2016-2017学年山西省太原市高三(上)期末数学试卷(理科)
山西省太原市2017届高三上学期期末考试数学理试题 Word版含答案
太原市2016—2017学年第一学期高三年级期末考试数学试卷(理科) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}0,1,|12A B x x ==-≤≤,则A B = A. {}0,1 B. {}1,0,1- C. []1,1- D.{}12.设复数21iz i=+,则其共轭复数为 A. 1i -- B. 1i - C. 1i -+ D.1i +3.给出下列命题:①若数列{}n a 为等差数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等差数列; ②若数列{}n a 为等比数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等比数列; ③若数列{}{},n n a b 均为等差数列,则数列{}n n a b +为等差数列; ④若数列{}{},n n a b 均为等比数列,则数列{}n n a b ⋅为等比数列 A. 1 B. 2 C. 3 D.44.设,αβ为两个不同的平面,l 为直线,则下列结论正确的是 A.//,l l ααβα⊥⇒⊥ B. ,//l l ααβα⊥⊥⇒ C. //,////l l ααββ⇒ D. ,//l l ααββ⊥⇒⊥5.已知sin 0αα=,则tan 2α=A.3 B. 3-6.执行如图所示的程序框图,输入1,5x n =-=,则输出s = A. -2 B. -3 C. 4 D.37.如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图可能是8.将函数()2cos sin f x x x x =+的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x 轴向右平移6π个单位,得到函数()y g x =的图象,则()y g x =的一个递增区间是 A. 5,66ππ⎡⎤-⎢⎥⎣⎦ B. ,22ππ⎡⎤-⎢⎥⎣⎦ C. 4,123ππ⎡⎤-⎢⎥⎣⎦ D. ,04π⎡⎤-⎢⎥⎣⎦9.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 相交于点F ,则AF =A. 1142AC BD +B. 1124AC BD +C. 1223AC BD +D. 2133AC BD +10. 已知平面区域()33,,32233x y D x y z x y x y x y ⎧⎫⎪⎪+≥⎪⎪==-⎨⎬-≤⎪⎪⎪⎪+≤⎩⎭,若命题()00",,"x y D z m ∃∈>为假命题,则实数m 的最小值为A. 34B. 74C. 214D. 25411.如图,正方体1111ABCD A BC D -绕其体对角线1BD 旋转θ之后与其自身重合,则θ的值可以是A. 56πB. 34πC. 23πD. 35π12.已知()22,01,0x x e ax x f x ax x e⎧+>⎪=⎨-<⎪⎩,若函数()f x 有四个零点,则实数a 的取值范围是A. 1,e ⎛⎫-∞- ⎪⎝⎭B. (),e -∞-C. (),e +∞D. 1,e ⎛⎫+∞ ⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.数据0.7,1,0.8,0.9,1.1的方差是 .14.七名同学战成一排照相,其中甲、乙二人相邻,且丙、丁两人不相邻的不同排法总数为 .15.已知数列{}n a 的前n 项和()221n n n S a n N *=-+∈,则其通项公式n a = .16.已知,,a b c 分别是ABC ∆的内角,,A B C 的对边,BC 边上的高为2a ,则cb的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知数列{}n a 是首项为1的单调递增的等比数列,且满足3455,,3a a a 成等差数列. (1)求{}n a 的通项公式;(2)若()()31log n n n b a a n N *+=⋅∈,求数列{}n n a b ⋅的前n 项和n S .18.(本题满分12分)如图,已知AD 是ABC ∆内角BAC ∠的角平分线. (1)用正弦定理证明:AB DBAC DC=; (2)若120,2,1BAC AB AC ∠===,求AD 的长.19.(本题满分12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D 处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,现约定:若筹码停在A 或B 或C 或D 处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.(2)设甲、乙两人各有100个积分,筹码停在D 处,现约定:①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A-G 下方所对应的数目;②每次游戏筹码都连续走三步,之后重新回到起始位置D 处. 你认为该规定对甲、乙二人哪一个有力,请说明理由.20.(本题满分12分)如图,在六面体1111ABCD A BC D -中,,M N 分别是棱1111,A B BC 的中点,平面ABCD ⊥平面11A B BA ,平面ABCD 平面11B C CB . (1)证明:1BB ⊥平面ABCD ;(2)已知六面体1111ABCD A BC D -3cos 5BAD ∠=,设平面BMN 与平面11AB D 相交所成二面角的大小为θ求cos θ.21.(本题满分12分)已知函数()()ln xx f x ax x a R e =-∈在1x =处的切线方程为()11.y bx b R e=++∈ (1)求,a b 的值; (2)证明:()2.f x e<(3)若正实数,m n 满足1mn =,证明 :()112m nm n e e +<+.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
【真题】2016-2017年山西省太原市高三(上)期末数学试卷(文科)与答案
2016-2017学年山西省太原市高三(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知集合A={0,1},B={x|﹣1≤x≤2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.[﹣1,1]D.{1}2.(5分)设复数z=,则其共轭复数为()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i3.(5分)给出下列命题:①若数列{a n}为等差数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等差数列;②若数列{a n}为等比数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等比数列;③若数列{a n},{b n}均为等差数列,则数列{a n+b n}为等差数列;④若数列{a n},{b n}均为等比数列,则数列{a n•b n}为等比数列其中真命题的个数为()A.1B.2C.3D.44.(5分)设m,n为两条不同的直线,α为平面,则下列结论正确的是()A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥αC.m∥n,m∥α⇒n∥αD.m∥n,m⊥α⇒n⊥α5.(5分)已知sinα=﹣cosα,则tan2α=()A.B.C.D.6.(5分)执行如图所示的程序框图,输入x=﹣1,n=5,则输出s=()A.﹣2B.﹣3C.4D.37.(5分)如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图可能是()A.B.C.D.8.(5分)将函数f(x)=sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移个单位,得到函数y=g(x)的图象,则y=g(x)的一条对称轴是()A.B.C.D.9.(5分)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F,则=()A.B.C.D.10.(5分)甲、乙两位同学约定周日早上8:00﹣8:30在学校门口见面,已知他们到达学校的时间是随机的,则甲要等乙至少10分钟才能见面的概率为()A.B.C.D.11.(5分)如图,正方体ABCD﹣A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是()A.B.C.D.12.(5分)已知f(x)=,若函数f(x)有四个零点,则实数a 的取值范围是()A.B.(﹣∞,﹣e)C.(e,+∞)D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)数据0.7,1,0.8,0.9,1.1的方差是.14.(5分)已知向量=(1,﹣1),=(1,2),则与的夹角为.15.(5分)已知平面区域D=,z=3x﹣2y,若命题“∃(x0,y0)∈D,z>m”为假命题,则实数m的最小值为.16.(5分)已知数列{a n}的前n项和S n=2a n﹣2n+1(n∈N*),则其通项公式a n=.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列{a n}是首项为1的单调递增的等比数列,且满足a3,成等差数列.(1)求{a n}的通项公式;(2)若b n=log3a n+1(n∈N*),求数列{a n•b n}的前n项和S n.18.(12分)如图,已知AD是△ABC内角∠BAC的角平分线.(1)用正弦定理证明:;(2)若∠BAC=120°,AB=2,AC=1,求AD的长.19.(12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,求筹码停在C处的概率;(2)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.20.(12分)如图,在六面体ABCD﹣A1B1C1D1中,平面ABCD∥平面A1B1C1D1,DD1∥平面A1B1BA,DD1∥平面B1BCC1.(1)证明:DD1∥BB1;(2)已知六面体ABCD﹣A1B1C1D1的棱长均为2,且BB1⊥平面ABCD,∠BAD=60°,M,N分别为棱A1B1,B1C1的中点,求四面体D﹣MNB的体积.21.(12分)已知函数f(x)=﹣axlnx(a∈R)在x=1处的切线的斜率k=﹣1.(1)求a的值;(2)证明:f(x)<.(3)若正实数m,n满足mn=1,证明:<2(m+n).四、解答题(共1小题,满分10分)选修4-4:参数方程与极坐标系22.(10分)已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α﹣θ)=sinα.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)若曲线C与直线l交于M,N两点,且,求α的值.五、解答题(共1小题,满分10分)选修4-5:不等式选讲23.(10分)已知实数a,b,c均大于0.(1)求证:++≤a+b+c;(2)若a+b+c=1,求证:≤1.2016-2017学年山西省太原市高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知集合A={0,1},B={x|﹣1≤x≤2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.[﹣1,1]D.{1}【分析】根据交集的定义写出A∩B即可.【解答】解:集合A={0,1},B={x|﹣1≤x≤2},则A∩B={0,1}.故选:A.2.(5分)设复数z=,则其共轭复数为()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i【分析】直接利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案.【解答】解:z==,∴.故选:B.3.(5分)给出下列命题:①若数列{a n}为等差数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等差数列;②若数列{a n}为等比数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等比数列;③若数列{a n},{b n}均为等差数列,则数列{a n+b n}为等差数列;④若数列{a n},{b n}均为等比数列,则数列{a n•b n}为等比数列其中真命题的个数为()A.1B.2C.3D.4【分析】①设等差数列a n的首项为a1,公差为d,则S n=a1+a2+…+a n,S2n﹣S n=a n+1+a n+2+…+a2n=a1+nd+a2+nd+…+a n+nd=S n+n2d,同理:S3n﹣S2n=a2n+1+a2n+2+…+a3n=a n+1+a n+2+…+a2n+n2d=S2n﹣S n+n2d,即可判断出结论.②取数列﹣1,1,﹣1,1,…,S n可能为0,因此不成等比数列,即可判断出;③设a n=a1+(n﹣1)d1,b n=b1+(n﹣1)d2,则a n+b n=(a1+b1)+(n﹣1)(d1+d2),即可判断出结论.④设a n=a1,b n=b1,则a n•b n=a1b1,即可判断出结论.【解答】解:①设等差数列a n的首项为a1,公差为d,则S n=a1+a2+…+a n,S2n﹣S n=a n+1+a n+2+…+a2n=a1+nd+a2+nd+…+a n+nd=S n+n2d,同理:S3n﹣S2n=a2n+1+a2n+2+…+a3n=a n+1+a n+2+…+a2n+n2d=S2n﹣S n+n2d,∴2(S2n﹣S n)=S n+(S3n ﹣S2n),∴S n,S2n﹣S n,S3n﹣S2n是等差数列.正确.②取数列﹣1,1,﹣1,1,…,S n可能为0,因此不成等比数列,不正确;③设a n=a1+(n﹣1)d1,b n=b1+(n﹣1)d2,则a n+b n=(a1+b1)+(n﹣1)(d1+d2),故数列{a n+b n}为等差数列,正确.④设a n=a1,b n=b1,则a n•b n=a1b1,因此数列{a n•b n}为等比数列,正确.其中真命题的个数为3.故选:C.4.(5分)设m,n为两条不同的直线,α为平面,则下列结论正确的是()A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥αC.m∥n,m∥α⇒n∥αD.m∥n,m⊥α⇒n⊥α【分析】A,若m⊥n,m∥α时,可能n⊂α或斜交;B,m⊥n,m⊥α⇒n∥α或m⊂α;C,m∥n,m∥α⇒n∥α或m⊂α;D,m∥n,m⊥α⇒n⊥α;【解答】解:对于A,若m⊥n,m∥α时,可能n⊂α或斜交,故错;对于B,m⊥n,m⊥α⇒n∥α或m⊂α,故错;对于C,m∥n,m∥α⇒n∥α或m⊂α,故错;对于D,m∥n,m⊥α⇒n⊥α,正确;故选:D.5.(5分)已知sinα=﹣cosα,则tan2α=()A.B.C.D.【分析】求出tanα的值,根据二倍角公式求出tan2α的值即可.【解答】解:∵sinα=﹣cosα,∴tanα=﹣,∴tan2α===,故选:C.6.(5分)执行如图所示的程序框图,输入x=﹣1,n=5,则输出s=()A.﹣2B.﹣3C.4D.3【分析】列出循环过程中S与i的数值,不满足判断框的条件即可结束循环.【解答】解:i=4时,s=﹣1,i=3时,s=5,i=2时,s=﹣2,i=1时,s=4,i=0时,s=﹣3,退出循环,故选:B.7.(5分)如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图可能是()A.B.C.D.【分析】根据已知中的正视图和侧视图,分析出俯视图可能出现的情况,可得答案.【解答】解:若几何体为三棱锥,由其正视图和侧视图可知,其底面在下方,且为直角三角形,C答案符号要求;若几何体为四棱锥,由其正视图和侧视图可知,其底面在下方,且为正方形,对角线应从左上到右下,不存在满足条件的答案;故选:C.8.(5分)将函数f(x)=sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移个单位,得到函数y=g(x)的图象,则y=g(x)的一条对称轴是()A.B.C.D.【分析】利用三角恒等变换化简函数的解析式为f(x)=sin(2x﹣)+,由函数y=Asin(ωx+φ)的图象变换可求函数g(x),令x﹣=kπ+,k∈Z,利用正弦函数的对称性即可得解.【解答】解:f(x)=sinxcosx+sin2x=sin2x﹣cos2x+=sin(2x﹣)+,图象上各点的纵坐标不变,横坐标变为原来的2倍,可得对应的函数解析式为y=sin(x﹣)+,再沿x轴向右平移个单位,得到函数解析式为y=g(x)=sin(x﹣﹣)+=sin (x﹣)+,令x﹣=kπ+,k∈Z,解得:x=kπ+,k∈Z,取k=﹣1,可得:x=﹣.故选:A.9.(5分)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F,则=()A.B.C.D.【分析】根据两个三角形相似对应边成比例,得到DF与FC之比,做FG平行BD 交AC于点G,使用已知向量表示出要求的向量,得到结果.【解答】解:∵△DEF∽△BEADF:BA═DE:BE=1:3;作FG平行BD交AC于点G,∴FG:DO=2:3,CG:CO=2:3,∴=,∵=+=,∴=+=,故选:D.10.(5分)甲、乙两位同学约定周日早上8:00﹣8:30在学校门口见面,已知他们到达学校的时间是随机的,则甲要等乙至少10分钟才能见面的概率为()A.B.C.D.【分析】由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|0≤x≤30,0≤y≤30},做出事件对应的集合表示的面积,写出满足条件的事件是A={(x,y)|0≤x≤30,0≤y≤30,y﹣x≥10},算出事件对应的集合表示的面积,根据几何概型概率公式得到结果.【解答】解:由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|0≤x≤30,0≤y≤30}事件对应的集合表示的面积是s=900,满足条件的事件是A={(x,y)|0≤x≤30,0≤y≤30,y﹣x≥10},事件对应的集合表示的面积是=200,根据几何概型概率公式得到P=.故选:C.11.(5分)如图,正方体ABCD﹣A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是()A.B.C.D.【分析】由正方体的特点,对角线BD1垂直于平面AB1C,且三角形AB1C为等边三角形得答案.【解答】解:如图,正方体ABCD﹣A1B1C1D1中,对角线BD1垂直于平面AB1C,且三角形AB1C为等边三角形,正方体绕对角线旋转120°能与原正方体重合.故选:C.12.(5分)已知f(x)=,若函数f(x)有四个零点,则实数a的取值范围是()A.B.(﹣∞,﹣e)C.(e,+∞)D.【分析】由题意可知:函数f(x)为偶函数,只需e x+ax=0有两个正根,即﹣=a 有两个正根,设g(x)=﹣,求导g′(x)=﹣=﹣,利用函数的单调性求得g(x)的最大值,要使﹣=a有两个正跟,即使g(x)与y=a有两个交点,则实数a的取值范围(﹣∞,﹣e).【解答】解:由函数f(x)为偶函数,可知使函数f(x)有四个零点,只需要e x+ax=0有两个正根,即﹣=a有两个正根,设g(x)=﹣,求导g′(x)=﹣=﹣,令g′(x)>0,解得:0<x<1,g(x)在(0,1)单调递增,令g′(x)<0,解得:x>1,g(x)在(1,+∞)单调递减,∴g(x)在x=1时取最大值,最大值g(1)=﹣e,要使﹣=a有两个正跟,即使g(x)与y=a有两个交点,∴实数a的取值范围(﹣∞,﹣e),故选:B.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)数据0.7,1,0.8,0.9,1.1的方差是0.02.【分析】先求出这组数据的平均数,再计算这组数据的方差.【解答】解:数据0.7,1,0.8,0.9,1.1的平均数为:=(0.7+1+0.8+0.9+1.1)=0.9,∴数据0.7,1,0.8,0.9,1.1的方差为:S2=[(0.7﹣0.9)2+(1﹣0.9)2+(0.8﹣0.9)2+(0.9﹣0.9)2+(1.1﹣0.9)2]=0.02.故答案为:0.02.14.(5分)已知向量=(1,﹣1),=(1,2),则与的夹角为.【分析】求出与的坐标,计算它们的模长和数量积,利用夹角公式计算夹角的余弦即可.【解答】解:=(0,3),=(3,3),∴()•()=9,||=3,||=3,∴cos<,>==,∴<,>=.故答案为.15.(5分)已知平面区域D=,z=3x﹣2y,若命题“∃(x0,y0)∈D,z>m”为假命题,则实数m的最小值为.【分析】命题:∀(x0,y0)∈D,z≤m成立,即m≥(z)max,作出可行域,求出z有最大值即可.【解答】解:由题意可知,命题:∀(x0,y0)∈D,z≤m成立,即m≥(z)max 作出可行域,如图,由z=3x﹣2y,得过点Q(,)时,z有最大值,则m的最小值为.故答案为:16.(5分)已知数列{a n}的前n项和S n=2a n﹣2n+1(n∈N*),则其通项公式a n= n•2n﹣1.