浙教版八年级上册数学期末测试卷
浙教版初中数学八年级上册期末测试卷(标准难度)(含答案)
浙教版初中数学八年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列说法错误的是( )A. 有一个外角是锐角的三角形是钝角三角形B. 有两个角互余的三角形是直角三角形C. 直角三角形只有一条高D. 任何一个三角形中,最大角不小于60度2. 如图,直线l 上有三个正方形A 、B 、C ,若正方形A 、C 的面积分别是5和11,则正方形B 的面积为( )A. 4B. 6C. 16D. 553. 如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,垂足分别为E ,F ,要使△ABF≌△CDE ,则所需添加的条件不正确的是( )A. BF =DEB. AB//CDC. AE =CFD. AE =EF4. 以长度分别为下列各组数的线段为边,其中能构成直角三角形的是( )A. 1,2,3B. 2,√2,√3C. 0.6,0.8,0.9D. 2,32,525. 若一个等腰三角形的两边长分别为6和4,则该等腰三角形的周长是( )A. 13B. 14或16C. 16D. 146.已知关于x 的不等式组{2x+53−x >−5x+32−t <x恰有5个整数解,则t 的取值范围是( )A. −6<t<−112B. −6≤t<−112C. −6<t≤−112D. −6≤t≤−1127.若不等式组{3x−1<x+5,x<a−1的解集为x<3,则a满足的条件是( )A. a=4B. a<4C. a>4D. a≥48.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[−π]=−4.如果[x2]=−3( )A. −6≤x<−4B. −8≤x<−6C. −6<x≤−4D. −8<x≤−69.如图,正方形网格中,能由a平移得到的线段是( )A. bB. cC. dD. e10.点A(3,−5)向左平移3个单位到点B,则点B的坐标为( )A. (0,−5)B. (6,−5)C. (3,−8)D. (3,−2)11.在平面直角坐标系中,一次函数y=1−x的图象是( )A. B.C. D.12.如图①,正方形ABCD中,点E在边BC上,连接AE,动点P从A点出发,沿A→D→C的路径,以1cm/s的速度匀速运动到C点,在此过程中,△APE的面积y(cm2)随运动时间x(s)变化的函数关系图象如图②所示,则当x=5时,y的值为( )A. 2.5B. 3C. 3.5D. 4第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 三角形三个内角的比为1:2:3,则最大的内角是______. 14. 在Rt △ABC 中,斜边AB =5,则AB 2+BC 2+CA 2=______.15. 对非负实数x “四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n −12≤x <n +12,则<x >=n.如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x =______. 16. 已知直线y =2x +(3−a)与x 轴的交点在A(2,0),B(3,0)之间(包括A ,B 两点),则a的取值范围是_________.三、解答题(本大题共9小题,共72分。
浙教版八年级上册数学期末测试卷(满分必备)
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A.6B.8C.10D.122、不等式组的最小整数解是()A.-1B.0C.1D.23、三角形三条中位线的长为3、4、5,则此三角形的面积为()A.12B.24C.36D.484、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连接AE交CD于点F,则∠AFC的度数是()A.150°B.125°C.135°D.112.5°5、小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A. B. C.D.6、一次函数y=kx-k(k<0)的图象大致是( )A. B. C. D.7、如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A. B.1 C. D.78、等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是()度.A.25B.40C.25或40D.609、若点和点关于x轴对称,则的值是()A.-9B.-1C.9D.110、如图所示,底边BC为2 ,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4D.311、如图,∠ABC=90°,AB=6,BC=8,AD=CD=7,若点P到AC的距离为5,则点P在四边形ABCD边上的个数为()A.0B.2C.3D.412、如图,AB是⊙O的直径,弦CD⊥AB于点E,若∠OCE=50°,那么∠ABD=()A.50°B.60°C.70°D.80°13、在△ABC中,∠ABC与∠ACB的平分线相交于O,则∠BOC一定( )A.大于90°B.等于90°C.小于90°D.小于或等于90°14、把水匀速滴进如图所示玻璃容器,那么水的高度随着时间变化的图象大致是()A. B. C. D.15、如图,直线,,,则的度数是()A. B. C. D.二、填空题(共10题,共计30分)16、△ABC中,AB=AC=17,BC=16,则△ABC的面积________.17、如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________.18、如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=________ .19、点到x轴和y轴的距离之和是________.20、如图,OP平分∠AOB,PD⊥OB于D,∠OPD=60°,PO=4,则点P到边OA的距离是________.21、等腰三角形的一个外角是140°,则此多边形的三个内角的度数分别是________22、如图,△ABC中,D、E、F为BC、AD、BE的中点,若△CEF的面积是3,则△ABC的面积是________.23、如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是________度.24、如图,是半圆的直径,以弦(非直径)为对称轴将弧折叠,点是折叠后的弧与的交点,若,则________.25、如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、已知等边的两个顶点的坐标为,,试求点的坐标和的面积.28、已知点A(3,0)、B(-1,0)、C(0,2),以A、B、C为顶点画平行四边形,你能求出第四个顶点D吗?29、如图,塔AB和楼CD的水平距离BD为80米,从楼顶C处及楼底D处测得塔顶A的仰角分别为45°和60°,试求塔高与楼高.30、已知:如图,△ABC的外接圆⊙O的直径为4,∠A=30°,求BC的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、D5、B6、A7、A8、C9、A10、A11、A12、C13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
浙教版八年级上册数学期末测试卷(典型题)
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图1所示,将点A向下平移5个单位长度后,将重合于图中的 ( )A.点CB.点FC.点DD.点E2、如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°3、两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D.4个4、若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为()A. y= t+2.4B. y=0.5 t+1C. y=0.5 t+0.3D. y=0.5 t-0.35、如图,在⊙O中,AB是直径,∠OCA=26°,则∠BOC=()A.60°B.56°C.52°D.48°6、已知关于x的方程x2-3mx+5m-2=0的一个根为x=2,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为()A.8B.10C.8或10D.6 m7、A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时刻t(小时)之间的关系.下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.48、点A(﹣3,5)在平面直角坐标系的()A.第一象限B.第二象限C.第三象限D.第四象限9、如图,直角三角形三边上的等边三角形的面积从小到大依次记为S1、S2、S 3,则S1、S2、S3之间的关系是()A.S1+S2>S3B.S1+S2<S3C.S1+S2=S3D.S12+S22>S3210、如图,是交警部门为缓解市区内交通拥挤在学府路某处设立的路况显示牌.立杆AB的高度是米,从D点测得显示牌顶端C和底端B的仰角分别是60°和45°,则显示牌BC的高度为()A. 米B.(3-)米C.9米D.(2 -3)米11、在△ABC中,∠C=90°,周长为6+2 ,斜边上的中线为2,则△ABC的面积为()A.4B.2C.D.312、如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC连接AE交CD 于点F,则∠AFC等于()A.112.5°B.120°C.135°D.145°13、如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已的坐标为()知OA=8,OC=4,则点A1A.(4.8,6.4)B.(4,6)C.(5.4,5.8)D.(5,6)14、小华家距离县城15km,星期天8:00,小华骑自行车从家出发,到县城购买学习用品,小华与县城的距离y(km)与骑车时间x(h)之间的关系如图所示,给出以下结论:①小华骑车到县城的速度是15km/h;②小华骑车从县城回家的速度是13km/h;③小华在县城购买学习用品用了1h;④B点表示经过h,小华与县城的距离为15km(即小华回到家中),其中正确的结论有()A.1个B.2个C.3个D.4个15、如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S;④AG+DF=FG.则下列结论正确有( )△FGHA.①②④B.①③④C.②③④D.①②③二、填空题(共10题,共计30分)16、如图,正方形的边长为5,,连结,则线段的长为________.17、如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是________.(填上一个条件即可)18、直线L与直线y=2x+1的交点的横坐标为2,与直线y=﹣x+2的交点的纵坐标为1,则直线L对应的函数解析式是________.19、如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A 落在点B处,折痕为DE,则∠CBE=________°.20、在中,,则= ________.21、如图,∠ACB是Rt∠,CD是中线,CD=2.5,BC=3,则AC=________.22、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,E是AB边的中点,F是AC边的中点。
浙教版八年级上册数学期末测试卷
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,则∠BAC=().A.30°B.36°C.40°D.72°2、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.3 cmD.6 cm3、如图所示,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.4、不等式组解集在数轴上表示正确的是( )A. B. C.D.5、如图,在中,,是边上的高,,,则的长为( )A. B. C. D.6、如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.600mB.500mC.400mD.300m7、如图所示,△ABC 中, AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.60°B.65°C.70°D.75°8、把不等式组的解集表示在数轴上,正确是( )A. B. C.D.9、如图,将△ABC沿AC对折,点B与点E重合,则全等的三角形有()A.4对B.3对C.2对D.1对10、下列定理有逆定理的是()A.直角都相等B.同旁内角互补,两直线平行C.对顶角相等D.全等三角形的对应角相等11、如图,把△ABC纸片的∠A沿DE折叠,点A落在四边形CBDE外,则∠1、∠2与∠A的关系是()A.∠1+∠2=2∠AB.∠2-∠A=2∠1C.∠2-∠1=2∠A D.∠1+∠A= ∠212、若关于x的不等式组有且只有3个整数解,则a的取值范围是()A. B. C. D.13、下列说法不能推出△ABC是直角三角形的是()A. B. C.∠A=∠B=∠C D.∠A=2∠B=2∠C14、点P(m+3,m+1)在直角坐标系x轴上,则点P坐标为()A.(0,﹣2)B.(0,2C.(﹣2,0)D.(2,0)15、如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B = 30°,∠C = 100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远二、填空题(共10题,共计30分)16、如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF=________.17、不等式3x+1>2x﹣1的解集为________.18、已知矩形纸片的边,(如图),将它折叠后,点落在边的中点处,那么折痕的长为________.19、一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于________.20、如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为________.21、如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=________.22、等腰三角形的顶角为60°,底边为8cm,则腰长为________.23、已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.24、在Rt中,∠A=90°,AC=4,,将沿着斜边BC翻折,点A落在点处,点D、E分别为边AC、BC的中点,联结DE并延长交所在直线于点F,联结,如果为直角三角形时,那么________25、如图,点D是等边△ABC内一点,DA=8,BD=10,CD=6,则∠ADC的度数是________.三、解答题(共5题,共计25分)26、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.27、已知如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.试说明:AC=BD.28、如图,在△ABC中,∠ABC=45°,AD、BE是△ABC的高,AD、BE相交于点F.求证:BF=AC.29、如图所示,已知CE⊥AB,DF⊥AB,垂足分别为E,F,且AC=BD,AF=BE,求证:∠C=∠D.30、如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.参考答案一、单选题(共15题,共计45分)1、B2、D3、A4、C5、A6、B7、B8、A9、B10、B11、C12、C13、C14、D15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
