15.实数全章复习与巩固(提高)巩固练习

合集下载

实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

专题6.12 实数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.在下列各数中,无理数是( ) A .237B 38-C 916D .4π 2.下列说法正确的是( ) A .117是无理数 B 5 C .π2是无理数D .22是有理数 3.下列等式正确的是( ) A .()255-- B 93=± C 382±D 3355--4.一个长、宽,高分别为50cm 、8cm 、20cm 的长方体铁块锻造成一个立方体铁块,则锻造成的立方体铁块的棱长是( )A .20cmB .200cmC .40cmD 80cm5.若32x =-( ) A .32x =-B .32x =-C .(-x)3=-2D .x=(-2)36.已知x ,y 为实数,且22994y x x --,则x y -=( ) A .﹣1B .﹣7C .﹣1或﹣7D .1或﹣77.若24,a =31b =-,则a b +的值是( ) A .1B .-3C .1或-3D .-1或38.已知x ,y 两个实数在数轴上位置如图所示,则化简()2y x x y --( )A .2xB .2yC .22x y -D .22y x -9.如图,在数轴上点A 表示的实数是( )A 5B 51C 31D 310.如图,数轴上表示12A 、B ,点B 关于点A 的对称点是C ,设C 点表示的数为x ,则2x )A .12B .1+2C 21D .2二、填空题1149的算术平方根是______64______. 128x -3x ____________.13()2460x y -+=,那么2x y -的平方根为_______. 14.已知:23+m ,小数部分为n ,则2m n -=_____.15.已知实数a 、b 在数轴上的对应点如图,化简||a a b c b -++-=_________.16101-89.(填“>”或“<”)17.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________. 18.对于能使式子有意义的有理数,a b ,定义新运算:a △b 22a ba b+=-.如果1230x y xz -++=则x △(y △z )= _____ .三、解答题19.在数轴上表示下列各数,并将这些数按从小到大的顺序用“<”连接起来. 2,52,038-π-.20.求下列各式中x 的值: (1) 240x -=;(2) 3(1)8x +=.21.化简求值:(1) 已知a 1713b =54ab +(2) 已知:实数a ,b 323(1)2(1)||a b a b -----.22.计算:(1) 2338125(2)---(2) 2722(7)π-(3) 331631270.1251464--(4) 233416(3)22--.23.如图,每个小正方形的边长均为1.(1) 图中阴影部分的面积是______;阴影部分正方形的边长a 是______. (2) 估计边长a 的值在两个相邻整数______与______之间.(3) 我们知道π是无理数,而无理数是无限不循环小数,因此π的小数部分我们不可能全部写出来,我们可以用3来表示它的整数部分,用()3π-表示它的小数部分.设边长a 的整数部分为x ,小数部分为y ,求()x y -的相反数.24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:3表示的点与数表示的点重合;②若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.参考答案1.D【分析】先对个选项进行化简,再由无理数的概念进行判断即可. 解:237是有理数,故选项A 不符合题意; 382--是有理数,故选项B 不符合题意;93164=是有理数,故选项C 不符合题意; 4π符合无理数的概念,故选项D 符合题意;. 故选:D .【点拨】此题考查的是算术平方根、立方根及无理数的概念,能够根据算术平方根的概念及立方根进行正确化简是解决此题关键.2.C【分析】根据有理数和无理数的定义,逐一判定即可,有理数包括整数和分数,无理数是无限不循环小数.解:A. 117是有理数,故A 选项说法错误; B. 5B 选项说法错误;C. π2是无理数,故C 选项说法正确; D.2D 选项说法错误. 故选:C .【点拨】本题主要考查了有理数和无理数,解决问题的关键是熟练掌握有理数和无理数的定义.3.D【分析】利用平方根与立方根的定义,逐个计算得结论.解: A 、()22555---,故选项错误,不符合题意;B 9=3,故选项错误,不符合题意;C 38=2,故选项错误,不符合题意;D 335=5--,故选项正确,符合题意. 故选:D .【点拨】本题考查了平方根、算术平方根和立方根的性质与化简,掌握平方根和立方根的定义解决本题的关键.4.A【分析】先求出体积,再求立方根即可. 解:∵铁块体积是3508208000(cm )⨯⨯=∴3800020(cm), 故选:A .【点拨】本题考查立方根的应用,会求立方根是解题的关键. 5.B【分析】利用立方根的定义分析得出答案. 解:∵3-2, ∴x 3=-2, 故选B .【点拨】本题考查立方根的定义,正确把握定义是解题关键. 6.C直接利用二次根式的性质得出x ,y 的值,然后讨论进而得出答案. 解:∵22994y x x --, ∴229090x x -≥-≥, ∴290x∴y =4, ∴3x =±,当3,4x y ==时,341x y -=-=-; 当3,4=-=x y 时,347x y -=--=-; ∴1x y -=-或7x y -=-, 故选:C .【点拨】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值.7.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 解:24,a =31,b =-2,a ∴=±1b,∴当2,a =-1b时,213a b +=--=-; ∴当2,a =1b 时,211a b +=-=.故选:C .【点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.8.D【分析】根据点在数轴的位置判断式子的正负,然后化简. 解:根据图示可知:0x y <<∴0y x∴()2y x x y -+-y x y x 22y x =-故选:D .【点拨】此题的考查了数轴,绝对值的性质,合并同类项法则,解题的关键是根据点在数轴的位置判断式子的正负.9.B【分析】先根据勾股定理求出PQ 的长,即可求出点A 所表示的数. 解:如图,22125PQ =+由图可知5PA PQ ==, 所以点A 51, 故点A 51. 故选:B【点拨】本题考查勾股定理以及数轴表示数的意义和方法,掌握解答的方法是关键.。

苏教版八年级上册数学[《实数》全章复习与巩固—重点题型巩固练习](提高)(1)

苏教版八年级上册数学[《实数》全章复习与巩固—重点题型巩固练习](提高)(1)

苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习《实数》全章复习与巩固—巩固练习(提高)【巩固练习】一.选择题1.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b2.下列式子表示算术平方根的是 ( ).3= 5= ③34=-④ 5= ⑤ 0.1=± ⑥()0a a =≥A .①②④B .①④⑥C .①⑤⑥D .①②⑥3.(2016秋·玉田县期末)用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A .0.1(精确到0.1)B .0.05(精确到千分位)C .0.05(精确到百分位)D .0.0502(精确到0.0001) 4. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是2(7)-的算术平方根,即.7)7(2=-其中正确的是( )A. ①③B. ②③C. ②④D. ①④ 5. 若10<<x ,则x ,x1,2x 的大小关系是( ) A.21x x x << B.21x x x << C.x x x 12<< D.x x x<<21 6.下列运算中正确的是( )= B.12622-82==)(C. 24±= D.∣32-∣=23- 7. 已知:a a 则,且,68.2868.82.62333=-==( )A.2360B.-2360C.23600D.-236008. -27 )A .0B .6C .6或-12D .0或6二.填空题9. 下列命题中正确的有 (填序号)(1)若,b a >那么b a 22>; (2)两数的和大于等于这两数的差;(3)若,b a >那么22b a >; (4)若,b a > c b >则c a >;(5))()(c b a c b a ++=++ (6)一个数越大,这个数的倒数越小; (7)有理数加有理数一定是有理数; (8)无理数加无理数一定是无理数; (9)无理数乘无理数一定是无理数.10. 0x ≠,yx=_________. 11. 已知389□□□□3012≈390亿,那么四个空格的填写方法有_____ 种. 12. 已知 :===00236.0,536.136.2,858.46.23则 .13. 由四舍五入得到的近似数5.349×105精确到____位,如果精确到万位可写成______.14.(2016秋·薛城区校级月考)实数a ,b的化简结果是 .15. 方程 361(12)164x +-=的解x = _________. 16. 若,19961995a a a =-+-则21995-a 的值等于_________.三.解答题17. 请你算一算:在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算: (1)如果精确到十分位,正方形的边长是多少? (2)如果精确到百分位呢?18. 如图所示,已知A 、B 两点的坐标分别为(A ,(2,1)B -.(1)求△OAB 的面积和△ACB 的面积(结果保留一位小数); (2)比较点A 所表示的数与-2.4的大小.19. 把下列无限循环小数化成分数:(1)0.6∙;(2)0.23∙∙;(3)0.107∙∙. 20.(房山区校级期中)阅读材料:学习了无理数后,小红用这样的方法估算的近似值:由于<≠,不妨设=2+k (0<k <1),所以()2=(2+k )2,可得6=4+4k+k 2.由0<k <1可知0<k 2<1,所以6≈4+4k,解得 k ≈,则≈2+≈2.50.依照小红的方法解决下列问题: (1)估算≈ ;(精确到0.01)(2)已知非负整数a 、b 、m ,若a a+1,且m=a 2+b ≈ .(用含a 、b 的代数式表示)【答案与解析】 一.选择题1. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 2. 【答案】D ;”根号前没有“-”或“±”号.3. 【答案】B ;【解析】解:0.05019≈0.1(精确到0.1);0. 05019≈0.050(精确到千分位);0.05019≈0.05(精确到百分位);0.05019≈0.0502(精确到0.0001). 故选B .4. 【答案】C ;【解析】算术平方根是平方根中符号为正的那个. 5. 【答案】C ;【解析】可以取特殊值验证.6. 【答案】D ;7. 【答案】D ;【解析】2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,a =-23600. 8. 【答案】A ;9=,9的算术平方根是3,故选A. 二.填空题9. 【答案】(1),(4),(5),(7); 10.【答案】2;【解析】两个非负数互为相反数则只能均为0,于是可求yx=2. 11.【答案】5000;【解析】因为第一个空格可以填5、6、7、8、9;第二、三、四个空格可以分别填0、1、2、3、4、5、6、7、8、9;所以四个空格的填写方法有5×10×10×10=5000(种). 12.【答案】0.04858【解析】23.6向左移动4位,4.858向左移动2位得0.04858.13.【答案】百,5.3×105;【解析】5.349×105中,9在百位上,则精确到了百位;如果精确到万位可写成5.3×105. 14.【答案】﹣b ;【解析】解:由数轴上点的位置关系,得a+b <0,a >0,=a b a ++=()a b a a b a b -++=--+=- ,故答案为:﹣b .15.【答案】18; 【解析】()31255112,12,6448x x x +=+==. 16.【答案】1996;a ≥1996,原式=a -1995a 1995,两边平方得21995-a =1996.三.解答题17.【解析】(1)精确到十分位就是保留小数点后面一位数,即正方形的边长为1.7米. (2)精确到百分位就是保留小数点后面两位数,即正方形的边长为1.73米. 18.【解析】解:(1)∵ (A ,(2,1)B -,∴ ||OA =BC =1,AC =OA -OC 2.∴ 11||||1 1.1222OAB S OA BC ∆===≈.11||||2)110.122ACB S AC BC ∆==⨯⨯=≈.(2)点A 表示的实数为 2.24≈-.∵ 2.24<2.4,∴ -2.24>-2.4,即 2.4>-19.【解析】解:(1) 设0.6x ∙= ①则10x =6.6∙② ②-①得 9x =6∴6293x ==,即20.63∙=(2) 设0.23x ∙∙= ①则10023.23x ∙∙= ② ②-①,得 99x =23∴2399x =,即230.2399∙∙=.(3) 设0.107x ∙∙= ①则1000107.107x ∙∙= ② ②-①,得 999x =107,∴107999x=,即1070.107999∙∙=.20.【解析】解:(1)∵<<,设=3+k(0<k<1),则()2=(3+k)2.∴13=9+6k+k2,∵0<k2<1,∴13≈9+6k.解得k≈,∴≈3+≈3.67;(2=a+k(0<k<1),∴m=a2+2ak+k2≈a2+2ak,∵m=a2+b,∴a2+2ak=a2+b,解得k=,.故答案为:(1)3.67;(2)a+.。

35《函数应用》全章复习与巩固(提高)-巩固练习_《函数应用》全章复习巩固_ 提高 (1)

35《函数应用》全章复习与巩固(提高)-巩固练习_《函数应用》全章复习巩固_ 提高 (1)

