 ___________
题号 得分 签名 一 二 三 四 五 六 七 八 九 十 总分
1 0 0 0 2 5 0 B 2 3 2 A 0 1 3 ,求行列式 一、 (10 分)已知 , 2B 1 0 0 3 4 3
1
六、 (10 分)已知向量 1 (2,1, 3) , 2 (1,1,1) ,求与向量 1 , 2 都正交的向量 3 ,并把
T T
1 , 2 , 3 化为欧氏空间 R 3 的一个标准正交基。
1ቤተ መጻሕፍቲ ባይዱ1 0 A 4 3 0 , 七、 (10 分)已知矩阵 1 0 2
相关文档
最新文档