【分析】当n=1时,可求得a1=1;当n≥2时,利用a n=S n﹣S n﹣1可得﹣=,从而可判定数列{}是以为首项,为公差的等差数列,可求得a n.【解答】解:①当n=1时,a1=2a1﹣2+1,则a1=1;=2a n﹣1﹣2n﹣1+1,S n﹣S n﹣1=(2a n﹣2n+1)﹣(2a n﹣1﹣2n﹣1+1)②当n≥2时,S n﹣1=2a n﹣2a n﹣1﹣2n﹣1=a n,=2n﹣1,即a n﹣2a n﹣1变形为:﹣=,故数列{}是以为首项,为公差的等差数列,所以,=+(n﹣1)=,所以a n=n•2n﹣1,故答案为:n•2n﹣1.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列{a n}是首项为1的单调递增的等比数列,且满足a3,成等差数列.(1)求{a n}的通项公式;(2)若b n=log3a n+1(n∈N*),求数列{a n•b n}的前n项和S n.【分析】(1)由题意可设数列{a n}的公比为q>1,由a3,成等差数列.可得2×=a3+a5,化为3q2﹣10q+3=0,解得q.(2)b n=log3a n+1=n,可得a n•b n=n•3n﹣1.利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)由题意可设数列{a n}的公比为q>1,∵a3,成等差数列.∴2×=a3+a5,∴3q2﹣10q+3=0,解得q=3.∴a n=3n﹣1.(2)b n=log3a n+1=n,∴a n•b n=n•3n﹣1.∴数列{a n•b n}的前n项和S n=1+2×3+3×32+…+n•3n﹣1,3S n=3+2×32+…+(n﹣1)•3n﹣1+n•3n,∴﹣2S n=1+(3+32+…+3n﹣1)﹣n•3n=﹣n•3n.∴S n=+.18.(12分)如图,已知AD是△ABC内角∠BAC的角平分线.(1)用正弦定理证明:;(2)若∠BAC=120°,AB=2,AC=1,求AD的长.【分析】(1)根据AD是∠BAC的角平分线,利用正弦定理,即可证明结论成立;(2)根据余弦定理,先求出BC的值,再利用角平分线和余弦定理,即可求出AD的长.【解答】解:(1)∵AD是∠BAC的角平分线,∴∠BAD=∠CAD,根据正弦定理,在△ABD中,=,在△ADC中,=,∵sin∠ADB=sin(π﹣∠ADC)=sin∠ADC,∴=,=,∴=;(2)根据余弦定理,cos∠BAC=,即cos120°=,解得BC=,又=,∴=,解得CD=,BD=;设AD=x,则在△ABD与△ADC中,根据余弦定理得,cos60°=,且cos60°=,解得x=,即AD的长为.19.(12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.A B C D E F G(1)将硬币连续投掷三次,求筹码停在C处的概率;(2)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.【分析】(1)将硬币连续投掷三次,列举出所有的8种情况,由此能求出硬币连续投掷三次,筹码停在C处的概率.(2)筹码停在A或B或C或D处有4种情况,从而得到筹码停在A或B或C或D为,由此得到该约定对乙公平.【解答】解:(1)将硬币连续投掷三次,共有以下8种情况:D→C→B→A,D→C→B→C,D→C→D→E,D→C→D→C,D→E→F→G,D→E→F→E,D→E→D→E,D→E→D→C.∴硬币连续投掷三次,筹码停在C处的概率p=.(2)该约定对乙公平.筹码停在A或B或C或D处有4种情况,即筹码停在A或B或C或D为:p=,∴该约定对乙公平.20.(12分)如图,在六面体ABCD﹣A1B1C1D1中,平面ABCD∥平面A1B1C1D1,DD1∥平面A1B1BA,DD1∥平面B1BCC1.(1)证明:DD1∥BB1;(2)已知六面体ABCD﹣A1B1C1D1的棱长均为2,且BB1⊥平面ABCD,∠BAD=60°,M,N分别为棱A1B1,B1C1的中点,求四面体D﹣MNB的体积.【分析】(1)利用线面平行的性质可证DD1∥AA1,DD1∥CC1,于是可得AA1∥平面BCC1B1,再利用线面平行的性质得出AA1∥BB1,从而由平行公理可得出DD1∥BB1;(2)连接AC,BD交点为O,取OB的中点E,设D1B1交MN于F,连接EF,则=V D﹣MNE+V B﹣MNE=S△MNE•DE+S△MNE•BE=S 可证DB⊥平面MNE,于是V D﹣MNB•DB.△MNE【解答】证明:(1)∵DD1∥平面A1B1BA,DD1⊂平面DD1A1A,平面DD1A1A∩平面A1B1BA=AA1,∴DD1∥AA1.同理可得DD1∥CC1,∴AA1∥CC1,又AA1⊄平面BCC1B1,CC1⊂平面BCC1B1,∴AA1∥平面BCC1B1,又AA1⊂平面ABB1A1,平面ABB1A1∩平面BCC1B1=BB1,∴AA1∥BB1,又DD1∥AA1.∴DD1∥BB1.(2)连接AC,BD交点为O,取OB的中点E,设D1B1交MN于F,连接EF,∵M,N分别是棱A1B1,B1C1的中点,∴B1F BE,∴BB1∥EF,又BB1⊥平面ABCD,∴EF⊥平面ABCD,∴EF⊥D1B1,∵四边形A1B1C1D1是菱形,∴D1B1⊥A1C1,∴D1B1⊥平面MNE,∴DB⊥平面MNE.∵六面体ABCD﹣A1B1C1D1的棱长均为2,BB1⊥平面ABCD,∠BAD=60°,∴MN=AC=,EF=2,BD=2,=V D﹣MNE+V B﹣MNE=S△MNE•DE+S△MNE•BE=S△MNE•DB=××∴V D﹣MNB2=.21.(12分)已知函数f(x)=﹣axlnx(a∈R)在x=1处的切线的斜率k=﹣1.(1)求a的值;(2)证明:f(x)<.(3)若正实数m,n满足mn=1,证明:<2(m+n).【分析】(1)求得f(x)的导数,可得斜率,解方程可得a;(2)由题意可得即证﹣<xlnx,令g(x)=﹣,求出导数,单调区间,可得最大值;又令h(x)=xlnx,求出最小值,即可得证;(3)由(2)可得﹣mlnm<,即﹣lnm<,两边乘以e,可得一不等式,同理可得,﹣elnn<,两式相加结合条件,即可得证.【解答】解:(1)函数f(x)=﹣axlnx的导数为f′(x)=﹣alnx﹣a,由题意可得f′(1)=﹣a=﹣1,解得a=1;(2)证明:f(x)=﹣xlnx<,即为﹣<xlnx,令g(x)=﹣,g′(x)=,则g(x)在(0,1)递增,在(1,+∞)递减,g(x)的最大值为g(1)=﹣,当且仅当x=1时等号成立.又令h(x)=xlnx,则h′(x)=1+lnx,则h(x)在(0,)递减,在(,+∞)递增,则h(x)的最小值为h()=﹣,当且仅当x=等号成立,因此﹣<xlnx,即f(x)<;(3)证明:由(2)可得﹣mlnm<,即﹣lnm<,两边同乘以e,可得﹣elnm<,同理可得,﹣elnn<,两式相加,可得:<e(lnm+lnn)+2(m+n)=elnmn+=2(m+n).故<2(m+n).四、解答题(共1小题,满分10分)选修4-4:参数方程与极坐标系22.(10分)已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α﹣θ)=sinα.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)若曲线C与直线l交于M,N两点,且,求α的值.【分析】(1)消去曲线C中的参数,可得普通方程,利用ρsinθ=y,ρcosθ=x,可得直线l的直角坐标方程.(2)利用参数方程的几何意义,求解.【解答】解:(1)曲线C的参数方程为(φ为参数).cos2φ+sin2φ=1,可得:故得曲线C的普通方程为.直线l的极坐标方程为ρsin(α﹣θ)=sinα⇔ρsinαcosθ﹣ρsinθcosα=sinα⇔(x﹣1)sinα=ycosα⇔y=x•tanα﹣tanα.故得直线l 的直角坐标方程为y=x•tanα﹣tanα. (2)由题意,可得直线l 的参数方程带入曲线C 的普通方程可得:(3sin 2α+1)+2cosα•t ﹣3=0, 可得:,.由, 可得:||=||=, 即=||,解得:|cosα|=,∴α=或.五、解答题(共1小题,满分10分)选修4-5:不等式选讲 23.(10分)已知实数a ,b ,c 均大于0. (1)求证:++≤a +b +c ;(2)若a +b +c=1,求证:≤1.【分析】直接利用基本不等式,即可证明. 【解答】证明:(1)∵实数a ,b ,c 均大于0, ∴a +b ≥2,b +c ≥2,c +a ≥2,三式相加,可得:++≤a +b +c ;(2)∵a +b ≥2,b +c ≥2,c +a ≥2,∴≤++≤a +b +c=1.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.第21页(共23页)设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔第22页(共23页)⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = (Ⅱ)当0a <时(开口向下)x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2b f a-x>O-=f (p)f (q)()2bf a-xx x(q)0x第23页(共23页)①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。
2017届山西省太原市高三数学(理)一模试题和答案详细解析
2017届山西省太原市高三数学(理)一模试题一、选择题(共12小题,每小题3分,满分36分)1.已知集合A={x|y=lg(x+1)},B={x||x|<2},则A∩B=()A.(﹣2,0)B.(0,2)C.(﹣1,2)D.(﹣2,﹣1)2.已知zi=2﹣i,则复数z在复平面对应点的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)3.已知Sn 是等差数列{an}的前n项和,2(a1+a3+a5)+3(a8+a10)=36,则S11=()A.66 B.55 C.44 D.334.已知=(1,cosα),=(sinα,1),0<α<π,若,则α=()A.B.C.D.5.函数的图象大致为()A. B. C.D.6.已知圆C:x2+y2=1,直线l:y=k(x+2),在[﹣1,1]上随机选取一个数k,则事件“直线l与圆C相离”发生的概率为()A.B.C.D.7.执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(A.1 B.2 C.3 D.48.某几何体的三视图如图所示,则该几何体的表面积为()A.6π+1 B.C.D.9.已知D=,给出下列四个命题:P1:∀(x,y)∈D,x+y+1≥0;P2:∀(x,y)∈D,2x﹣y+2≤0;P3:∃(x,y)∈D,≤﹣4;P4:∃(x,y)∈D,x2+y2≤2.其中真命题的是()A.P1,P2B.P2,P3C.P2,P4D.P3,P410.已知抛物线y2=4x的焦点为点F,过焦点F的直线交该抛物线于A、B两点,O为坐标原点,若△AOB的面积为,则|AB|=()A.6 B.8 C.12 D.1611.已知函数f(x)=sinωx﹣cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为()A.(,] B.(,] C.(,] D.(,]12.设函数f(x)=与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)13.已知,若,则实数t= .14.已知双曲线经过点,其一条渐近线方程为y=2x,则该双曲线的标准方程为.15.已知三棱锥A﹣BCD中,BC⊥CD,AB=AD=,BC=1,CD=,则该三棱锥外接球的体积为.16.已知数列{an }中,,则其前n项和Sn= .三、解答题17.已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2bcosB,b≠c.(1)证明:A=2B;(2)若a2+c2=b2+2acsinC,求A.18.某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C 三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X 的分布列与期望.19.如图,在几何体ABCDEF 中,四边形ABCD 是菱形,BE ⊥平面ABCD ,DF ∥BE ,且DF=2BE=2,EF=3.(1)证明:平面ACF ⊥平面BEFD(2)若二面角A ﹣EF ﹣C 是二面角,求直线AE 与平面ABCD 所成角的正切值.20.已知椭圆C :的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C 上,直线l :y=kx+m 与椭圆C 相交于A 、P两点,与x 轴、y 轴分别相交于点N 和M ,且PM=MN ,点Q 是点P 关于x 轴的对称点,QM 的延长线交椭圆于点B ,过点A 、B 分别作x 轴的垂涎,垂足分别为A 1、B 1(1)求椭圆C 的方程;(2)是否存在直线l ,使得点N 平分线段A 1B 1?若存在,求求出直线l 的方程,若不存在,请说明理由. 21.已知函数f (x )=2lnx+ax ﹣(a ∈R )在x=2处的切线经过点(﹣4,2ln2)(1)讨论函数f (x )的单调性 (2)若不等式恒成立,求实数m 的取值范围.四、解答题(共1小题,满分10分)22.在直角坐标系xOy中,曲线C1的参数方程为,(其中φ为参数),曲线,以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l:θ=α(ρ≥0)与曲线C1,C2分别交于点A,B(均异于原点O)(1)求曲线C1,C2的极坐标方程;(2)当时,求|OA|2+|OB|2的取值范围.五、解答题(共1小题,满分0分)23.已知函数(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.2017届山西省太原市高三数学(理)一模试题答案一、选择题(共12小题,每小题3分,满分36分)1.已知集合A={x|y=lg(x+1)},B={x||x|<2},则A∩B=()A.(﹣2,0)B.(0,2)C.(﹣1,2)D.(﹣2,﹣1)【解答】解:由x+1>0,得x>﹣1∴A=(﹣1,+∞),B={x||x|<2}=(﹣2,2)∴A∩B=(﹣1,2).故选:C2.已知zi=2﹣i,则复数z在复平面对应点的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【解答】解:zi=2﹣i,∴z===﹣1﹣2i,∴复数z在复平面对应点的坐标是(﹣1,﹣2),故选:A.3.已知Sn 是等差数列{an}的前n项和,2(a1+a3+a5)+3(a8+a10)=36,则S11=()A.66 B.55 C.44 D.33【解答】解:∵Sn 是等差数列{an}的前n项和,2(a1+a3+a5)+3(a8+a10)=36,∴2(a1+a1+2d+a1+4d)+3(a1+7d+a1+9d)=36,解得a1+5d=3.∴a6=3,∴S11===11a6=33.故选:D.4.已知=(1,cosα),=(sinα,1),0<α<π,若,则α=()A.B.C.D.【解答】解: =(1,cosα),=(sinα,1),若,可得•=sinα+cosα=0,即有tanα==﹣1,由0<α<π,可得α=.故选:B.5.函数的图象大致为()A. B. C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D6.已知圆C:x2+y2=1,直线l:y=k(x+2),在[﹣1,1]上随机选取一个数k,则事件“直线l与圆C相离”发生的概率为()A.B.C.D.【解答】解:圆C:x2+y2=1的圆心为(0,0),半径为r=1;且圆心到直线l:y=k(x+2)的距离为d==,直线l与圆C相离时d>r,∴>1,解得k<﹣或k>,故所求的概率为P==.故选:C.7.执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(A.1 B.2 C.3 D.4【解答】解:模拟执行程序,可得程序框图的功能是计算并输出分段函数S=的值,做出函数的图象,由题意可得:输出的s∈[0,4],当m=0时,n∈[2,4],n﹣m∈[2,4],当n=4时,m∈[0,2],n﹣m∈[2,4],所以实数n﹣m的最大值为4.故选:D.8.某几何体的三视图如图所示,则该几何体的表面积为()A.6π+1 B.C.D.【解答】解:由题意,几何体为圆柱与圆锥的组合体,该几何体的表面积为2π•1•2+π•12+++1=,故选D.9.已知D=,给出下列四个命题:P1:∀(x,y)∈D,x+y+1≥0;P2:∀(x,y)∈D,2x﹣y+2≤0;P3:∃(x,y)∈D,≤﹣4;P4:∃(x,y)∈D,x2+y2≤2.其中真命题的是()A.P1,P2B.P2,P3C.P2,P4D.P3,P4【解答】解:不等式组的可行域如图,p1:A(﹣2,0)点,﹣2+0+1=﹣1,故∀(x,y)∈D,x+y≥0为假命题;p2:A(﹣1,3)点,﹣2﹣3+2=﹣3,故∀(x,y)∈D,2x﹣y+2≤0为真命题;p3:C(0,2)点, =﹣3,故∃(x,y)∈D,≤﹣4为假命题;p4:(﹣1,1)点,x2+y2=2故∃(x,y)∈D,x2+y2≤2为真命题.可得选项p2,p4正确.故选:C.10.已知抛物线y2=4x的焦点为点F,过焦点F的直线交该抛物线于A、B两点,O为坐标原点,若△AOB的面积为,则|AB|=()A.6 B.8 C.12 D.16【解答】解:抛物线y2=4x焦点为F(1,0),设过焦点F的直线为:y=k(x﹣1),由⇒可得y2﹣y﹣4=0,y A +yB=,yAyB=﹣4,|yA﹣yB|=△AOB的面积为,可得: |yA ﹣yB|=,,解得k=|AB|=•,|yA ﹣yB|=.故选:A.11.已知函数f(x)=sinωx﹣cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为()A.(,] B.(,] C.(,] D.(,]【解答】解:f(x)=2sin(ωx﹣),作出f(x)的函数图象如图所示:令2sin(ωx﹣)=﹣1得ωx﹣=﹣+2kπ,或ωx﹣=+2kπ,∴x=+,或x=+,k∉Z,设直线y=﹣1与y=f(x)在(0,+∞)上从左到右的第4个交点为A,第5个交点为B,则xA =,xB=,∵方程f(x)=﹣1在(0,π)上有且只有四个实数根,∴xA <π≤xB,即<π≤,解得.故选B.12.设函数f(x)=与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为()A.B.C.D.【解答】解:设y=f(x)与y=g(x)(x>0)在公共点P(x0,y)处的切线相同、f′(x)=3x﹣2a,g′(x)=,由题意f(x0)=g(x),f′(x)=g′(x),即x02﹣2ax=a2lnx+b,3x﹣2a=由3x0﹣2a=得x=a或x=﹣a(舍去),即有b=a2﹣2a2﹣a2lna=﹣a2﹣a2lna.令h(t)=﹣t2﹣t2lnt(t>0),则h′(t)=2t(1+lnt),于是当2t(1+lnt)>0,即0<t<时,h′(t)>0;当2t(1+lnt)<0,即t>时,h′(t)<0.故h(t)在(0,)为增函数,在(,+∞)为减函数,于是h(t)在(0,+∞)的最大值为h()=,故b的最大值为.故选A.二、填空题(共4小题,每小题3分,满分12分)13.已知,若,则实数t= ﹣1 .【解答】解:根据题意,,则+=(1+t,0),﹣=(1﹣t,﹣2),若,则有(1+t)×(﹣2)=(1﹣t)×0=0,解可得t=﹣1;故答案为:﹣1.14.已知双曲线经过点,其一条渐近线方程为y=2x,则该双曲线的标准方程为﹣x2=1 .【解答】解:根据题意,双曲线的一条渐近线方程为y=2x,则可以设其方程为x2﹣=m,(m≠0),又由其经过点,则有1﹣=m,解可得m=﹣1,则其方程为:x2﹣=﹣1,其标准方程为:﹣x2=1,故答案为:﹣x2=1.15.已知三棱锥A﹣BCD中,BC⊥CD,AB=AD=,BC=1,CD=,则该三棱锥外接球的体积为π.【解答】解:BC⊥CD,BC=1,CD=,∴DB=2又因为AB=AD=,∴△ABD是直角三角形.取DB中点O,则OA=OB=OC=OD=1∴O为三棱锥外接球的球心,外接圆的半径为R=1,∴该三棱锥外接球的体积为π,故答案为:π.16.已知数列{an }中,,则其前n项和Sn= 2n+2﹣4﹣.【解答】解:∵数列{an}中,,∴a2=0,n≥2时,an=2an﹣1+3n﹣4,∴an+1﹣an=2an﹣2an﹣1+3,化为an+1﹣an+3=2(an﹣an﹣1+3),a2﹣a1+3=2.∴数列{an ﹣an﹣1+3}是等比数列,首项为2,公比为2.∴an ﹣an﹣1+3=2n,即an﹣an﹣1=2n﹣3.∴an =(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2n﹣3+2n﹣1﹣3+…+22﹣3﹣1=﹣3(n﹣1)﹣1=2n+1﹣3n﹣2.∴Sn=﹣3×﹣2n=2n+2﹣4﹣.故答案为:2n+2﹣4﹣.三、解答题17.已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2bcosB,b≠c.(1)证明:A=2B;(2)若a2+c2=b2+2acsinC,求A.