浙教版八年级上册数学期末测试卷及含答案
浙教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为()A. B.4 C. D.2、下列长度的4根木条中,能与4cm和9cm长的2根木条首尾依次相接围成一个三角形的是()A.4cmB.9cmC.5cmD.13cm3、一次函数y=x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4、在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.1,5,9C.5,12,13D.7,15,245、已知如图,两个三角形全等,则∠1等于()A.73°B.57°C.50°D.60°6、如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7、如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B的度数是()A.15°B.40°C.75°D.35°8、下列图形是公共设施标志,其中是轴对称图形的是( )A. B. C. D.9、传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中是轴对称图形的有()A. 个B. 个C. 个D. 个10、明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m 2B.150m 2C.330m 2D.450m 211、下列各组线段,能组成三角形的是()A.1cm,1cm,3cmB.2cm,3cm,5cmC.3cm,4cm,8cm D.5cm,6cm,10cm12、如图,在中,,为斜边的中点,在内绕点转动,分别交边,于点,(点不与点,重合),下列说法正确的是()①;②;③A.①②B.①③C.②③D.①②③13、如图,已知⊙O的半径为5,弦AB=8,CD=6,则图中阴影部分面积为()A. π–24B.9πC. π–12D.9π–614、一个一元一次不等式组的解集在数轴上表示如图,则此不等式组的解集是()A.x>3B.x≥3C.x>1D.x≥115、将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原三角形向左平移两个单位B.将原三角形向右平移两个单位C.关于x轴对称D.关于y轴对称二、填空题(共10题,共计30分)16、若不等式组的解集是-1<x<1,则(a+b)2019=________.17、如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是________(写出一个即可)18、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B 运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.19、如图,直角△ABC中,∠A=90°,CD=DE=BE,当∠ACD=21°时,∠B=________.20、如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且,则PB+PC的最小值为________.21、等腰三角形的一边长7cm,另一边长8cm,那么这个三角形的周长是________cm.22、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是________.23、我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若,则该等腰三角形的顶角为________度.24、如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.25、已知在Rt△ABC中,P为斜边AB上一点,且PB=PC=2,那么AB=________.三、解答题(共5题,共计25分)26、解不等式组:,并在数轴上表示解集.27、如图,AD∥BE,∠1=∠2,求证:∠A=∠E.请完成解答过程解:∵AD∥BE(已知),∴∠A=∠▲(▲)又∴∠1=∠2(已知),∴AC∥▲(▲)∴∠3=∠▲(▲)∴∠A=▲(▲)28、如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.29、如图,AE是△ABC的角平分线,D是AE上一点,∠DBE=∠DCE.求证:BE =CE.30、如图,在△ABC中,∠ACB=90°,AC=BC,BD⊥CE,AE⊥CE,垂足分别为D、E,猜想图中线段DE、AE、DB之间的关系,并说明理由.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、C5、C6、B7、D9、D10、B11、D12、A13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
浙教版八年级上册数学期末考试试卷带答案
浙教版八年级上册数学期末考试试题一、单选题1.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是( ) A .3cm ,4cm ,8cmB .4cm ,4cm ,8cmC .5cm ,6cm ,8cmD .5cm ,5cm ,12cm2.如果m >n ,那么下列结论错误的是( )A .m +2>n +2B .﹣2m >﹣2nC .2m >2nD .m ﹣2>n ﹣23.下列图形是轴对称图形的为( )A .B .C .D .4.已知△ABC 为直角坐标系中任意位置的一个三角形,现将△ABC 的各顶点横坐标乘以-1,得到△A 1B 1C 1,则它与△ABC 的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y=x 对称 5.利用直角三角板,作ABC 的高,下列作法正确的是( )A .B .C .D .6.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人能分到笔记本但数量不足3本,则共有学生( )A .4人B .5人C .6人D .5人或6人 7.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为() A .24y x =- B .24y x =+ C .22y x =+ D .22y x =-8.如图,在△ABC 中,△ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S△PBC 为( )A .3B .3.3C .4D .4.59.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6 B .5<m≤6 C .5≤m≤6 D .6<m≤710.如图,在等边△ABC 中,点D ,E 分别在边BC ,AB 上,且BD =AE ,AD 与CE 交于点F ,作CM△AD ,垂足为M ,下列结论不正确的是( )A .AD =CEB .MF =12CF C .△BEC =△CDA D .AM =CM二、填空题11.已知21y x =-,那么当=1x -时,y =________.12.同角的余角相等的逆命题是_________,它是一个___________命题(填“真”或“假”)13.如图,直线y =x+2与直线y =ax+c 相交于点P(m ,3).则关于x 的不等式x+2≥ax+c 的不等式的解为_____.14.如图,在ABC 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F ,若BF AC =,BD=8,3CD =,则线段AF 的长度为______.15.如图,BD 是Rt ABC ∆的角平分线,点F 是BD 上的动点,已知2AC =,2=AE ,30ABC ∠=︒,则(1)BE = ________;(2)AF EF +的最小值是________.16.已知:如图,AC 、BD 相交于点O ,△A =△D ,请你再补充一个条件,使AOB△DOC ,你补充的条件是_________.17.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.三、解答题18.解不等式(组):(1)9x ﹣2≤7x+3; (2)32123x x x +>⎧⎪⎨≤⎪⎩. 19.小明解不等式41132x x +--≤出现了错误,解答过程如下: 解:2(4)3(1)1x x +--≤….第一步,28331x x +-+≤…………..第二步,10x ≥………………………..第三步.(1)小明解答过程是从第__________步开始出错的,其错误的原因是_____________;(2)写出此题正确的解答过程.20.如图,点E ,C 在线段BF 上,AB DE =,BE CF =.(1)若要使ABC DEF ≌△△,可以添加的条件是:______; (2)请根据你所给的条件进行证明.21.已知一次函数3y x b =-+的图形过点M .(1)求实数b 的值;(2)设一次函数3y x b =-+的图形与y 轴交于点N ,连接OM .求MON △的面积.22.已知一次函数y 1=kx+b (其中k 、b 为常数且k≠0)(1)若一次函数y 2=bx ﹣k ,y 1与y 2的图象交于点(2,3),求k ,b 的值;(2)若b =k ﹣1,当﹣2≤x≤2时,函数有最大值3,求此时一次函数y 1的表达式.23.某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的23,求该校本次购买A 型和B 型课桌凳共有几种购买方案?怎样的方案使总费用最低?并求出最低消费.24.甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y (米)与登山时间x (分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题(1)甲登山的速度是每分钟 米;乙在A 地提速时,甲距地面的高度为 米;(2)若乙提速后,乙的速度是甲登山速度的3倍;△求乙登山全过程中,登山时距地面的高度y (米)与登山时间x (分钟)之间的函数解析式;△乙计划在他提速后5分钟内追上甲,请判断乙的计划能实现吗?并说明理由;(3)当x 为多少时,甲、乙两人距地面的高度差为80米?25.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,.(1)ABC 的面积为___________ ;(2)在图中作出ABC 关于y 轴的对称图形111A B C △;(3)写出点111A B C ,,的坐标:1A (_____,___), 1B (______,____),1C (_____,_______) 26.如图,ABC 中,E 是AC 边上一点,BE BC =,D 为三角形外一点,且DEA EBC ∠=∠,AC DE =.(1)求证:ABC △DBE .(2)若50ABD ∠=︒,求C ∠的度数.参考答案1.C2.B3.D4.B5.D6.C7.A8.A9.B10.D11.012. 如果两个角相等,那么这两个角是同一个角的余角, 假.【详解】解:“同角的余角相等”的逆命题为“如果两个角相等,那么这两个角是同一个角的余角”,故答案为如果两个角相等,那么这两个角是同一个角的余角,假.13.x≥1【详解】把P (m ,3)代入y =x+2得:m+2=3,解得:m =1,△P (1,3),△x≥1时,x+2≥ax+c ,△关于x 的不等式x+2≥ax+c 的不等式的解为x≥1.故答案为:x≥1.14.5【分析】首先证明△BDF△△ADC ,再根据全等三角形的性质可得FD=CD ,AD=BD ,根据AD=8,DF=3,即可算出AF 的长.【详解】解:△AD 是BC 边上的高,BE 是AC 边上的高,△△ADC=△FDB=90°,△AEB=90°,△△1+△C=90°,△1+△2=90°,△△2=△C ,△△2=△3,△△3=△C ,在△ADC 和△BDF 中,3C FDB CDA BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△BDF△△ADC (AAS ),△FD=CD ,AD=BD ,△CD=3,BD=8,△AD=8,DF=3,△AF=8-3=5,故答案为:5.15. 2 2【分析】(1)根据勾股定理求出AB 的长度,然后根据2=AE ,即可求出BE 的长度;(2)作E 点关于BD 的对称点G ,根据两点之间线段最短得到AE+EF 的最小值即AG 的长度,然后根据等边三角形的性质即可求出AG 的长度.【详解】解:(1)△2AC =,30ABC ∠=︒,90BAC ∠=︒,△24BC AC ==,△AB ==△()22BE AB AE =-==,故答案为:2;(2)如图所示,作E 点关于BD 的对称点G ,连接EG ,AG ,GF ,△BD 是ABC ∠的平分线,△点G 在线段BC 上,△根据对称性可得EF=GF ,BG=BE=2,△EF+AF=GF+AF≥AG ,△当点A ,F ,G 三点共线时,GF+AF 的长度最短,即EF+AF 的最小值为AG 的长度. △GC=BC -BG=4-2=2,又△30ABC ∠=︒,90BAC ∠=︒,△=60C ∠︒,又△AC=2,△AGC 是等边三角形,△AG=AC=2.△AF EF +的最小值是2.故答案为:2.16.AO=DO【分析】由已知条件可得△A =△D ,对顶角△AOB =△DOC ,应添加一对对应边相等,可添加AO=DO ,或AB=DC,或BO=CO ,再利用ASA ,或AAS 判定即可.