【巩固练习】1.若函数y=f(x)在区间(-2,2)上的图象是连续不断的曲线,且方程f(x)=0在(-2,2)上仅有一个实数根,则f(-1)·f(1)的值()A.大于0B.小于0C.无法判断D.等于零2.下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是()3.方程x 3+3x-3=0的解在区间()A.(0,1)内B.(1,2)内C.(2,3)内D.以上均不对4.已知f(x)、g(x)均为[-1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间是()x -10123f(x)-0.677 3.011 5.432 5.9807.651g(x)-0.530 3.451 4.890 5.241 6.892A .(-1,0)B .(0,1)C .(1,2)D .(2,3)5.若方程0xa x a --=有两个实数解,则a 的取值范围是()A .(1,)+∞B .(0,1)C .(0,2)D .(0,)+∞6.3()21f x x x =--零点的个数为()A .1B .2C .3D .47.若方程310x x -+=在区间(,)(,,1)a b a b Z b a ∈-=且上有一根,则a b +的值为()A .1-B .2-C .3-D .4-8.据报道,青海湖的湖水在最近50年内减少了10%,如果按此规律,设2008年的湖水量为m,从2008起,过x 年后湖水量y 与x 的函数关系式为()A .y=0.950x B .y=(1-0.150x)m C .y=0.950x·m D .y=(1-0.150x )m9.若函数f(x)=x 2-ax-b 的两个零点是2和3,则函数g(x)=bx 2-ax-1的零点是________.10.若一元二次方程f(x)=ax 2+bx +c =0(a>0)的两根x 1、x 2满足m<x 1<n<x 2<p ,则f(m)·f(n)·f(p)________0.(填“>”、“=”或“<”)11.下表列出了一项试验的统计数据,表示将皮球从高h 米处落下,弹跳高度d 与下落高度h 的关系.h(米)5080100150…d(米)25405075…写出一个能表示这种关系的式子为________.12.我国股市中对股票的股份实行涨、跌停制度,即每天的股价最大的涨幅或跌幅均为10%.某股票连续四个交易中日前两日每天涨停,后两日每天跌停,则该股票现在的股价相对于四天前的涨跌情况是________.13.用二分法求方程x 3+3x-5=0的一个近似解(精确度0.1).14.若方程x 2-ax +2=0有且仅有一个根在区间(0,3)内,求a 的取值范围.15.已知函数f (x )=1x +212x -2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).16.某农产品从5月1日起开始上市,通过市场调查,得到该农产品种植成本Q (单位:元/102kg)与上市时间t (时间:天)的数据如下表:时间t 50110250种植成本Q 150108150(1)根据上表数据,从下列函数中选取一个函数描述该农产品种植成本Q 与上市时间t 的变化关系:Q=at +b ,Q =at 2+bt +c ,Q =ab t,Q =a log b t ;(2)利用你选取的函数,求该农产品种植成本最低时的上市时间及最低种植成本.【答案与解析】1.【答案】C【解析】由题意不能断定零点在区间(-1,1)内部还是外部.2.答案C【解析】把y=f(x)的图象向下平移1个单位后,只有C 图中图象与x 轴无交点.3.【答案】A【解析】将函数y 1=x 3和y 2=3-3x 的图象在同一坐标系中画出,可知方程的解在(0,1)内.4.【答案】B【解析】令φ(x)=f(x)-g(x),φ(0)=f(0)-g(0)<0.φ(1)=f(1)-g(1)>0且f(x),g(x)均为[-1,3]上连续不断的曲线,所以φ(x)的图象.在[-1,3]上也连续不断,因此选B .5.【答案】A【解析】作出图象,发现当1a >时,函数xy a =与函数y x a =+有2个交点6.【答案】A【解析】令3221(1)(221)0x x x x x --=-++=,得1x =,就一个实数根7.【答案】C【解析】容易验证区间(,)(2,1)a b =--8.【答案】C【解析】设湖水量每年为上一年的q%,则(q%)50=0.9,所以q%=0.9150,即x 年后湖水量为y=0.950x·m.9.【答案】-12和-13【解析】2和3是方程x 2-ax-b=0的两根,所以a=5,b=-6,∴g(x)=-6x 2-5x-1.令g(x)=0得x 1=-12,x 2=-13.10.【答案】<【解析】∵a>0,∴f(x)的图象开口向上,∴f(m)>0,f(n)<0,f(p)>0,∴f(m)·f(n)·f(p)<0.11.【答案】d=2h 12.【答案】跌了1.99%【解析】(1+10%)2·(1-10%)2=0.9801,而0.9801-1=-0.0199,即跌了1.99%.13.解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31.所以f(x)在区间(1,2)内存在零点x 0.区间中点m f(m)的符号区间长度(1,2) 1.5+1(1,1.5) 1.25+0.5(1,1.25) 1.125-0.25(1.125,1.25) 1.1875+0.125(1.125,1.1875)0.0625∵|1.875-1.125|=0.0625<0.1,∴x 0可取为1.125(不唯一).14.【解析】令f (x )=x 2-ax +2,则方程x 2-ax +2=0有且仅有一个根在区间(0,3)内⇔203280a a ⎧<<⎪⎨⎪∆=-=⎩或f (0)·f (3)<0⇔a 或a >113.15.【解析】由f(x)=0,得21122x x =-+,令11y x =,22122y x =-+,分别画出它们的图象如图,其中抛物线顶点为(0,2),与x 轴交于点(-2,0)、(2,0),y 1与y 2的图象有3个交点,从而函数y=f(x)有3个零点.由f(x)的解析式知x≠0,f(x)的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f(-3)=613>0,f(-2)=21-<0,f ⎪⎭⎫ ⎝⎛21=81>0,f(1)=21-<0,f(2)=21>0,即f (-3)·f (-2)<0,1(2f ·f (1)<0,f (1)·f (2)<0,∴三个零点分别在区间(-3,-2)、1,12⎛⎫⎪⎝⎭、(1,2)内.16.【解析】(1)由表中提供的数据知道,描述该农产品种植成本Q 与上市时间t 的变化关系的函数不可能是常函数,从而用函数Q =at +b ,Q =ab t,Q =a log b t 中的任一个进行描述时都应有a ≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不符合,所以,应选取二次函数Q =at 2+bt +c (a ≠0,当a=0时,为单调函数)进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到:150250050 10812100110 150********a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩.解上述方程组得a=1200,b=-32,c=4252,所以,描述该农产品种植成本Q与上市时间t的变化关系的函数为Q=1200t2-32t+4252.(2)当t=-3212200-⨯=150(天)时,该农产品种植成本最低为Q=1200×1502-32×150+4252=100(元/102kg).所以,该农产品种植成本最低时的上市时间为150天,最低种植成本为100元/102kg.。

实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。

资料:《盐 化肥》全章复习与巩固(提高) 巩固练习

资料:《盐 化肥》全章复习与巩固(提高) 巩固练习

《盐化肥》全章复习与巩固(提高)撰稿:熊亚军审稿:于洋【巩固练习】一、选择题 (每小题只有一个选项符合题意)1.下列各组物质表示同一物质的是( )A.氢氧化钠、生石灰B.氢氧化钠、熟石灰C.碳酸钠、纯碱D.二氧化碳、水2.某农民种植的蔬菜因缺氮肥和磷肥而出现生长缓慢,叶色泛黄,且产量低的现象。

下列肥料最适合施用的是()A.CO(NH2)2B.KNO3C.NH4H2PO4D.Ca(H2PO4)23.下列各物质在溶液中能大量共存的是( )A.氢氧化钠溶液和氢氧化钙溶液B.碳酸钠溶液和氢氧化钙溶液C.氯化铜和硝酸银溶液D.氢氧化钠溶液和硝酸铜溶液4.粗盐提纯的正确操作顺序是()A.溶解、降温、过滤、转移B.溶解、过滤、蒸发、转移C.称量、溶解、蒸发、过滤D.溶解、过滤、降温、转移5.下列物质间不能发生反应的是( )A.氢氧化钠溶液和硫酸溶液B.碳酸钠溶液和氢氧化钙溶液C.铜和硝酸银溶液D.氢氧化钠溶液和硝酸钾溶液6.合理使用化肥有利于农作物的生长和减少环境污染。

下列有关化肥的说法正确的()A.为保证高产尽量多施用化肥B.氯化铵与碱性物质混合施用C.提倡农家肥与化肥综合施用D.CO(NH2)2是一种常用的复合肥料7.盐有广泛的用途,在加工馒头时往往因面团发酵而变酸,要除去酸味,使馒头变得可口,常常在面团中加入( )A.食盐B.烧碱C.碳酸氢钠D.熟石灰8.向溶质为HCl和FeCl3的溶液中,不断加入NaOH溶液,下图中正确的是( )A.①B.②C.③D.④9.下列各组物质混合后,不产生沉淀或气体,能得到无色溶液的一组是()A.石灰水和稀盐酸B.氧化铜和稀硫酸C.大理石和稀盐酸D.硝酸钡和稀硫酸10.下列各组物质在pH=14的某无色溶液中,能大量共存的是( )A.FeCl3、NaCl、KNO3B.NaCl、NaOH、NaNO3C.CaCl2、NaNO3、Na2CO3D.KNO3、H2SO4、NaCl11.有一溶液是由盐酸、硫酸、硫酸铜、氯化铜几种溶液中的两种混合而成,向该混合液中滴加Ba(OH)2溶液,溶液的体积与生成沉淀质量的关系如下图所示,则该混合液是()A.盐酸、硫酸B.硫酸、氯化铜C.盐酸、氯化铜D.硫酸、硫酸铜12.分别将下列各组物质同时加到水中,得到无色透明溶液的是( )A.HNO3、NaCl、K2SO4B.KCl、NaOH、CuSO4C.BaCl2、NaOH、H2SO4D.FeCl3、Na2SO4、KCl二、填空题13.在pH=1的无色透明溶液中,不能大量共存的离子组是。

浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习

浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习

浙教版七年级上册初中数学知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. 下列说法正确的是( )A .数轴上任一点表示唯一的有理数B .数轴上任一点表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间都有无数个点2.(2015•日照)的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2bD .若3a >3b ,则2a >2b 4. 3387=-a ,则a 的值是( ) A. 87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( ) A.3a 中的a 可以是正数、负数或零. B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个.7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( )A.0>+b aB. 0ab >C.0a b ->D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间二.填空题9. a ,则其小数部分用a 表示为 .10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 .14.(2015春•罗山县期末)﹣64的立方根与的平方根之和是 .15. 1- ,-22 , 33 16. 数轴上离原点距离是5的点表示的数是 .三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18.(2015春•桃园县校级期末)已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y2的平方根. 19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】一.选择题1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数.2. 【答案】C3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b .4. 【答案】B ;【解析】==. 5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根.7. 【答案】C ;8. 【答案】B ;【解析】45<<,627<<.二.填空题9. a ;10.【答案】为任意实数 ;【解析】任何实数都有立方根.11.【答案】25.0-;【解析】0.25==-.12.【答案】3;【解析】x -12=15, x =3=.13.【答案】7± ;【解析】 3343=7,7的平方根是7±. 14.【答案】﹣2或﹣6.【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=-20.【解析】解:∵11<10+3<12∴x =11,y =10+3-111∴()11112x y y x --=-=-=.。

二次根式(巩固篇)(专项练习)

二次根式(巩固篇)(专项练习)