【解答】解:(1)证明:△ABC中,a=2bcosB,由,得sinA=2sinBcosB=sin2B,∵0<A,B<π,∴sinA=sin2B>0,∴0<2B<π,∴A=2B或A+2B=π,若A+2B=π,则B=C,b=c这与“b≠c”矛盾,∴A+2B≠π;∴A=2B;(2)∵a2+c2=b2+2acsinC,∴,由余弦定理得cosB=sinC,∵0<B,C<π,∴或,①当时,则,这与“b≠c”矛盾,∴;②当时,由(1)得A=2B,∴,∴.18.某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C 三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X 的分布列与期望.分布列.【解答】解:(1)由题意得:P(A)==0.35,P(B)==0.45,P(C)==0.2,∴甲乙两人采用不同分期付款方式的概率:p=1﹣[P(A)•P(A)+P(B)•P(B)+P(C)•P(C)]=0.635.(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,则X的可能取值为2,3,4,5,6,P(X=2)=P(A)P(A)=0.35×0.35=0.1225,P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,P(X=6)=P(C)P(C)=0.2×0.2=0.04.∴X的分布列为:X 2 3 4 5 6P 0.1225 0.315 0.3425 0.18 0.04E(X)=0.1225×2+0.315×3+0.3425×4+0.18×5+0.04×6=3.7.19.如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.(1)证明:平面ACF⊥平面BEFD(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.标系,利用向量法能求出直线AE与平面ABCD所成角的正切值.【解答】证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴BE⊥AC,∴AC⊥平面BEFD,∵AC⊂平面ACF,∴平面ACF⊥平面BEFD.解:(2)设AC与BD的交点为O,由(1)得AC⊥BD,分别以OA,OB为x轴,y轴,建立空间直角坐标系,∵BE⊥平面ABCD,∴BE⊥BD,∵DF∥BE,∴DF⊥BD,∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2.设OA=a,(a>0),由题设得A(a,0,0),C(﹣a,0,0),E(0,),F(0,﹣,2),设m=(x,y,z)是平面AEF的法向量,则,取z=2,得=(),设是平面CEF的一个法向量,则,取,得=(﹣,1,2),∵二面角A﹣EF﹣C是直二面角,∴=﹣+9=0,解得a=,∵BE ⊥平面ABCD ,∴∠BAE 是直线AE 与平面ABCD 所成的角, ∴AB==2,∴tan.∴直线AE 与平面ABCD 所成角的正切值为.20.已知椭圆C :的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C 上,直线l :y=kx+m 与椭圆C 相交于A 、P两点,与x 轴、y 轴分别相交于点N 和M ,且PM=MN ,点Q 是点P 关于x 轴的对称点,QM 的延长线交椭圆于点B ,过点A 、B 分别作x 轴的垂涎,垂足分别为A 1、B 1(1)求椭圆C 的方程;(2)是否存在直线l ,使得点N 平分线段A 1B 1?若存在,求求出直线l 的方程,若不存在,请说明理由. 【解答】解:(1)∵椭圆C :的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C 上,∴由题意得,解得a 2=4,b 2=3,∴椭圆C的方程为.(2)假设存在这样的直线l:y=kx+m,∴M(0,m),N(﹣,0),∵PM=MN,∴P(,2m),Q(),∴直线QM的方程为y=﹣3kx+m,设A(x1,y1),由,得(3+4k2)x2+8kmx+4(m2﹣3)=0,∴,∴,设B(x2,y2),由,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,∴x2+=,∴x2=﹣,∵点N平分线段A1B1,∴,∴﹣=﹣,∴k=,∴P(±2m,2m),∴,解得m=,∵|m|=<b=,∴△>0,符合题意,∴直线l的方程为y=.21.已知函数f(x)=2lnx+ax﹣(a∈R)在x=2处的切线经过点(﹣4,2ln2)(1)讨论函数f(x)的单调性(2)若不等式恒成立,求实数m的取值范围.【解答】解:(1)由f(x)=2lnx+ax﹣(a∈R),求导f′(x)=+a+,当x=2时,f′(2)=1+a+f′(2),∴a=﹣1,设切点为(2,2ln2+2a﹣2f′(2)),则切线方程y﹣(2ln2+2a﹣2f′(2))=f′(2)(x﹣2),将(﹣4,2ln2)代入切线方程,2ln2﹣2ln2﹣2a+2f′(2))=﹣6f′(2),则f′(2)=﹣,∴f′(x)=﹣1﹣=≤0,∴f(x)在(0,+∞)单调递减;(2)由不等式恒成立,则(2lnx+)>m,令φ(x)=2lnx+,(x>0)求导φ′(x)=﹣﹣1=﹣(﹣1)2≤0,∴φ(x)在(0,+∞)单调递减,由φ(1)=0,则当0<x<1时,φ(x)>0,当x>1时,φ(x)<0,∴(2lnx+)在(0,+∞)恒大于0,∴m≤0,实数m的取值范围(﹣∞,0].四、解答题(共1小题,满分10分)的参数方程为,(其中φ为参22.在直角坐标系xOy中,曲线C1数),曲线,以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l:θ=α(ρ≥0)与曲线C1,C2分别交于点A,B(均异于原点O)(1)求曲线C1,C2的极坐标方程;(2)当时,求|OA|2+|OB|2的取值范围.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).五、解答题(共1小题,满分0分)23.已知函数(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.【解答】解:(1)∵,∴,∴f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,∴|m|≤1,∴﹣1≤m≤1,∴实数m的最大值为1;(2)当时, =∴,∴或,∴,∴实数a的取值范围是.。
山西省太原市2018届高三上学期期末考试数学理试题(解析版)
太原市2017~2018学年第一学期高三年级期末考试数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】B【解析】【详解】,所以.2.某中学初中部共有110名教师,高中部共有150名教师,根据下列频率分布条形图(部分)可知,该校女教师的人数为()A. 93B. 123C. 137D. 167【答案】C【解析】.3.已知,都是实数,那么“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】;,与没有包含关系,故为“既不充分也不必要条件”.4.对于复数,定义映射.若复数在映射作用下对应复数,则复数在复平面内对应的点位于()A. 第四象限B. 第三象限C. 第二象限D. 第一象限【答案】A【解析】,对应点,在第四象限.5.等差数列的前项和为,,,则()A. 21B. 15C. 12D. 9【答案】B【解析】依题意有,解得,所以.6.已知,,,,那么()A. B. C. D.【答案】C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.7.已知,那么()A. B. C. D.【答案】A【解析】依题意有,故8.下图是实现秦九韶算法的一个程序框图,若输入的,,依次输入的为2,2,5,则输出的()A. 10B. 12C. 60D. 65【答案】D【解析】,,判断否,,,判断否,,,判断是,输出.故选.9.展开式中的常数项为()A. 1B. 21C. 31D. 51【答案】D【解析】常数项有三种情况,都是次,或者都是次,或者都是二次,故常数项为10.已知函数的最大值为,最小值为,则的值为()A. B. C. D.【答案】B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.11.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()A. B. C. D.【答案】C【解析】由三视图可知,三棱锥的体积为12.已知函数,(),若对任意的(),恒有,那么的取值集合是()A. B. C. D.【答案】A【解析】当时,,画出图象如下图所示,由图可知,时不符合题意,故选.【点睛】本题主要考查含有绝对值的不等式的解法,考查选择题的解题策略中的特殊值法.主要的需要满足的是,根据不等式的解法,大于在中间,小于在两边,可化简为,左右两边为二次函数,中间可以由对数函数图象平移得到,由此画出图象验证是否符合题意.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数,,则的最大值是__________.【答案】3【解析】函数在上为减函数,故最大值为.14.不共线的三个平面向量,,两两所成的角相等,且,,则__________.【答案】4【解析】原式【点睛】本题主要考查向量的位置关系,考查向量模的运算的处理方法.由于三个向量两两所成的角相等,故它们两两的夹角为,由于它们的模都是已知的,故它们两两的数量积也可以求出来,对后平方再开方,就可以计算出最后结果.15.已知,那么__________.【答案】2017【解析】,故,由此得.【点睛】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.16.三棱柱中,底面边长和侧棱长都相等,.则异面直线与所成角的余弦值为_____。
数学---山西太原市2016届四校联考高三(上)期末考试(理)
山西太原市2016届四校联考高三(上)期末(理)一、选择题:本大题共12小题,每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( ) A .M =P B .P ∪M C .M ∩PD .∁U (M ∪P )=∅2.条件p :|x +1|>2,条件q :x ≥2,则⌝ p 是⌝ q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要的条件3.将函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移π3个单位,那么所得图象的一条对称轴方程为( ) A .x =-π4B .x =-π2C .x =π8D .x =π44.执行如图所示的程序框图,则输出的结果是( )A .121B .132C .142D .1545.如图,某几何体的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和半圆,则该几何体的体积为( )A .4B .8C .2πD .4π6.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=(13)x ,那么f -1(-9)的值为( )A .2B .-2C .3D .-37.已知等差数列{a n }的通项公式a n =64-4n5,设A n =|a n +a n +1+…+a n +12|(n ∈N *),当A n取得最小值时,n 的取值是( ) A .16 B .14 C .12D .108.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0,若目标函数z =ax +by (a >0,b >0)的最大值为40,则5a +1b 的最小值为( )A.256B.94 C .1D .49.已知直三棱柱ABC -A 1B 1C 1的各顶点都在球O 的球面上,且AB =AC =1,BC =3,若球O 的体积为2053π,则这个直三棱柱的体积等于( )A. 2B. 3 C .2D. 510.如图,在△ABC 中,BO 为边AC 上的中线,BG →=2GO →,设CD →∥AG →,若AD →=15AB →+λAC →(λ∈R ),则λ的值为( )A.15B.12C.65D .211.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别是F 1(-c,0),F 2(c,0),若离心率e =5-12(e ≈0.618),则称椭圆C 为“黄金椭圆”.则下列三个命题中正确命题的个数是( ) ①在黄金椭圆C 中,a ,b ,c 成等比数列;②在黄金椭圆C 中,若上顶点,右顶点分别为E ,B ,则∠F 1EB =90°;③在黄金椭圆C 中,以A (-a,0),B (a,0),D (0,-b ),E (0,b )为顶点的菱形ADBE 的内切圆过焦点F 1,F 2.12.规定[x ]表示不超过x 的最大整数,例如:[3.1]=3,[-2.6]=-3,[-2]=-2;若f ′(x )是函数f (x )=ln|x |导函数,设g (x )=f (x )·f ′(x ),则函数y =[g (x )]+[g (-x )]的值域是( ) A .{-1,0} B .{0,1} C .{0}D .{偶数}二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z =3+i 1-3i 2,z 是z 的共轭复数,则z ·z =______.14.设a =⎠⎛0πsin x d x ,则二项式(a x -1x)6的展开式中含有x 2的项为______. 15.从甲,乙,丙,丁四个人中随机选取两人,则甲乙两人中有且只一个被选取的概率为______. 16.已知数列{a n }为等差数列,首项a 1=1,公差d ≠0,若ak 1,ak 2,ak 3,…,ak n 成等比数列,且k 1=1,k 2=2,k 3=5,则数列{k n }的通项公式k n =________.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)设函数f (x )=2sin x cos 2φ2+cos x sin φ-sin x (0<φ<π)在x =π处取最小值.(1)求φ的值,并化简f (x );(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知a =1,b =2,f (A )=32,求角C .18.(12分)2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2 000],(2 000,4 000],(4 000,6 000],(6 000,8 000],(8 000,10 000]五组,并作出如下频率分布直方图(如图):(1)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6 000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;(2)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4 000元有关?附:临界值表参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.19.(12分)如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE 为矩形,平面ACFE⊥平面ABCD,CF=1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值范围.20.(12分)在空间中,取直线l 为轴,直线l 与l ′相交于O 点,夹角为30°,l ′围绕l 旋转得到以O 为顶点,l ′为母线的圆锥面.已知直线l ∥平面α,l 与α的距离为2,平面α与圆锥面相交得到双曲线Γ.在平面α内,以双曲线Γ的中心为原点,以双曲线的两个焦点所在直线为y 轴,建立直角坐标系. (1)求双曲线Γ的方程;(2)在平面α内,以双曲线Γ的中心为圆心,半径为22的圆记为曲线Γ′,在Γ′上任取一点P ,过点P 作双曲线Γ的两条切线交曲线Γ′于两点M ,N ,试证明线段MN 的长为定值,并求出这个定值.21.(12分)设f (x )=1+a x 1-a x(a >0且a ≠1),g (x )是f (x )的反函数.(1)设关于x 的方程log a t(x 2-1)(7-x )=g (x )在区间[2,6]上有实数解,求t 的取值范围;(2)当a =e(e 为自然对数的底数)时,证明:∑nk =2g (k )>2-n -n 22n (n +1);(3)当0<a ≤12时,试比较|∑nk =1f (k )-n |与4的大小,并说明理由.四、选作题:请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分. (选修4-1:几何证明选讲)22.(10分)如图,圆周角∠BAC 的平分线与圆交于点D ,过点D 的切线与弦AC 的延长线交于点 E ,AD 交BC 于点F . (1)求证:BC ∥DE ;(2)若D ,E ,C ,F 四点共圆,且A C =B C ,求∠BAC .(选修4-4:坐标系与参数方程)23.(10分)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+22ty =-4+22t (t 为参数),l 与C 分别交于M ,N .(1)写出C 的平面直角坐标系方程和l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求a 的值.(选修4-5:不等式选讲)24.(10分)已知函数f (x )=|x -3|-|x -a |. (1)当a =2时,解不等式f (x )≤-12;(2)若存在实数x ,使得不等式f (x )≥a 成立,求实数a 的取值范围.参考答案1.C [P ={x |x >1或x <-1},M ={x |x >1}, ∴M ∩P .]2.A [根据题意,|x +1|>2⇔x <-3或x >1,则⌝ p :-3≤x ≤1,又由题意,⌝ q :x ≥2,则⌝ q 为x <2,所以⌝ p 是⌝ q 的充分不必要条件.]3.B [将函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12倍(纵坐标不变),可得函数y=sin(2x +π6)的图象,再向右平移π3个单位,那么所得图象对应的函数解析式为y =sin[2(x -π3)+π6]=sin(2x -π2)=-cos 2x ,故最后所得函数的图象的一条对称轴方程为2x =k π,即 x =kπ2,k ∈Z ,结合所给的选项可得只有B 满足条件.]4.B [由已知,程序的功能是利用循环结构,计算S =12×11的结果,并输出. 所以S =12×11=132.]5.C [根据几何体的三视图,得该几何体是底面为半圆的锥体, ∴该几何体的体积为V 几何体=13S 底面h=13×12×π×(42)2×3 =2π.]6.A [设f -1(-9)=x ,则f (x )=-9,设x >0,则-x <0. 当x <0时,f (x )=(13)x ,∴f (-x )=(13)-x =3x .∵函数f (x )是定义在R 上的奇函数, ∴f (x )=-f (-x )=-3x . ∴-3x =-9, ∴x =2.]7.D [由a n =64-4n 5,可得等差数列的首项为a 1=12,公差d =-45,则数列{a n }为递减数列,由a n =64-4n5=0,解得n =16.∴数列{a n }的前15项大于0,第16项等于0,第17及以后项均小于0. 而a n +a n +1+…+a n +12为数列中的13项和,∴只有第16项为中间项时A n =|a n +a n +1+…+a n +12|最小,此时n =10.] 8.B [不等式表示的平面区域阴影部分(图略),当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线2x -y -6=0的交点(8,10)时, 目标函数z =ax +by (a >0,b >0)取得最大40, 即8a +10b =40,即4a +5b =20,而5a +1b =(5a +1b )4a +5b 20=54+(5b 4a +a 5b )≥54+1=94.]9.B [设△ABC 和△A 1B 1C 1的外心分别为O 1,O 2,连接O 1O 2, 可得外接球的球心O 为O 1O 2的中点,连接OA ,OB ,OC ,O 1A ,O 1B ,O 1C ,在△ABC 中,cos A =AB 2+AC 2-BC 22AB ·AC =-12,∵A ∈(0,π),∴A =2π3,根据正弦定理,得△ABC 外接圆半径O 1A =BC2sin A =1.