【详解】解:添加AO=DO,在AOB 与DOC中,△A=△D,AO=DO,△AOB=△DOC,∴AOB△DOC(ASA),故答案为:AO=DO.17.5 2【详解】解:设CD=x,则AD=A′D=4-x.在直角三角形ABC中,.则A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=52.故答案为:2.518.(1)x≤52;(2)﹣1<x≤6.【分析】(1)先移项得到9x﹣7x≤3+2,然后合并同类项后把x的系数化为1即可;(2)分别解两个不等式得到x>﹣1和x≤6,然后根据大于小的小于大的取中间得到不等式组的解集.【详解】(1)移项得9x﹣7x≤3+2,合并得2x≤5,系数化为1得x≤52;(2)32123x xx+>⎧⎪⎨≤⎪⎩①②,解△得x>﹣1,解△得x≤6,所以不等式组的解集为﹣1<x≤6.19.(1)第一步,两边同乘以6时漏乘了没有分母的项;(2)x≥5.【分析】(1)根据解不等式的步骤逐步分析即可;(2)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可.【详解】解:(1)第一步,两边同乘以6时漏乘了没有分母的项;(2)41132x x +--≤, 2(x+4)-3(x -1) ≤6,2x+8-3x+3≤6,2x -3x≤6-3-8,-x≤-5,x≥5.20.(1)AC=DF ;(2)见解析【分析】(1)由BE=CF 可得到BC=EF ,结合条件可再加一组边相等,或已知两边的夹角对应相等即可证明三角形全等;(2)利用全等三角形的判定方法,结合条件证明即可.【详解】解:(1)△BE=CF ,△BC=EF ,且AB=DE ,△可添加AC=DF ,利用SSS 来证明三角形全等,故答案为:AC=DF ;(2)证明:△BE=CF ,△BC=EF ,且AB=DE ,在△ABC 和△DEF 中,AC DF BC EF AB DE =⎧⎪=⎨⎪=⎩,△△ABC△△DEF (SSS ).21.(1)b =−2;(2)2【分析】(1)根据图象可以得到点M 的坐标,然后根据点M 在一次函数3y x b =-+的图象上,即可得到b 的值;(2)根据(1)中的结果,可以得到点N 的坐标,从而可以得到ON 的长,再根据点M 的坐标,可以得到点M 到y 轴的距离,从而可以计算出△MON 的面积.【详解】解:(1)由图象可得,点M 的坐标为(−2,4),△一次函数3y x b =-+的图形过点M (−2,4),△4=−2×(-3)+b ,解得:b=−2;(2)连接OM,如图所示,由(1)知,b=−2,△y=−3x−2,当x=0时,y=−3×0−2=−2,即点N的坐标为(0,−2),△ON=2,△点M(−2,4),△点M到y轴的距离是2,△△MON的面积=2×2÷2=2,即△MON的面积是2.22.(1)39,55;(2)y1=x或y1=﹣3x﹣4【分析】(1)y1与y2的图象交于点(2,3),代入y1与y2的解析式,组成k与b方程组,解之即可,(2)当﹣2≤x≤2时,y1函数有最大值3,一次函数y1增减性由k确定,分k>0,x=2,y=2与k<0,x=-2,y=2,代入解之即可.【详解】解:(1)△y1与y2的图象交于点(2,3),△把点(2,3)代入y1与y2的解析式得,23 23k bb k+=⎧⎨-=⎩,解得,3595kb⎧=⎪⎪⎨⎪=⎪⎩;(2)根据题意可得y 1=kx+k ﹣1,△当k >0时,在﹣2≤x≤2时,y 1随x 的增大而增大,△当x =2时,y 1=3k ﹣1=2,△k =1,△y 1=x ;△当k <0时,在﹣2≤x≤2时,y 1随x 的增大而减小,△当x =﹣2时,y 1=﹣k ﹣1=2,△k =﹣3,△y 1=﹣3x ﹣4.综上所述,y 1=x 或y 1=﹣3x ﹣4.23.(1)A 型课桌凳需180元,B 型课桌凳需220元;(2)共3种方案:方案一:A 型78套 ,B 型为122套;方案二:A 型79套 ,B 型为121套;方案三:A 型80套 ,B 型为120套;方案三总费用最低,费用为40880元【分析】(1)设A 型课桌凳需x 元,则B 型课桌凳需(x+40)元,根据4套A 型+5套B 型课桌凳=1820元,列出方程,解方程即可.(2)设购a 套A 型桌椅,()200a -套B 型桌椅,由购买这两种课桌凳总费用不能超过40880元可得到不等式,求得a 的取值范围,再分情况进行讨论.【详解】(1)设购一套A 型课桌凳需x 元,一套B 型课桌凳需()40x +元.依题意列方程得: ()45401820x x ++=解得:180x =:B 18040220+=(元)(2)设购a 套A 型桌椅,()200a -套B 型桌椅,列不等式组得:()()1802202004088022003a a a a ⎧+-≤⎪⎨≤-⎪⎩解得7880a ≤≤△a 为整数△78,79,80a =△共3种方案,分别为方案一:A型78套,B型为122套;方案二:A型79套,B型为121套;方案三:A型80套,B型为120套;方案一:78180122220140402684040880⨯+⨯=+=(元)方案二:79180121220142202662040840⨯+⨯=+=(元)方案三:80180120220144002640040800⨯+⨯=+=(元)△408004084040880<<△方案三总费用最低,费用为40880元.【点睛】考查了一元一次方程的应用和不等式组的应用,解题关键是根据已知得出不等式,求出a的取值.24.(1)10,120;(2)△15(02)3030(211)x xyx x≤≤⎧=⎨-<≤⎩,△能够实现.理由见解析;(3)当x为2.5或10.5或12时,甲、乙两人距地面的高度差为80米.【分析】(1)由时间,速度,路程的基本关系式可解;(2)△分段代入相关点的坐标,利用待定系数法来求解即可;△分别计算甲乙距离地面的高度再比较即可;(3)求出甲的函数解析式,分0≤x≤2时,2<x≤11时,11<x≤20时来讨论即可求解.【详解】(1)甲登山的速度为:(300﹣100)÷20=10米/分,100+10×2=120米,故答案为10,120.(2)△V乙=3V甲=30米/分,t=2+(300﹣30)÷30=11(分钟),设2到11分钟,乙的函数解析式为y=kx+b,△直线经过A(2,30),(11,300),△30230011k bk b=+⎧⎨=+⎩解得3030kb=⎧⎨=-⎩△当2<x≤11时,y=30x﹣30设当0≤x≤2时,乙的函数关系式为y=ax,△直线经过A(2,30)△30=2a解得a=15,△当0≤x≤2时,y=15x,综上,15(02)3030(211)x x y x x ≤≤⎧=⎨-<≤⎩ △能够实现.理由如下:提速5分钟后,乙距地面高度为30×7﹣30=180米.此时,甲距地面高度为7×10+100=170米.180米>170米,所以此时,乙已经超过甲.(3)设甲的函数解析式为:y =mx+100,将(20,300)代入得:300=20m+100 △m =10,△y =10x+100.△当0≤x≤2时,由(10x+100)﹣15x =80,解得x =4>2矛盾,故此时没有符合题意的解; 当2<x≤11时,由|(10x+100)﹣(30x ﹣30)|=80得|130﹣20x|=80△x =2.5或x =10.5;当11<x≤20时,由300﹣(10x+100)=80得x =12△x =2.5或10.5或12.△当x 为2.5或10.5或12时,甲、乙两人距地面的高度差为80米.25.(1)7.5(2)见解析(3)1A (1,5), 1B (1,0),1C (4,3).【分析】(1)利用三角形的面积公式求解即可;(2)先做出A ,B ,C 关于y 轴的对称点,然后顺次连接即可;(3)根据点的位置直接写出坐标即可.(1)解:S △ABC=1537.52⨯⨯=. (2)解:如图111A B C △即为所求.(3)解:1A (1,5), 1B (1,0),1C (4,3).【点睛】本题主要考查了坐标与图形、轴对称、三角形的面积等知识点,灵活运用相关知识成为解答本题的关键.26.(1)证明见解析;(2)65︒【详解】试题分析:(1)由三角形的外角性质得△DEB=△C ,从而易证ABC △DBE ;(2)由(1)可得△ABD=△EBC,由于BE=BC,故易求△C.试题解析:(1)△DEA ∠+△DEB=△EBC+△C ,DEA EBC ∠=∠△△DEB=△C ,又△BE CB =,DE AC =,△PBE △()ABC SAS(2)△ABC △DBE ,△DBE ABC =∠,△DBA EBC ∠=∠,△50EBC ∠=︒, △19050652C ∠=︒-⨯︒=︒.。
2022-2023年浙教版初中数学八年级上册期末考试检测试卷及部分答案(共五套)
2022-2023年浙教版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°2.若点P的坐标是(1,-2),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为( )A.30° B.20° C.10° D.40°4.如图,AB=AC,BD=1,BD⊥AD,则数轴上点C所表示的数为( )A.5+1 B.-5-1 C.-5+1 D.5-15.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( ) A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°6.不等式4x -1>2x +1的解集在数轴上表示为( )7.将一次函数y =12x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是( )A .x >4B .x >-4C .x >2D .x >-28.在等腰三角形中,有一个角是70°,则它的一条腰上的高与底边的夹角是( )A .35°B .40°或30°C .35°或20°D .70°9.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象的是( )10.如图,在平面直角坐标系中有一点A (1,0),点A 第一次向左跳动至A 1(-1,1),第二次向右跳动至A 2(2,1),第三次向左跳动至A 3(-2,2),第四次向右跳动至A 4(3,2),…,依照此规律跳下去,点A 第100次跳动至A 100,则A 100的坐标为( )A .(50,49)B .(51,50)C .(-50,49)D .(100,99) 二、填空题(每题3分,共24分)11.把命题“等腰直角三角形是轴对称图形”的逆命题改写成“如果……那么……”的形式是_______________________________________________________. 12.一次函数y =2x -6的图象与x 轴的交点坐标为________.13.在平面直角坐标系中,已知点O (0,0),A (1,3),将线段OA 向右平移3个单位,得到线段O 1A 1,则点O 1的坐标是________,A 1的坐标是________. 14.如图是一副三角板拼成的图案,则∠CEB =________°.15.如果不等式(m +1)x <m +1的解集是x >1,那么m 的取值范围是________. 16.在平面直角坐标系中,已知点A (m ,3)与点B (4,n )关于y 轴对称,那么(m +n )2 019=________.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是3,5,2,3,则最大正方形E 的面积是________.18.如图,在直角坐标系中,一次函数y =34x +6的图象与两坐标轴分别交于A ,B 两点,OC ⊥AB ,垂足为点C ,在直线AB 上有一点P ,y 轴的正半轴上有一点Q ,使得以O ,P ,Q 为顶点的三角形与△OCP 全等,请写出所有符合条件的点Q 的坐标:__________________.三、解答题(19题6分,20,21题每题8分,22,23题每题10分,24,25题每题12分,共66分)19.解下列不等式(组),并把解集在数轴上表示出来.(1)4x -13-x >1; (2)⎩⎪⎨⎪⎧1+x >-2,2x -13≤1.20.已知一次函数y=ax+c与y=kx+b的图象如图,且点B的坐标为(-1,0),请你确定这两个一次函数的表达式.21.如图,在Rt△ABC中,∠C=90°.(1)请在线段BC上找一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,请求出CD的长度.22.如图,在△ABC中,D在AB上,E在AC的延长线上,连结DE交BC于P,BD=CE,DP =EP.求证:AB=AC.23.在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格中建立平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)求出△A′B′C′的面积.24.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图①所示,樱桃价格z(元/千克)与上市时间x(单位:天)的函数关系如图②所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数表达式;(3)试比较第10天与第12天的销售金额哪天多.25.如图①,在△ABC中,CD⊥AB于D,且BD∶AD∶CD=2∶3∶4.(1)试说明△ABC是等腰三角形.(2)已知S△ABC=40 cm2,如图②,动点M从点B出发以每秒1 cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒).①若△DMN的边与BC平行,求t的值.②若点E是AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.答案一、1.解:∵∠A =50°,∠B =80°, ∴∠ACD =∠A +∠B =50°+80°=110°, 故选:C .2.D 点拨:由题意知,点P 的横坐标为正,纵坐标为负,这样的点在第四象限内. 3.C 点拨:∵AB ∥CD ,∴∠EFC =∠ABE =60°.∵∠EFC =∠D +∠E ,∴∠E =∠EFC -∠D=60°-50°=10°,故选C.4.D 点拨:∵在直角三角形ABD 中,∠ADB =90°,∴AB =AD 2+BD 2=22+12=5,∴点C 到原点的距离为5-1,∴点C 表示的数是5-1.故选D. 5.C 6.C7.B 点拨:将一次函数y =12x 的图象向上平移2个单位后,所得图象对应的函数的表达式为y =12x +2,令y >0,即12x +2>0,解得x >-4.8.C 点拨:70°的角可能是顶角,也可能是底角.分两种情况讨论:如图①,当顶角∠A=70°时,底角∠ABC =∠C =12(180°-∠A )=55°,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =35°.