专题1.12 二次根式(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.若3x =时,2x a -当5x =时,2x a -则a 的值可能是( )A .4B .8C .12D .162.下列二次根式中,是最简二次根式的是( )A 2B 12C 8D 123.若0xy <,则2x y ) A .xy B .x y -C .x y --D .x y -42243 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间5371115,,,…,则311 )A .第23项B .第24项C .第19项D .第25项625x -1x -+x 值是( )A .3-B .2C .3-或2D .不存在7.下列计算正确的是( )A .3553=B 236=C 235=D 12348.已知a b 、为实数,m n 、分别表示574am bn +=,则37a -+=( ) A .1 B .32 C .52 D .2 9.当12022x +=3420252022x x --的值为( ) A .3B .3-C .1D .1-10.观察下列二次根式的化简( )1221111111212S =+++-; 2222211111111111112231223S ⎛⎫⎛⎫+++++-++- ⎪ ⎪⎝⎭⎝⎭; 3222222111111111111111111122334122334S ⎛⎫⎛⎫⎛⎫=+++++++-++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 则20222022S =( ) A .20222021 B .20242023 C .12022 D .12024二、填空题11.已知1()2f x x=+,那么(3)f =_____. 12.求值:()(202220232332⋅+=______.132b +152b --a b -=________. 14.已知a 10b 是它的小数部分,则210a b +=______.15.若两不等实数a ,b 满足38a b +=,38b a +=,a b ab _____. 16.已知整数x ,y 满足2022202220222022x y x x y xy ,7x y --的最小值为 _____.17.已知等腰ABC 的两边长分别为37,则等腰ABC 的周长是______.18.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→……”的路线运动.设第n 秒运动到点n P (n 为正整数),则点2023P 的坐标是_______________.三、解答题19.当2022a =时,求221a a a -+(1) 的解法是错误的;(2) 错误的原因在于未能正确地运用二次根式的性质: ;(3) 当3a >2691a a a -+-的值.20.计算: (1)148318243 (2) 03(51)(51)(2)27+-21.计算及解方程组: (1)1324126-() (2) )26221532+22.已知32x =32y =,求下列各式的值:(1) 22x y -: (2) 222x xy y ++.23.小明在解决问题:已知23a =+2281a a -+的值.他是这样分析与解的:∵()()2323232323a -=++- ∵23a -=-∵()2223,443a a a -=-+=,∵241a a -=-,∵()()222812412111a a a a -+=-+=⨯-+=-. 请你根据小明的分析过程,解决如下问题: (1) 1315375121119+++++ (2) 若121a , ∵求2481a a -+的值;∵直接写出代数式的值3231a a a ++-=___________.24.探究题(1) 用“=”、“>”、“<”填空: 4+3 243⨯1+16 2116⨯,5+5 255. (2) 由(1)中各式猜想m +n 与mn m ≥0,n ≥0)的大小,并说明理由.(3) 请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m 2的花圃,所用的篱笆至少需要 m .参考答案1.B【分析】二次根式有意义的条件是被开方数是非负数,根据这个条件列不等式即可. 解:∵当3x =2x a -∵230a ⨯-<,解得6a >,∵当5x =2x a -∵250a ⨯-≥,解得10a ≤,∵610a <≤,∵a 的值可能是8,故选:B .)0a a ≥叫二次根式.关键是掌握二次根式中的被开方数必须是非负数,否则二次根式无意义.2.A【分析】根据二次根式化简方法和最简二次根式的概念进行化简辨别即可.解:A 2B 12434323⨯=12不是最简二次根式,该选项不符合题意;C 8424222⨯8D 1122212不是最简二次根式,该选项不符合题意; 故选:A .【点拨】本题考查二次根式的化简,对于最简二次根式要满足两个条件:被开方数不含开的尽方得因数,被开方数不含分母,准确理解最简二次根式的概念,并能对二次根式进行正确的化简是解决问题的关键.3.D【分析】根据0xy <2x y 0,0x y <>,进而即可求解.解:∵0xy <2x y∵0,0x y <>, 2x y y x y ==-故选:D .【点拨】本题考查了二次根式有意义的条件,根据二次根式的性质化简,得出0,0x y <>是解题的关键.4.B【分析】利用二次根式的混合运算将原式化简,再进行无理数的估算即可. 2243263=433=33=∵252736<<,∵5276<,即5336<, 22435和6之间,故选:B【点拨】本题考查了二次根式的混合运算以及估算无理数的大小,27的范围是解此题的关键.5.D【分析】通过观察,得出第n 项为:41n -再根据31199得出方程4199n -=,解出即可得出答案.解:∵371115,,,…, ∵通过观察,可得:第n 41n - ∵31191191199⨯∵4199n -=,解得:25n =,∵31125项.故选:D【点拨】本题考查了数字规律问题、二次根式的乘法,解本题的关键在正确找出已知数列的规律.6.A【分析】根据同类最简二次根式的定义求解即可解:根据题意得:215x x --+250x -≥,10x -+≥, 215x x --+∵215x x --+=,解得:3x =-或2x =(舍),∵3x =-,故选:A【点拨】本题考查了同类最简二次根式的定义,掌握同类最简二次根式的定义是解决问题的关键7.B【分析】根据二次根式的加减乘除运算法则求解判断即可.解:A 、35525B 236=C 23D 12312342=÷=,计算错误,不符合题意,选项错误,故选B .【点拨】本题考查二次根式的加减乘除运算,熟练掌握相关运算法则是解题关键.8.D7m n 、的值,再代入计算即可.解:∵72<<3,∵372-<<-,∵72<5<3,∵57-2m =,小数部分57237n ==∵4am bn +=,∵(2374a b +=,∵372a -=, 故选:D .【点拨】本题考查估算无理数的大小,二次根式的混合运算,掌握算术平方根的定义是正确解答的前提.9.D【分析】根据12022x +=2442021x x -=,然后将多项式3420252022x x --转化为22(442021)(442022)x x x x x --+--,然后代入计算即可.解:12022x += 2(21)2022x ∴-=,24412022x x ∴-+=,2442021x x ∴-=,∴多项式3420252022x x --22(442021)(442022)x x x x x =--+--(20212021)20212022x =-+-020212022=+-1=-,故选:D .【点拨】本题难度较大,需要对要求的式子进行变形,同学们要学会转化的思想,这是数学中一种很重要的思想.10.B【分析】根据题目中给定的计算方法求出2022S ,再进行求解即可. 解:221111111212++=+-221111112323++=+-221111113434++=+-,…∵221111112022202320222023++=+-, ∵1221111111212S =++=+-, 2222211111111111112231223S ⎛⎫⎛⎫=++++=+-++- ⎪ ⎪⎝⎭⎝⎭, 322222111111111111111111122334122334S ⎛⎫⎛⎫⎛⎫=+++++++-++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, …∵20221111111111111111223342021202220222023S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-++-++-+++-++- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1202220221202220232023=+-=+, ∵则20222022202212024202312022202220232023S +==+=. 故选B . 【点拨】本题考查二次根式化简中的简便运算.熟练掌握题目中给定的计算方法是解题的关键.11.23【分析】根据1()2f x x =+代入计算即可; 解:∵1()2f x x =+, ∵()()23(3)23232323f -==++- 故答案是:23.【点拨】本题主要考查了代数式求值和分母有理化,准确利用平方差公式计算是解题的关键.12.322+ 【分析】先根据积的乘方得到原式=20222022322322322-++()()(),然后利用平方差公式计算. 解:原式=20222023322322-+()()=20222022322322322-++()()()=(202298322-⨯+() =322+故答案为:322+【点拨】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和积的乘方与幂的乘方是解决问题的关键.13.2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a和b 的值代入到代数式,通过计算即可得到答案.解:根据题意得:12a -=∵3a =∵2b +152b --∵252b b +=-∵1b =∵312a b -=-=故答案为:2.【点拨】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.3【分析】由于34a <<,则3a =,103b =,然后代入所求代数式进行计算即可. 解:3104<<,3a ∴=,103b =,2106103103a b ∴+=.故答案为:3.【点拨】本题考查了估算无理数的大小,二次根式的加减,解题的关键是利用完全平方数和算术平方根对无理数的大小进行估算.15.4【分析】3a b =1ab ,然后代入原式即可求出答案.解:∵38a b +,38b a +, ∴33a a b b ++1633a b b a ++, ∴330b a b a +-, ∴30a ba b a b =-, ∵a b , 0a b , 3a b =,∵1633a b b a =++,∴7a b +=, ∵22a b a b ab =++()212a b a b ab -+=∴原式=314+=.故答案为:4. 【点拨】本题考查二次根式的混合运算,解题的关键是a b a b a b -=,本题属于基础题型.16.18 2()2022()202220220xy x y x y xy =,然后因式分解为(2022)(2022)0x y xy =,20220xy =,进而分析得出337x =,6y =,则答案可得. 解:2022202220222022x y y x x y xy =, 2()2022()202220220xy x y x y xy , ∵(2022)(2022)0x y xy =, 20220xy =,∵202223337xy ==⨯⨯,∵x ,y 均为整数,70x y -->,7x y --337x =,6y =,7x y --3376732418--==.故答案为:18. 20220xy . 17.1423+2314 【分析】分两种情况:当等腰ABC 的腰长为37时,当等腰ABC 的腰长为7,底边长为23解:分两种情况:当等腰ABC的腰长为237时,233437+,∴不能组成三角形;当等腰ABC的腰长为7,底边长为3∴等腰ABC的周长773143=++=+综上所述:等腰ABC的周长是1423+故答案为:143+【点拨】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况进行计算是解题的关键.18.3⎛⎝⎭【分析】每630,30,3,0,点的横坐标规律:12,1,32,2,52,3,…,2n,即可求解.解:如图,过1A作1A H x⊥轴于H,则130OA H∠=︒,而11OA=,∵12OH=,2211312A H⎛⎫=-=⎪⎝⎭,∵每630,30,3,0,∵20236337÷=余1,∵点2023P3由题意可知动点P 每秒的横坐标规律:12,1,32,2, 52 ,3,…,2n , ∵点2023P 的横坐标为1011.5, ∵点2023P 的坐标3⎛ ⎝⎭, 故答案为3⎛ ⎝⎭. 【点拨】本题考查点的规律;理解题意,根据所给图形的特点,结合平面直角坐标系中点的特点及正三角形边的特点,确定点的坐标规律是解题的关键.19.(1)小亮 2||a a (3)-2【分析】(1)根据二次根式的性质化简即可求出答案.(2)根据二次根式的性质化简即可求出答案.(3)根据a 的范围判断3a -与1a -的符号,然后根据二次根式的性质以及绝对值的性质进行化简即可求出答案. 解:(1)原式2(1)a a =-1a a =+-,∵2022a =,∵10<-a ,∵原式1212202214043a a a =+-=-=⨯-=,故小亮的解法错误,故答案为:小亮. (22a a ,2a a .(3)∵3a >,30a ∴->,10a -<, ∵原式2(3)1a a =--,31a a =---()31a a =-+-31a a =-+-2=-.【点拨】本题考查二次根式的化简求值,解题的关键是熟练运用二次根式的性质,本题属于基础题型.20.(1)46 (2)2【分析】(1)直接利用二次根式的乘除运算法则、二次根式的性质化简,进而得出答案;(2)将原式用平方差公式化简,再求值即可(1148318243148318263=÷⨯16626=46=(2)03(51)(51)(2)27+-25113=-+-53=-2=【点拨】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和混合运算法则. 21.(1)71210 (2)3107-【分析】(1)先计算括号,再计算除法,最后计算加减.(2)按照完全平方公式,二次根式的乘法计算即可. 解:(113242126-() 63621(2 32156 3221==71210(2)26221532+ =331073-=3107-.【点拨】本题考查了二次根式的乘法,除法,完全平方公式,绝对值的化简,熟练掌握二次根式的乘除运算是解题的关键.22.(1)6 (2)12【分析】(1)先计算出x y +和x y -,再利用乘法公式得到()()22x y x y x y -=+-;(2)利用乘法公式得到222)2(x xy y x y =+++,然后利用整体代入的方法计算. (1)解:32x =+32y =,23x y ∴+=22x y -=()()22232246x y x y x y -=+-==(2)由(1)知3x y +=∵22222()(23)12x xy y x y ++=+==.【点拨】本题考查了二次根式的运算,完全平方公式、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.23.(1)5 (2)∵5,∵0【分析】(1)原式各项分母有理化,计算即可求出值;(2)∵先把a 分母有理化可得到21a ,从而得到221a a -=,再把式子进行整理,将221a a -=代入计算即可求出值;∵将式子整理成()2221a a a a a --++,再代入221a a -=,即可求解. (11315375121119++++++ 13153751211192=+- ()112112= 1102=⨯5=;(2)解:∵∵()()122122211a -+-,∵12a -= ∵()2212,212a a a --=+=,∵221a a -=,∵()224814214115a a a a -+=-+=⨯+=; ∵∵221a a -=,∵3231a a a -++()2221a a a a a =--++21a a a =-++()221a a =--+=11-+0=.故答案为:0【点拨】本题考查了分母有理化,二次根式的化简求值,正确读懂例题,对二次根式进行化简是关键.24.(1)>,>,=, (2)m +n mn (3)40【分析】(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想m +n mn 比较大小,可以作差,m +n -mn(3)设花圃的长为a 米,宽为b 米,需要篱笆的长度为(a +2b )米,利用第(2)问的公式即可求得最小值.(1)解:∵4+3=7,43⨯3∵2749=,2(43)48=,∵49>48,∵4+3>43⨯∵1+16=76>1,116⨯61,∵1+16>116⨯;∵5+5=10,55⨯,55⨯故答案为:>,>,=;(2)解:m+n mn m≥0,n≥0).理由如下:当m≥0,n≥0时,∵2()0m n≥,∵22()2()0m m n n-≥,∵m-mn n≥0,∵m+n mn(3)解:设花圃的长为a米,宽为b米,则a>0,b>0,S=ab=200,根据(2)的结论可得:222222220022040a b a b ab+≥⋅==⨯⨯=,∵篱笆至少需要40米.故答案为:40.【点拨】本题主要考查了二次根式的应用,体现了由特殊到一般的思想方法,解题的关键是联想到完全平方公式,利用平方的非负性求证.。