∵球O 的体积为V =4πR 33=2053π,∴OA =R =5,在Rt △O 1OA 中,O 1O =OA 2-O 1A 2=2, 可得O 1O 2=2O 1O =4,∵直三棱柱ABC -A 1B 1C 1的底面积S △ABC =12AB ·AC sin 2π3=34,∴直三棱柱ABC -A 1B 1C 1的体积为S △ABC ×O 1O 2= 3.]10.C [如图,延长AG 交BC 于点F , ∵BO 为边AC 上的中线,BG →=2GO →, ∴AF 为边BC 上的中线, ∴AF →=12AB →+12AC →,又∵CD →=AD →-AC →=15AB →+(λ-1)AC →,且CD →∥AG →, ∴15∶(λ-1)=12∶12, ∴15=λ-1, ∴λ=65.]11.D [对于①,由e =5-12,可得e 2+e -1=0,由e =ca,a 2-c 2=b 2,可得c 2+ac -a 2=0,即ac =b 2,则a ,b ,c 成等比数列,故①正确;对于②,在黄金椭圆C 中,上顶点,右顶点分别为E (0,b ),B (a,0),即有EF 1→=(-c ,-b ),EB →=(a ,-b ),由①知有EF 1→·EB →=-ac +b 2=0,则∠F 1EB =90°,故②正确;对于③,设内切圆的半径为r ,由四边形ADEB 的面积可为四个三角形的面积,可得12·2a ·2b=4·12r ·a 2+b 2,解得r =ab a 2+b 2=a 2b 2a 2+b 2= a 3ca 2+ac=a 2ca 2c=c ,则内切圆过焦点, 故③正确.] 12.A [由题意可知g (x )=f (x )·f ′(x )=⎩⎨⎧ln xx,x >0,ln (-x )x ,x <0,不妨设x >0,则y =[g (x )]+[g (-x )]=[ln x x ]+[ln x-x],当ln x x ∈(0,1)时,则ln x -x∈(-1,0),[ln x x ]=0,[ln x-x ]=-1,y =[g(x)]+[g(-x)]=-1, 当ln x x =0时,则ln x -x =0,[ln x x ]=0,[ln x -x ]=0,y =[g(x)]+[g(-x)]=0,依此类推可得y =[g(x)]+[g(-x)]的值域是{-1,0}.] 13.14解析 化简得z =3+i (1-3i )2=3+i1-23i +(3i )2 =3+i -2-23i = 3+i (-2+23i )(-2-23i )(-2+23i )=-43+4i (-2)2-(23i )2=-43+4i16=-34+14i ,故z =-34-14i , 所以z·z =(-34-14i )(-34+14i )=(-34)2-(14i )2=14. 14.-192x 2解析 ∵a =⎠⎛0πsin x d x =-cos x |π0=-(cos π-cos 0)=2,∴二项式(a x -1x )6=(2x -1x)6的通项公式为 T k +1=C k 6·(2x )6-k ·(-1)k ·x -k 2=(-1)k ·C k 6·26-k ·x 3-k , 令3-k =2,求得 k =1, ∴展开式中含有x 2的项为-192x 2. 15.23解析 从甲,乙,丙,丁四个人中随机选取两人,共有(甲乙),(甲丙),(甲丁),(乙丙),(乙丁),(丙丁)共六种,其中甲乙两人中有且只一个被选取,则(甲丙),(甲丁),(乙丙),(乙丁),共四种, 故甲乙两人中有且只一个被选取的概率为46=23.16.3n -1+12解析 ∵数列{a n }为等差数列,首项a 1=1,公差d ≠0,ak 1,ak 2,ak 3,…,ak n 成等比数列,且k 1=1,k 2=2,k 3=5, ∴a 22=a 1·a 5, 即(1+d )2=1·(1+4d ), 解得d =2, 即a n =2n -1, ∴ak n =2k n -1,又∵等比数列a 1,a 2,a 5的公比为q =a 2a 1=3,∴ak n =2k n -1=3n -1,即k n =3n -1+12.17.解 (1)f (x )=2sin x ·1+cos φ2+cos x sin φ-sin x =sin x +sin x cos φ+cos x sin φ-sin x =sinx cos φ+cos x sin φ=sin(x +φ), 因为函数f (x )在x =π处取最小值, 所以sin(π+φ)=-1,由诱导公式知sin φ=1,因为0<φ<π,所以φ=π2,所以f (x )=sin(x +π2)=cos x .(2)因为f (A )=32,所以cos A =32,因为A 为△ABC 的内角,所以A =π6. 又因为a =1,b =2,所以由正弦定理,得a sin A =bsin B ,也就是sin B =b sin A a =2×12=22,因为b >a ,所以B =π4或B =3π4.当B =π4时,C =π-π6-π4=7π12;当B =3π4时,C =π-π6-3π4=π12.18.解 (1)由频率分布直方图可得,损失不少于6 000元的居民共有(0.000 03+0.000 03)×2 000×50=6(户),损失为6 000~8 000元的居民共有0.000 03×2 000×50=3(户), 损失不少于8 000元的居民共有0.000 03×2 000×50=3(户),因此,这两户在同一分组的概率为 P =C 23+C 23C 26=25. (2)如表:K 2=50× 30×6-9×5 39×11×35×15=4 0501 001=4.046>3.841. 所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4 000元有关.19.(1)证明 在梯形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠ABC =60°, ∴AB =2,∴AC 2=AB 2+BC 2-2AB·BC ·cos 60°=3, ∴AB 2=AC 2+BC 2, ∴BC ⊥AC ,∵平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD , ∴BC ⊥平面ACFE .(2)解 由(1)可建立分别以直线CA ,CB ,CF 所在方向为x 轴,y 轴,z 轴的空间直角坐标系如图所示,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1), ∴AB →=(-3,1,0),BM →=(λ,-1,1), 设n 1=(x ,y ,z )为平面MAB 的一个法向量, 由⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BM →=0,得⎩⎨⎧-3x +y =0,λx -y +z =0,取x =1,则n1=(1,3,3-λ). ∵n 2=(1,0,0)是平面FCB 的一个法向量 ∴cos θ=|n 1·n 2||n 1||n 2|=11+3+(3-λ)2×1 =1(λ-3)2+4.∵0≤λ≤3,∴当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12.∴cos θ∈[77,12].20.(1)解 如图,O ′为双曲线的中心,OO ′为轴l 与平面α的距离|OO ′|=2,A 为双曲线的顶点,∠AOO ′=60°,∴|O ′A |=2 3.在轴l 上取点C ,使得|OC |=43,过C 作与轴l 垂直的平面, 交圆锥面得到圆C ,圆C 与双曲线相交于D ,E ,DE 的中点为B ,由题意知,|CB |=2,|CD |=4,得|BD |=23, 从而双曲线的半实轴长为23,且过点(23,43).设双曲线的标准方程为y 212-x 2b 2=1,将点(23,43)代入方程得b 2=4,∴双曲线的标准方程为y 212-x 24=1.(2)证明 在条件(1)下,双曲线Γ的两切线PM ,PN 都不垂直x 轴,设点P 的坐标为(x 0,y 0),令过点P 的切线的斜率为k ,则切线方程为y =k (x -x 0)+y 0, 由⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,y 212-x 24=1消去y 得(k 2-3)x 2-2k (kx 0-y 0)x +(kx 0-y 0)2-12=0,由Δ=0,化简得(x 20+4)k 2-2x 0y 0k +(y 20-12)=0,令PM ,PN 的斜率分别为k 1,k 2,由根与系数的关系得k 1k 2=y 20-12x 20+4,∵点P (x 0,y 0)在圆Γ′上,则有x 20+y 20=8,得y 20-12x 20+4=-1,∴k 1k 2=-1,知PM ⊥PN ,线段MN 是圆O 的直径,|MN |=4 2. 21.(1)解 由题意,得a x =y -1y +1>0, 故g (x )=log a x -1x +1,x ∈(-∞,-1)∪(1,+∞),由log a t(x 2-1)(7-x )=log a x -1x +1得t =(x -1)2(7-x ),x ∈[2,6],则t ′=-3x 2+18x -15=-3(x -1)(x -5). 列表如下:所以t 最小值=5最大值所以t 的取值范围为[5,32].(2)证明 ∑nk =2g (k )=ln 13+ln 24+ln 35+…+ln n -1n +1=ln(13×24×35×…×n -1n +1)=-ln n n +1 2.令u (z )=-ln z 2-1-z 2z =-2ln z +z -1z,z >0,则u ′(z )=-2z +1+1z 2=(1-1z )2≥0,所以u (z )在(0,+∞)上是增函数, 又因为n (n +1)2>1>0,所以u ( n (n +1)2)>u (1)=0, 即ln 2n (n +1)-1-n (n +1)2n (n +1)2>0,即∑nk =2g (k )>2-n -n 22n (n +1).(3)解 设a =11+p ,则p ≥1,1<f (1)=1+a 1-a=1+2p ≤3,当n =1时,|f (1)-1|=2p ≤2<4,当n ≥2时,设k ≥2,k ∈N *,则f (k )=(1+p )k +1(1+p )k -1=1+2(1+p )k -1=1+2C 1k p +C 2k p 2+…+C k k p k , 所以1<f (k )≤1+2C 1k +C 2k =1+4k (k +1)=1+4k -4k +1, 从而n -1<∑nk =2f (k )≤n -1+42-4n +1=n +1-4n +1<n +1,所以n <∑nk =1f (k )<f (1)+n +1≤n +4, 综上所述,总有|∑nk =1f (k )-n |<4. 四、选作题:请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.(选修4-1:几何证明选讲)22.(1)证明 因为∠EDC =∠DAC ,∠DAC =∠DAB ,∠DAB =∠DCB , 所以∠EDC =∠DCB , 所以BC ∥DE .(2)解 因为D ,E ,C ,F 四点共圆,所以∠CF A =∠CED , 由(1)知∠ACF =∠CED ,所以∠CF A =∠ACF . 设∠DAC =∠DAB =x ,因为A C =B C ,所以∠CBA =∠BAC =2x , 所以∠CF A =∠FBA +∠F AB =3x ,在等腰△ACF 中,π=∠CF A +∠ACF +∠CAF =7x ,则x =π7,所以∠BAC =2x =2π7.(选修4-4:坐标系与参数方程)23.解 (1)∵⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,方程ρsin 2θ=2a cos θ(a >0),两边同乘以ρ,∴曲线C 的直角坐标方程为y 2=2ax (a >0), 直线l 的普通方程为x -y -2=0. (2)联立方程组⎩⎪⎨⎪⎧y 2=2ax ,x -y -2=0, 消去y 并整理,得t 2-2(4+a )2t +8(4+a )=0,(*) Δ=8a (4+a )>0.设点M ,N 分别对应参数t 1,t 2,恰为上述方程的根. 则|PM |=|t 1|,|PN |=|t 2|,|MN |=|t 1-t 2|. 由题设得(t 1-t 2)2=|t 1t 2|, 即(t 1+t 2)2-4t 1t 2=|t 1t 2|.由(*)得t 1+t 2=2(4+a )2,t 1t 2=8(4+a )>0,则有 (4+a )2-5(4+a )=0,得a =1或a =-4. ∵a >0, ∴a =1.(选修4-5:不等式选讲)24.解 (1)当a =2时,f (x )=|x -3|-|x -2|,当x ≥3时,f (x )≤-12,即(x -3)-(x -2)≤-12,即-1≤-12成立,则有x ≥3;当x ≤2时,f (x )≤-12,即(3-x )-(2-x )≤-12,即1≤-12,解得x ∈∅;当2<x <3时,f (x )≤-12,即3-x -(x -2)≤-12,解得x ≥114,则有114≤x <3.则原不等式的解集为[114,3)∪[3,+∞),即[114,+∞).(2)由绝对值不等式的性质可得||x -3|-|x -a ||≤|(x -3)-(x -a )|=|a -3|, 即有f (x )的最大值为|a -3|.若存在实数x ,使得不等式f (x )≥a 成立,则有|a -3|≥a ,即⎩⎪⎨⎪⎧ a ≥3,a -3≥a 或⎩⎪⎨⎪⎧a <3,3-a ≥a ,解得a ∈∅或a ≤32.则a 的取值范围是(-∞,32].。
山西省太原市2017届高三上学期期末考试数学理试题含解析
太原市2016—2017学年第一学期高三年级期末考试数学试卷(理科) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}0,1,|12A B x x ==-≤≤,则AB =A. {}0,1B. {}1,0,1-C. []1,1-D.{}12.设复数21iz i=+,则其共轭复数为 A. 1i -- B. 1i - C. 1i -+ D.1i +3.给出下列命题:①若数列{}n a 为等差数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等差数列; ②若数列{}n a 为等比数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等比数列; ③若数列{}{},n n a b 均为等差数列,则数列{}n n a b +为等差数列; ④若数列{}{},n n a b 均为等比数列,则数列{}n n a b ⋅为等比数列 A. 1 B. 2 C. 3 D.44.设,αβ为两个不同的平面,l 为直线,则下列结论正确的是 A.//,l l ααβα⊥⇒⊥ B. ,//l l ααβα⊥⊥⇒ C. //,////l l ααββ⇒ D. ,//l l ααββ⊥⇒⊥5.已知sin 0αα=,则tan 2α=A.3 B. 3- D.6.执行如图所示的程序框图,输入1,5x n =-=,则输出s = A. -2 B. -3 C. 4 D.37.如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图可能是8.将函数()2cos sin f x x x x +的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x 轴向右平移6π个单位,得到函数()y g x =的图象,则()y g x =的一个递增区间是A. 5,66ππ⎡⎤-⎢⎥⎣⎦ B. ,22ππ⎡⎤-⎢⎥⎣⎦ C. 4,123ππ⎡⎤-⎢⎥⎣⎦ D. ,04π⎡⎤-⎢⎥⎣⎦9.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 相交于点F ,则AF =A.1142AC BD + B. 1124AC BD + C. 1223AC BD + D. 2133AC BD +10. 已知平面区域()33,,32233x y D x y z x y x y x y ⎧⎫⎪⎪+≥⎪⎪==-⎨⎬-≤⎪⎪⎪⎪+≤⎩⎭,若命题()00",,"x y D z m ∃∈>为假命题,则实数m 的最小值为 A.34 B. 74 C. 214 D. 25411.如图,正方体1111ABCD A B C D -绕其体对角线1BD 旋转θ之后与其自身重合,则θ的值可以是 A.56π B.34π C.23πD.35π12.已知()22,01,0x x e ax x f x ax x e⎧+>⎪=⎨-<⎪⎩,若函数()f x 有四个零点,则实数a 的取值范围是A. 1,e ⎛⎫-∞- ⎪⎝⎭B. (),e -∞-C. (),e +∞D. 1,e ⎛⎫+∞ ⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.数据0.7,1,0.8,0.9,1.1的方差是 .14.七名同学战成一排照相,其中甲、乙二人相邻,且丙、丁两人不相邻的不同排法总数为 .15.已知数列{}n a 的前n 项和()221nn n S a n N*=-+∈,则其通项公式na= .16.已知,,a b c 分别是ABC ∆的内角,,A B C 的对边,BC 边上的高为2a ,则cb的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知数列{}n a 是首项为1的单调递增的等比数列,且满足3455,,3a a a 成等差数列. (1)求{}n a 的通项公式;(2)若()()31log n n n b a a n N *+=⋅∈,求数列{}n n a b ⋅的前n 项和n S . 18.(本题满分12分)如图,已知AD 是ABC ∆内角BAC ∠的角平分线. (1)用正弦定理证明:AB DBAC DC=; (2)若120,2,1BAC AB AC ∠===,求AD 的长.19.(本题满分12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D 处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,现约定:若筹码停在A 或B 或C 或D 处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.(2)设甲、乙两人各有100个积分,筹码停在D 处,现约定:①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A-G 下方所对应的数目;②每次游戏筹码都连续走三步,之后重新回到起始位置D 处. 你认为该规定对甲、乙二人哪一个有力,请说明理由. 20.(本题满分12分)如图,在六面体1111ABCD A B C D -中,,M N 分别是棱1111,A B B C 的中点,平面ABCD ⊥平面11A B BA ,平面ABCD 平面11B C CB . (1)证明:1BB ⊥平面ABCD ;(2)已知六面体1111ABCD A B C D -53cos 5BAD ∠=,设平面BMN 与平面11AB D 相交所成二面角的大小为θ求cos θ.21.(本题满分12分)已知函数()()ln x xf x ax x a R e =-∈在1x =处的切线方程为()11.y bx b R e=++∈(1)求,a b 的值;(2)证明:()2.f x e<(3)若正实数,m n 满足1mn =,证明 :()112m n m n e e+<+. 请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
山西省太原市高三上学期期末数学试卷(理科)
山西省太原市高三上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017高一上·闽侯期中) 设集合,,则()A .B .C .D .2. (2分) (2018高二上·鹤岗期中) 直线的倾斜角为()A .B .C .D .3. (2分) (2019高一下·山西月考) 在中,角,,所对的对边分别为,,,若,则()A . 30°B . 60°C . 120°D . 150°4. (2分)(2018·长安模拟) 如果实数满足条件,那么的最大值为()A .B .C .D .5. (2分) (2017高一上·咸阳期末) 设a=(),b=(),c=log3 ,则a,b,c的大小关系是()A . b<a<cB . c<b<aC . c<a<bD . b<c<a6. (2分)(2017·通化模拟) 命题p:∀x∈(﹣∞,0),2x>3x;命题q:∃x∈(0,+∞),>x3;则下列命题中真命题是()A . p∧qB . (¬p)∧qC . (¬p)∨(¬q)D . p∧(¬q)7. (2分)(2014·辽宁理) 将函数y=3sin(2x+ )的图象向右平移个单位长度,所得图象对应的函数()A . 在区间[ , ]上单调递减B . 在区间[ , ]上单调递增C . 在区间[﹣, ]上单调递减D . 在区间[﹣, ]上单调递增8. (2分)(2017·揭阳模拟) 若 =(cos20°,sin20°), =(cos10°,sin190°),则• =()A .B .C . cos10°D .9. (2分)(2017·和平模拟) 已知函数f(x)= ,若关于x的方程f(x)﹣m=0恰有五个不相等的实数解,则m的取值范围是()A . [0,4]B . (0,4)C . (4,5)D . (0,5)10. (2分)过原点的直线与圆有公共点,则直线的倾斜角的取值范围是()A .B .C .D .二、填空题 (共5题;共6分)11. (1分)已知随机变量ξ满足Dξ=2,则D(2ξ+3)=________.12. (1分) (2017高一下·会宁期中) 求值:2log3 +log312﹣0.70+0.25﹣1=________.13. (1分)(2017·沈阳模拟) 某班共46人,从A,B,C,D,E五位候选人中选班长,全班每人只投一票,且每票只选一人.投票结束后(没人弃权):若A得25票,B得票数占第二位,C、D得票同样多,得票最少的E只得4票,那么B得票的票数为________.14. (1分) (2016高二上·怀仁期中) 长方体被一平行于棱的平面截成体积相等的两个几何体,其中一个几何体的三视图如图所示,则长方体的体积为________.15. (2分)已知双曲线与椭圆有相同的焦点,且以x+y为其一条渐近线,则双曲线方程为________ 过其右焦点且长为4的弦有________ 条.三、解答题 (共6题;共60分)16. (10分) (2016高一上·景德镇期中) 已知函数f(x)=sin(2x+ )+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[ ]上的最大值和最小值.17. (10分) (2016高二下·阳高开学考) 设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* ,且a1=1,求证:(1)数列{an+2n}是等比数列;(2)求数列{an}的前n项和Sn.18. (15分)“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.19. (10分)四棱锥P﹣ABCD中,PC=AB=1,BC=a,∠ABC=60°,底面ABCD为平行四边形,PC⊥平面ABCD,点M,N分别为AD,PC的中点.(1)求证:MN∥平面PAB;(2)若∠PAB=90°,求二面角B﹣AP﹣D的正弦值.20. (10分)(2018·河南模拟) 在平面直角坐标系中,已知椭圆:的离心率,,分别为左、右焦点,过的直线交椭圆于,两点,且的周长为8.(1)求椭圆的方程;(2)设过点的直线交椭圆于不同两点, . 为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围.21. (5分) (2017高一下·景德镇期末) 设函数f(x)= ﹣ax,e为自然对数的底数(Ⅰ)若函数f(x)的图象在点(e2 , f(e2))处的切线方程为 3x+4y﹣e2=0,求实数a,b的值;(Ⅱ)当b=1时,若存在 x1 ,x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求实数a的最小值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共60分)16-1、16-2、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、。