如图②,当底角∠ABC =∠C =70°时,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =20°.9.C10.B 点拨:观察发现,第2次跳动至点A 2(2,1),第4次跳动至点A 4(3,2),第6次跳动至点A 6(4,3),第8次跳动至点A 8(5,4)……第2n 次跳动至点A 2n (n +1,n ),∴第100次跳动至点A 100(51,50).故选B .二、11.如果一个三角形是轴对称图形,那么这个三角形是等腰直角三角形12.(3,0) 点拨:令y =0,得2x -6=0,解得x =3,所以一次函数y =2x -6的图象与x轴的交点坐标为(3,0).13.(3,0);(4,3) 点拨:将线段OA 向右平移3个单位,线段上任意一点的横坐标增加3,纵坐标不变,所以O 1的坐标是(3,0),A 1的坐标是(4,3). 14.10515.m <-1 点拨:∵不等式(m +1)x <m +1的解集是x >1,∴m +1<0,∴m <-1. 16.-1 17.4718.⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485点拨:∵OC ⊥AB ,∴△OCP 是以OP 为斜边的直角三角形.要使△OCP 与△OPQ 全等,则△OPQ 也是直角三角形,且OP 是斜边,∠OQP =90°,即PQ ⊥y 轴.设P ⎝ ⎛⎭⎪⎫a ,34a +6,则Q ⎝ ⎛⎭⎪⎫0,34a +6.由直线y =34x +6,可得A (-8,0),B (0,6),∴OA =8,OB =6,∴AB=10,∴OC =OA ·OB AB =245.①当OC =OQ 时,∵OP =OP ,∴Rt △OCP ≌Rt △OQP (HL).∵OQ =OC =245,∴Q ⎝ ⎛⎭⎪⎫0,245.②当OC =PQ 时,∵OP =OP , ∴Rt △OCP ≌Rt △PQO (HL), ∴245=|a |,∴a =245或a =-245, ∴34a +6=485或125,∴Q 的坐标为⎝⎛⎭⎪⎫0,485或⎝ ⎛⎭⎪⎫0,125.综上所述,所有符合条件的点Q 的坐标为⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485 .三、19.解:(1)去分母,得4x -1-3x >3,移项、合并同类项,得x >4, 它的解集在数轴上表示如图.(2)由1+x >-2,得x >-3, 由2x -13≤1,得x ≤2.∴原不等式组的解集为-3<x ≤2. 它的解集在数轴上表示如图.20.解:由题图可知交点A 的坐标为(1,3),因为函数y =kx +b 的图象过点A (1,3)和点B (-1,0),所以⎩⎪⎨⎪⎧k +b =3,-k +b =0,解得⎩⎪⎨⎪⎧k =32,b =32.又因为函数y =ax +c 的图象过点(1,3)和(0,-2),所以⎩⎪⎨⎪⎧a +c =3,c =-2,解得⎩⎪⎨⎪⎧a =5,c =-2.所以这两个一次函数的表达式分别为y =5x -2,y =32x +32.点拨:解此问题先通过图形确定两条直线的交点坐标,再利用待定系数法求解.本题中确定这两个函数的表达式的关键..是确定a ,c ,k ,b 的值. 21.解:(1)如图,点D 即为所求.(2)如图,过点D 作DE ⊥AB 于E , 设DC =x ,则BD =8-x .∵在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴由勾股定理得AB =AC 2+BC 2=10.∵点D 到边AC 、AB 的距离相等,∴AD 是∠BAC 的平分线. 又∵∠C =90°,DE ⊥AB ,∴DE =DC =x .在Rt △ACD 和Rt △AED 中,⎩⎪⎨⎪⎧AD =AD ,DC =DE ,∴Rt △ACD ≌Rt △AED (HL),∴AE =AC =6,∴BE =4. 在Rt △DEB 中,∠DEB =90°, ∴DE 2+BE 2=BD 2, 即x 2+42=(8-x )2, 解得x =3.∴CD 的长度为3.22.证明:如图,过点D 作DF ∥AC 交BC 于点F .∵DF ∥AC ,∴∠1=∠E ,∠5=∠2. 在△DPF 和△EPC 中, ⎩⎪⎨⎪⎧∠1=∠E ,DP =EP ,∠3=∠4,∴△DPF ≌△EPC (ASA), ∴DF =EC .又∵BD =EC ,∴BD =DF , ∴∠B =∠5.又∵∠5=∠2,∴∠B =∠2, ∴AB =AC .23.解:(1)建立平面直角坐标系如图.(2)△A ′B ′C ′如图.B ′(2,1). (3)S △A ′B ′C ′=12×2×(2+2)=4.24.解:(1)日销售量的最大值为120千克.(2)当0≤x ≤12时,设日销售量y 与上市时间x 的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上, ∴k =10.∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 的函数表达式为y =k 1x +b . ∵点(12,120),(20,0)在y =k 1x +b 的图象上,∴⎩⎪⎨⎪⎧12k 1+b =120,20k 1+b =0, 解得⎩⎪⎨⎪⎧k 1=-15.b =300.∴函数表达式为y =-15x +300.综上:y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)∵第10天和第12天在第5天和第15天之间,∴当5<x ≤15时,设樱桃价格z 与上市时间x 的函数表达式为z =k 2x +b 1. ∵点(5,32),(15,12)在z =k 2x +b 1的图象上,∴⎩⎪⎨⎪⎧5k 2+b 1=32,15k 2+b 1=12, 解得⎩⎪⎨⎪⎧k 2=-2,b 1=42.∴函数表达式为z =-2x +42. 当x =10时,y =10×10=100,z =-2×10+42=22.销售金额为100×22=2 200(元). 当x =12时,y =120,z =-2×12+42=18.销售金额为120×18=2 160(元).∵2 200>2 160,∴第10天的销售金额多. 25.解:(1)设BD =2x cm ,AD =3x cm ,CD =4x cm ,则AB =5x cm ,AC =AD 2+CD 2=5x cm ,∴AB =AC ,∴△ABC 是等腰三角形.(2)∵S △ABC =12×5x ×4x =40,x >0,∴x =2,∴BD =4 cm ,AD =6 cm ,CD =8 cm ,AC =10 cm. ①当MN ∥BC 时,AM =AN , 即10-t =t , ∴t =5;当DN ∥BC 时,AD =AN ,∴t =6.∴若△DMN 的边与BC 平行,t 的值为5或6. ②∵E 为Rt △ADC 斜边上的中点,∴DE =5 cm.当点M 在BD 上,即0≤t <4时,△MDE 为钝角三角形,但DM ≠DE . 当t =4时,点M 运动到点D ,不能构成三角形.当点M 在DA 上,即4<t ≤10时,△MDE 为等腰三角形,有3种可能. 若MD =DE ,则BM =9 cm , 此时t =9.若ED =EM ,则点M 运动到点A , 此时t =10.若MD =ME =(t -4)cm , 过点E 作EF ⊥AB 于点F , ∵ED =EA ,∴DF =AF =12AD =3 cm ,在Rt △AEF 中,易得EF =4 cm. ∵BM =t cm ,BF =7 cm , ∴FM =(t -7)cm.在Rt △EFM 中,由勾股定理,得(t -4)2-(t -7)2=42, ∴t =496.综上所述,符合要求的t 的值为9或10或496.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(二)1.在以下四个标志中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°3.若a>b,则下列式子中正确的是()A.a+3>b+3B.﹣a>﹣bC.D.﹣3a+2>﹣3b+24.下列四组线段中,能组成三角形的是()A.1,2,3B.2,2,4C.2,4,5D.1,3,55.对假命题“若a2<b2,则a<b”举反例,可以是()A.a=﹣1,b=2B.a=﹣1,b=﹣1C.a=﹣2,b=﹣1D.a=0,b=﹣1 6.如图,已知BE=CF,AC∥DF,添加下列条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.∠B=∠DEC C.AC=DF D.∠A=∠D 7.如图,直线y=kx+b(k≠0)经过点A(0,3),且与直线y=x交于点B(1,1),则不等式kx+b>x的解为()A.x>0B.x>1C.x<1D.x<28.将一根16cm长的细铁丝折成一个等腰三角形(弯折处长度忽略不计),设腰长为xcm,底边长为ycm,则下列选项中能正确描述y与x函数关系的是()A.B.C.D.9.如图,在边长为2的等边△ABC中,点D,P分别为BC,AC的中点,点Q是AD上一动点,则△PQC的周长的最小值为()A.3B.+1C.D.10.如图,已知直线l:y=x,过点A0(1,0)作x轴的垂线交直线l于点B0,过点B0作直线l的垂线交x轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交x轴于点A2,…,按此作法继续下数,记△A0B0A1的面积为S1,△A1B1A2的面积为S2,…,△A n﹣1B n﹣1A n的面积为S n,那么S4的值为()A.3×83B.C.3D.11.若点P(a﹣1,2)在第一象限,则a的取值范围是.12.若点(﹣1,y1)和点(2,y2)是直线y=3x+1上的两个点,则y1y2(填“>”、“<”或“=”).13.如图,在△ABC中,BD是一条角平分线,CE是AB边上的高线,BD,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=.14.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=9,DE=7.5,则CD的长为.15.如图,将边长为8cm的正方形ABCD沿EF折叠(E,F分别是AD,BC边上的点),使点B恰好落在CD的中点B'处,则BF的长为.16.如图,在长方形ABCD中,AB=4cm,AD=6cm,E为AB的中点.点P从点D出发,以2cm/s的速度沿D→C→B→A路线运动,运动至点A停止,运动时间为t(s).若△DEP 为等腰三角形,则t的值为.17.解一元一次不等式组.18.如图,在平面直角坐标系中,△ABC如图所示.(1)在图中,以y轴为对称轴,作△ABC的轴对称图形△A'B'C'.(2)求△ABC的面积.19.如图,在△ABC中,AB=AC,点D是△ABC内一点,且DB=DC,过点D作DE⊥AB 于点E,DF⊥AC于点F,求证:DE=DF.20.通过测量获得成年女性的脚长与身高的各组数据如下表:脚长x(cm)2222.52323.52424.5身高y(cm)150155161165169175(1)判断成年女性的身高y与脚长x是否满足或近似地满足一次函数关系.如果是,求出y关于x函数表达式.(2)若某人身高为167cm,则其脚长约为多少?21.[旧知重温]课本第64页作业题第2题:如图1,AD平分△ABC的外角∠EAC,AD∥BC,求证:△ABC是等腰三角形.证明:∵AD∥BC,∴∠DAC=∠C,∠EAD=∠B.∵AD平分∠EAC,∴∠DAC=∠EAD,∴∠B=∠C,∴AB=AC,即△ABC为等腰三角形.[拓展知新]如图2,AD平分△ABC的外角∠EAC,AF平分∠BAC交BC于点F,连结DF 交AC于点H,已知DF∥AB,求证:H为DF中点.22.周老师参加了某次半程马拉松比赛(赛程21km).若周老师从甲地出发出发,匀速前进,15分钟后,工作人员以18km/h的速度沿同一路线骑车运送一批运动饮料到距离起点9km的补给站,到达后留在原地.周老师在补给站补充能量后进行了提速并保持匀速,直至到达终点.如图是周老师和工作人员经过的路程y(km)与周老师出发时间x(h)之间的函数关系,根据图象信息回答下列问题:(1)周老师出发多久后,工作人员追上了他?(2)周老师提速后的速度是多少?(3)周老师出发多久后,在工作人员前方2km处?23.如图1,直线l:y=﹣x+6分别与x,y轴交于A,B两点,作∠ABO的角平分线交x 轴于点P.(1)写出A,B的坐标.(2)求OP的长.(3)如图2,点C为线段BP上一点,过点C作CD∥AB交x轴于点D,且CD=OB.求证:P为OD中点.参考答案1.解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.2.解:∵∠A=50°,∠B=80°,∴∠ACD=∠A+∠B=50°+80°=110°,故选:C.3.解:A、不等式a>b的两边同时加上3,不等号的方向不变,即a+3>b+3,原变形正确,故本选项符合题意.B、不等式a>b的两边同时乘﹣1,不等号的方向改变,即﹣a<﹣b,原变形错误,故本选项不符合题意.C、不等式a>b的两边同时除以5,不等号的方向不变,即>,原变形错误,故本选项不符合题意.D、不等式a>b的两边同时乘﹣3,再加上2,不等号的方向改变,即﹣3a+2<﹣3b+2,原变形错误,故本选项不符合题意.故选:A.4.解:A.∵1+2=3,∴不能组成三角形,故本选项不符合题意;B.∵2+2=4,∴不能组成三角形,故本选项不符合题意;C.∵2+4>5,∴能组成三角形,故本选项符合题意;D.∵1+3<5,∴不能组成三角形,故本选项不符合题意;故选:C.5.解:用来证明命题“若a2<b2,则a<b是假命题的反例可以是:a=0,b=﹣1,因为02<(﹣1)2,但是0>﹣1,所以D符合题意;故选:D.6.解:B:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠A=∠D,∵∠B=∠DEC,∴△ABC≌△DEF(AAS),∴不符合题意;C:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵AC=DF,∴△ABC≌△DEF(SAS),∴不符合题意;D::∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵∠A=∠D,∴△ABC≌△DEF(AAS),∴不符合题意;A:无法判定△ABC≌△DEF,∴符合题意;故选:A.7.解:如图所示:不等式kx+b>x的解为:x<1.故选:C.8.解:由已知y=16﹣2x,由三角形三边关系得:,解得:4<x<8,故选:D.9.解:如图,连接BP,与AD交于点Q,连接CQ,∵△ABC是等边三角形,AD⊥BC,∴QC=QB,∴QP+QC=QP+QB=BP,此时QP+QC最小,△PQC的周长QP+QC+PC最小,∵△ABC是一个边长为2的正三角形,点P是边AC的中点,∴∠BPC=90°,CP=1cm,∴BP==,∴△PQC的周长的最小值为+1.故选:B.10.