实数的相关概念中考考点梳理

实数的相关概念中考考点梳理

实数的相关概念中考考点梳理全文共四篇示例,供读者参考第一篇示例:实数是数学中最基础的概念之一,它包括有理数和无理数两类。

在数学的学习中,实数的相关概念是非常重要的。

在中考中,实数相关的考点也是比较多的。

下面我们来看看实数相关概念中中考的考点梳理。

1. 实数的分类实数可以分为有理数和无理数两类。

有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。

无理数是不能表示为有理数的数,如π和根号2等。

在中考中,同学们需要了解实数的分类,并能够判断一个数是有理数还是无理数。

2. 实数的运算实数的运算是中考数学的重要内容之一。

同学们需要掌握实数的加减乘除运算规则,包括有理数和无理数的运算。

在中考中,常见的考点有实数的加法、减法、乘法、除法运算,以及混合运算等。

3. 实数的大小比较在实数的概念中,同学们也需要学会对实数进行大小比较。

无论是有理数还是无理数,都可以通过大小比较符号进行比较,如大于等于、小于等于、大于、小于等等。

在中考中,通常会出现实数的大小比较题目,同学们需要根据实数的性质进行判断。

4. 实数的分数表示实数可以表示为分数的形式,分数是有理数的一种形式。

在中考中,同学们需要能够将实数表示为分数的形式,并且能够进行化简和计算。

分数的化简和运算是中考数学的常见考点之一,同学们需要多进行练习,掌握分数的性质和运算规则。

5. 实数的应用问题实数的概念在中考中不仅仅是为了考察同学们的概念掌握程度,还可以通过应用题目考察同学们对实数的应用能力。

实数在现实生活中有着广泛的应用,比如长度、重量、体积等问题都可以通过实数进行表示和计算。

在中考中,同学们可能会遇到一些实际问题,需要用实数进行求解,这就需要同学们将实数的概念运用到实际问题中去。

实数的相关概念在中考数学中占据着重要的地位,同学们需要充分理解实数的分类、运算、大小比较、分数表示以及应用问题等知识点。

通过不断的练习和巩固,可以帮助同学们提高实数相关概念的理解和运用能力,从而在中考中取得更好的成绩。

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]代数式》全章复与巩固(基础)知识讲解研究目标:1.进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示;2.理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实生活的密切联系;3.会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律;4.理解并掌握单项式与多项式的相关概念;5.理解整式加减的基础是去括号和合并同类项,并熟练的运用整式的加减运算法则,进行整式的加减运算、求值;6.深刻体会本章体现的主要的数学思想——整体思想。

要点梳理:1.代数式是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的式子,像16n、2a+3b、34、n、2、(a+b)等式子都是代数式,单独的一个数或一个字母也是代数式。

代数式的书写规范:1) 字母与数字或字母与字母相乘时,通常把乘号写成“·”或省略不写;2) 除法运算一般以分数的形式表示;3) 字母与数字相乘时,通常把数字写在字母的前面;4) 字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;5) 如果字母前面的数字是1,通常省略不写。

2.单项式是由数与字母的乘积组成的代数式,单独的一个数或一个字母也是单项式。

单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数和。

多项式是几个单项式的和,每个单项式叫做多项式的项。

在多项式中,不含字母的项叫做常数项。

多项式中次数最高的项的次数,就是这个多项式的次数。

如果一个多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。

3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。

另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。

八上数学总复习各章知识点总结及整理

八上数学总复习各章知识点总结及整理

八上数学总复习各章知识点总结及整理.doc八年级上册数学总复习各章知识点总结及整理引言随着学期的结束,对八年级上册数学知识点进行全面的复习和整理是十分必要的。

这不仅有助于学生巩固已学知识,还能帮助他们为即将到来的考试做好准备。

以下是对八年级上册数学各章节知识点的详细总结及整理。

第一章:实数1.1 实数的概念理解实数的分类:有理数和无理数。

掌握实数的性质和运算规则。

1.2 算术平方根学习如何计算一个数的算术平方根。

理解平方根的性质。

1.3 平方根掌握平方根的概念和计算方法。

了解平方根与算术平方根的区别。

第二章:代数基础2.1 代数式理解代数式的定义和基本运算。

学习合并同类项的方法。

2.2 一元一次方程掌握一元一次方程的解法。

学习方程的应用问题。

2.3 因式分解学习因式分解的基本方法:提公因式法和公式法。

理解因式分解在解方程中的应用。

第三章:几何初步3.1 线段、角学习线段的性质和角的概念。

掌握角度的分类和计算。

3.2 相交线与平行线理解相交线的性质。

学习平行线的判定和性质。

3.3 三角形掌握三角形的基本性质。

学习三角形的分类和内角和定理。

第四章:函数4.1 函数的概念理解函数的定义和表示方法。

学习函数的三种表示形式:解析式、列表和图形。

4.2 一次函数掌握一次函数的性质和图象。

学习一次函数的解析式和应用问题。

4.3 反比例函数理解反比例函数的概念和性质。

掌握反比例函数的图象和解析式。

第五章:统计与概率5.1 数据的收集与处理学习数据收集的方法和数据的整理。

掌握数据的描述性统计指标。

5.2 概率初步理解概率的基本概念。

学习概率的计算方法。

复习策略系统复习:按照章节顺序,系统地复习每个知识点。

重点强化:针对重点和难点进行强化训练。

习题练习:通过大量的习题练习,巩固知识点。

错题回顾:对错题进行总结和回顾,避免重复错误。

模拟测试:定期进行模拟测试,检验复习效果。

结语通过对八年级上册数学各章知识点的总结及整理,学生可以更加清晰地掌握每个章节的核心内容,为期末考试和未来的学习打下坚实的基础。

《实数》全章复习与巩固(提高)知识讲解.docx

《实数》全章复习与巩固(提高)知识讲解.docx

【学习目标】1. 了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2. 了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些 数的立方根,会用计算器求平方根和立方根.3. 了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一 一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4. 能用有理数估计一个无理数的大致范围.【知识网络】---- ►有理数L 实数的分类——>>无理数实数 ----------- > 用数轴上的点表示实数一>运算法则及运算性质—实数的运算十―>近似数及近似计算数的开方 -------- > 分数指数幕 ---------- > 有理数指数幕 -------- > 运算性质【要点梳理】要点一、平方根和立方根型项目平方根立方根被开方数 非负数任意实数符号表示±^/al/a性质一个正数有两个平方根,且互为 相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论(V^)2= a(a > 0)厂T[a(a > 0)7 cr = a =〈[-a(a < 0)= a = a a = -\[a要点二、斤次方根如果一个数的n 次方(“是大于1的整数)等于d ,那么这个数叫做u 的〃次方根.当/? 为奇数时,这个数为G 的奇次方根;当7?为偶数时,这个数为G 的偶次方根.求一个数d 的料次方根的运算叫做开料次方,a 叫做被开方数,n 叫做根指数.《实数》全章复习与巩I(提咼)实数d 的奇次方根有且只有一个,正数d 的偶次方根有两个,它们互为相反数;负数的 偶次方根不存在.;零的n 次方根等于零. 要点三、实数有理数和无理数统称为实数.1. 实数的分类IE 有理数、有理数0有限小数或无限循坏小数 负有理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其 中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2) 无理数分成三类:①开方开不尽的数,如厉,蚯等;② 有特殊意义的数,如兀;③ 有特定结构的数,如0. 1010010001…(3) 凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形 式.2. 实数与数轴上的点 ----- 对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与Z 对应.3. 实数的三个非负性及性质:在实数范围内,正数和零统称为非负数.我们己经学习过的非负数有如下三种形式:(1) 任何一个实数Q 的绝对值是非负数,即丨。

北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]

北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]

北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】 一、选择题 1.(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D . 2. a b -与a 比较大小,必定为( ).A .a b a -<B .a b a ->C .a b a -≤D .这要取决于b 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±3 5.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ).A .A 点B .B 点C .C 点D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题9.已知a 是有理数,有下列判断:①a 是正数;②-a 是负数;③a 与-a 必有一个是负数;④a 与-a 互为相反数,其中正确的有________个.10.(2015春•万州区期末)绝对值小于4,而不小于2的所有整数有 . 11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________. 12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2016春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.(2015•燕山区一模)为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议? 【答案与解析】 一、选择题 1.【答案】C.【解析】∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C . 2.【答案】 D 【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =- 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确.8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1【解析】不论a 是正数、0、负数,a 与-a 都互为相反数,∴④正确. 10.【答案】±3,±2.【解析】结合数轴和绝对值的意义,得绝对值小于4而不小于2的所有整数±3,±2. 11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3.13.【答案】>, >, >, < 【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13)=24﹣22﹣10﹣13 =2﹣23 =﹣21; (2)(﹣1.5)+4+2.75+(﹣5)=﹣1.5﹣5.5+4.25+2.75=﹣7+7 =0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)=﹣8﹣21﹣7.5+3.5 =﹣30﹣4=﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2=﹣4. 18.【解析】解:由3<10<15,得到车费为2[10+2(10﹣3)]=48(元),则共付车费48元. 19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b += 又由三数互不相等,所以1b =,ba a=化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】 解:(1)10÷500≈0.02(克)答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。

《一元二次方程》全章复习与巩固—巩固练习(提高)

《一元二次方程》全章复习与巩固—巩固练习(提高)