山西省太原市高三数学上学期期末考试试题文
太原市2016—2017学年第一学期高三年级期末考试数学试卷(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}0,1,|12A B x x ==-≤≤,则AB =A. {}0,1B. {}1,0,1-C. []1,1-D.{}1 2.设复数21iz i=+,则其共轭复数为 A. 1i -- B. 1i - C. 1i -+ D.1i + 3.给出下列命题:①若数列{}n a 为等差数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等差数列; ②若数列{}n a 为等比数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等比数列; ③若数列{}{},n n a b 均为等差数列,则数列{}n n a b +为等差数列; ④若数列{}{},n n a b 均为等比数列,则数列{}n n a b ⋅为等比数列 A. 1 B. 2 C. 3 D.44.设,m n 为两条不同的直线,α为平面,则下列结论正确的是 A.,//m n m n αα⊥⇒⊥ B. ,//m n m n αα⊥⊥⇒ C. //,////m n m n αα⇒ D. //,m n m n αα⊥⇒⊥5.已知sin αα=,则tan 2α=B. 6.执行如图所示的程序框图,输入1,5x n =-=,则输出s = A. -2 B. -3C. 4D.37.如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图可能是8.将函数()2cos sin f x x x x =+的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x 轴向右平移6π个单位,得到函数()y g x =的图象,则()y g x =的一条对称轴是 A. 6x π=- B. 4x π=- C.3x π= D.2x π=9.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD相交于点F ,则AF =A.1142AC BD + B. 1124AC BD + C. 1223AC BD + D. 2133AC BD +10.甲、乙两位同学约定周日早上8:00—8:30在学校门口见面,已知他们到达学校的时间是随机的,则甲要等乙至少10分钟才能见面的概率为A.23 B. 13 C. 29 D. 7911.如图,正方体1111ABCD A BC D -绕其体对角线1BD 旋转θ之后与其自身重合,则θ的值可以是A.56π B. 34π C. 23π D. 35π12.已知(),01,0x x e ax x f x ax x e⎧+>⎪=⎨-<⎪⎩,若函数()f x 有四个零点,则实数a 的取值范围是A. 1,e ⎛⎫-∞- ⎪⎝⎭B. (),e -∞-C. (),e +∞D. 1,e ⎛⎫+∞ ⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.数据0.7,1,0.8,0.9,1.1的方差是 .14.已知向量()()1,1,1,2a b =-=,则b a -与2a b +的夹角为 .15.已知平面区域()33,,32233x y D x y z x y x y x y ⎧⎫⎪⎪+≥⎪⎪==-⎨⎬-≤⎪⎪⎪⎪+≤⎩⎭,若命题()00",,"x y D z m ∃∈>为假命题,则实数m 的最小值为 .16.已知数列{}n a 的前n 项和()221n n n S a n N *=-+∈,则其通项公式n a = .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)已知数列{}n a 是首项为1的单调递增的等比数列,且满足3455,,3a a a 成等差数列. (1)求{}n a 的通项公式;(2)若()31log n n b a n N *-=∈,求数列{}n n a b ⋅的前n 项和n S .18.(本题满分12分)如图,已知AD 是ABC ∆内角BAC ∠的角平分线. (1)用正弦定理证明:AB DBAC DC=; (2)若120,2,1B A C A B A C ∠===,求AD 的长.19.(本题满分12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D 处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,求筹码停在C 处的概率;(2)将硬币连续投掷三次,现约定:若筹码停在A 或B 或C 或D 处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.20.(本题满分12分)如图,在六面体1111ABCD A BC D -中,平面//ABCD 平面1111A B C D ,1//DD 平面11A B BA ,1//DD 平面11B C CB .(1)证明:11//DD BB ;(2)已知六面体1111ABCD A BC D -的棱长均为2,且1BB ⊥平面A B C D ,60,,BAD M N ∠=分别为棱1111,A B B C 的中点,求四面体D MNB -的体积.21.(本题满分12分) 已知函数()()ln x xf x ax x a R e=-∈在1x =处的切线的斜率 1.k =- (1)求a 的值;(2)证明:()2.f x e<(3)若正实数,m n 满足1mn =,证明 :()112m nm n e e +<+.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
2017届山西省太原市高三数学(理)一模试题答案
2017 届山西省太原市高三数学(理)一模试题答案一、选择题(共12 小题,每题 3 分,满分 36 分)1.已知会合 A={ x| y=lg( x+1) } , B={ x|| x| <2} ,则 A∩ B=()A.(﹣ 2,0)B.(0,2) C.(﹣ 1,2)D.(﹣ 2,﹣ 1)【解答】解:由 x+1>0,得 x>﹣ 1∴ A=(﹣ 1, +∞),B={ x|| x| < 2} =(﹣ 2,2)∴ A∩ B=(﹣ 1, 2).应选: C2.已知 zi=2﹣ i,则复数 z 在复平面对应点的坐标是()A.(﹣ 1,﹣ 2)B.(﹣ 1, 2) C.( 1,﹣ 2)D.(1,2)【解答】解: zi=2﹣ i,∴ z===﹣1﹣2i,∴复数 z 在复平面对应点的坐标是(﹣1,﹣ 2),应选: A.3.已知 S n是等差数列 { a n } 的前 n 项和, 2( a1+a3+a5)+3(a8+a10) =36,则 S11=()A.66 B.55 C.44D.33【解答】解:∵ S n是等差数列 { a n} 的前 n 项和, 2( a1 +a3+a5) +3(a8+a10)=36,∴2( a1+a1+2d+a1+4d)+3(a1+7d+a1+9d)=36,解得 a1+5d=3.∴ a6=3,∴ S11=6.==11a =33应选: D.4.已知=( 1, cos α), =(sin α,1),0<α<π,若,则α=()A.B.C.D.【解答】解:=( 1, cosα), =( sin α,1),若,可得? =sin α+cosα=0,即有 tan α==﹣1,由 0<α<π,可得α= .应选: B.5.函数的图象大概为()A.B.C.D.【解答】解: f(﹣ x)==﹣=﹣ f( x),∴函数 f(x)为奇函数,则图象对于原点对称,故排A, B,当 x=时,f()==应选: D6.已知圆 C:x2+y2=1,直线 l:y=k(x+2),在 [ ﹣1,1] 上随机选用一个数k,则事件“直线 l 与圆 C 相离”发生的概率为()A.B.C.D.【解答】解:圆 C:x2+y2=1 的圆心为( 0, 0),半径为 r=1;且圆心到直线 l:y=k( x+2)的距离为d==,直线 l 与圆 C 相离时 d>r ,∴>1,解得 k<﹣或k>,故所求的概率为P==.应选: C.7.履行如图框图,已知输出的s∈[ 0, 4] ,若输入的 t∈ [ m, n] ,则实数 n﹣ m 的最大值为(A.1B.2C.3D.4【解答】解:模拟履行程序,可得程序框图的功能是计算并输出分段函数S=的值,做出函数的图象,由题意可得:输出的s∈0,4,[]当 m=0 时, n∈[ 2,4] , n﹣m ∈[ 2, 4] ,当 n=4 时, m∈[ 0,2] , n﹣m ∈[ 2, 4] ,因此实数 n﹣m 的最大值为 4.应选: D.8.某几何体的三视图以下图,则该几何体的表面积为()A.6π+1 B.C.D.【解答】解:由题意,几何体为圆柱与圆锥的组合体,该几何体的表面积为21=,2π?1?2 π?1++++应选 D.9.已知 D=,给出以下四个命题:P1: ? (x,y)∈ D, x+y+1≥0;P2: ? (x,y)∈ D, 2x﹣y+2≤0;P3: ? (x,y)∈ D,≤﹣4;P4: ? (x,y)∈ D, x2+y2≤ 2.此中真命题的是()A.P1,P2B.P2,P3C.P2,P4D.P3,P4【解答】解:不等式组的可行域如图,p1: A(﹣ 2,0)点,﹣ 2+0+1=﹣1,故 ? (x,y)∈ D,x+y≥ 0 为假命题;p2: A(﹣ 1,3)点,﹣ 2﹣3+2=﹣3,故 ? (x,y)∈ D,2x﹣y+2≤0 为真命题;p3: C( 0, 2)点,=﹣3,故 ? (x,y)∈ D,≤﹣4为假命题;p4:(﹣ 1, 1)点, x2+y2=2故 ? (x,y)∈ D,x2+y2≤2 为真命题.可得选项 p2,p4正确.应选: C.10.已知抛物线 y2=4x 的焦点为点 F,过焦点 F 的直线交该抛物线于A、B 两点,O 为坐标原点,若△ AOB的面积为,则| AB| =()A.6B.8C.12D.16【解答】解:抛物线 y2=4x 焦点为 F( 1,0),设过焦点 F 的直线为: y=k(x﹣1),由? 可得 y2﹣y﹣ 4=0,y A+y B=,y A y B=﹣4,| y A﹣y B| =△ AOB的面积为,可得:| y A﹣y B| =,,解得 k=| AB| =?, | y A﹣y B| =.应选: A.11.已知函数 f(x)=sin ωx﹣cos ωx(ω> 0),若方程 f (x)=﹣1 在( 0,π)上有且只有四个实数根,则实数ω的取值范围为()A.(,]B.(,]C.(,] D.(,]【解答】解: f(x) =2sin(ωx﹣),作出 f (x)的函数图象以下图:令 2sin(ωx﹣)=﹣1得ωx﹣=﹣2kπ,或ωx﹣ =2kπ,++∴ x=+,或 x=+k Z,, ?设直线 y=﹣1 与 y=f( x)在( 0,+∞)上从左到右的第 4 个交点为 A,第 5 个交点为 B,则 x A=,x B=,∵方程 f(x)=﹣1 在( 0,π)上有且只有四个实数根,∴ x A<π≤x B,即<π≤,解得.应选 B.12.设函数 f(x)=与g(x)=a2lnx+b有公共点,且在公共点处的切线方程同样,则实数 b 的最大值为()A.B.C.D.【解答】解:设 y=f(x)与 y=g( x)(x>0)在公共点 P(x0,y0)处的切线同样、f (′x)=3x﹣2a,g′(x)=,由题意 f(x0) =g(x0),f ′(x0)=g′(x0),即 x02﹣2ax0=a2lnx0+b,3x0﹣2a=由 3x0﹣2a=得x0=a或x0=﹣a(舍去),即有 b= a2﹣2a2﹣a2lna=﹣a2﹣a2lna.令 h(t) =﹣ t2﹣t2 lnt( t>0),则 h′(t) =2t( 1+lnt ),于是当 2t(1+lnt )> 0,即 0<t<时, h′( t)> 0;当 2t(1+lnt)< 0,即 t >时, h′(t )< 0.故 h(t)在( 0,)为增函数,在(,+∞)为减函数,于是 h(t )在( 0, +∞)的最大值为h()=,故 b 的最大值为.应选 A.二、填空题(共 4 小题,每题 3 分,满分 12 分)13.已知,若,则实数t=﹣1.【解答】解:依据题意,,则 + =(1+t ,0),﹣=(1﹣t ,﹣ 2),若,则有( 1+t)×(﹣ 2)=(1﹣t )× 0=0,解可得 t=﹣1;故答案为:﹣ 1.14.已知双曲线经过点,其一条渐近线方程为y=2x,则该双曲线的标准方程为﹣x2=1.【解答】解:依据题意,双曲线的一条渐近线方程为y=2x,则能够设其方程为x2﹣=m,(m≠0),又由其经过点,则有 1﹣=m,解可得 m=﹣ 1,则其方程为: x2﹣=﹣1,其标准方程为:﹣ x2=1,故答案为:﹣x2=1.15.已知三棱锥 A﹣BCD中, BC⊥CD, AB=AD=,BC=1,CD=,则该三棱锥外接球的体π .【解答】解: BC⊥CD, BC=1, CD=,∴ DB=2又因 AB=AD=,∴△ ABD是直角三角形.取 DB 中点 O, OA=OB=OC=OD=1∴ O 三棱外接球的球心,外接的半径R=1,∴ 三棱外接球的体π,故答案:π.16.已知数列 { a n} 中,,其前n和S n=2n+2 4.【解答】解:∵数列 { a n } 中,,∴a2=0,n≥2 , a n=2a n﹣1 +3n 4,∴a n+1 a n=2a n 2a n﹣1+3,化 a n+1 a n+3=2(a n a n﹣1+3),a2 a1+3=2.∴数列 { a n a n﹣1 +3} 是等比数列,首 2,公比 2.∴a n a n﹣1+3=2n,即 a n a n﹣1 =2n 3.∴a n=( a n a n﹣1)+(a n﹣1 a n﹣2)+⋯+( a2 a1)+a1=2n 3+2n﹣1 3+⋯+22 3 1= 3(n 1) 1=2n+13n 2.∴ S n=3×2n=2n+2﹣4﹣.故答案为: 2n+2﹣4﹣.三、解答题17.已知 a,b,c 分别是△ ABC的内角 A, B,C 所对的边, a=2bcosB, b≠ c.(1)证明: A=2B;(2)若 a2+c2=b2+2acsinC,求 A.【解答】解:(1)证明:△ ABC中, a=2bcosB,由,得 sinA=2sinBcosB=sin2B,∵0< A, B<π,∴ sinA=sin2B> 0,∴ 0< 2B<π,∴A=2B或 A+2B=π,若 A+2B=π,则 B=C,b=c 这与“b≠c”矛盾,∴A+2B≠ π;∴A=2B;(2)∵ a2+c2=b2+2acsinC,∴,由余弦定理得 cosB=sinC,∵ 0< B, C<π,∴或,①当时,则,这与“b≠c”矛盾,∴;②当时,由( 1)得 A=2B,∴,∴.18.某著名品牌汽车深受花费者喜欢,但价钱昂贵.某汽车经销商推出 A、B、C三种分期付款方式销售该品牌汽车,并对近期 100 位采纳上述分期付款的客户进行统计剖析,获取以下的柱状图.已知从 A、 B、 C 三种分期付款销售中,该经销商每销售此品牌汽车 1 俩所获取的收益分别是 1 万元, 2 万元, 3 万元.现甲乙两人从该汽车经销商处,采纳上述分期付款方式各购置此品牌汽车一辆.以这100 位客户所采纳的分期付款方式的频次取代 1 位客户采纳相应分期付款方式的概率.( 1)求甲乙两人采纳不一样分期付款方式的概率;( 2)记 X(单位:万元)为该汽车经销商从甲乙两人购车中所获取的收益,求 X 的散布列与希望.散布列.【解答】解:(1)由题意得:P(A)==0.35, P( B) ==0.45,P(C)==0.2,∴甲乙两人采纳不一样分期付款方式的概率:p=1﹣ [ P(A)?P(A)+P( B) ?P(B)+P(C)?P( C) ] =0.635.(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获取的收益,则 X 的可能取值为 2,3,4,5,6,P(X=2) =P(A)P(A)=0.35× 0.35=0.1225,P(X=3) =P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P( A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,P(X=5) =P(B)P(C)+P(C)P(B)=0.45×0.2+0.2× 0.45=0.18,P(X=6) =P(C)P(C)=0.2×0.2=0.04.∴ X 的散布列为:X23456P0.12250.3150.34250.180.04E(X)=0.1225×2 0.315×3 0.3425× 4 0.18× 5 0.04× 6=3.7.++++19.如图,在几何体ABCDEF中,四边形ABCD是菱形, BE⊥平面 ABCD,DF∥BE,且 DF=2BE=2,EF=3.(1)证明:平面 ACF⊥平面 BEFD(2)若二面角 A﹣EF﹣ C 是二面角,求直线 AE与平面 ABCD所成角的正切值.标系,利用向量法能求出直线AE与平面 ABCD所成角的正切值.【解答】证明:(1)∵四边形 ABCD是菱形,∴ AC⊥BD,∵BE⊥平面ABCD,∴BE⊥AC,∴ AC⊥平面 BEFD,∵AC? 平面 ACF,∴平面 ACF⊥平面 BEFD.解:( 2)设 AC 与 BD的交点为 O,由( 1)得 AC⊥BD,分别以 OA,OB 为 x 轴, y 轴,成立空间直角坐标系,∵BE⊥平面 ABCD,∴ BE⊥BD,∵DF∥BE,∴ DF⊥BD,222∴ BD=EF﹣( DF﹣BE) =8,∴ BD=2 .设 OA=a,( a> 0),由题设得 A(a,0,0),C(﹣ a, 0, 0),E(0,),F(0,﹣,2),设 m=(x, y, z)是平面 AEF的法向量,则,取 z=2,得=(),设是平面 CEF的一个法向量,则,取,得=(﹣,1,2),∵二面角 A﹣EF﹣ C 是直二面角,∴=﹣ +9=0,解得 a= ,∵BE⊥平面 ABCD,∴∠ BAE是直线 AE与平面 ABCD所成的角,∴ AB==2,∴ tan.∴直线 AE与平面 ABCD所成角的正切值为.20.已知椭圆 C:的左右焦点与其短轴的一个端点是正三角形的三个极点,点D在椭圆C上,直线l:y=kx+m与椭圆C订交于A、P两点,与 x 轴、 y 轴分别订交于点 N 和 M ,且 PM=MN,点 Q 是点 P 对于 x 轴的对称点, QM 的延伸线交椭圆于点 B,过点 A、B 分别作 x 轴的垂涎,垂足分别为 A1、B1(1)求椭圆 C 的方程;(2)能否存在直线 l,使得点 N 均分线段 A1B1?若存在,求求出直线 l 的方程,若不存在,请说明原因.【解答】解:( 1)∵椭圆 C:的左右焦点与其短轴的一个端点是正三角形的三个极点,点D在椭圆C上,∴由题意得,解得 a2,2,=4 b =3∴椭圆 C 的方程为.( 2)假定存在这样的直线l:y=kx+m,∴ M(0,m ),N(﹣,0),∵ PM=MN,∴ P(,2m),Q(),∴直线 QM 的方程为 y=﹣3kx+m,设 A(x1,y1),由,得(3+4k2)x2+8kmx+4(m2﹣3)=0,∴,∴,设 B(x2,y2),由,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,∴ x2+ =,∴2﹣,x =∵点 N 均分线段 A1 1,B ,∴∴﹣=﹣,∴ k=,∴ P(± 2m,2m),∴,解得m=,∵ | m| =<b=,∴△>0,切合题意,∴直线 l 的方程为 y=.21.已知函数 f(x)=2lnx+ax﹣(a∈ R)在x=2处的切线经过点(﹣4,2ln2)( 1)议论函数 f (x)的单一性( 2)若不等式恒成立,务实数m的取值范围.【解答】解:(1)由(f x)=2lnx ax﹣( a∈R),求导 f(′x)= a,++ +当 x=2 时, f ′( 2) =1+a+f ′(2),∴ a=﹣1,设切点为( 2,2ln2+2a﹣2f ′(2)),则切线方程y﹣( 2ln2+2a﹣2f ′(2)) =f ′(2)( x﹣2),将(﹣ 4,2ln2)代入切线方程, 2ln2﹣2ln2﹣2a+2f (′2))=﹣6f (′ 2),则 f (′2)=﹣,∴ f (′ x)= ﹣ 1﹣ =≤ 0,∴ f(x)在( 0, +∞)单一递减;(2)由不等式恒成立,则(2lnx)> m,+令φ x)=2lnx,( x> 0)求导φ′(x)= ﹣﹣1=﹣(﹣1)2≤0,(+∴ φ( x)在( 0,+∞)单一递减,由φ(1)=0,则当 0<x<1 时,φ(x)> 0,当 x>1 时,φ( x)< 0,∴(2lnx+)在(0,+∞)恒大于0,∴m≤0,实数 m 的取值范围(﹣∞, 0] .四、解答题(共 1 小题,满分 10 分)22.在直角坐标系 xOy 中,曲线 C1的参数方程为(,此中φ为参数),曲线,以原点 O 为极点, x 轴的正半轴为极轴成立极坐标系,射线 l:θ=α(ρ≥0)与曲线 C12,C 分别交于点 A,B(均异于原点 O)( 1)求曲线 C1,C2的极坐标方程;(2)当时,求OA2OB 2的取值范围.||+||【解答】解:(1)∵,∴,由得曲线 C1的极坐标方程为,∵ x2+y2﹣ 2y=0,∴曲线 C2的极坐标方程为ρ =2sin;θ2)由( 1)得,OB222α(ρ||==4sin,∴∵,∴ 1< 1+sin2α<,∴,2∴| OA| 2+| OB| 2的取值范围为( 2,5).五、解答题(共 1 小题,满分 0 分)23.已知函数(1)若不等式 f (x)﹣ f( x+m)≤ 1 恒成立,务实数 m 的最大值;(2)当 a<时,函数 g(x) =f(x)+| 2x﹣ 1| 有零点,务实数 a 的取值范围.【解答】解:(1)∵,∴,∴f(x)﹣ f(x+m )=| x﹣a| ﹣ | x+m﹣ a| ≤| m| ,∴| m| ≤1,∴﹣ 1≤m≤1,∴实数 m 的最大值为 1;(2)当时,=∴,∴或,∴,∴实数 a 的取值范围是.。