解:∵A0B0⊥x轴交直线l于点B0,A0(1,0),直线l:y=x,∴B0(1,),OA0=1,∴A0B0=,∴∠OB0A0=30°,∠B0OA0=60°,∵A1B0⊥l,∴∠OB0A1=90°,∴∠A0B0A1=60°,∴A0A1=×=3,∴S1=•A0B0•A0A1=××3=,OA1=1+3=4,∴A1(4,0),∵A1B1⊥x轴交直线l于点B1,A1(4,0),直线l:y=x,∴B1(4,4),∴A1B1=4,∴∠OB1A1=30°,∠B1OA1=60°,∵A2B1⊥l,∴∠OB1A2=90°,∴∠A1B1A2=60°,∴A1A2=×4=12,∴S2=•A1B1•A1A2=×4×12=24,OA2=4+12=16,同理可得,S3=×16×48=384,S4=×163,故选:B.11.解:∵点P(a﹣1,2)在第一象限,∴a﹣1>0,∴a>1,故答案为:a>1.12.解:∵y=3x+1,k=3>0,∴y随x的增大而增大,∵点(﹣1,y1)和N(2,y2)是直线y=3x+1上的两个点,﹣1<2,∴y1<y2,故答案为:<.13.解:∵CE是AB边上的高线,∴∠CEB=90°,∵∠EFB=60°,∴∠EBF=30°,∵∠EBD+∠A=∠BDC=70°∴∠A=∠BDC﹣∠EBD=70°﹣30°=40°,故答案为:40°.14.解:∵CD⊥AB于D,E是AC的中点,∴DE=AE=EC,∵AD=9,DE=7.5,∴AC=15,∴在Rt△ADC中AD2+DC2=AC2,即DC2=AC2﹣AD2=225﹣81=144,故DC=12.故答案为:12.15.解:∵点B'是CD中点,∴B'C=DB'=4cm,∵将边长为8cm的正方形ABCD沿EF折叠,∴BF=B'F,∵F'B2=CF2+B'C2,∴BF2=(8﹣BF)2+16,∴BF=5,故答案为:5cm.16.解:①若ED=EP,点P与C重合,∵AB=4cm,∴CD=DP=4cm,∴t==2;②如图,若EP=DP,设PC=xcm,则BP=(6﹣x)(cm),∵EB2+BP2=EP2,CP2+CD2=PD2,∴22+(6﹣x)2=x2+42,解得x=2,∴DC+PC=4+2=6(cm).∴t==3;③如图,若ED=DP,∵AD=6cm,AE=2cm,∴DE===2(cm),∴DP=2(cm),∴PC==2(cm),∴DC+PC=(4+2)(cm),∴t==2+.综合以上可得t的值为2或3或2+.故答案为:2或3或2+.17.解:,由①得,x>1,由②得,x<5,∴原不等式组的解集是1<x<5.18.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积=2×3﹣1×2﹣1×3﹣×1×2=6﹣1﹣﹣1=.19.证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF.20.解:(1)身高y与脚长x满足或近似地满足一次函数关系,通过描点发现y与x的关系对应图象成一条直线,近似满足一次函数关系,设y与x的关系为:y=kx+b,将(22,150),(22.5,155)代入,得:,解得:,∴一次函数关系式为:y=10x﹣70,将其它点代入,发现都成立;(2)当y=167时,代入函数关系式,10x﹣70=167,解得:x=23.7,即脚长为23.7厘米.21.证明:∵AF平分∠BAC,∴∠BAF=∠CAF,∵AB∥DF,∴∠BAF=∠AFH,∴∠CAF=∠AFH,∴HA=HF,同理HA=HD,∴HD=HF,即H为DF中点.22.解:(1)直线EF:y=18(x﹣0.25)=18x﹣4.5,由题意:点A坐标为(1,9),∴OA:y=9x,方程组,解得:,∴周老师出发0.5小时后,工作人员追上了他;(2)提速后,速度为==10(km/h),答:周老师提速后的速度是10km/h;(3)①工作人员出发前:(h);②工作人员出发后,为追上周老师:设周老师出发x小时,在工作人员前方2km,则9x﹣(18x﹣4.5)=2,解得:x=;③工作人员达到补给站后:10(x﹣1)=2,解得:x=,答:周老师出发或或后,在工作人员前方2km处.23.(1)解:在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=8,令x=0,则y=6,∴A点的坐标为(8,0),B点的坐标为(0,6);(2)解:如图1,过P作PQ⊥AB于Q,∵BP平分∠ABO,∠BOP=90°,∴PQ=PO,∵PB=PB,∴Rt△PBO≌Rt△PBQ(HL),∴BQ=OB=6,∵AB==10,∴AQ=4,设OP=x,则PQ=PO=x,∵AP2=PQ2+AQ2,∴(8﹣x)2=x2+42,∴x=3,∴OP=3;(3)证明:过D作DE∥OB交BP的延长线于E,则∠OBP=∠DEP,∵AB∥CD,∴∠PCD=∠PBA,∵∠PBA=∠OBP,∴∠PCD=∠OBP,∴∠PCD=∠DEP,∴CD=ED,∵CD=OB,∴DE=DB,在△OPB与△DPE中,,∴△OPB≌△DPE(AAS),∴OP=DP,∴P为OD中点.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(三)一、选择题(80分)1.(2019·模拟·江苏苏州市吴中区)如图,内接于圆O,∠OAC=25∘,则∠ABC的度数为( )A.B.115∘C.D.125∘2.(2020·同步练习·天津天津市)如图,点A表示的实数是( )A.√3B.C.−√3D.−√53.(2019·期中·浙江温州市鹿城区)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图()所示).图()由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若,则S1+S2+S3的值是( )A.B.38C.48D.804.(2019·期末·云南昆明市官渡区)如图,在中,,∠BAC=45∘,BD⊥AC,垂足为D点,平分∠BAC,交于点F交于点E,点为AB的中点,连接DG,交AE于点,下列结论错误的是( )A.B.HE=BE C.AF=2CE D.DH=DF 5.(2019·期中·天津天津市和平区)如图,四边形ABCD,,,点E在边AB上,且AD=AE,BE=BC,则的值为A.√2B.C.√22D.126.(2018·期中·江苏无锡市锡山区)等腰三角形一个角为,则这个等腰三角形的顶角可能为( )A.B.65∘C.80∘D.或80∘7.(2020·单元测试)如图,在△ABC和中,点在边BD上,边交边BE于点.若AC=BD,AB=ED,BC=BE,则∠ACB等于A.∠EDB B.∠BED C.12∠AFB D.2∠ABF 8.(2019·期中·河北石家庄市新华区)如图,在和△OCD中,,OC=OD,OA>OC,,连接,BD交于点M,连接OM.下列结论:① AC=BD;② ∠AMB=40∘;③ OM平分∠BOC;④ MO平分∠BMC,其中正确的个数为A.4B.C.D.19.(2017·期中·天津天津市和平区)如图,在平面直角坐标系中,为坐标原点,四边形ABCD是矩形,顶点,,C,D的坐标分别为(−1,0),,(5,2),,点E(3,0)在x轴上,点P在CD边上运动,使为等腰三角形,则满足条件的P点有A.3个B.4个C.5个D.个10.(2020·期中·江苏苏州市相城区)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重合的四边形EFGH,EH=12cm,EF=16cm,则边的长是A.12cm B.16cm C.D.24cm 11.(2017·期末·江苏苏州市昆山市)如图,在平面直角坐标系xOy中,直线y=√3x经过第一象限内一点A,且过点A作AB⊥x轴于点B,将△ABO绕点逆时针旋转60∘得到,则点C的坐标为A.(−√3,2)B.(−√3,1)C.(−2,√3)D.(−1,√3) 12.(2020·单元测试·上海上海市)如图,已知在△ABC,中,∠BAC=∠DAE=90∘,,AD=AE,点,,E三点在同一条直线上,连接,.以下四个结论:① BD=CE;② ;③ BD⊥CE;④ ∠BAE+∠DAC=180∘.其中结论正确的个数是( )A.B.C.3D.13.(2019·期中·江苏徐州市新沂市)如图,在△ABC中,∠B=50∘,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边的中点,CD=CF,则( )A.125∘B.C.175∘D.14.(2018·期中·广东深圳市)如果三角形满足有一个角是另一个角的倍,那么我们称这个三角形为完美三角形.下列各组数据中,能作为一个完美三角形三边长的一组是( )A.2,,2B.1,,√2C.2,,2√3D.1,,215.(2019·模拟·浙江温州市苍南县)如图,的半径为2√3,四边形为⊙O的内接矩形,AD=6,M为中点,E为⊙O上的一个动点,连接,作DF⊥DE交射线EA于,连接MF,则MF的最大值为( )A.B.6+√57C.2√3+√61D.16.(2017·期中·天津天津市红桥区)如图,点是△ABC外的一点,PD⊥AB于点,PE⊥AC于点,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70∘,则∠BPC的度数为A.B.30∘C.35∘D.17.(2020·专项)如图,在三角形纸片ABC中,BC=3,AB=6,∠BCA=90∘.在上取一点,以为折痕,使的一部分与BC重合,点A与延长线上的点重合,则DE的长度为( )A.6B.C.2√3D.√318.(2018·期末·江苏苏州市张家港市)如图,矩形ABCD中,AB=2,,对角线的垂直平分线分别交AD,于点E,,连接CE,则△DCE的面积为( )A.5B.C.2D.119.(2020·同步练习·上海上海市)已知三角形的两边长分别为和9cm,则下列长度的四条线段中能作为第三边的是A.13cm B.6cm C.5cm D20.(2019·模拟·天津天津市和平区)如图,四边形中,DC∥AB,BC=1,AB=AC=AD=2,则的长为( )A.B.√14C.√15D.3√2二、填空题(30分)x+4交轴于点A,交轴于21.(2019·期末·广东佛山市禅城区)如图,直线y=43点,点为线段OB上一点,将△ABC沿着直线翻折,点B恰好落在轴上的处,则△ACD的面积为.22.(2019·期中·浙江温州市龙湾区)如图,△ABC中,,∠BAC=120∘,是边上的中线,且BD=BE,则是度.23.(2020·单元测试·上海上海市)如图,在直角坐标系中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,,A n B n C n C n−1的顶点A1,,A3,⋯,均在直线上,顶点C1,C2,C3,,C n在x轴上,若点的坐标为(1,1),点B2的坐标为(3,2),那么点B4的坐标为.24.(2019·单元测试)如图,正方形ABDE,CDFI,EFGH的面积分别为,9,16,,△BDC,△GFI的面积分别为S1,S2,S3,则S1+S2+S3=.25.(2020·专项·上海上海市闵行区)如图,在四边形ABCD中,AD∥BC,要使△ABD≌△CDB,可添加一个条件为.26.(2019·期中·江苏苏州市常熟市)如图,在△ABC中,ED∥BC,∠ABC和的平分线分别交ED于点G,,若BE=6,DC=8,DE=20,则.三、解答题(40分)27.(2021·专项)如图,等腰直角△ABC的斜边AB在轴上且长为,点在轴上方.矩形ODEF中,点D,F分别落在,轴上,边OD长为2,长为,将等腰直角△ABC沿x轴向右平移得等腰直角△AʹBʹCʹ.(1) 当点Bʹ与点D重合时,求直线AʹCʹ的解析式;(2) 连接CʹF,CʹE.当线段和线段之和最短时,求矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积;(3) 当矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积为 2.5时,求直线AʹCʹ与轴交点的坐标.(本问直接写出答案即可)28.(2019·单元测试·黑龙江哈尔滨市香坊区)如图,在△ABC中,∠C=90∘,是∠BAC的平分线,DE⊥AB于点E,点在上,BD=DF.求证:(1) CF=EB;(2) AB=AF+2EB.29.(2019·期末·广东佛山市高明区)如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中,,B(−2,1),.(1) 作出关于轴对称的△A1B1C1;(2) 写出△A1B1C1的各顶点的坐标;(3) 求△ABC的面积.30.(2018·期末·江苏苏州市)已知:Rt△ABC中,∠BAC=90∘,,点是BC的中点,点是BC边上的一个动点.(1) 如图①,若点与点重合,连接,则与BC的位置关系是;(2) 如图②,若点P在线段上,过点作BE⊥AP于点E,过点作CF⊥AP于点,则CF,和EF这三条线段之间的数量关系是;(3) 如图③,在(2)的条件下若的延长线交直线于点M,找出图中与相等的线段,并加以证明;(4) 如图④,已知BC=4,AD=2,若点P从点出发沿着BC向点运动,过点B作BE⊥AP于点,过点作CF⊥AP于点F,设线段的长度为,线段的长度为d2,试求出点P在运动的过程中d1+d2的最大值.答案一、选择题1. 【答案】B【解析】∵OA=OC,∠OAC=25∘,,由圆周角定理得,∠ABC=(360∘−130∘)÷2=115∘,故选:B.【知识点】等腰三角形的性质、三角形的内角和、圆周角定理及其推理2. 【答案】D【知识点】勾股定理、在数轴上表示实数3. 【答案】C【解析】因为八个直角三角形全等,四边形,EFGH,MNKT是正方形,所以CG=KG,CF=DG=KF,所以S1=(CG+DG)2=CG2+DG2+2CG⋅DG=GF2+2CG⋅DG,所以S2=GF2=EF2,S3=(KF−NF)2=KF2+NF2−2KF⋅NF,所以.【知识点】勾股定理4. 【答案】A【解析】∵∠BAC=45∘,,∴∠CAB=∠ABD=45∘,,∵AB=AC,平分,BC,∠CAE=∠BAE=22.5∘,AE⊥BC,∴CE=BE=12∴∠C+∠CAE=90∘,且∠C+∠DBC=90∘,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90∘,∴△ADF≌△BDC(AAS),,故选项C不符合题意;∵点为的中点,AD=BD,∠ADB=90∘,,∴AG=BG,DG⊥AB,∠AFD=67.5∘,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意;连接BH,∵AG=BG,DG⊥AB,,∴∠HAB=∠HBA=22.5∘,∴∠EHB=45∘,且,∴∠EHB=∠EBH=45∘,∴HE=BE,故选项B不符合题意.【知识点】等腰三角形的判定、等腰三角形“三线合一”5. 【答案】B【解析】过点A作AF⊥BC于点,∵∠D=∠C=90∘,四边形是矩形,,AF=CD,设AE=x,BE=y,则AB=x+y,∵AD=AE,,∴BF=BC−CF=BC−AD=y−x,∵CD=2,∴AF=CD=2,在Rt△ABF中,根据勾股定理可得22+(y−x)2=(x+y)2,解得xy=1,∴AE⋅BE=1.【知识点】矩形的判定、勾股定理6. 【答案】D【解析】分两种情况:当角为等腰三角形的顶角时,此时等腰三角形的顶角;当50∘角为等腰三角形的底角时,此时等腰三角形的顶角为:180∘−50∘×2=80∘,综上,等腰三角形的顶角为50∘或80∘.