《一元二次方程》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1. 关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )A.-1B.0C.1D.-1或12.已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a---的值为( ) A.152-+ B.152-± C.﹣1 D.1 3.(2015•德州)若一元二次方程x 2+2x+a=0的有实数解,则a 的取值范围是( )A .a <1B . a≤4C . a≤1D . a≥14.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是( )A .2m ≠B .6m ≤且2m ≠C .6m <D .6m ≤5.如果是α、β是方程2234x x +=的两个根,则22αβ+的值为( ) A .1 B .17 C .6.25 D .0.256.(2016•台州)有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .x (x ﹣1)=45B .x (x +1)=45C .x (x ﹣1)=45D .x (x +1)=457. 方程x 2+ax+1=0和x 2-x-a=0有一个公共根,则a 的值是( )A .0B .1C .2D .38. 若关于x 的一元二次方程的两个实数根分别是,且满足. 则k 的值为( )A.-1或B.-1C.D.不存在二、填空题9.关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 .10.已知关于x 的方程x 2+2(a+1)x+(3a 2+4ab+4b 2+2)=0有实根,则a 、b 的值分别为 .11.已知α、β是一元二次方程2430x x --=的两实数根,则(α-3)(β-3)=________.12.当m=_________时,关于x 的方程是一元二次方程;当m=_________时,此方程是一元一次方程.13.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是____________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________.14.(2015•绥化)若关于x 的一元二次方程ax 2+2x ﹣1=0无解,则a 的取值范围是 .15.已知,那么代数式的值为________.16.当x=_________时,既是最简二次根式,被开方数又相同.三、解答题17. (2016•南充)已知关于x 的一元二次方程x 2﹣6x +(2m +1)=0有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.18.设(a ,b)是一次函数y =(k-2)x+m 与反比例函数n y x =的图象的交点,且a 、b 是关于x 的一元二次方程22(3)(3)0kx k x k +-+-=的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求一次函数与反比例函数的解析式.19. 长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择: ①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?20.已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独完成这项工程分别需要多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由.【答案与解析】一、选择题1.【答案】A ;【解析】先把x =0代入方程求出a 的值,然后根据二次项系数不能为0,把a =1舍去.2.【答案】D ; 【解析】先化简22211a a a---,由a 是方程x 2+x ﹣1=0的一个根,得a 2+a ﹣1=0,则a 2+a=1, 再整体代入即可.解:原式=2(1)(1)(1)a a a a a -++-=1(1)a a +, ∵a 是方程x 2+x ﹣1=0的一个根,∴a 2+a ﹣1=0,即a 2+a=1,∴原式=1(1)a a +=1. 故选D .3.【答案】C ;【解析】∵ 关于x 的一元二次方程有实根,∴ △=b 2﹣4ac=4﹣4a≥0,解之得a≤1.故选C .4.【答案】D ;【解析】△≥0得6m ≤,方程有实根可能是一元二次方程有实根,也可能是一元一次方程有实根.5.【答案】C ;【解析】22+=+-=6.25αβαβαβ2()2.6.【答案】A .【解析】∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x (x ﹣1),∴共比赛了45场,∴x (x ﹣1)=45,故选A .7.【答案】C ;【解析】提示:先求公共根m=-1,再把这个公共根m=-1代入原来任意一个方程可求出a=2.8.【答案】C ;【解析】由题意,得: 22121211=1k k k k k x x x x k ⎧⎪⎧⎪=-=-⎨⎨+=⎩⎪=-⎪⎩4≤≥0435 当时,不符合≤,舍去,故354或4. 二、填空题9.【答案】x 1=﹣4,x 2=﹣1.【解析】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,(a ,m ,b 均为常数,a ≠0),∴则方程a (x+m +2)2+b =0的解是x 1=﹣2﹣2=﹣4,x 2=1﹣2=﹣1.故答案为:x 1=﹣4,x 2=﹣1.10.【答案】a =1,12b =-. 【解析】 判别式△=[2(a+1)]2-4(3a 2+4ab+4b 2+2)=4(a 2+2a+1)-(12a 2+16ab+16b 2+8)=-8a 2-16ab-16b 2+8a-4=-4(2a 2+4ab+4b 2-2a+1)=-4[(a 2+4ab+4b 2)+(a 2-2a+1)].=-4[(a+2b)2+(a-1)2].因为原方程有实根,所以-4[(a+2b)2+(a-1)2]≥0,(a+2b)2+(a-1)2≤0,又∵ (a+2b)2≥0,(a-1)2≥0,∴ a-1=0且a+2b =0,∴ a =1,12b =-. 11.【答案】-6;【解析】∵ α、β是一元二次方程2430x x --=的两实数根,∴ α+β=4,αβ=-3.∴ (3)(3)3()933496αβαβαβ--=-++=--⨯+=-.12.【答案】-3;. 13.【答案】;2或6.【解析】即2(-)232a a =-.a=2或6.14.【答案】a <﹣1;15.【答案】-2;【解析】原方程化为:. 16.【答案】-5;【解析】由x 2+3x=x+15解出x=-5或x=3,当x=3时,不是最简二次根式,x=3舍去.故x=-5.三、解答题17.【答案与解析】解:(1)根据题意得△=(﹣6)2﹣4(2m +1)≥0,解得m ≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20,解得m ≥3,而m ≤4,所以m 的范围为3≤m ≤4.18. 【答案与解析】(1)因为关于x 的方程22(3)(3)0kx k x k +-+-=有两个不相等的实数根,所以220,44(3)4(3)0,k b ac k k k ≠⎧⎨=-=--->⎩△ 解得k <3且k ≠0, 又因为一次函数y =(k-2)x+m 存在,且k 为非负整数,所以k =1.(2)因为k =1,所以原方程可变形为2420x x --=,于是由根与系数的关系知a+b =4,ab =-2, 又当k =1时,一次函数y x m =-+过点(a ,b),所以a+b =m ,于是m =4,同理可得n =-2, 故所求的一次函数与反比例函数的解析式分别为4y x =-+与2y x =-. 19. 【答案与解析】(1)设平均每次下调的百分率是x .依题意得5000(1-x)2=4050.解得x 1=10%,x 2=1910(不合题意,舍去). 答:平均每次下调的百分率为10%.(2)方案①优惠:4050×100×(1-0.98)=8100(元);方案②优惠:1.5×100×12×2=3600(元)∵ 8100>3600.∴ 选方案①更优惠.20. 【答案与解析】(1) 设甲队单独完成需x 天,则乙队单独完成需要(2x -10)天.根据题意,有11121012x x +=-, 解得x 1=3,x 2=20. 经检验均是原方程的根,x 1=3不符题意舍去.故x=20.∴乙队单独完成需要 2x -10=30(天).答:甲、乙两队单独完成这项工程分别需要20天、30天.(2) 设甲队每天的费用为y 元,则由题意有12y+12(y -150)=138 000,解得y=650 .∴ 选甲队时需工程费用650×20=13 000,选乙队时需工程费用500×30=15 000.∵ 13 000 <15 000,∴ 从节约资金的角度考虑,应该选择甲工程队.。

《二次函数》全章复习与巩固—巩固练习(提高)

《二次函数》全章复习与巩固—巩固练习(提高)