太原市高三上学期期末数学试卷(理科)D卷(模拟)
太原市高三上学期期末数学试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知全集,集合,,则()A . (-1,1)B . (-1,3)C .D .2. (2分)若三点共线,则有()A .B .C .D .3. (2分)若等差数列满足,则的最大值为()A . 600B . 500C . 800D . 2004. (2分)(2018·陕西模拟) 已知函数的最小正周期为,则该函数的图象()A . 关于点对称B . 关于点对称C . 关于直线对称D . 关于直线对称5. (2分) (2016高一下·舒城期中) 数列{an}的前n项和为Sn ,若,则S5等于()A . 1B .C .D .6. (2分) (2017高一上·巢湖期末) 设min{p,q,r}为表示p,q,r三者中较小的一个,若函数f(x)=min{x+1,﹣2x+7,x2﹣x+1},则不等式f(x)>1的解集为()A . (0,2)B . (﹣∞,0)C . (1,+∞)D . (1,3)7. (2分)设函数,对于给定的正数K,定义函数若对于函数定义域内的任意x,恒有,则()A . K的最大值为B . K的最小值为C . K的最大值为1D . K的最小值为18. (2分)(2017·厦门模拟) 设x,y满足约束条件,若z=ax+2y仅在点处取得最大值,则a的值可以为()A . ﹣8B . ﹣4C . 4D . 89. (2分) (2018高二下·中山月考) 计算(其中)的结果为()A .B .C .D .10. (2分) (2017高一下·芮城期末) 若,则一定有()A .B .C .D .11. (2分) (2017高二下·洛阳期末) 设等差数列{an}满足(1﹣a1008)5+2016(1﹣a1008)=1,(1﹣a1009)5+2016(1﹣a1009)=﹣1,数列{an}的前n项和记为Sn ,则()A . S2016=2016,a1008>a1009B . S2016=﹣2016,a1008>a1009C . S2016=2016,a1008<a1009D . S2016=﹣2016,a1008<a100912. (2分)(2017·石嘴山模拟) 函数f(x)=sin(2x+φ)(|φ< |)的图象向左平移个单位后关于原点对称,求函数f(x)在[0, ]上的最小值为()A . ﹣B . ﹣C .D .二、填空题 (共4题;共4分)13. (1分)(2020·海安模拟) 设Sn为数列{an}的前n项和,若Sn=nan﹣3n(n﹣1)(n∈N*),且a2=11,则S20的值为________.14. (1分)(2017·山东模拟) 已知 =(1,1), =(2,n),若| + |= • ,则n=________.15. (1分) (2018高一上·台州月考) 在实数的原有运算法则中,补充定义新运算“ ”如下:当时,;当时,,已知函数,则满足的实数m的取值范围是________16. (1分) (2018高二下·赣榆期末) 已知函数是定义在R上的奇函数,且当时,若,则的大小关系为________.(用“<”连接)三、解答题. (共7题;共70分)17. (10分) (2016高三上·襄阳期中) 设p:实数x满足:x2﹣4ax+3a2<0(a>0),q:实数x满足:x=()m﹣1 ,m∈(1,2).(1)若a= ,且p∧q为真,求实数x的取值范围;(2) q是p的充分不必要条件,求实数a的取值范围.18. (5分)(2017·榆林模拟) 已知函数f(x)= sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.19. (10分) (2019高一下·哈尔滨月考) 在中,角所对的边分别为,已知(1)求的值;(2)若,求的值20. (10分) (2017高二上·中山月考) 已知等差数列的公差不为零,且满足,成等比数列.(1)求数列的通项公式;(2)记,求数列的前项和.21. (15分) (2016高二上·淮南期中) 设,g(x)=x3﹣x2﹣3.(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;(2)如果存在x1,x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求满足上述条件的最大整数M;(3)如果对任意的,都有f(s)≥g(t)成立,求实数a的取值范围.22. (10分) (2016高二下·福建期末) 已知直线l:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.(1)若点M的直角坐标为(2,),直线l与曲线C交于A、B两点,求|MA|+|MB|的值;(2)设曲线C经过伸缩变换得到曲线C′,求曲线C′的内接矩形周长的最大值.23. (10分)(2017·榆林模拟) 设不等式|2x﹣1|<1的解集为M,a∈M,b∈M(1)试比较ab+1与a+b的大小(2)设max表示数集A的最大数,h=max{,, },求证h≥2.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题. (共7题;共70分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。
太原市高三上学期期末数学试卷(理科)D卷(考试)
太原市高三上学期期末数学试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知集合,,如果,则m等于()A . -1B . -2C . -2或-1D .2. (2分)设z=1–i(i是虚数单位),则复数+i2的虚部是A . 1B . -1C . iD . -i3. (2分)变量x,y有观测数据(xi , yi)(i=1,2,,10),得散点图(1);对变量u,v有观测数据(ui , vi)(i =1,2,,10),得散点图(2).由这两个散点图可以判断()A . 变量x与y正相关,u与v正相关B . 变量x与y正相关,u与v负相关C . 变量x与y负相关,u与v正相关D . 变量x与y负相关,u与v负相关4. (2分)下列函数中,周期为π的奇函数是()A . y=sinxB . y=sin2xC . y=tan2xD . y=cos2x5. (2分) (2017高一上·威海期末) 已知函数f(x)=a(x+a)(x﹣a+3),g(x)=2x+2﹣1,若对任意x∈R,f(x)>0和g(x)>0至少有一个成立,则实数a的取值范围是()A . (1,2)B . (2,3)C . (﹣2,﹣1)∪(1,+∞)D . (0,2)6. (2分)给出下列关于互不相同的直线和平面的四个命题:①若,,点,则与不共面;②若、是异面直线,,,且,,则;③若,则;④若,,,,,则.其中为假命题的是()A . ①B . ②C . ④7. (2分)如果二次函数不存在零点,则m的取值范围是()A .B .C .D .8. (2分)阅读如图的程序框图,运行相应的程序,则输出S的值为()A . -10B . 6C . 14D . 189. (2分)(2016·遵义) 已知点满足方程,则由点向圆所作的切线长的最小值是()A .B .D .10. (2分)设,则这四个数的大小关系是()A .B .C .D .11. (2分)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是()A . 12πB . 4πC . 3πD . 12π12. (2分) (2017高一上·昌平期末) 如图一半径为3米的水轮,水轮的圆心O距离水面2米,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(米)与时间x(秒)满足函数关系y=Asin(ωx+φ)+2则有()A . ω= ,A=3B . ω= ,A=5C . ω= ,A=5D . ω= ,A=3二、二.填空题 (共4题;共5分)13. (1分) (2017高二下·深圳月考) 已知是顶点为腰长为的等腰直角三角形,为平面内一点,则的最小值是________.14. (2分) (2018高三上·嘉兴期末) 已知,则项的二项式系数是________; ________.15. (1分) (2017高一下·滨海期末) 从1,2,3,4,5五个数字中任意取出两个不同的数做加法,其和为6的概率是________.16. (1分)设曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P的坐标为________ 。
2015-2016太原市第一学期高三期末试卷_共8页
太原市2015~2016学年第一学期高三年级期末考试化学试卷(考试时间:下午2:30——4:30)说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
考试时间120分钟,满分150分。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Mg 24 S 32 Cl 35.5 Zn 65 Ag 108第I卷(选择题共74分)一、选择题(本题包括18小题,每小题3分,共54分。
每小题只有一个选项符合题意要求,请将正确选项的序号填在第I卷答题栏内)1.2015年10月,中国中医研究员屠呦呦因发现并提取出青蒿素(结构如图所示)而获得了诺贝尔医学奖。
她发现的青蒿素用以治疗疟疾,挽救了数百万患者的生命。
下列关于青蒿素的叙述正确的是A.青蒿素难溶于水B.青蒿素的摩尔质量为282C.青蒿素属于天然高分子化合物D.青蒿素中C、H、O三种元素的质量比为15:22:52.下列各组中两种气体所含原子数一定相等的是A.温度相同、体积相同的O2和N2B.压强相同、体积相同的H2和O2C.质量相等、密度不等的N2和COD.体积相等、密度相等的CO和C2H43.设N A表示阿伏加德罗常数的数值。
下列说法正确的是A.1 mol —OH与1mol OH-所含的电子数均为9 N AB.室温下,21.0 g乙烯和丁烯的混合气体中含有的碳原子数1.5 N AC.标准状况下,22.4 L Cl2与足量的Fe完全反应,转移的电子数为9 N AD.一定条件下,0.1 mol SO2与足量的氧气反应生成SO3,转移的电子数为0.2 N A4.根据键能数据估算CH4(g)+4F2(g) = CF4(g)+4HF(g)的反应热△H为化学键C-H C-F H-F F-F键能/(kJ·mol-1)414489565155A.-485 kJ·mol-1B.+485 kJ·mol-1C.+1940 kJ·mol-1D.-1940 kJ·mol-15.下列关于有机物的叙述,不正确的是A.C 4H 8O 2的酯共有4种结构B.淀粉和纤维素互为同分异构体C.乙醇和葡萄糖都能发生氧化反应D.油脂在碱性条件下的水解反应称为皂化反应6.下列说法正确的是A.金属腐蚀的实质是金属被氧化B.为保护地下铁管不受腐蚀,应将其与直流电源的正极相连C.钢铁因含杂质而容易发生电化学腐蚀,所以合金都不耐腐蚀D.原电池反应是导致金属腐蚀的主要原因,故不能用来减缓金属的腐蚀7.下列指定反应的离子方程式正确的是A.向烧碱溶液溶解铝土矿中的中氧化铝:Al 2O 3+2OH -=2AlO- 2+H 2↑B.用过量氨水吸收烟道气中的SO 2:SO 2+2NH 3·H 2O=SO2- 3+2NH+ 4+H 2OC.将饱和FeCl 3溶液滴入沸水中制取Fe(OH)3胶体:Fe 3++3H 2O ⇌Fe(OH)3↓+3H +D.用Fe 2+将饮用水(pH 约为7)中少量ClO- 2还原成为Cl -:4Fe 2++ClO- 2+4H +=4Fe 3++Cl -+2H 2O8.常温下,下列各组离子在指定溶液中一定能大量共存的是A.0.1 mol ·L-1 FeCl3溶液:Na +、H +、I -、SCN -B.使酚酞试液变红的溶液:Na +、K +、HSO- 3、ClO -C.加入Al 能放出H 2的溶液:Cl -、NO3-、Na +、NH 4+D.水电离的c (H +)=1×10-12 mol ·L -1的溶液:K +、Ba 2+、Cl -、Br -9.铅的冶炼过程大致如下:①富集:将方铅矿(PbS)进行浮选;②焙烧:2PbS +3O 22PbO +2SO 2;③制粗铅:高温===PbO +C Pb +CO↑,PbO +CO Pb +CO 2。
高三数学上学期期末考试试题 理1 (3)
太原市2016—2017学年第一学期高三年级期末考试数学试卷(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}|1,|12A x N x B x x =∈≤=-≤≤,则A B =A. {}0,1B. {}1,0,1-C. []1,1-D.{}12.设复数12z i =+,则22||z z =A.3455i - B. 3455i -+ C. 415i + D.1 3.给出下列命题:①若数列{}n a 为等差数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等差数列; ②若数列{}n a 为等比数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等比数列; ③若数列{}{},n n a b 均为等差数列,则数列{}n n a b +为等差数列; ④若数列{}{},n n a b 均为等比数列,则数列{}n n a b ⋅为等比数列 A. 1 B. 2 C. 3 D.44.设,αβ为两个不同的平面,l 为直线,则下列结论正确的是 A.//,l l ααβα⊥⇒⊥ B. ,//l l ααβα⊥⊥⇒ C. //,////l l ααββ⇒ D. ,//l l ααββ⊥⇒⊥5.已知sin 0αα=,则tan 2α=A.B. C. D.6.执行如图所示的程序框图,输入1,5x n =-=,则输出s =A. -2B. -3C. 4D.37.如图是一个棱锥的正视图和侧视图,则该棱锥的俯视不可能是8.将函数()23sin cos sin f x x x x =+的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x 轴向右平移6π个单位,得到函数()y g x =的图象,则()y g x =的一个递增区间是 A. 5,66ππ⎡⎤-⎢⎥⎣⎦B. ,22ππ⎡⎤-⎢⎥⎣⎦C. 4,123ππ⎡⎤-⎢⎥⎣⎦D. ,04π⎡⎤-⎢⎥⎣⎦9.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 相交于点F ,则AF =A. 1142AC BD +B. 1124AC BD + C. 1223AC BD + D. 2133AC BD +10. 已知平面区域()33,,32233x y D x y z x y x y x y ⎧⎫⎪⎪+≥⎪⎪==-⎨⎬-≤⎪⎪⎪⎪+≤⎩⎭,若命题()00",,"x y D z m ∃∈>为假命题,则实数m 的最小值为A. 34B. 74C. 214D. 25411.如图,正方体1111ABCD A B C D -绕其体对角线1BD 旋转θ之后与其自身重合,则θ的值可以是A.56π B. 34π C. 23π D. 35π 12.已知()22,01,0x x e ax x f x ax x e⎧+>⎪=⎨-<⎪⎩,若函数()f x 有四个零点,则实数a 的取值范围是A. 1,e ⎛⎫-∞- ⎪⎝⎭B. (),e -∞-C. (),e +∞D. 1,e ⎛⎫+∞ ⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.数据0.7,1,0.8,0.9,1.1的方差是 .14.七名同学战成一排照相,其中甲、乙二人相邻,且丙、丁两人不相邻的不同排法总数为 .15.已知数列{}n a 的前n 项和()221n n n S a n N *=-+∈,则其通项公式n a = .16.已知,,a b c 分别是ABC ∆的内角,,A B C 的对边,BC 边上的高为2a ,则cb的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知数列{}n a 是首项为1的单调递增的等比数列,且满足3455,,3a a a 成等差数列. (1)求{}n a 的通项公式;(2)若()()31log n n n b a a n N *+=⋅∈,求数列{}n n a b ⋅的前n 项和n S .18.(本题满分12分)如图,已知AD 是ABC ∆内角BAC ∠的角平分线. (1)用正弦定理证明:AB DBAC DC=; (2)若120,2,1BAC AB AC ∠===,求AD 的长.19.(本题满分12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D 处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,现约定:若筹码停在A 或B 或C 或D 处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.(2)设甲、乙两人各有100个积分,筹码停在D 处,现约定:①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A-G 下方所对应的数目;②每次游戏筹码都连续走三步,之后重新回到起始位置D 处. 你认为该规定对甲、乙二人哪一个有力,请说明理由.20.(本题满分12分)如图,在六面体1111ABCD A B C D -中,,M N 分别是棱1111,A B B C 的中点,平面ABCD ⊥平面11A B BA ,平面ABCD 平面11B C CB .(1)证明:1BB ⊥平面ABCD ;(2)已知六面体1111ABCD A B C D -的棱长均为53cos 5BAD ∠=,设平面BMN 与平面11AB D 相交所成二面角的大小为θ求cos θ.21.(本题满分12分) 已知函数()()ln xx f x ax x a R e =-∈在1x =处的切线方程为()11.y bx b R e=++∈ (1)求,a b 的值; (2)证明:()2.f x e<(3)若正实数,m n 满足1mn =,证明 :()112m n m n e e+<+.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
2016-2017学年山西省太原市高三上学期期末数学试卷(理科)含答案