【知识点】等腰三角形的性质、三角形的内角和7. 【答案】C【解析】在和△DEB中,{AC=DB,AB=DE,BC=EB,(SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,.【知识点】边边边8. 【答案】B【解析】∵∠AOB=∠COD=40∘,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB,∠AOC=∠BOD, OC=OD,∴△AOC≌△BOD(SAS),,,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40∘,②正确;作OG⊥MC于,OH⊥MB于,如图所示:则∠OGC=∠OHD=90∘,在△OCG和△ODH中,,∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,当∠DOM=∠AOM时,OM才平分∠BOC,假设,∵∠AOC=∠BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,∴∠COM=∠BOM,在△COM和中,{∠COM=∠BOM,OM=OM,∠CMO=∠BMO,,∴OB=OC,,∴OA=OC,与矛盾,∴③错误.正确的个数有3个.【知识点】角边角9. 【答案】A【知识点】等腰三角形的判定10. 【答案】C【解析】如图所示,由折叠过程可知:,∠MEF=∠BEF,∵∠AEH+∠AHE=90∘,∠HEM+∠MEF=90∘,∴∠MEF=∠BEF=∠AHE,同理可得∠EHM=∠DGH=∠GFN,∴∠HEM=∠FGN;在与△GFN中,{∠HME=∠FNG,EM=NG,∠HEM=∠FGN,,∴NF=HM=AH=FC,,在Rt△EFH中,由勾股定理知EH2+EF2=HF2=AD2,.【知识点】折叠问题、对应边相等、角边角、勾股定理11. 【答案】D【解析】作CH⊥x轴于H点,如图,设,∴n=√3m,∴tan∠AOB=ABOB=√3,∴∠AOB=60∘,∵OA=4,∴OB=2,,∵△ABO绕点B逆时针旋转60∘,得到△CBD,,∠ABC=60∘,∴∠CBH=30∘,BC=√3,BH=√3CH=3,在Rt△CBH中,CH=12∴OH=BH−OB=3−2=1,点坐标为(−1,√3).【知识点】坐标平面内图形的旋转变换、正切、正比例函数的图象12. 【答案】D【解析】如图:① ∵∠BAC=∠DAE=90∘,,即∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(),∴BD=CE①正确;② ∵∠BAC=90∘,AB=AC,∴∠ABC=45∘,∴∠ABD+∠DBC=45∘.∴∠ACE+∠DBC=45∘,②正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90∘,∴∠ABD+∠AFB=90∘,.∵∠DFC=∠AFB,,∴∠FDC=90∘.∴BD⊥CE,∴③正确;④ ∵∠BAC=∠DAE=90∘,∠BAC+∠DAE+∠BAE+∠DAC=360∘,∴∠BAE+∠DAC=180∘,故④正确.所以①②③④都正确,共计4个.【知识点】等腰直角三角形、边角边13. 【答案】C【解析】,为边AC的中点,,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60∘,∵∠B=50∘,∴∠BCD+∠BDC=130∘,和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65∘,∴∠CED=115∘,.【知识点】直角三角形斜边的中线、等边三角形三个角相等,都等于60°14. 【答案】C【解析】A、若三边为,2,2,则此三边构成等边三角形,三个角相等,所以这个三角形不是“完美三角形”,所以A选项不符合题意;B、若三边为1,,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“完美三角形”,所以B选项不符合题意;C、若三边为2,,,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“完美三角形”,所以C选项符合题意;D、若三边为,,,由于12+(√3)2=22,此三边构成一个直角三角形,最小角为30∘,所以这个三角形不是“完美三角形”,所以D选项不符合题意.故选:C.【知识点】30度所对的直角边等于斜边的一半、勾股逆定理15. 【答案】B【解析】如图,连接AC交BD于点,以AD为边向上作等边△ADJ,连接JF,,JD,JM.四边形是矩形,∴∠ADC=90∘,,AC=4√3,∴sin∠ACD=ADAC =4√3=√32,∴∠ACD=60∘,,∵DF⊥DE,,∴∠EFD=30∘,是等边三角形,∴∠AJD=60∘,∴∠AFD=12∠AJD,∴点的运动轨迹是以J为圆心JA为半径的圆,当点F在MJ的延长线上时,FM的值最大,此时,JM=√(4√3)2+32=√57,∴FM的最大值为6+√57.【知识点】勾股定理、圆周角定理及其推理16. 【答案】C【解析】在Rt△BDP和Rt△BFP中,{PD=PF, BP=BP,∴Rt△BDP≌Rt△BFP(HL),,在Rt△CEP和Rt△CFP中,{PE=PF,PC=PC,,∴∠ACP=∠FCP,∵∠ACF是的外角,,两边都除以2,得:12∠ABC+12∠BAC=12∠ACF,即∠PBC+12∠BAC=∠FCP,∵∠PCF是△BCP的外角,,∴∠BPC=12∠BAC=12×70∘=35∘.【知识点】斜边、直角边17. 【答案】C【知识点】勾股定理18. 【答案】B【解析】因为四边形ABCD是矩形,所以,AD=BC=4,因为是AC的垂直平分线,所以AE=CE,设CE=x,则ED=AD−AE=4−x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4−x)2,,解得:x=52即CE的长为5,,2所以△DCE的面积.【知识点】矩形的性质、垂直平分线的性质、勾股定理19. 【答案】B【知识点】三角形的三边关系20. 【答案】C【解析】过点C作的垂线交于点G,作AF⊥BC交BC于点F,作交BA的延长线于点E,,AB=AC=AD=2,,∴CF=12∴AF=√AC2−CF2=√15.2又,,∴CG=√154∴AG=√AC2−CG2=7,,∵DE⊥AB,CG⊥AB,,又∵CD∥AB,∠CGE=90∘,∴四边形是矩形,,∴DE=CG=√154又,∠CGA=∠DEA=90∘,∴△DEA≌△CGA(HL),∴EA=AG,,∴BE=2AG+BG=154。
浙教版数学八年级上册期末考试试题含答案
浙教版数学八年级上册期末考试试卷一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12 2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0 7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:.12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.参考答案一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 【分析】根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a﹣c>b﹣c,故本选项符合题意;D.不妨设c=0,则﹣ac=﹣bc,故本选项不合题意;故选:C.6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.【分析】根据函数自变量的取值得到x<1的取值的选项即可.解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣3【分析】结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为﹣3,∴当x≤﹣3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤﹣3.故选:C.9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明【分析】由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20﹣15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200﹣150)=6(分钟),故D符合题意.故选:D.10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.【分析】根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n的式子表示出来,取n=9,即可求出B9的横坐标.解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为,OA1=OB1,设B1(,y),则,解答y=或y=(舍),∴B1(,),∴OB1所在的直线的解析式为y=x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1∥B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为,∴y=x=,∴B2(,),同理:B3(,),B4(,),总结规律:B1的横坐标为,B2的横坐标为+1=,B3的横坐标为+1+2=,B4的横坐标为+1+2+4=,...,∴点B9的横坐标是1+2+4+8+16+32+64=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7).【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=5cm.【分析】根据CF∥AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF (AAS),由全等三角形的性质得出AE=CF,则可得出答案.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为30≤a≤60.【分析】一次服用剂量a=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是(﹣,);(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=6时,|OA'﹣OB'|取最大值.【分析】(1)因为点A在点B左边,联立方程y=x+2与y=﹣x﹣1求解.(2)O,A',B'共线时满足题意,用含m代数式分别表示A',B'坐标,然后代入正比例函数解析式求出m即可.解:(1)联立方程,解得,∴A(﹣,),故答案为:(﹣,).(2)联立方程,解得,∴点B坐标为(,),将A,B向右平移m个单位得A'(﹣+m,),B'(+m,),∴OA'=,OB'=,∵三角形中两边之差小于第三边,∴O,A,B三点共线时,|OA'﹣OB'|取最大值,最大值为AB长度,设O,A,B所在直线正比例函数为y=kx,将A',B'坐标代入可得:,解得m=6.故答案为:6.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣2≤x,得:x≤1,解不等式<,得:x>﹣7,∴不等式组的解集为﹣7<x≤1.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=7.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?【分析】(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600﹣300)×=570,再解即可;与奖品金额x元之间的函数表达式;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和(3)根据题意求出y乙不等式解答即可.解:(1)由题意,得500+(600﹣500)×=570,解得x=7,故答案为:7;(2)由题意,得y=;甲=0.7x+150(x>500),(3)由题意,得y乙0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.【分析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM =PN,再利用面积法求出PM,可得结论.解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,=•AC•BC=•AB•CD,∴S△ABC∴CD==.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH===12,=•BC•AH=•AB•PM+•AC•PN,∵S△ABC∴×13×PM+×13×PN=×10×12,∴PM+PN=.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,+s△BCD=S△ACB,∵S△ACD∴×4×DM+×6×DN=×4×6,∴DM=DN=,=•CA′•DN=×4×=.∴S△A′CD23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为(﹣3,1).(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.【分析】(1)x=﹣3时,y的值与k无关,都为1,即得定点A(﹣3,1),(2)由A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),得AB=3,BC=4,BD=3,CD=5,直线l将△BCD的周长分成7:17两部分,则两部分的长分别为:12×=,12×=,①若AB+BN=,得N(0,),将N(0,)代入y=kx+3k+1,即解得k=﹣,②若AC+CM=,可得M(﹣2,),把M(﹣2,)代入y=kx+3k+1,解得:k=;(3)由求得E(﹣3,1),故E与A重合,而点F是EQ的中点,得x F=﹣,根据y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),故PQ=3,可知点P从(0,5)沿y轴正方向运动到(0,10),则Q从(0,2)运动到(0,7),F从(﹣,)运动到(﹣,4),即可得F运动的路程为.