《二次函数》全章复习与巩固—巩固练习(提高)【巩固练习】 一、选择题1.已知抛物线2:310C y x x =+-,将抛物线C 平移得到抛物线C '.若两条抛物线C 、C '关于直线x =1对称.则下列平移方法中,正确的是( ). A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位 C .将抛的线C 向右平移5个单位 D .将抛物线C 向右平移6个单位2.已知二次函数2y ax bx c =++的图象如图所示,则下列5个代数式:ac ,a+b+c ,4a-2b+c ,2a+b ,2a-b 中,其值大于0的个数为( ).A .2B .3C .4D .53.二次函数2y ax bx c =++的图象如图所示,则下列关系式不正确的是( ). A .0a < B .abc >0 C .a+b+c >0 D .240b ac ->第2题 第3题4.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( )A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++ 5.二次函数y=ax 2+bx+c (a ≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x=12 C .当x <12,y 随x 的增大而减小 D .当-1<x <2时,y >06.(2016•梧州)如图所示,抛物线y=ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD=MC ,连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论: ①a ﹣b=0;②当﹣2<x <1时,y >0; ③四边形ACBD 是菱形; ④9a ﹣3b +c >0你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③7.已知一次函数y ax b =+的图象过点(-2,1),则关于抛物线23y ax bx =-+的三条叙述: ①过定点(2,1);②对称轴可以是直线x =l ;③当a <0时,其顶点的纵坐标的最小值为3. 其中所有正确叙述的有( ).A .0个B .1个C .2个D .3个8.已知二次函数24y x x a =-+,下列说法错误的是( ). A .当x <1时,y 随x 的增大而减小 B .若图象与x 轴有交点,则a ≤4C .当a =3时,不等式240x x a -+>的解集是1<x <3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a =-3二、填空题9.由抛物线y =x 2先向左平移2个单位,再向下平移3个单位得到的抛物线的解析式为 . 10.已知一元二次方程230x bx +-=的一根为-3.在二次函数y=x 2+bx-3的图象上有三点14,5y ⎛⎫-⎪⎝⎭、25,4y ⎛⎫- ⎪⎝⎭、31,6y ⎛⎫⎪⎝⎭,y 1、y 2、y 3、的大小关系是 . 11.如图,一段抛物线y=-x (x-1)(0≤x ≤1)记为m 1,它与x 轴交点为O 、A 1,顶点为P 1;将m 1绕点A 1旋转180°得m 2,交x 轴于点A 2,顶点为P 2;将m 2绕点A 2旋转180°得m 3,交x 轴于点A 3,顶点为P 3,…,如此进行下去,直至得m 10,顶点为P 10,则P 10的坐标为( ).12.在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上,向右平移3个单位,那么在新坐标系下,此抛物线的解析式是 . 13.已知二次函数2y ax bx c =++(a ≠0)的图象如图所示,则下列结论:①a 、b 同号;②当x =1和x =3时,函数值相等;③4a+b =0;④当y =-2时,x 的值只能取0,其中正确的有 .(填序号)14.已知抛物线的顶点为125,24⎛⎫-⎪⎝⎭,与x 轴交于A 、B 两点,在x 轴下方与x 轴距离为4的点M 在抛物线上,且10AMB S =△,则点M 的坐标为 .15.(2015•繁昌县一模)如图,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2.下列结论:①4a+2b+c <0;②a <﹣1;③b 2+8a >4ac ;④2a ﹣b <0.其中结论正确的有 .(把所有正确答案的序号都填写在横线上)16.如图所示,抛物线212y x =-+向右平移1个单位得到抛物线y 2.回答下列问题:(1)抛物线y 2的顶点坐标________.(2)阴影部分的面积S =________.(3)若再将抛物线y 2绕原点O 旋转180°得到抛物线y 3,则抛物线y 3的开口方向________, 顶点坐标________.三、解答题17.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨l元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?18.(2015•黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.19. 在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.20. (2016•菏泽)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【答案与解析】 一、选择题 1.【答案】C ;【解析】22349:31024C y x x x ⎛⎫=+-=+- ⎪⎝⎭,∴ 其顶点坐标为349,24⎛⎫-- ⎪⎝⎭,设C '顶点坐标为049,4x ⎛⎫- ⎪⎝⎭,由题意得03212x ⎛⎫+- ⎪⎝⎭=, ∴ 072x =,∴ C '的解析式为274924y x ⎛⎫=-- ⎪⎝⎭.由234924y x ⎛⎫=+= ⎪⎝⎭到274924y x ⎛⎫=-= ⎪⎝⎭需向右平移5个单位,因此选C .2.【答案】A ;【解析】由图象知,a <0,c <0,012ba<-<, ∴ b >0,ac >0,∴ 2a-b <0. 又对称轴12ba-<,即2a+b <0. 当x =1时,a+b+c >0;当x =-2时,4a-2b+c <0. 综上知选A . 3.【答案】C ;【解析】由抛物线开口向下知a <0,由图象知c >0,02ba-<,b <0,即abc >0,又抛物线与x 轴有两个交点,所以240b ac ->.4.【答案】B ;【解析】抛物线2223(1)2y x x x =++=++,其顶点(-1,2)绕点(0,3)旋转180°后坐标为(1,4),开口向下.∴ 旋转后的抛物线解析式为2(1)4y x =--+.5.【答案】D ;6.【答案】C ;【解析】①∵抛物线的开口方向向上,∴a >0,∵对称轴为x==2>0,又∵a >0,∴b <0,即a ,b 异号,①错误;②∵x=1和x=3关于x=2对称,∴当x=1和x=3时,函数值相等,②正确; ③∵x==2,∴b=﹣4a ,即4a+b=0,③正确;④∵y=﹣2正好为抛物线顶点坐标的纵坐标, ∴当y=﹣2时,x 的值只能取2,④正确; ⑤∵对称轴为x=2,∴x=﹣1和x=5关于x=2对称, 故当﹣1<x <5时,y <0.⑤正确. ∴②、③、④、⑤正确.故选C . 7.【答案】D .【解析】①∵抛物线y=ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0)、B (1,0), ∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b ,a ﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x 轴交于点A (﹣2,0)、B (1,0), ∴当﹣2<x <1时,y >0,②正确; ③∵点A 、B 关于x=0.5对称, ∴AM=BM ,又∵MC=MD ,且CD ⊥AB ,∴四边形ACBD 是菱形,③正确; ④当x=﹣3时,y <0,即y=9a ﹣3b +c <0,④错误.综上可知:正确的结论为①②③. 故选D . 8.【答案】C ;【解析】二次函数24y x x a =-+的对称轴为x =2,由于a =1>0,当x <2时,y 随x 增大而减小,因此A 是正确的;若图象与x 轴有交点,则△=16-4a ≥0,∴ a ≤4.当a =3时,不等式为x 2-4x+3>0,此时二次函数243y x x =-+,令y =0,得x 1=1,x 2=3,当x <1或x >3时,y >0,所以不等式2430x x -+>的解集为x <1或x >3.抛物线平移后得2(3)4(3)1y x x a =+-+++,即222y x x a =++-,将(1,-2)代入解得3a =-.二、填空题9.【答案】y =(x+2)2-3;【解析】y =x 2的顶点为(0,0),y =(x+2)2+3的顶点为(-2,-3),将(0,0)先向左平移2个单位,再向下平移3个单位可得(-2,-3),即将抛物线y =x 2先向左平移2个单位,再向下平移3个单位得到抛物线y =(x+2)2-3.10.【答案】y 1<y 2<y 3.【解析】设x 2+bx-3=0的另一根为x 2,则233cx a-==-,∴ x 2=1, ∴ 抛物线的对称轴为3112x -+==-,开口向上时,到对称轴的距离越大函数值越大, 所以y 1<y 3,y 1<y 2<y 3,也可求出b =2,分别求出y 1,y 2,y 3的值再比较大小.11.【答案】(9.5,-0.25); 【解析】解:y=-x (x-1)(0≤x ≤1),OA 1=A 1A 2=1,P 2P 4=P 1P 3=2, P 2(2.5,-0.25)P 10的横坐标是1.5+2×[(10-2)÷2]=9.5, p 10的纵坐标是-0.25, 故答案为(9.5,-0.25).12.【答案】y =3(x+3)2-3;【解析】抛物线y =3x 2的顶点为(0,0),将x 、y 轴分别向上,向右平移3个单位,逆向思考,即将(0,0)向下,向左平移3个单位,可得顶点为(-3,-3),因此,新坐标系下抛物线的解析式是y =3(x+3)2-3.13.【答案】②③; 【解析】由图象知,抛物线与x 轴交于点(-1,0),(5,0),于是可确定抛物线的对称轴为1522x -+==,则22ba-=,∴ 4a+b =0,故③是正确的; 又∵ 抛物线开口向上,∴ a >0,b =-4a <0, ∴ ①是错误的;又∵1322+=,即x =1和x =3关于对称轴x =2对称,其函数值相等, ∴ ②是正确的;根据抛物线的对称性知,当y =-2时,x 的值可取0或4. ∴ ④是错误的.14.【答案】(2,-4)或(-1,-4);【解析】∵ 1|||4|102AMB S AB =-=△,∴ |AB|=5. 又∵ 抛物线的对称轴为直线12x =,∴ A 、B 两点的坐标为(-2,0)和(3,0).设抛物线的解析式为2y ax bx c =++,则4209301125424a b c a b c a b c ⎧⎪-+=⎪++=⎨⎪⎪++=-⎩ 解得1,1,6.a b c =⎧⎪=-⎨⎪=-⎩∴ 抛物线的解析式为26y x x =--.当y =-4时,246x x -=--,∴ 220x x --=,∴ x 1=-2,x 2=-1. ∴ M 点坐标为(2,-4)或(-1,-4).15.【答案】①②③④;【解析】由二次函数的图象可得:当x=2时y <0,则有4a+2b+c <0(1),故①正确;∵二次函数的图象经过点(1,2),∴a+b+c=2(2),由二次函数的图象可得:当x=﹣1时,y<0,则有a﹣b+c<0(3),把(2)代入(1)得到2+3a+b<0,则有a<,把(2)代入(3)得到2﹣2b<0,则有b>1,则a<﹣1,故②正确;由二次函数的图象中顶点的位置,可得:>2(4),由抛物线开口向下,可得:a<0,则由(4)可得4ac﹣b2<8a,即b2+8a>4ac,故③正确;由抛物线的对称轴的位置,可得>0,则b>0,又由a<0,则有2a﹣b<0,故④正确;故答案为:①②③④.16.【答案】 (1)(1,2); (2)2; (3)向上; (-1,-2);【解析】抛物线212y x=-+向右平移1个单位,则顶点由(0,2)移到(1,2).利用割补法,阴影部分面积恰好为两个正方形的面积.若将抛物线y2绕原点O旋转180°,则抛物线y2的顶点与点(1,2)关于原点对称.三、解答题17.【答案与解析】(1)y=(210-10x)(50+x-40)=-10x2+110x+2100(0<x≤15且x为整数).(2)y=-10(x-5.5)2+2402.5,∵ a=-10<0,∴当x=5.5时,y有最大值2402.5.∵ 0<x≤15,且x为整数.当x=5时,50+x=55,y=-10(5-5.5)2+2402.5=2400(元);当x=6时,50+x=56,可求出y=2400(元).∴当售价定为每件55元或56元,每月利润最大,最大利润是2400元.(3)当y=2200时,-10x2+110x+2100=2200,解得x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51元或60元时,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元.18.【答案与解析】解:(1)将A点坐标代入y1,得﹣16+13+c=0.解得c=3,二次函数y1的解析式为y=﹣x2+x+3,B点坐标为(0,3);(2)由图象得直线在抛物线上方的部分,是x<0或x>4,∴x<0或x>4时,y1<y2;(3)直线AB的解析式为y=﹣x+3,AB 的中点为(2,) AB 的垂直平分线为y=x ﹣ 当x=0时,y=﹣,P 1(0,﹣), 当y=0时,x=,P 2(,0),综上所述:P 1(0,﹣),P 2(,0),使得△ABP 是以AB 为底边的等腰三角形. 19.【答案与解析】(1)设抛物线的解析式为2y ax bx c =++(a ≠0).∵ 抛物线经过点A(-4,0)、B(0,-4)、C(2,0),∴ 1640,4,420,a b c c a b c -+=⎧⎪=-⎨⎪++=⎩ 解得1,21,4.a b c ⎧=⎪⎪=⎨⎪=-⎪⎩∴ 抛物线的解析式为2142y x x =+-. (2)过点M 作MD ⊥x 轴于点D . 设M 点的坐标为(m ,n),则AD =m+4, MD n =-,2142n m m =+-. ∴ AMD ABO DMBO S S S S =+-△△梯形111(4)()(4)()44222m n n m =+-+-+--⨯⨯ 228n m =---2124282m m m ⎛⎫=-+---⎪⎝⎭24(40)m m m =---<<. ∴ 当2m =-时,4S =最大值. (3)满足题意的Q 点的坐标有四个,分别是:(-4,4)、(4,-4)、(225,225)-+-、(225,225)--+.20.【答案与解析】 解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.。

人教版七年级数学下册15.实数全章复习与巩固(提高)巩固练习及答案.doc

人教版七年级数学下册15.实数全章复习与巩固(提高)巩固练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】【巩固练习】 一.选择题1.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b 2.下列式子表示算术平方根的是 ( ). ①()233-= ②()()2515--= ③93104-=- ④ 255-= ⑤ 0.010.1±=± ⑥ ()20a a a =≥A .①②④B .①④⑥C .①⑤⑥D .①②⑥ 3. 下列说法正确的有( )①无限小数不一定是无理数; ②无理数一定是无限小数; ③带根号的数不一定是无理数; ④不带根号的数一定是有理数. A ①②③ B ②③④ C ①③④ D ①②④4. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是2(7)-的算术平方根,即.7)7(2=-其中正确的是( )A. ①③B. ②③C. ②④D. ①④ 5. (2015•南京)估计介于( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间6.下列运算中正确的是( )4913=12622-82==)(C. 24±=D. ∣32-∣=23- 7. 已知:a a 则,且,68.2868.82.62333=-==( ) A.2360 B.-2360 C.23600 D.-23600 8. -2781 ) A .0 B .6C .6或-12D .0或6 二.填空题9. 下列命题中正确的有 (填序号)(1)若,b a >那么b a 22>; (2)两数的和大于等于这两数的差;(3)若,b a >那么22b a >; (4)若,b a > c b >则c a >;(5))()(c b a c b a ++=++ (6)一个数越大,这个数的倒数越小; (7)有理数加有理数一定是有理数; (8)无理数加无理数一定是无理数; (9)无理数乘无理数一定是无理数; 10.(2015•庆阳)若﹣2xm ﹣n y 2与3x 4y2m+n是同类项,则m ﹣3n 的立方根是 .11. 若22)3(-=a ,则a = ,若23)3(-=a ,则a = .12. 已知 :===00236.0,536.136.2,858.46.23则 . 13. 若x x -+有意义,则=+1x ________.14. 阅读下列材料:设0.30.333x ==…①,则10 3.333x =…②,则由②-①得:93x =,即13x =.所以0.30.333= (1)=3.根据上述提供的方法把下列两个数化成分数. 0.7= 1.3= ;15. 方程 361(12)164x +-=的解x = _________ . 16. 若,19961995a a a =-+-则21995-a 的值等于_________.三.解答题17. (2015春•和平区期末)已知一个正数的两个平方根分别为a 和2a ﹣9 (1)求a 的值,并求这个正数; (2)求17﹣9a 2的立方根.18. 如图所示,已知A 、B 两点的坐标分别为(5,0)A -,(2,1)B -.(1)求△OAB 的面积和△ACB 的面积(结果保留一位小数); (2)比较点A 所表示的数与-2.4的大小.19. 把下列无限循环小数化成分数:(1)0.6•(2)0.23••(3)0.107••20.细心观察右图,认真分析各式,然后解答问题:()()212211122===+,S ; ()()223312222===+,S; ()()234413322===+,S; ……,……; (1)请用含n(n 为正整数)的等式表示上述变化规律;(2)观察总结得出结论:三角形两条直角边与斜边的关系,用一句话概括为: ; (3)利用上面的结论及规律,请作出等于7的长度;(4)你能计算出210232221S S S S ++++ 的值吗?【答案与解析】 一.选择题1. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 2. 【答案】D ;【解析】算术平方根的专用记号是“a ”根号前没有“-”或“±”号. 3. 【答案】A ; 4. 【答案】C ;【解析】算术平方根是平方根中符号为正的那个. 5.【答案】C . 【解析】∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间.6. 【答案】D ;7. 【答案】D ;O.....S 5S 4S 3S 2S 1111111A 6A 5A 4A 3A 2A 1【解析】2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,a =-23600. 8. 【答案】A ;【解析】819=,9的算术平方根是3,故选A. 二.填空题 9. 【答案】(1),(4),(5),(7); 10.【答案】2. 【解析】若﹣2xm ﹣n y 2与3x 4y2m+n是同类项,∴,解方程得:.∴m ﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为:2. 11.【答案】3±39【解析】正数的平方根有2个,实数有一个与它符号相同的立方根. 12.【答案】0.04858【解析】23.6向左移动4位,4.858向左移动2位得0.04858. 13.【答案】1;【解析】x ≥0,-x ≥0,得x =0,所以=+1x 1. 14.【答案】74;93; 【解析】设x =0.777……,10x =7.777……,9x =7, x =79.设y =1.333……,10y =13.333……,9y =12, y =43. 15.【答案】18; 【解析】()31255112,12,6448x x x +=+==. 16.【答案】1996;1996a -a ≥1996,原式=a -19951996a -a 1996a -1995,两边平方得21995-a =1996. 三.解答题17.【解析】 解:(1)由平方根的性质得,a+2a ﹣9=0, 解得a=3,∴这个正数为32=9;(2)当a=3时,17﹣9a 2=﹣64, ∵﹣64的立方根﹣4, ∴17﹣9a 2的立方根为﹣4. 18.【解析】解:(1)∵ (5,0)A ,(2,1)B -,∴ ||5OA =BC =1,AC =OA -OC 52.∴ 115||||51 1.122OAB S OA BC ∆===≈. 115||||(52)110.1222ACB S AC BC ∆==⨯⨯=-≈. (2)点A 表示的实数为5-5 2.24-≈-. ∵ 2.24<2.4,∴ -2.24>-2.4, 即 5 2.4>- 19.【解析】解:(1) 设0.6x •= ① 则10x =6.6•② ②-①得 9x =6∴6293x ==,即20.63•=(2) 设0.23x ••= ① 则10023.23x ••= ② ②-①,得 99x =23∴2399x =,即230.2399••=. (3) 设0.107x ••= ① 则1000107.107x ••= ② ②-①,得 999x =107,∴107999x =,即1070.107999••=. 20.【解析】 解:(1)()2,112nS n n n =+=+. (2)直角三角形中,两条直角边的平方和等于斜边的平方. (3)略.22222222123101231055(4)22224S S S S ⎛⎫⎛⎫⎛⎫⎛⎫++++=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