2016-2017学年山西省太原市高三上学期数学期末试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知集合A={x∈N|x≤1},B={x|﹣1≤x≤2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.[﹣1,1]D.{1}2.(5分)设复数z=1+2i,则=()A.B.C.D.13.(5分)给出下列命题:①若数列{a n}为等差数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等差数列;②若数列{a n}为等比数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等比数列;③若数列{a n},{b n}均为等差数列,则数列{a n+b n}为等差数列;④若数列{a n},{b n}均为等比数列,则数列{a n•b n}为等比数列其中真命题的个数为()A.1B.2C.3D.44.(5分)设α,β为两个不同的平面,l为直线,则下列结论正确的是()A.l∥α,α⊥β⇒l⊥αB.l⊥α,α⊥β⇒l∥αC.l∥α,α∥β⇒l∥βD.l⊥α,α∥β⇒l⊥β5.(5分)已知sinα=﹣cosα,则tan2α=()A.B.C.D.6.(5分)执行如图所示的程序框图,输入x=﹣1,n=5,则输出s=()A.﹣2B.﹣3C.4D.37.(5分)如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图不可能是()A.B.C.D.8.(5分)将函数f(x)=sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是()A.B.C.D.9.(5分)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F,则=()A.B.C.D.10.(5分)已知平面区域D=,z=3x﹣2y,若命题“∃(x0,y0)∈D,z>m”为假命题,则实数m的最小值为()A.B.C.D.11.(5分)如图,正方体ABCD﹣A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是()A.B.C.D.12.(5分)已知f(x)=,若函数f(x)有四个零点,则实数a的取值范围是()A.(﹣∞,﹣e)B.(﹣∞,﹣)C.(﹣∞,﹣)D.(﹣∞,﹣)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)数据0.7,1,0.8,0.9,1.1的方差是.14.(5分)七名同学站成一排照相,其中甲、乙二人相邻,且丙、丁两人不相邻的不同排法总数为.15.(5分)已知数列{a n}的前n项和S n=2a n﹣2n+1(n∈N*),则其通项公式a n=.16.(5分)已知a,b,c分别是△ABC的内角A,B,C的对边,BC边上的高为,则的最大值为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列{a n}是首项为1的单调递增的等比数列,且满足a3,成等差数列.(1)求{a n}的通项公式;(2)若b n=log3(a n•a n+1)(n∈N*),求数列{a n•b n}的前n项和S n.18.(12分)如图,已知AD是△ABC内角∠BAC的角平分线.(1)用正弦定理证明:;(2)若∠BAC=120°,AB=2,AC=1,求AD的长.19.(12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.(2)设甲、乙两人各有100个积分,筹码停在D处,现约定:①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A﹣G下方所对应的数目;②每次游戏筹码都连续走三步,之后重新回到起始位置D处.你认为该规定对甲、乙二人哪一个有利,请说明理由.20.(12分)如图,在六面体ABCD﹣A1B1C1D1中,M,N分别是棱A1B1,B1C1的中点,平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1.(1)证明:BB1⊥平面ABCD;(2)已知六面体ABCD﹣A1B1C1D1的棱长均为,cos∠BAD=,设平面BMN与平面AB1D1相交所成二面角的大小为θ求cosθ.21.(12分)已知函数f(x)=﹣axlnx(a∈R)在x=1处的切线方程为y=bx+1+(b∈R).(1)求a,b的值;(2)证明:f(x)<.(3)若正实数m,n满足mn=1,证明:+<2(m+n).四、解答题(共1小题,满分10分)选修4-4:参数方程与极坐标系22.(10分)已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α﹣θ)=sinα.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)若曲线C与直线l交于M,N两点,且,求α的值.五、解答题(共1小题,满分10分)选修4-5:不等式选讲23.(10分)已知实数a,b,c均大于0.(1)求证:++≤a+b+c;(2)若a+b+c=1,求证:≤1.2016-2017学年山西省太原市高三上学期数学期末试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知集合A={x∈N|x≤1},B={x|﹣1≤x≤2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.[﹣1,1]D.{1}【分析】集合A与集合B的公共元素构成集合A∩B.【解答】解:∵集合A={x∈N|x≤1},B={x|﹣1≤x≤2},∴A∩B={0,1}.故选:A.2.(5分)设复数z=1+2i,则=()A.B.C.D.1【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:z2=(1+2i)2=﹣3+4i,|z2|==5,则==+i.故选:B.3.(5分)给出下列命题:①若数列{a n}为等差数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等差数列;②若数列{a n}为等比数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等比数列;③若数列{a n},{b n}均为等差数列,则数列{a n+b n}为等差数列;④若数列{a n},{b n}均为等比数列,则数列{a n•b n}为等比数列其中真命题的个数为()A.1B.2C.3D.4【分析】①设等差数列a n的首项为a1,公差为d,则S n=a1+a2+…+a n,S2n﹣S n=a n+1+a n+2+…+a2n=a1+nd+a2+nd+…+a n+nd=S n+n2d,同理:S3n﹣S2n=a2n+1+a2n+2+…+a3n=a n+1+a n+2+…+a2n+n2d=S2n﹣S n+n2d,即可判断出结论.②取数列﹣1,1,﹣1,1,…,S n可能为0,因此不成等比数列,即可判断出;③设a n=a1+(n﹣1)d1,b n=b1+(n﹣1)d2,则a n+b n=(a1+b1)+(n﹣1)(d1+d2),即可判断出结论.④设a n=a1,b n=b1,则a n•b n=a1b1,即可判断出结论.【解答】解:①设等差数列a n的首项为a1,公差为d,则S n=a1+a2+…+a n,S2n﹣S n=a n+1+a n+2+…+a2n=a1+nd+a2+nd+…+a n+nd=S n+n2d,同理:S3n﹣S2n=a2n+1+a2n+2+…+a3n=a n+1+a n+2+…+a2n+n2d=S2n﹣S n+n2d,∴2(S2n﹣S n)=S n+(S3n ﹣S2n),∴S n,S2n﹣S n,S3n﹣S2n是等差数列.正确.②取数列﹣1,1,﹣1,1,…,S n可能为0,因此不成等比数列,不正确;③设a n=a1+(n﹣1)d1,b n=b1+(n﹣1)d2,则a n+b n=(a1+b1)+(n﹣1)(d1+d2),故数列{a n+b n}为等差数列,正确.④设a n=a1,b n=b1,则a n•b n=a1b1,因此数列{a n•b n}为等比数列,正确.其中真命题的个数为3.故选:C.4.(5分)设α,β为两个不同的平面,l为直线,则下列结论正确的是()A.l∥α,α⊥β⇒l⊥αB.l⊥α,α⊥β⇒l∥αC.l∥α,α∥β⇒l∥βD.l⊥α,α∥β⇒l⊥β【分析】A,选项中,若果l刚好平行于α、β的交线时,l∥α;B,l⊥α,α⊥β⇒l∥β或l⊂β;C,l∥α,α∥β⇒l∥β或l⊂β;D,l⊥α,α∥β⇒l⊥β,;【解答】解:对于A,选项中,如果l刚好平行于α、β的交线时,l∥α,故错;对于B,l⊥α,α⊥β⇒l∥β或l⊂β,故错;对于C,l∥α,α∥β⇒l∥β或l⊂β,故错;对于D,l⊥α,α∥β⇒l⊥β,正确;故选:D.5.(5分)已知sinα=﹣cosα,则tan2α=()A.B.C.D.【分析】求出tanα的值,根据二倍角公式求出t an2α的值即可.【解答】解:∵sinα=﹣cosα,∴tanα=﹣,∴tan2α===,故选:C.6.(5分)执行如图所示的程序框图,输入x=﹣1,n=5,则输出s=()A.﹣2B.﹣3C.4D.3【分析】列出循环过程中S与i的数值,不满足判断框的条件即可结束循环.【解答】解:i=4时,s=﹣1,i=3时,s=5,i=2时,s=﹣2,i=1时,s=4,i=0时,s=﹣3,退出循环,故选:B.7.(5分)如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图不可能是()A.B.C.D.【分析】根据已知中的正视图和侧视图,分析出俯视图可能出现的情况,可得答案.【解答】解:若几何体为三棱锥,由其正视图和侧视图可知,其底面在下方,且为直角三角形,故A,B,D有可能;若几何体为四棱锥,由其正视图和侧视图可知,其底面在下方,且为直角正方形,但对角线应从左上到右下;故该棱锥的俯视图不可能是C,故选:C.8.(5分)将函数f(x)=sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是()A.B.C.D.【分析】利用三角恒等变换化简函数的解析式为f(x)=sin(2x﹣)+,由函数y=Asin(ωx+φ)的图象变换可求函数g(x),令x﹣∈[2kπ﹣,2kπ+],k∈Z即可得解.【解答】解:f(x)=sinxcosx+sin2x=sin2x﹣cos2x+=sin(2x﹣)+,图象上各点的纵坐标不变,横坐标变为原来的2倍,可得对应的函数解析式为y=sin(x﹣)+,再沿x轴向右平移个单位,得到函数解析式为y=g(x)=sin(x﹣﹣)+=sin (x﹣)+,令x﹣∈[2kπ﹣,2kπ+],k∈Z,解得:x∈[﹣+2kπ,2kπ+],k ∈Z,取k=0,可得:x∈[﹣,].故选:A.9.(5分)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F,则=()A.B.C.D.【分析】根据两个三角形相似对应边成比例,得到DF与FC之比,做FG平行BD 交AC于点G,使用已知向量表示出要求的向量,得到结果.【解答】解:∵△DEF∽△BEADF:BA═DE:BE=1:3;作FG平行BD交AC于点G,∴FG:DO=2:3,CG:CO=2:3,∴=,∵=+=,∴=+=,故选:D.10.(5分)已知平面区域D=,z=3x﹣2y,若命题“∃(x0,y0)∈D,z>m”为假命题,则实数m的最小值为()A.B.C.D.【分析】画出约束条件的可行域,利用特称命题的否定是真命题,求出目标函数的最大值,然后求解m的最小值即可.【解答】解:平面区域D=,如图:命题“∃(x0,y0)∈D,z>m”为假命题,则:∀(x,y)∈D,z≤m是真命题,由z=3x﹣2y,可得,当直线3x﹣2y=z,经过Q时,z由最大值,由解得Q(,),z的最大值就是m的最小值:.故选:D.11.(5分)如图,正方体ABCD﹣A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是()A.B.C.D.【分析】由正方体的特点,对角线BD1垂直于平面AB1C,且三角形AB1C为等边三角形得答案.【解答】解:如图,正方体ABCD﹣A1B1C1D1中,对角线BD1垂直于平面AB1C,且三角形AB1C为等边三角形,正方体绕对角线旋转120°能与原正方体重合.故选:C.12.(5分)已知f(x)=,若函数f(x)有四个零点,则实数a的取值范围是()A.(﹣∞,﹣e)B.(﹣∞,﹣)C.(﹣∞,﹣)D.(﹣∞,﹣)【分析】由题意可知:函数f(x)为偶函数,只需e x+ax=0有两个正根,即﹣=a 有两个正根,设g(x)=﹣,求导,利用函数的单调性求得g(x)的最大值,即可求得a的取值范围.【解答】解:由函数f(x)为偶函数,可知使函数f(x)有四个零点,只需要e x+ax2=0有两个正根,即﹣=a有两个正根,设g(x)=﹣,x>0,求导g′(x)=﹣=﹣=,令g′(x)>0,解得:0<x<2,g(x)在(0,2)单调递增,令g′(x)<0,解得:x>2,g(x)在(2,+∞)单调递减,∴g(x)在x=2时取最大值,最大值g(2)=﹣,要使﹣=a有两个正根,即使g(x)与y=a有两个交点,∴实数a的取值范围(﹣∞,﹣),故选:B.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)数据0.7,1,0.8,0.9,1.1的方差是0.02.【分析】先求出这组数据的平均数,再计算这组数据的方差.【解答】解:数据0.7,1,0.8,0.9,1.1的平均数为:=(0.7+1+0.8+0.9+1.1)=0.9,∴数据0.7,1,0.8,0.9,1.1的方差为:S2=[(0.7﹣0.9)2+(1﹣0.9)2+(0.8﹣0.9)2+(0.9﹣0.9)2+(1.1﹣0.9)2]=0.02.故答案为:0.02.14.(5分)七名同学站成一排照相,其中甲、乙二人相邻,且丙、丁两人不相邻的不同排法总数为960.【分析】由题设中的条件知,可以先把甲、乙必须相邻,可先将两者绑定,又丙、丁不相邻,可把甲、乙看作是一个人,与丙、丁之外的3个人作一个全排列,由于此4个元素隔开了5个空,再由插空法将丙、丁两人插入5个空,由分析过程知,此题应分为三步完成,由计数原理计算出结果即可【解答】解:由题意,第一步将甲、乙绑定,两者的站法有2种,第二步将此两人看作一个整体,与除丙丁之外的3人看作4个元素做一个全排列有A44种站法,此时隔开了5个空,第三步将丙丁两人插入5个空,排法种数为A52则不同的排法种数为2×A44×A52=960.故答案为:960.15.(5分)已知数列{a n}的前n项和S n=2a n﹣2n+1(n∈N*),则其通项公式a n= n•2n﹣1.【分析】当n=1时,可求得a1=1;当n≥2时,利用a n=S n﹣S n﹣1可得﹣=,从而可判定数列{}是以为首项,为公差的等差数列,可求得a n.【解答】解:①当n=1时,a1=2a1﹣2+1,则a1=1;=2a n﹣1﹣2n﹣1+1,S n﹣S n﹣1=(2a n﹣2n+1)﹣(2a n﹣1﹣2n﹣1+1)②当n≥2时,S n﹣1=2a n﹣2a n﹣1﹣2n﹣1=a n,即a n﹣2a n=2n﹣1,﹣1变形为:﹣=,故数列{}是以为首项,为公差的等差数列,所以,=+(n﹣1)=,所以a n=n•2n﹣1,故答案为:n•2n﹣1.16.(5分)已知a,b,c分别是△ABC的内角A,B,C的对边,BC边上的高为,则的最大值为1+.【分析】由已知及三角形面积公式,余弦定理可求+=2sin(A+),进而可求的最大值.==a2=bcsinA,可得:a2=2bcsinA,【解答】解:由题意可得:S△ABC又∵a2=b2+c2﹣2bccosA,∴2bcsinA=b2+c2﹣2bccosA,∴同除以bc,可得:+=+=2sin(A+),∴可得的最大值为1+.故答案为:1+.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列{a n}是首项为1的单调递增的等比数列,且满足a3,成等差数列.(1)求{a n}的通项公式;(2)若b n=log3(a n•a n+1)(n∈N*),求数列{a n•b n}的前n项和S n.【分析】(1)设等比数列{a n}公比为q>1,由a3,成等差数列.可得a4=a3+a5,化为:3q2﹣10q+3=0,解得q即可得出.(2)b n=log3(a n•a n+1)==2n﹣1,可得a n b n=(2n﹣1)•3n﹣1.利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)设等比数列{a n}公比为q>1,∵a3,成等差数列.∴a4=a3+a5,化为:3q2﹣10q+3=0,解得q=3.∴a n=3n﹣1.(2)b n=log3(a n•a n+1)==2n﹣1,∴a n b n=(2n﹣1)•3n﹣1.∴数列{a n•b n}的前n项和S n=1+3×3+5×32+…+(2n﹣1)•3n﹣1.3S n=3+3×32+5×33+…+(2n﹣3)•3n﹣1+(2n﹣1)•3n,∴﹣2S n=1+2(3+32+…+3n﹣1)﹣(2n﹣1)•3n=1+2×﹣(2n﹣1)•3n=(2﹣2n)•3n﹣2,∴S n=1+(n﹣1)•3n.18.(12分)如图,已知AD是△ABC内角∠BAC的角平分线.(1)用正弦定理证明:;(2)若∠BAC=120°,AB=2,AC=1,求AD的长.【分析】(1)根据AD是∠BAC的角平分线,利用正弦定理,即可证明结论成立;(2)根据余弦定理,先求出BC的值,再利用角平分线和余弦定理,即可求出AD的长.【解答】解:(1)∵AD是∠BAC的角平分线,∴∠BAD=∠CAD,根据正弦定理,在△ABD中,=,在△ADC中,=,∵sin∠ADB=sin(π﹣∠ADC)=sin∠ADC,∴=,=,∴=;(2)根据余弦定理,cos∠BAC=,即cos120°=,解得BC=,又=,∴=,解得CD=,BD=;设AD=x,则在△ABD与△ADC中,根据余弦定理得,cos60°=,且cos60°=,解得x=,即AD的长为.19.(12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.(2)设甲、乙两人各有100个积分,筹码停在D处,现约定:①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A﹣G下方所对应的数目;②每次游戏筹码都连续走三步,之后重新回到起始位置D处.你认为该规定对甲、乙二人哪一个有利,请说明理由.【分析】(1)利用将硬币连续投掷三次,列举出所有8种情况,筹码停在A或B 或C或D处有4种情况,即筹码停在A或B或C或D为,从而得到该约定对乙公平.(2)乙付给甲的积分数可能是20,25,30,45,55,设乙付给甲的积分为X,求出E(X)=>30,从而该规定对甲有利.【解答】解:(1)该约定对乙公平.将硬币连续投掷三次,共有以下8种情况:D→C→B→A,D→C→B→C,D→C→D→E,D→C→D→C,D→E→F→G,D→E→F→E,D→E→D→E,D→E→D→C.筹码停在A或B或C或D处有4种情况,即筹码停在A或B或C或D为:p=,∴该约定对乙公平.(2)该规定对甲有利.根据(1)中所列的8种情况可得乙付给甲的积分数可能是20,25,30,45,55,设乙付给甲的积分为X,P(X=20)=,P(X=25)=,P(X=30)=,P(X=45)=,P(X=55)=,可得分布列为:E(X)==>30,∴该规定对甲有利.20.(12分)如图,在六面体ABCD﹣A1B1C1D1中,M,N分别是棱A1B1,B1C1的中点,平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1.(1)证明:BB1⊥平面ABCD;(2)已知六面体ABCD﹣A1B1C1D1的棱长均为,cos∠BAD=,设平面BMN与平面AB1D1相交所成二面角的大小为θ求cosθ.【分析】(1)过点D作DP⊥AB,过点D作DQ⊥BC,推导出DP⊥BB1,DQ⊥BB1,由此能证明BB1⊥平面ABCD.(2)设AC与BD的交点为O,与B1D1的交点为O1,以O为原点,分别以OA,OB,OO1所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出cosθ.【解答】证明:(1)过点D作DP⊥AB,过点D作DQ⊥BC,由平面ABCD⊥平面A1B1BA,BB1⊂平面A1B1BA,得DP⊥BB1,由平面ABCD⊥平面B1BCC1,BB1⊂平面B1BCC1,得DQ⊥BB1,又DP∩DQ=D,∴BB1⊥平面ABCD.解:(2)由AB=AD=,且cos∠BAD=,在△ABD中利用余弦定理得BD=2,设AC与BD的交点为O,与B1D1的交点为O1,以O为原点,分别以OA,OB,OO1所在直线为x,y,z轴,建立空间直角坐标系,则B(0,1,0),M(1,,),N(﹣1,,),C(﹣2,0,0),A1(2,0,),A(2,0,0),B1(0,1,),D1(0,﹣1,),设平面BMN的法向量为=(a,b,c),=(1,﹣),=(﹣2,0,0),则,取b=10,得=(0,10,),设平面AB1D1的法向量为=(x,y,z),=(﹣2,1,),=(0,﹣2,0),则,取x=5,得=(5,0,2),∴cosθ==.21.(12分)已知函数f(x)=﹣axlnx(a∈R)在x=1处的切线方程为y=bx+1+(b∈R).(1)求a,b的值;(2)证明:f(x)<.(3)若正实数m,n满足mn=1,证明:+<2(m+n).【分析】(1)求得f(x)的导数,可得斜率,解方程可得a,b;(2)由题意可得即证﹣<xlnx,令g(x)=﹣,求出导数,单调区间,可得最大值;又令h(x)=xlnx,求出最小值,即可得证;(3)由(2)可得﹣mlnm<,即﹣lnm<,两边乘以e,可得一不等式,同理可得,﹣elnn<,两式相加结合条件,即可得证.【解答】解:(1)函数f(x)=﹣axlnx的导数为f′(x)=﹣alnx﹣a,由题意可得f′(1)=b=﹣a,f(1)==b+1+,解得a=1,b=﹣1;(2)证明:f(x)=﹣xlnx<,即为﹣<xlnx,令g(x)=﹣,g′(x)=,则g(x)在(0,1)递增,在(1,+∞)递减,g(x)的最大值为g(1)=﹣,当且仅当x=1时等号成立.又令h(x)=xlnx,则h′(x)=1+lnx,则h(x)在(0,)递减,在(,+∞)递增,则h(x)的最小值为h()=﹣,当且仅当x=等号成立,因此﹣<xlnx,即f(x)<;(3)证明:由(2)可得﹣mlnm<,即﹣lnm<,两边同乘以e,可得﹣elnm<,同理可得,﹣elnn<,两式相加,可得:<e(lnm+lnn)+2(m+n)=elnmn+=2(m+n).