解:(1)∵x=﹣3时,y的值与k无关,都为1,∴定点A(﹣3,1),故答案为:(﹣3,1);(2)∵A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD===5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×=,12×=,①若AB+BN=,如图:∴3+BN=,∴BN=,∴N(0,),将N(0,)代入y=kx+3k+1得:=3k+1,解得k=﹣,②若AC+CM=,如图:∴1+CM=,∴CM=,∴CM=CD,∴M为CD中点,∴M(﹣2,),把M(﹣2,)代入y=kx+3k+1得:=﹣2k+3k+1,解得:k=,综上所述,k的值为﹣或;(3)由得,∴E(﹣3,1),∴E与A重合,∵点F是EQ的中点,∴x F=﹣,而由y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),∴PQ=3,∵点P从(0,5)沿y轴正方向运动到(0,10),∴Q从(0,2)运动到(0,7),∴F从(﹣,)运动到(﹣,4),∴F运动的路程为:4﹣=.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.【分析】(1)作CN⊥轴于N,BM⊥轴于M,易证Rt△NCA Rt△MAB,可求得点C的坐标为(,5),再利用待定系数法即可求解;(2)过B作直线EF⊥轴于F,过D作DE⊥EF交直线EF于E,易证Rt△FAB≌Rt△EBD,可求得点D的坐标为(m﹣,m﹣)或(m+,﹣m),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分∠ABP=90°或∠BAP=90°两种情况讨论,即可求解.解:(1)作CN⊥轴于N,BM⊥轴于M,∵∠BAC=90°,∴∠NAC+∠NCA=∠NAC+∠MAB=90°,∴∠NCA=∠MAB,∵CA=AB,∴Rt△NCA Rt△MAB,∴NC=MA,NA=MB,∵点B的横坐标为,∴点B的坐标为(9,),∴NC=MA=MO﹣OA=9﹣4=5,NA=MB=,ON=OA﹣NA=,∴点C的坐标为(,5),设直线BC的解析式为y=kx+b,将(9,),(,5)代入,得:,解得:,∴直线BC的解析式为y=﹣x+;(2)过B作直线EF⊥轴于F,过D1作D1E⊥EF交直线EF于E,过D2作D2E⊥EF交直线EF于M,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m﹣4,FB=D1E=D2M=,点D1的坐标为(m﹣,m﹣4+),即D1的坐标为(m﹣,m﹣),点D2的坐标为(m+,﹣m+4),即D2的坐标为(m+,﹣m),=,∵S△OAD1D点位于直线AB左侧时,当0<m<1.5时,S=×4×(﹣m)=3﹣2m;当m≥1.5时,S=×4×(m﹣)=2m﹣3;D点位于直线AB右侧时,当0<m<6.5时,S=×4×(﹣m)=13﹣2m;当m≥6.5时,S=×4×(m﹣)=2m﹣13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m﹣,m﹣),当点P落在直线y=上时,m﹣=,解得:m=,②当∠BAP=90°时,同理可证明Rt△HAP≌Rt△GBA,∵点B的坐标为(m,),∴PH=AG=m﹣4,AH=BG=,∴点P的坐标为(4﹣,m﹣4),即(,m﹣4),当点P落在直线y=上时,m﹣4=,解得:m=,综上,m的值为或.。
浙教版八年级上册数学期末测试卷(参考答案)
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是( )A. B. C.D.2、定义新运算:a※b= ,则函数y=3※x的图象大致是( )A. B. C. D.3、下表是我国从1949年到1999年的人口统计数据(精确到0.01亿)时间(年)1949 1959 1969 1979 1989 1999人口(亿) 5.42 6.72 8.07 9.75 11.07 12.59从表中获取的信息:①人口随时间的变化而变化,时间是自变量,人口是因变量;②1979﹣1989年10年间人口增长最慢;③1949﹣1979这30年的增长逐渐加大,1979﹣1999这20年的增长先减小后增大;④人口增长速度最大的十年达到约20%,其中正确的有()A.4个B.3个C.2个D.1个4、如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1、P2、P 3、P4四个点中找出符合条件的点P,则这样的点P有()A.1个B.2个C.3个D.4个5、点P(﹣2,3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)6、在我国古代数学著作《九章算术》“勾股”章中有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何?”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB的距离为1尺(1尺=10寸),双门间的缝隙CD 为2寸,那么门的宽度(两扇门的和)AB为( )A.103寸B.102寸C.101寸D.100寸7、在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A. B. C. D.8、已知反比例函数 y= (k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限9、等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.30°或150°C.60°或150°D.60°或120°10、弹簧挂上物体后会伸长(在允许挂物重量范围内),测得一弹簧的长度y (cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法错误的是()x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5A.弹簧不挂重物时的长度为10cmB.x与y都是变量,且x是自变量,y 是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14cm11、以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cmB.4cm,6cm,8cm,C.5cm,6cm,12cm, D.2cm,3cm,5cm12、下列四个选项中,不是全等图形的是()A. B. C.D.13、已知三角形的三边分别为2,a,4,那么a的取值范围是()A.1<a<5B.2<a<6C.3<a<7D.4<a<614、点M(3,﹣4)关于y轴的对称点的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)15、如图,在菱形中,,,、分别是边、中点,则周长等于()A. B. C. D.二、填空题(共10题,共计30分)16、若关于x的不等式(1﹣a)x>3可化为x<,则a的取值范围是________17、如图,在△ABC中,∠ACB=∠ABC=40o, BD是∠ABC的角平分线,延长BD 至点E,使得DE=DA,则∠ECA=________.18、如图,在正五边形中,是的中点,连接,,则的度数是________.19、如图,点G在的边的延长线上,点H为中点,点D在上,点E在上,连接交于点F,,,若,,则________.20、如图,点O是▱ABCD的对称中心,AD>AB,E,F是AB边上的点,且EF=AB;G,H分别是BC边上的点,且GH=BC,若S1, S2分别表示△EOF和△GOH的面积,则S1与S2之间的数量关系是________.21、已知△ABC≌△DEF,∠A=40° ,∠F=60° ,则∠B的度数等于________度。
浙教版八年级上册数学期末测试卷(完美版)
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,△ABC 中,∠ACB=90°,点D 在CB 上,E 为AB 的中点,AD ,CE 相交于点F ,且AD =DB .若∠B=20°,则∠DFE=( )A.40°B.50°C.60°D.70°2、如图,在菱形ABCD 中,E ,F 分别是BC ,CD 的中点,设S 四边形ABCD =S ,S △AEF =S 1 , 则( )A.S 1=S B.S 1<S C.S 1>S D.5S 1=2S3、已知正比例函数y =(m ﹣3)x 的图象过第二、四象限,则m 的取值范围是( )A.m≥3B.m >3C.m≤3D.m <34、如图,等边△ABC 的边长为4,M 为BC 上一动点(M 不与B 、C 重合),若EB=1,∠EMF=60°,点E 在AB 边上,点F 在AC 边上.设BM=x ,CF=y ,则当点M 从点B 运动到点C 时,y 关于x 的函数图象是( )A. B. C. D.5、下列图案中是轴对称图形的有()A.1个B.2个C.3个D.4个6、如图,在平面直角坐标系中,已知l1∥l2,直线l1经过原点O,直线l2对应的函数表达式为,点A在直线l2上,AB⊥l1,垂足为B,则线段AB的长为()A.4B.6C.8D.7、下列说法:①三角形任何两边之差小于第三边;②等腰三角形两腰上的高相等;③若≥1,则x=2;④三角形的三条高不一定交于三角形内一点.其中正确的是()A.①②③B.①②④C.①③④D.②③④8、如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2B.2.2C.2.4D.2.59、如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为A.90°B.60°C.45°D.30°10、如图,在等腰三角形中,,则等于()A. B. C. D.11、如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x 轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4B.2C.2D.12、若点A(-3,2)关于原点对称的点是点B,点B关于x轴对称的点是点C,则点C的坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-2,3)13、如图,,交于,若,则等于()A.30°B.45°C.60°D.120°14、如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个15、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.25°C.30°D.大于30°二、填空题(共10题,共计30分)16、已知二元一次方程,当时,y的取值范围是________.17、如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为8.则k的值为________.18、已知点P在第三象限,到x轴的距离为3,到y轴的距离为5,则点P的坐标为________.19、盖房子的时候,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根本条的根据是________.20、如图,点O是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分面积是________。
完整版浙教版八年级上册数学期末测试卷
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABCB.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABCD.AD=BC,BD=AC3、点P 在轴上,则的值为()A.1B.2C.-1D.04、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米5、如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD6、下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)7、不等式x<2的解集在数轴上表示为( )A. B. C.D.8、如图,和均为等腰直角三角形,且,点A、D、E在同一条直线上,平分,连接.以下结论:① ;② ;③ ;④ ,正确的有()A.1个B.2个C.3个D.4个9、下列说法正确的是()A.两角及一边分别相等的两三角形全等B.全等的两个图形一定成轴对称 C.两个成轴对称的图形的对应点一定在对称轴的两侧 D.有一个角是60°的等腰三角形是等边三角形10、某一次函数的图象过点(1,-2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x-4B.y=3x-1C.y=-3x+1D.y=-2x+411、如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15B.20C.3D.2412、不等式组的解集在数轴上表示为 ( )A. B. C. D.13、如图,在四边形ABCD中,∠DAB=30°,点E为AB的中点,DE⊥AB,交AB 于点E,DE= ,BC=1,CD= ,则CE的长是()A. B. C. D.14、如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCBB.∠ABD=∠DCAC.AC=DBD.AB=DC15、以下列长度的线段为边,可以作一个三角形的是A.6cm,16cm,21cmB.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm二、填空题(共10题,共计30分)16、如图,在等腰△ABC中,AB=AC,∠A=360,BD⊥AC于点D,则∠CBD=________.17、若点在直角坐标系的轴上,则点的坐标为________.18、斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是________.19、已知点和点关于轴成轴对称,则________.20、已知实数x,y满足lx-3I+ =0,则以x,y的值为两边长的等腰三角形的周长是________.21、如图,尺规作图作出∠CAB的平分线,则∠ADC= ________ °.22、若一个三角形三边长分别为2,3,x,则x的值可以为________(只需填一个整数)23、如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=________用含k的代数式表示).24、如图,中,,,,,则的度数为________.25、如图,矩形纸片中,,,点在边上,将沿所在直线折叠,使点落在边上的点处,则的长为________ .三、解答题(共5题,共计25分)26、解不等式组:27、如图,△ABC中,AB=AC.(1)以点B为顶点,作∠CBD=∠ABC(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,证明:AC∥BD.28、如图,在△ABC中,∠C=60°,△ABC的高AD,BE相交于点F.求∠AFB 的度数.29、已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.30、如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD。