人教版八年级数学下册平行四边形全章复习与巩固(提高)巩固练习及答案.doc

人教版八年级数学下册平行四边形全章复习与巩固(提高)巩固练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】【巩固练习】一.选择题1. 如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形面积的( )A. B. C. D.2. 顺次连结任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形3. 已知平行四边形的一条边长为10cm.其两条对角线长可能是()A.6cm ,12cmB. 8cm,10cmC. 10cm,12cmD. 8cm,12cm4. 如图,在矩形ABCD中,点P是BC边上的动点,点R是CD边上的定点。

点E、F分别是AP,PR的中点。

当点P在BC上从B向C移动时,下列结论成立的是()A. 线段EF的长逐渐变大;B. 线段EF的长逐渐减小;C. 线段EF的长不改变;D. 线段EF的长不能确定.5.(2015春•嵊州市校级期中)如图,△ABC的周长为26,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P.若BC=10,则PQ的长是()A.1.5 B.2 C.3 D.46. 如图,矩形ABCD的周长是20cm,以AB、CD为边向外作正方形ABEF和正方形ADGH,cm,那么矩形ABCD的面积是)若正方形ABEF和ADGH的面积之和682A .212cmB .162cmC .242cmD .92cm7. 正方形内有一点A ,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是( ) A.10 B.20 C.24 D.258.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C•顺时针方向旋转90°得到△DCF ,连接EF .若∠BEC=60°,则∠EFD 的度数为( ) A.10° B.15° C.20° D.25°二.填空题9.如图,矩形ABCD 中,AB =3,BC =4,如果将该矩形沿对角线BD 折叠,那么图中阴影部分的面积是________.10.在正方形ABCD 中,E 在AB 上,BE =2,AE =1,P 是BD 上的动点,则PE 和PA 的长度之和最小值为___________.11.如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2……依此类推,则平行边形n n ABC O 的面积为___________.12. 如图所示,在口ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.给出下列结论:①△ABM≌△CDN;②AM=13AC;③DN=2NF;④12AMB ABCS S△△.其中正确的结论是________.(只填序号)13.已知菱形的两条对角线长分别是6cm,8cm. 则菱形的周长是_____cm, 面积是_____ cm2.14.(2015春•启东市期中)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.15. 如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的F处,若△FDE的周长为8,△FCB的周长为22,则FC的长为________.16.(2015•潮南区一模)如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…S n(n为正整数),那么第8个正方形面积S8=__________.三.解答题17. 如图所示,在四边形ABCD 中,∠ABC =90°.CD ⊥AD ,2222AD CD AB +=.(1)求证:AB =BC .(2)当BE ⊥AD 于E 时,试证明BE =AE +CD .18.在△ABC 中,AB=AC ,点D 在边BC 所在的直线上,过点D 作DF∥AC 交直线AB 于点F ,DE∥AB 交直线AC 于点E .(1)当点D 在边BC 上时,如图①,求证:DE+DF=AC .(2)当点D 在边BC 的延长线上时,如图②;当点D 在边BC 的反向延长线上时,如图③,请分别写出图②、图③中DE ,DF ,AC 之间的数量关系,不需要证明. (3)若AC=6,DE=4,则DF=___________.19. 探究问题: (1)方法感悟:如图,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠EAF =45°,连接EF ,求证DE +BF =EF .感悟解题方法,并完成下列填空:将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得:AB =AD ,BG =DE ,∠1=∠2,∠ABG =∠D =90°,∴ ∠ABG +∠ABF =90°+90°=180°,因此,点G ,B ,F 在同一条直线上.∵ ∠EAF =45°∴ ∠2+∠3=∠BAD -∠EAF =90°-45°=45°. ∵ ∠1=∠2,∠1+∠3=45°. 即∠GAF =∠________. 又AG =AE ,AF =AF∴△GAF≌△________.∴ _________=EF,故DE+BF=EF.(2)方法迁移:如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.20.(2015•海淀区二模)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD 为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.【答案与解析】一.选择题1.【答案】B;【解析】由题意先证明△AOE≌△COF,∴S阴影=S△COD=S矩形ABCD.2.【答案】A;3.【答案】C;【解析】由三角形两边之和大于第三边判定.4.【答案】C;【解析】由三角形中位线定理,EF长度为AR的一半.5.【答案】C;【解析】解:∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6,∴PQ=DE=3.故选:C .6.【答案】B ;【解析】设两个正方形的边长分别为x y ,,根据题意得:⎩⎨⎧=+=+106822y x y x ,则222100,x y xy ++=,解得16xy =.7.【答案】B ;【解析】1+2+3+4=周长的一半. 8.【答案】B ;【解析】证△ECF 为等腰直角三角形. 二.填空题 9.【答案】7516; 【解析】由折叠的特性可知∠DBC′=∠DBC ,由AD ∥BC 得∠ADB =∠DBC ,因此∠DBC′=∠ADB ,故BE =DE.可设AE =x ,则BE =4-x ,在Rt △ABE 中,由勾股定理可得222AB AE BE +=,即()22234x x +=-,解得x =87,BE =825.因此阴影部分的面积为1675382521=⨯⨯. 10.【答案】13;【解析】连接CE ,因为A ,C 关于BD 对称,所以CE 为所求最小值13. 11.【答案】⋅n25; 【解析】 每一次变化,面积都变为原来的12. 12.【答案】①②③;【解析】易证四边形BEDF 是平行四边形,△ABM ≌△CDN .∴ ①正确.由YBEDF 可得∠BED =∠BFD ,∴∠AEM =∠NFC .又∵AD ∥BC .∴∠EAM =∠NCF , 又AE =CF ∴ △AME ≌△CNF ,∴AM =CN .由FN ∥BM ,FC =BF ,得CN =MN ,∴CN=MN =AM ,AM =13AC .∴ ②正确. ∵ AM =13AC ,∴ 13AMB ABC S S =△△,∴④不正确.FN 为△BMC 的中位线,BM =2NF ,△ABM ≌△CDN ,则BM =DN ,∴DN =2NF ,∴③正确.13.【答案】20;24; 14.【答案】3;【解析】解:如图,过点D 作DE⊥DP 交BC 的延长线于E ,∵∠ADC=∠ABC=90°,∴四边形DPBE 是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°, ∴∠ADP+∠CDP=90°, ∴∠ADP=∠CDE, ∵DP⊥AB, ∴∠APD=90°, ∴∠APD=∠E=90°, 在△ADP 和△CDE 中,,∴△ADP≌△CDE(AAS ),∴DE=DP,四边形ABCD 的面积=四边形DPBE 的面积=18, ∴矩形DPBE 是正方形, ∴DP==3. 故答案为:3.15.【答案】7;【解析】∵ 四边形ABCD 是平行四边形,∴ AD =BC ,AB =CD . 又∵ 以BE 为折痕,将△ABE 向上翻折到△FBE 的位置,∴ AE =EF ,AB =BF .已知DE +DF +EF =8,即AD +DF =8,AD +DC -FC =8.∴ BC +AB -FC =8.① 又∵ BF +BC +FC =22,即AB +BC +FC =22.②,两式联立可得FC =7.16.【答案】128;【解析】根据题意可得:第n 个正方形的边长是第(n ﹣1)个的倍;故面积是第(n﹣1)个的2倍,已知第一个面积为1;则那么第8个正方形面积S 8=27=128. 故答案为128.三.解答题 17.【解析】 (1)证明:连接AC∵ ∠ABC =90°,∴ 222AB BC AC +=. ∴ CD ⊥AD ,∴ 222AD CD AC +=.∵ 2222AD CD AB +=, ∴ 2222AB BC AB +=. ∴ AB =BC .(2)证明:过C 作CF ⊥BE 于F .∵ BE⊥AD,∴四边形CDEF是矩形.∴ CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴△BAE≌△CBF.∴ AE=BF.∴ BE=BF+EF=AE+CD.18.【解析】解:(1)证明:∵DF∥AC,DE∥AB,∴四边形AFDE是平行四边形.∴AF=DE,∵DF∥AC,∴∠FDB=∠C又∵AB=AC,∴∠B=∠C,∴∠FDB=∠C∴DF=BF∴DE+DF=AB=AC;(2)图②中:AC+DE=DF.图③中:AC+DF=DE.(3)当如图①的情况,DF=AC-DE=6-4=2;当如图②的情况,DF=AC+DE=6+4=10.故答案是:2或10.19. 解:(1)EAF、△EAF、GF.(2)DE+BF=EF,理由如下:假设∠BAD的度数为m,将△ADE绕点A顺时针旋转m°得到△ABG,如图,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵12 EAF m∠=°,∴112322BAD EAF m m m∠+∠=∠-∠=-=°°°.∵∠1=∠2,∴∠1+∠3=12 m°.即∠GAF=∠EAF.又AG=AE,AF=AF.∴△GAF≌△EAF.∴ GF=EF.又∵ GF=BG+BF=DE+BF,∴ DE+BF=EF.20. 【解析】解:(1)∵在△ABC中,AB=AC,∠ABC=α,∴∠BAC=180°﹣2α,∵∠DAE+∠BAC=180°,∴∠DAE=2α,∵AE=AD,∴∠ADE=90°﹣α;(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α,由(1)知,∠ADE=90°﹣α,∴∠ADC=∠ADE+∠EDC=90°,∴AD⊥BC.∵AB=AC,∴BD=CD;②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α,由(1)知,∠DAE=2α,∴∠DAC=α,∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