故<2(m+n).四、解答题(共1小题,满分10分)选修4-4:参数方程与极坐标系22.(10分)已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α﹣θ)=sinα.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)若曲线C与直线l交于M,N两点,且,求α的值.【分析】(1)消去曲线C中的参数,可得普通方程,利用ρsinθ=y,ρcosθ=x,可得直线l的直角坐标方程.(2)利用参数方程的几何意义,求解.【解答】解:(1)曲线C的参数方程为(φ为参数).cos2φ+sin2φ=1,可得:故得曲线C的普通方程为.直线l的极坐标方程为ρsin(α﹣θ)=sinα⇔ρsinαcosθ﹣ρsinθcosα=sinα⇔(x﹣1)sinα=ycosα⇔y=x•tanα﹣tanα.故得直线l的直角坐标方程为y=x•tanα﹣tanα.(2)由题意,可得直线l的参数方程带入曲线C的普通方程可得:(3sin2α+1)+2cosα•t﹣3=0,可得:,.由,可得:||=||=,即=||,解得:|cosα|=,∴α=或.五、解答题(共1小题,满分10分)选修4-5:不等式选讲23.(10分)已知实数a,b,c均大于0.(1)求证:++≤a+b+c;(2)若a+b+c=1,求证:≤1.【分析】直接利用基本不等式,即可证明.【解答】证明:(1)∵实数a,b,c均大于0,∴a+b≥2,b+c≥2,c+a≥2,三式相加,可得:++≤a+b+c;(2)∵a+b≥2,b+c≥2,c+a≥2,∴≤++≤a+b+c=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年山西省太原市高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知集合A={x∈N|x≤1},B={x|﹣1≤x≤2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.[﹣1,1]D.{1}2.(5分)设复数z=1+2i,则=()A.B. C.D.13.(5分)给出下列命题:①若数列{a n}为等差数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等差数列;②若数列{a n}为等比数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等比数列;③若数列{a n},{b n}均为等差数列,则数列{a n+b n}为等差数列;④若数列{a n},{b n}均为等比数列,则数列{a n•b n}为等比数列其中真命题的个数为()A.1 B.2 C.3 D.44.(5分)设α,β为两个不同的平面,l为直线,则下列结论正确的是()A.l∥α,α⊥β⇒l⊥αB.l⊥α,α⊥β⇒l∥αC.l∥α,α∥β⇒l∥βD.l⊥α,α∥β⇒l⊥β5.(5分)已知sinα=﹣cosα,则tan2α=()A.B.C.D.6.(5分)执行如图所示的程序框图,输入x=﹣1,n=5,则输出s=()A.﹣2 B.﹣3 C.4 D.37.(5分)如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图不可能是()A.B. C.D.8.(5分)将函数f(x)=sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是()A.B.C.D.9.(5分)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F,则=()A.B.C.D.10.(5分)已知平面区域D=,z=3x﹣2y,若命题“∃(x0,y0)∈D,z>m”为假命题,则实数m的最小值为()A.B.C.D.11.(5分)如图,正方体ABCD﹣A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是()A. B. C. D.12.(5分)已知f(x)=,若函数f(x)有四个零点,则实数a的取值范围是()A.(﹣∞,﹣e)B.(﹣∞,﹣) C.(﹣∞,﹣) D.(﹣∞,﹣)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)数据0.7,1,0.8,0.9,1.1的方差是.14.(5分)七名同学战成一排照相,其中甲、乙二人相邻,且丙、丁两人不相邻的不同排法总数为.15.(5分)已知数列{a n}的前n项和S n=2a n﹣2n+1(n∈N*),则其通项公式a n=.16.(5分)已知a,b,c分别是△ABC的内角A,B,C的对边,BC边上的高为,则的最大值为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列{a n}是首项为1的单调递增的等比数列,且满足a3,成等差数列.(1)求{a n}的通项公式;(2)若b n=log3(a n•a n+1)(n∈N*),求数列{a n•b n}的前n项和S n.18.(12分)如图,已知AD是△ABC内角∠BAC的角平分线.(1)用正弦定理证明:;(2)若∠BAC=120°,AB=2,AC=1,求AD的长.19.(12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.(2)设甲、乙两人各有100个积分,筹码停在D处,现约定:①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A﹣G下方所对应的数目;②每次游戏筹码都连续走三步,之后重新回到起始位置D处.你认为该规定对甲、乙二人哪一个有利,请说明理由.20.(12分)如图,在六面体ABCD﹣A1B1C1D1中,M,N分别是棱A1B1,B1C1的中点,平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1.(1)证明:BB1⊥平面ABCD;(2)已知六面体ABCD﹣A1B1C1D1的棱长均为,cos∠BAD=,设平面BMN与平面AB1D1相交所成二面角的大小为θ求cosθ.21.(12分)已知函数f(x)=﹣axlnx(a∈R)在x=1处的切线方程为y=bx+1+(b∈R).(1)求a,b的值;(2)证明:f(x)<.(3)若正实数m,n满足mn=1,证明:+<2(m+n).四、解答题(共1小题,满分10分)选修4-4:参数方程与极坐标系22.(10分)已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α﹣θ)=sinα.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)若曲线C与直线l交于M,N两点,且,求α的值.五、解答题(共1小题,满分10分)选修4-5:不等式选讲23.(10分)已知实数a,b,c均大于0.(1)求证:++≤a+b+c;(2)若a+b+c=1,求证:≤1.2016-2017学年山西省太原市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知集合A={x∈N|x≤1},B={x|﹣1≤x≤2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.[﹣1,1]D.{1}【解答】解:∵集合A={x∈N|x≤1},B={x|﹣1≤x≤2},∴A∩B={0,1}.故选A.2.(5分)设复数z=1+2i,则=()A.B. C.D.1【解答】解:z2=(1+2i)2=﹣3+4i,|z2|==5,则==+i.故选:B.3.(5分)给出下列命题:①若数列{a n}为等差数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等差数列;②若数列{a n}为等比数列,S n为其前n项和,则S n,S2n﹣S n,S3n﹣S2n是等比数列;③若数列{a n},{b n}均为等差数列,则数列{a n+b n}为等差数列;④若数列{a n},{b n}均为等比数列,则数列{a n•b n}为等比数列其中真命题的个数为()A.1 B.2 C.3 D.4【解答】解:①设等差数列a n的首项为a1,公差为d,则S n=a1+a2+…+a n,S2n﹣S n=a n+1+a n+2+…+a2n=a1+nd+a2+nd+…+a n+nd=S n+n2d,同理:S3n﹣S2n=a2n+1+a2n+2+…+a3n=a n+1+a n+2+…+a2n+n2d=S2n﹣S n+n2d,∴2(S2n﹣S n)=S n+(S3n ﹣S2n),∴S n,S2n﹣S n,S3n﹣S2n是等差数列.正确.②取数列﹣1,1,﹣1,1,…,S n可能为0,因此不成等比数列,不正确;③设a n=a1+(n﹣1)d1,b n=b1+(n﹣1)d2,则a n+b n=(a1+b1)+(n﹣1)(d1+d2),故数列{a n+b n}为等差数列,正确.④设a n=a1,b n=b1,则a n•b n=a1b1,因此数列{a n•b n}为等比数列,正确.其中真命题的个数为3.故选:C.4.(5分)设α,β为两个不同的平面,l为直线,则下列结论正确的是()A.l∥α,α⊥β⇒l⊥αB.l⊥α,α⊥β⇒l∥αC.l∥α,α∥β⇒l∥βD.l⊥α,α∥β⇒l⊥β【解答】解:对于A,选项中,如果l刚好平行于α、β的交线时,l∥α,故错;对于B,l⊥α,α⊥β⇒l∥β或l⊂β,故错;对于C,l∥α,α∥β⇒l∥β或l⊂β,故错;对于D,l⊥α,α∥β⇒l⊥β,正确;故选:D.5.(5分)已知sinα=﹣cosα,则tan2α=()A.B.C.D.【解答】解:∵sinα=﹣cosα,∴tanα=﹣,∴tan2α===,故选:C.6.(5分)执行如图所示的程序框图,输入x=﹣1,n=5,则输出s=()A.﹣2 B.﹣3 C.4 D.3【解答】解:i=4时,s=﹣1,i=3时,s=5,i=2时,s=﹣2,i=1时,s=4,i=0时,s=﹣3,退出循环,故选:B.7.(5分)如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图不可能是()A.B. C.D.【解答】解:若几何体为三棱锥,由其正视图和侧视图可知,其底面在下方,且为直角三角形,故A,B,D有可能;若几何体为四棱锥,由其正视图和侧视图可知,其底面在下方,且为直角正方形,但对角线应从左上到右下;故该棱锥的俯视图不可能是C,故选:C8.(5分)将函数f(x)=sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是()A.B.C.D.【解答】解:f(x)=sinxcosx+sin2x=sin2x﹣cos2x+=sin(2x﹣)+,图象上各点的纵坐标不变,横坐标变为原来的2倍,可得对应的函数解析式为y=sin(x﹣)+,再沿x轴向右平移个单位,得到函数解析式为y=g(x)=sin(x﹣﹣)+=sin (x﹣)+,令x﹣∈[2kπ﹣,2kπ+],k∈Z,解得:x∈[﹣+2kπ,kπ+],k∈Z,取k=0,可得:x∈[﹣,].故选:A.9.(5分)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F,则=()A.B.C.D.【解答】解:∵△DEF∽△BEADF:BA═DE:BE=1:3;作FG平行BD交AC于点G,∴FG:DO=2:3,CG:CO=2:3,∴=,∵=+=,∴=+=,故选:D10.(5分)已知平面区域D=,z=3x﹣2y,若命题“∃(x0,y0)∈D,z>m”为假命题,则实数m的最小值为()A.B.C.D.【解答】解:平面区域D=,如图:命题“∃(x0,y0)∈D,z>m”为假命题,则:∀(x,y)∈D,z≤m是真命题,由z=3x﹣2y,可得,当直线3x﹣2y=z,经过Q时,z由最大值,由解得Q(,),z的最大值就是m的最小值:.故选:D.11.(5分)如图,正方体ABCD﹣A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是()A. B. C. D.【解答】解:如图,正方体ABCD﹣A1B1C1D1中,对角线BD1垂直于平面AB1C,且三角形AB1C为等边三角形,正方体绕对角线旋转120°能与原正方体重合.故选:C.12.(5分)已知f(x)=,若函数f(x)有四个零点,则实数a的取值范围是()A.(﹣∞,﹣e)B.(﹣∞,﹣) C.(﹣∞,﹣) D.(﹣∞,﹣)【解答】解:由函数f(x)为偶函数,可知使函数f(x)有四个零点,只需要e x+ax2=0有两个正根,即﹣=a有两个正根,设g(x)=﹣,求导g′(x)=﹣=﹣,令g′(x)>0,解得:0<x<2,g(x)在(0,2)单调递增,令g′(x)<0,解得:x>2,g(x)在(2,+∞)单调递减,∴g(x)在x=2时取最大值,最大值g(2)=﹣,要使﹣=a有两个正根,即使g(x)与y=a有两个交点,∴实数a的取值范围(﹣∞,﹣),故选B.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)数据0.7,1,0.8,0.9,1.1的方差是0.02.【解答】解:数据0.7,1,0.8,0.9,1.1的平均数为:=(0.7+1+0.8+0.9+1.1)=0.9,∴数据0.7,1,0.8,0.9,1.1的方差为:S2=[(0.7﹣0.9)2+(1﹣0.9)2+(0.8﹣0.9)2+(0.9﹣0.9)2+(1.1﹣0.9)2]=0.02.故答案为:0.02.14.(5分)七名同学战成一排照相,其中甲、乙二人相邻,且丙、丁两人不相邻的不同排法总数为960.【解答】解:由题意,第一步将甲、乙绑定,两者的站法有2种,第二步将此两人看作一个整体,与除丙丁之外的3人看作4个元素做一个全排列有A44种站法,此时隔开了5个空,第三步将丙丁两人插入5个空,排法种数为A52则不同的排法种数为2×A44×A52=960.故答案为:960.15.(5分)已知数列{a n}的前n项和S n=2a n﹣2n+1(n∈N*),则其通项公式a n= n•2n﹣1.【解答】解:①当n=1时,a1=2a1﹣2+1,则a1=1;②当n≥2时,S n=2a n﹣1﹣2n﹣1+1,S n﹣S n﹣1=(2a n﹣2n+1)﹣(2a n﹣1﹣2n﹣1+1)﹣1=2a n﹣2a n﹣1﹣2n﹣1=a n,即a n﹣2a n=2n﹣1,﹣1变形为:﹣=,故数列{}是以为首项,为公差的等差数列,所以,=+(n﹣1)=,所以a n=n•2n﹣1,故答案为:n•2n﹣1.16.(5分)已知a,b,c分别是△ABC的内角A,B,C的对边,BC边上的高为,则的最大值为.【解答】解:由题意知c2=a2+b2﹣2abcosC,两边同时除以b2,可得:()2=()2+1﹣,由于a,b,c都为正数,可得:当cosC=0时,取最大值.由于C∈(0,π),可得:C=,即当BC边上的高与b重合时取得最大值,此时三角形为直角三角形,c2=a2+()2,解得:=.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列{a n}是首项为1的单调递增的等比数列,且满足a3,成等差数列.(1)求{a n}的通项公式;(2)若b n=log3(a n•a n+1)(n∈N*),求数列{a n•b n}的前n项和S n.【解答】解:(1)设等比数列{a n}公比为q>1,∵a3,成等差数列.∴a4=a3+a5,化为:3q2﹣10q+3=0,解得q=3.∴a n=3n﹣1.(2)b n=log3(a n•a n+1)==2n﹣1,∴a n b n=(2n﹣1)•3n﹣1.∴数列{a n•b n}的前n项和S n=1+3×3+5×32+…+(2n﹣1)•3n﹣1.3S n=3+3×32+5×33+…+(2n﹣3)•3n﹣1+(2n﹣1)•3n,∴﹣2S n=1+2(3+32+…+3n﹣1)﹣(2n﹣1)•3n=1+2×﹣(2n﹣1)•3n=(2﹣2n)•3n﹣2,∴S n=1+(n﹣1)•3n.18.(12分)如图,已知AD是△ABC内角∠BAC的角平分线.(1)用正弦定理证明:;(2)若∠BAC=120°,AB=2,AC=1,求AD的长.【解答】解:(1)∵AD是∠BAC的角平分线,∴∠BAD=∠CAD,根据正弦定理,在△ABD中,=,在△ADC中,=,∵sin∠ADB=sin(π﹣∠ADC)=sin∠ADC,∴=,=,∴=;(2)根据余弦定理,cos∠BAC=,即cos120°=,解得BC=,又=,∴=,解得CD=,BD=;设AD=x,则在△ABD与△ADC中,根据余弦定理得,cos60°=,且cos60°=,解得x=,即AD的长为.19.(12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.(2)设甲、乙两人各有100个积分,筹码停在D处,现约定:①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A﹣G下方所对应的数目;②每次游戏筹码都连续走三步,之后重新回到起始位置D处.你认为该规定对甲、乙二人哪一个有利,请说明理由.【解答】解:(1)该约定对乙公平.将硬币连续投掷三次,共有以下8种情况:D→C→B→A,D→C→B→C,D→C→D→E,D→C→D→C,D→E→F→G,D→E→F→E,D→E→D→E,D→E→D→C.筹码停在A或B或C或D处有4种情况,即筹码停在A或B或C或D为:p=,∴该约定对乙公平.(2)该规定对甲有利.根据(1)中所列的8种情况可得乙付给甲的积分数可能是20,25,30,45,55,设乙付给甲的积分为X,P(X=20)=,P(X=25)=,P(X=30)=,P(X=45)=,P(X=55)=,可得分布列为:E(X)==>30,∴该规定对甲有利.20.(12分)如图,在六面体ABCD﹣A1B1C1D1中,M,N分别是棱A1B1,B1C1的中点,平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1.(1)证明:BB1⊥平面ABCD;(2)已知六面体ABCD﹣A1B1C1D1的棱长均为,cos∠BAD=,设平面BMN与平面AB1D1相交所成二面角的大小为θ求cosθ.【解答】证明:(1)过点D作DP⊥AB,过点D作DQ⊥BC,由平面ABCD⊥平面A1B1BA,BB1⊂平面A1B1BA,得DP⊥BB1,由平面ABCD⊥平面B1BCC1,BB1⊂平面B1BCC1,得DQ⊥BB1,又DP∩DQ=D,∴BB1⊥平面ABCD.解:(2)由AB=AD=,且cos∠BAD=,在△ABD中利用余弦定理得BD=2,设AC与BD的交点为O,与B1D1的交点为O1,以O为原点,分别以OA,OB,OO1所在直线为x,y,z轴,建立空间直角坐标系,则B(0,1,0),M(1,,),N(﹣1,,),C(﹣2,0,0),A1(2,0,),A(2,0,0),B1(0,1,),D1(0,﹣1,),设平面BMN的法向量为=(a,b,c),=(1,﹣),=(﹣2,0,0),则,取b=10,得=(0,10,),设平面AB1D1的法向量为=(x,y,z),=(﹣2,1,),=(0,﹣2,0),则,取x=5,得=(5,0,2),∴cosθ==.21.(12分)已知函数f(x)=﹣axlnx(a∈R)在x=1处的切线方程为y=bx+1+(b∈R).(1)求a,b的值;(2)证明:f(x)<.(3)若正实数m,n满足mn=1,证明:+<2(m+n).【解答】解:(1)函数f(x)=﹣axlnx的导数为f′(x)=﹣alnx﹣a,由题意可得f′(1)=b=﹣a,f(1)==b+1+,解得a=1,b=﹣1;(2)证明:f(x)=﹣xlnx<,即为﹣<xlnx,令g(x)=﹣,g′(x)=,则g(x)在(0,1)递增,在(1,+∞)递减,g(x)的最大值为g(1)=﹣,当且仅当x=1时等号成立.又令h(x)=xlnx,则h′(x)=1+lnx,则h(x)在(0,)递减,在(,+∞)递增,则h(x)的最小值为h()=﹣,当且仅当x=等号成立,因此﹣<xlnx,即f(x)<;(3)证明:由(2)可得﹣mlnm<,即﹣lnm<,两边同乘以e,可得﹣elnm<,同理可得,﹣elnn<,两式相加,可得:<e(lnm+lnn)+2(m+n)=elnmn+=2(m+n).故<2(m+n).四、解答题(共1小题,满分10分)选修4-4:参数方程与极坐标系22.(10分)已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α﹣θ)=sinα.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)若曲线C与直线l交于M,N两点,且,求α的值.【解答】解:(1)曲线C的参数方程为(φ为参数).cos2φ+sin2φ=1,可得:故得曲线C的普通方程为.直线l的极坐标方程为ρsin(α﹣θ)=sinα⇔ρsinαcosθ﹣ρsinθcosα=sinα⇔(x﹣1)sinα=ycosα⇔y=x•tanα﹣tanα.故得直线l的直角坐标方程为y=x•tanα﹣tanα.(2)由题意,可得直线l的参数方程带入曲线C的普通方程可得:(3sin2α+1)+2cosα•t﹣3=0,可得:,.由,可得:||=||=,即=||,解得:|cosα|=,∴α=或.五、解答题(共1小题,满分10分)选修4-5:不等式选讲23.(10分)已知实数a,b,c均大于0.(1)求证:++≤a+b+c;(2)若a+b+c=1,求证:≤1.【解答】证明:(1)∵实数a,b,c均大于0,∴a+b≥2,b+c≥2,c+a≥2,三式相加,可得:++≤a+b+c;(2)∵a+b≥2,b+c≥2,c+a≥2,∴≤++≤a+b+c=1.。