华东师大初中数学八年级上册《全等三角形》全章复习与巩固(提高)巩固练习

华东师大初中数学八年级上册《全等三角形》全章复习与巩固(提高)巩固练习

【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=().A.150°B.210°C.105°D.75°2.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF3. 下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为().A. 1B. 2C. 5D. 无法确定5. 如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为().A.7B.14C.17D.206. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.57.如图,在△ABC中,∠B=36°,∠C=72°,AD平分∠BAC交BC于点D.下列结论中错误的是()A.图中共有三个等腰三角形B.点D在AB的垂直平分线上C.AC+CD=AB D.BD=2CD8. 用尺规作图“已知底边和底边上的高线,作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的垂直平分线m,交BC于点D;③在直线m上截取DA=h,连接AB、AC.这样作法的根据是().A.等腰三角形三线合一B.等腰三角形两底角相等C.等腰三角形两腰相等D.等腰三角形的轴对称性二.填空题9. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=∠OCA,∠BOC=110°,则∠A的度数为________.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是.15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16. (2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.19.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E >90°,求证:△ABC≌△DEF.20.已知:△ABC中,AD平分∠BAC交BC于点D,且∠ADC=60°.问题1:如图1,若∠ACB=90°,AC=m AB,BD=n DC,则m的值为_________,n的值为__________.问题2:如图2,若∠ACB为钝角,且AB>AC,BD>DC.(1)求证:BD-DC<AB-AC;(2)若点E在AD上,且DE=DB,延长CE交AB于点F,求∠BFC的度数.【答案与解析】一.选择题1. 【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2. 【答案】D;【解析】(1)△ABC≌△DEF(SAS);故A正确;(2)△ABC≌△DEF(SSS);故B正确;(3)△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误.3. 【答案】C;【解析】答案A是假命题,因为互补的两角不一定有一条公共边;答案B是假命题,同旁内角不一定互补,在两直线平行的前提下,同旁内角互补;答案C是真命题;答案B是假命题,一个角的补角不一定大于这个角,也可能小于或等于这个角.4. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.5. 【答案】C;【解析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.6. 【答案】A;【解析】延长BD交AC于E,由题意,BC=CE=3,AE=BE=5-3=2,且BD=DE =1BE=1.27. 【答案】D;【解析】解:A、在△ABC中,∠B=36°,∠C=72°,∴∠BAC=180°﹣36°﹣72°=72°,∵AD平分∠BAC,∴∠DAC=∠DAB=36°,即∠DAB=∠B,∠BAC=∠C,∠ADC=36°+36°=72°=∠C,∴△ADB、△ADC、△ABC都是等腰三角形,故本选项错误;B、∵∠DAB=∠B,∴AD=BD,∴D在AB的垂直平分线上,故本选项错误;C、在AB上截取AE=AC,连接DE,在△EAD和△CAD中∴△EAD≌△CAD,∴DE=DC,∠C=∠AED=72°,∵∠B=36°,∴∠EDB=72°﹣36°=36°=∠B,∴DE=BE,即AB=AE+BE=AC+CD,故本选项错误;D、∵CD=DE=BE,DE+BE>BD,∴BD<2DC,故本选项正确;故选D.8. 【答案】A;解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】20;【解析】过M作MD⊥AB于D,可证△ACM≌△ADM,所以DM=CM=20cm. 10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】135°;【解析】点O为角平分线的交点,∠AOC=180°-12(∠BAC+∠BCA)=135°.14. 【答案】30°或75°或15°;【解析】根据不同边的高分类讨论.15.【答案】15;【解析】因为六边形ABCDEF的六个内角都相等为120°,每个外角都为60°,向外作三个三角形,进而得到四个等边三角形,如图,设AF=x,EF=y,则有x+1+3=x+y+2=3+3+2=8所以x=4,y=2,六边形ABCDEF的周长=1+3+3+2+2+4=15.16.【答案】(2,4)或(4,2);【解析】①当点P在正方形的边AB上时,Rt△OCD≌Rt△OAP,∴OD=AP,∵点D 是OA中点,∴OD=AD=OA,∴AP=AB=2,∴P(4,2),②当点P在正方形的边BC 上时,同①的方法,得出CP=BC=2,∴P(2,4).三.解答题17.【解析】证明:如图所示,在AC上取点F,使AF=AE,连接OF,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴ △AEO ≌△AFO (SAS ).∴ ∠EOA =∠FOA .∵ ∠B =60°,∴ ∠AOC =180°-(∠OAC +∠OCA)=180°-12(∠BAC +∠BCA)=180°-12(180°-60°)=120°.∴ ∠AOE =∠AOF =∠COF =∠DOC =60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ).∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】解:(1)如图.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =(18030)2-÷=75°.∵DB =DC ,∠DCB =30°,∴∠DBC =∠DCB =30°.∴∠1=∠ABC -∠DBC =75°-30°=45°.∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC .∴AD 平分∠BAC .∴∠2=21∠BAC =3021⨯=15°.∴∠ADE =∠1+∠2 =45°+15°=60°.(2)证明:连接AM ,取BE 的中点N ,连接AN .∵△ADM 中,DM =DA ,∠ADE =60°,∴△ADM 为等边三角形.∵△ABE 中,AB =AE ,N 为BE 的中点,∴BN =NE ,且AN ⊥BE .∴DN =NM .∴BN -DN =NE -NM ,即 BD =ME .∵DB =DC ,∴ME =DC .19.【解析】解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′;则DF=D′F=AC,△DEF≌△ABC,△D′EF 和△ABC 不全等; 故选:C ;第三种情况:证明:如图2所示:过点C 作CG⊥AB 交AB 的延长线于点G ,过点F 作DH⊥DE 交DE 的延长线于点H ,∵∠B=∠E,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS ),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL ),∴∠A=∠D,在△ABC 和△DEF 中,, ∴△ABC≌△DEF(AAS ).20.【解析】证明:问题1:21,2 ; 问题2:(1)在AB 上截取AG ,使AG =AC ,连接GD .(如图) ∵AD 平分∠BAC ,∴∠1=∠2.在△AGD 和△ACD 中,AG AC 12 A D AD⎧⎪∠∠⎨⎪⎩===∴△AGD ≌△ACD .∴DG =DC .∵△BGD 中,BD -DG <BG ,∴BD -DC <BG .∵BG = AB -AG = AB -AC ,∴BD -DC <AB -AC .(2)∵由(1)知△AGD ≌△ACD ,∴GD =CD ,∠4 =∠3=60°.∴∠5 =180°-∠3-∠4=180°-60°-60°=60°.∴∠5 =∠3.在△BGD 和△ECD 中,53DB DE DG DC =⎧⎪∠∠⎨⎪=⎩=,∴△BGD ≌△ECD .∴∠B =∠6.∵△BFC 中,∠BFC =180°-∠B -∠7 =180°-∠6-∠7 =∠3, ∴∠BFC =60°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】 一.选择题
1.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2
a >2
b
B .若a >|b |,则2a >2
b
C .若|a |>b ,则2
a >2
b D .若3
a >3
b ,则2
a >2
b 2.下列式子表示算术平方根的是 ( ). ①
()
2
33-= ②
()()2515--= ③93
104
-
=- ④ 255-= ⑤ 0.010.1±=± ⑥ ()2
0a a a =≥
A .①②④
B .①④⑥
C .①⑤⑥
D .①②⑥ 3. 下列说法正确的有( )
①无限小数不一定是无理数; ②无理数一定是无限小数; ③带根号的数不一定是无理数; ④不带根号的数一定是有理数. A ①②③ B ②③④ C ①③④ D ①②④
4. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,
即.416=③-7是49的算术平方根,即.7)7(2=-④7是2
(7)-的算术平方根,即
.7)7(2=-其中正确的是( )
A. ①③
B. ②③
C. ②④
D. ①④ 5. 估计
介于( )
A .0.4与0.5之间
B .0.5与0.6之间
C .0.6与0.7之间
D .0.7与0.8之间
6.下列运算中正确的是( )
4913=12622-82==)(
C. 24±=
D. ∣32-∣=23- 7. 已知:a a 则,且,68.2868.82.62333=-==( ) A.2360 B.-2360 C.23600 D.-23600 8. -2781 ) A .0 B .6
C .6或-12
D .0或6 二.填空题
9. 下列命题中正确的有 (填序号)
(1)若,b a >那么b a 22>; (2)两数的和大于等于这两数的差;
(3)若,b a >那么2
2b a >; (4)若,b a > c b >则c a >;
(5))()(c b a c b a ++=++ (6)一个数越大,这个数的倒数越小; (7)有理数加有理数一定是有理数; (8)无理数加无理数一定是无理数; (9)无理数乘无理数一定是无理数; 10.若﹣2x
m ﹣n y 2
与3x 4y
2m+n
是同类项,则m ﹣3n 的立方根是 .
11. 若2
2
)3(-=a ,则a = ,若2
3)3(-=a ,则a = .
12. 已知 :===00236.0,536.136.2,858.46.23则 . 13. 若x x -+
有意义,则=+1x ________.
14. 阅读下列材料:设0.30.333x ==&…①,则10 3.333x =…②,则由②-①得:93x =,
即13x =
.所以0.3
0.333=&…1=3
.根据上述提供的方法把下列两个数化成分数. 0.7
&= 1.3&= ; 15. 方程 3
61
(12)164
x +-
=的解x = _________ . 16. 若,19961995a a a =-+-则2
1995-a 的值等于_________.
三.解答题
17. 已知一个正数的两个平方根分别为a 和2a ﹣9 (1)求a 的值,并求这个正数; (2)求17﹣9a 2
的立方根.
18. 如图所示,已知A 、B 两点的坐标分别为(5,0)A -,(2,1)B -.
(1)求△OAB 的面积和△ACB 的面积(结果保留一位小数); (2)比较点A 所表示的数与-2.4的大小.
19. 把下列无限循环小数化成分数:(1)0.6•
(2)0.23••
(3)0.107•

20.细心观察右图,认真分析各式,然后解答问题:
()
()
2
1
221112
2
===
+,S ;
()
()
2
233122
2
2
=
==
+,S
; ()
()
2
3
44133
2
2
=
==
+,S
; ……,……; (1)请用含n(n 为正整数)的等式表示上述变化规律;
(2)观察总结得出结论:三角形两条直角边与斜边的关系,用一句话概括为: ; (3)利用上面的结论及规律,请作出等于7的长度;
(4)你能计算出2
10232221S S S S ++++Λ的值吗?
【答案与解析】 一.选择题
1. 【答案】B ;
【解析】B 答案表明,||||a b a b >>且,故2
a >2
b . 2. 【答案】D ;
【解析】算术平方根的专用记号是“a ”根号前没有“-”或“±”号. 3. 【答案】A ; 4. 【答案】C ;
【解析】算术平方根是平方根中符号为正的那个. 5.【答案】C . 【解析】∵
2.235,∴
﹣1≈1.235,∴
≈0.617,∴
介于0.6与0.7
之间.
6. 【答案】D ;
7. 【答案】D ;
【解析】2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,
a =-23600. 8. 【答案】A ;
819=,9的算术平方根是3,故选A.
O
.....
S 5
S 4
S 3
S 2
S 1
1
11
1
11
A 6
A 5
A 4
A 3
A 2A 1
二.填空题 9. 【答案】(1),(4),(5),(7); 10.【答案】2. 【解析】若﹣2x
m ﹣n y 2
与3x 4y
2m+n
是同类项,∴,解方程得:.
∴m ﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为:2. 11.【答案】3±39
【解析】正数的平方根有2个,实数有一个与它符号相同的立方根. 12.【答案】0.04858
【解析】23.6向左移动4位,4.858向左移动2位得0.04858. 13.【答案】1;
【解析】x ≥0,-x ≥0,得x =0,所以=+1x 1. 14.【答案】74
;
93
; 【解析】设x =0.777……,10x =7.777……,9x =7, x =7
9
.设y =1.333……,10y =13.333……,9y =12, y =4
3
. 15.【答案】
18
; 【解析】()3
12551
12,12,6448
x x x +=+==. 16.【答案】1996;
1996a -a ≥1996,原式=a -19951996a -a 1996a -1995,两边平方得2
1995-a =1996. 三.解答题
17.【解析】 解:(1)由平方根的性质得,a+2a ﹣9=0, 解得a=3,
∴这个正数为32
=9;
(2)当a=3时,17﹣9a 2
=﹣64, ∵﹣64的立方根﹣4, ∴17﹣9a 2
的立方根为﹣4. 18.【解析】
解:(1)∵ (5,0)A ,(2,1)B -, ∴ ||5OA =
BC =1,AC =OA -OC 52.
∴ 115
||||51 1.122OAB S OA BC ∆=
==≈.
11
||||2)110.1
222
ACB
S AC BC

==⨯⨯=-≈.
(2)点A
表示的实数为
2.24
≈-.
∵ 2.24<2.4,
∴-2.24>-2.4,

2.4
>-
19.【解析】
解:(1) 设0.6
x

=①则10x=6.6


②-①得9x=6

62
93
x==
,即
2
0.6
3

=
(2) 设0.23
x
••
=①则10023.23
x
••
=②
②-①,得99x=23

23
99
x=
,即
23
0.23
99
••
=
.
(3) 设0.107
x
••
=①则1000107.107
x
••
=②
②-①,得999x=107,

107
999
x=
,即
107
0.107
999
••
=
.
20.【解析】
解:(1)()2
,1
1
2n
S
n
n
n
=
+
=
+.
(2)直角三角形中,两条直角边的平方和等于斜边的平方.
(3)略.
2222 2222
12310
55 (4)
22224 S S S S
⎛⎛⎫⎛⎛⎫++++=+++=
⎪ ⎪
⎪ ⎪
⎝⎭⎝⎭⎝⎭⎝⎭
L L。

相关文档
最新文档