浙教版八年级上册数学期末考试试卷含答案
浙教版八年级上册数学期末考试试题一、单选题1.在ABCD Y 中,若∠A=40°,则∠C 的度数为()A .150°B .50°C .140°D .40°2)A .B C D 3.甲、乙、丙、丁四名学生参加市中小学生运动会跳高项目预选赛,他们8次跳高的平均成绩及方差如表所示,要选一位成绩较好且稳定的运动员去参赛,应选运动员()甲乙丙丁x (米) 1.72 1.75 1.75 1.722S (米2)11.311.3A .甲B .乙C .丙D .丁4.用配方法解方程2680x x --=时,配方结果正确的是()A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=5.在平面直角坐标系中,若点(x 1,-1),(x 2,-2),(x 3,1)都在直线y=-2x+b 上,则x 1,x 2,x 3的大小关系是()A .x 1>x 2>x 3B .x 3>x 2>x 1C .x 2>x 1>x 3D .x 2>x 3>x 16.若关于x 的一元二次方程2210x x kb ++=-有两个不相等的实数根,则一次函数y kx b =+的图象可能是()A .B .C .D .7.如图,在▱ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=2,则AB 的长为()A .32B .C .2D .8.如图,一次函数y =2x+3与y 轴相交于点A ,与x 轴相交于点B ,在直线AB 上取一点P (点P 不与A ,B 重合),过点P 作PQ ⊥x 轴,垂足为点Q ,连接PO ,若△PQO 的面积恰好为916,则满足条件的P 点有()A .1个B .2个C .3个D .4个9.如图,在▱ABCD 中,点E 在边AD 上,过E 作EF CD 交对角线AC 于点F ,若要求△FBC 的面积,只需知道下列哪个三角形的面积即可()A .△ECDB .△EBFC .△EBCD .△EFC二、填空题10.要使式子有意义,则x 的取值范围是__________.11.若点B (7a +14,a -3)在第四象限,则a 的取值范围是______.12.已知一组数据的方差s 2=14[(x 1﹣6)2+(x 2﹣6)2+(x 3﹣6)2+(x 4﹣6)2],那么这组数据的总和为_____.13.一次函数1y =kx+b 与2y =x+a 的图象如图所示,则关于x 的不等式kx+b≤x+a 的解集为_____.14.在平面直角坐标系中,对于任意一点(),M x y ,我们把点,22y x N ⎛⎫⎪⎝⎭称为点M 的“中分对称点”.如图,矩形ABCD 的顶点A 、B 在x 轴上,点C 的坐标为(2,1),矩形ABCD 关于y 轴成轴对称.若P 在22y x =-+上运动,点Q 是点P 的“中分对称点”,且点Q 在矩形ABCD 的一边上,则BCQ △的面积为______.15.如图,在▱ABCD 中,点E ,F 分别在边AB 、AD 上,将△AEF 沿EF 折叠,点A 恰好落在BC 边上的点G 处.若∠A=45°,,5BE=AE .则AF 长度为_____.16.已知:CD 是ABC 的AB 边上的中线,且CD BD =.若3AC =,4CD =,则BC 的长为__________.17.如图,在ABC 中,AB AC =,BF CD =,BD CE =,FDE α∠=与A ∠的关系是__________.18.如图,已知ABC BAD ∠=∠,判定ABC ≌BAD ,需添加的条件是__________.(只需填一个条件)三、解答题19.(12(1-;(2)解方程:x (5x+4)=2x .20.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;21.某中学开展歌咏比赛,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,复赛成绩(满分为100分)如图所示.(1)根据图示填写表格:班级平均数(分)中位数(分)众数(分)九(1)85九(2)85100(2)已知九年级(2)班复赛成绩的方差为160,计算九年级(1)班复赛成绩的方差,并分析哪个班的复赛成绩稳定.22.一个一次函数的图象过A(1,3),B(﹣5,﹣3)两点(1)求该函数解析式;(2)设点P在x轴上,若S△ABP=12,求点P的坐标.23.某食品工厂将一种食品的加工任务平均分给甲、乙两个生产组共同完成.甲、乙两组同时以相同的效率开始工作,中途乙组因升级设备,停工了一段时间.乙组设备升级完毕后,工作效率有所提升,在完成本组任务后,还帮助甲组加工了60千克,最后两组同时停工,完成了此次加工任务.两组各自加工的食品量y(千克)与甲组工作时间x(小时)的关系如图所示.(1)甲组每小时加工食品______千克,乙组升级设备停工了______小时;(2)设备升级完毕后,乙组每小时可以加工食品多少千克?(3)求a 、b 的值.24.如图,在ABC 中,CD 是ABC 的高线,CE 是ABC 的角平分线,已知30B ∠=︒,15DCE ∠=︒.试判断ABC 的形状,并证明你的判断.25.已知:如图,P 是AOB ∠内一点,PD OA ⊥,PE OB ⊥,D ,E 分别是垂足,且OD OE =.(1)求证:点P 在AOB ∠的平分线上.(2)若点F 是射线OA 上一点,点G 是射线OB 上一点,且60AOB ∠=︒,2PO =.①当OPF △是等腰三角形时,求点F 到射线OB 的距离;②连接PF ,PG ,FG ,当PFG △的周长最小时,求FPG ∠的度数.26.如图1,在平面直角坐标系xOy 中,已知图形W 和直线l .如果图形W 上存在一点Q ,使得点Q 到直线l 的距离小于或等于k ,则称图形W 与直线l“k 关联”.(1)已知线段AB ,其中点A (1,0),点B (3,0);①已知直线l :y =﹣x ﹣1,则直线l 与x 轴所夹的锐角为_____,点A 到直线l 的距离为______,点B到直线l的距离为______;②若线段AB与直线l:y=﹣x﹣1“k关联”,则k的值不能是______.A.3C. D.1③已知直线y x b=-+.若线段AB与该直线关联”,求b的取值范围;(2)如图2,已知边长为2的等边△PMN的顶点P(a,0)在x轴上运动,且MN⊥x轴,若该等边三角形与直线y=关联”,求点P横坐标a的取值范围.参考答案1.D2.C3.C4.A5.C6.B7.C8.C9.A10.2x≤11.-2<a<312.2413.x≥314.12或3 215.15 21617.1802Aα︒-∠=【详解】∵AB=AC ,∴∠B=∠C ,∵BF=CD ,BD=CE ,∴△BDF ≌△CED (SAS ),∴∠BFD=∠EDC ,∵α+∠BDF+∠EDC=180°,∴α+∠BDF+∠BFD=180°,∵∠B+∠BDF+∠BFD=180°,∴∠B=α,∴∠C=∠B=α,∵∠A+∠B+∠C=180°,∴2α+∠A=180°,∴1802Aα︒-∠=,故答案为1802Aα︒-∠=.18.AD CB=【详解】若AD CB =,ABC BAD ∠=∠,AB AB =,则ABC ≌(SAS)BAD ,故答案为AD=BC (答案不唯一).19.(1);(2)1x =0,2x =25-.【详解】解:(12(1-(13)=-4=+;(2)移项得,x (5x+4)-2x=0,因式分解得,x (5x+4-2)=0,则x=0或5x+2=0,解得,1x=0,2x=2 5 .20.(1)见解析;(2)见解析【详解】(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形,如下图所示:;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形,如下图所示:.21.(1)九(1)班平均数为85,众数为85,九(2)班中位数为80;(2)70;(3)九年级(1)班复赛成绩的方差为70,九(1)班的方差小,成绩更稳定些.【详解】(1)由图可知:九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、75、80、100、100,九(1)班的平均数为(75+80+85+85+100)÷5=85,∵九(1)班的5个成绩中,85出现2次,∴九(1)的众数为85,∵九(2)班的5个成绩中,中间的数是80,∴九(2)班的中位数为80,填表如下:平均数(分)中位数(分)众数(分)九(1)858585九(2)8580100(2)∵九(1)班平均数为85,∴九(1)班方差s 12=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,∵九(2)班的方差为160,70<160,∴九(1)班的成绩更稳定些.22.(1)y =x+2;(2)(2,0)或(﹣6,0)【分析】(1)根一次函数的解析式为y=kx+b ,据待定系数法,可以求得该函数的表达式;(2)由题意可求直线y=x+2与x 轴的交点坐标,根据三角形的面积公式可求点P 坐标.【详解】(1)设一次函数的解析式为y =kx+b ,根据题意得:353k b k b +=⎧⎨-+=-⎩解得:12k b =⎧⎨=⎩∴函数表达式为y =x+2;(2)设点P (m ,0)∵在y =x+2中,当y=0时x=-2,∴直线y =x+2与x 轴的交点坐标为(﹣2,0)∵S △ABP =12|m+2|×3+12|m+2|×3=12∴|m+2|=4∴m =2或﹣6∴点P 坐标(2,0)或(﹣6,0).23.(1)30,2;(2)50千克;(3)a=510,b=13【详解】解:(1)210÷7=30(千克/时),故甲组每小时加工食品30千克,4-2=2(小时),故乙组升级设备停工了2小时;(2)(210-2×30)÷(7-4)=150÷3=50(千克/时)故升级后,乙组每小时可以加工食品50千克;(3)根据题意可得:50(b-7)-30(b-7)=60×2,20(b-7)=120,∴b=13,∴a=210+50×(13-7)=510.24.直角三角形,证明见解析【详解】试题分析:判断为直角三角形,在Rt △CDE 中,根据直角三角形两锐角互余可求出∠CED=75°,再利用三角形的外角可得∠ECB=45°,再根据角平分线的定义可得∠ACB=90°,判断得证.试题解析:在Rt CDE 中,∵15DCE ∠=︒,∴75CED ∠=︒,∴753045ECB CED B ∠=∠-∠=︒-︒=︒,又∵CE 是ACB ∠的角平分线,∴45ACE ECB ∠=∠=︒,∴90ACB ∠=︒,∴ABC 为Rt .25.(1)证明见解析;(2)①1或360︒.【详解】试题分析:(1)证明PDO ≌PEO ,根据全等三角形的对应角相等即可得;(2)①分PF OP =或PF OF =或OF OP =三种情况进行讨论即可得;②当PFG 为等边三角形时,PFG 周长最小,则60FPG ∠=︒.作点P 关于射线OA 的对应点1P ,关于射线OB 的一应点2P ,连结1P 2P ,则线段1P 2P 与OA 的交点为F .与OB 的交点为G ,连结PF ,FG ,PG ,由两点之间线段最短,可知PFG 周小.试题解析:(1)在Rt PDO 和Rt PEO 中,有90PDO PEO OD OE PO PO ∠==︒⎧⎪=⎨⎪=⎩,∴PDO ≌()HL PEO ,∴DOP EOP ∠=∠,∴P 在AOB ∠的平分线上;(2)①若OPF 是等腰三角形,则PF OP =或PF OF =或OF OP =.(Ⅰ)若PF OP =,∵60AOB ∠=︒,∴1302POE AOB ∠=∠=︒,∴112PE PO ==.又PO PE =,PD AO ⊥,∴903060EPD OPD OPE ∠=∠=︒-︒=︒=∠,∴180EPD DPO OPE ∠+∠+∠=︒,∴F ,P ,E 三点共线.∴F 到OB 的距离为213FP PE +=+=;(Ⅱ)若PF OF =,过点F 作FH OB ⊥,垂足为H ,连结FP .∵FP FO =,则30EPO AOP ∠=∠=︒,∴603030DPF ∠=︒-︒=︒.∴1122DF FP OF ==.又OD ==,设OF x =,则12x x x +==即OF =在Rt OFH 中,60FOH ∠=︒,∴2FH =在Rt OFH 中,60FOH ∠=︒,∴122FH FO ===;(Ⅲ)若OF OP =,同理可知2FH FO =⨯综上,点F 到射线OB 的距离为1或3②当PFG 为等边三角形时,PFG 周长最小,则60FPG ∠=︒.作点P 关于射线OA 的对应点1P ,关于射线OB 的一应点2P ,连结1P 2P ,则线段1P 2P 与OA 的交点为F .与OB 的交点为G ,连结PF ,FG ,PG ,由两点之间线段最短,可知PFG 周小.如图所示:由轴对称性质可得,OP 1=OP 2=OP ,∠P 1OA=∠POA ,∠P 2OB=∠POB ,所以∠P 1OP 2=2∠AOB=2×60°=120°,所以∠OP 1P 2=∠OP 2P 1=(180°-120°)÷2=30°,又因为∠FPO=∠OP 1F=30°,∠GPO=∠OP 2G=30°,所以∠FPG=∠FPO+∠GPO=60°.26.(1)【答题空1-1】45︒;【答题空1-2;【答题空1-3】;②A ;③15b -≤≤;(2)()4P或()4--,44a -≤-【分析】(1)①求出E ,F 的坐标,利用等腰直角三角形的性质即可解决问题;②根据点A 到直线=1y x --B 到直线l 的距离为,即可得到结论;③如图2中,当直线y x b =-+在点B 的上方,且点B 5b =,再结合①中结论,可得结论;(2)求出两种特殊位置点P 的坐标即可.设直线1y =+交y 轴于01(,)C ,交x 轴于()D.当等边PMN 在y 轴的右侧时,过点P 作PQ CD ⊥于Q ,求出此时点P 的坐标,当等边PMN 在y 轴的左侧,且点C 到直线MN 的距离为2时,同法可得P 坐标,利用图象法判断即可.(1)解:①对于直线=1y x --,令x=0,得到y=-1,令y=0,得到x=-1,∴直线=1y x --交y 轴于E (0,-1),交x 轴于F (-1,0),∴OE=OF=1,如图1中,连接AE .∵A (1,0),∴1OE OF OA ===,∴45EAF EFA ∠=∠=︒,∴90AEF ∠=︒,∴AE EF ⊥.∵AE ==∴点A 到直线l :=1y x --过点A 作直线l :=1y x --的垂线AG ,同理可得:45BFG ∠=︒,BG EF ⊥.∵A (1,0),点B (3,0),1OF =,∴134BF OF OA =+=+=,∴22216BG BF ==,∴BG =∴点B 到直线l :=1y x --的距离为.故答案为:45︒;②∵点A 到直线l :=1y x --,点B 到直线l :=1y x --的距离为线段AB 与直线l :=1y x --“k 关联”,∴k 的值为:k ≤,∴k 的值不能是3.故选:A ;③如图2中,由①得,当直线y x b =-+在AB 的下方时,点A 时,1b =-,当直线y x b =-+在点AB 的上方时,且点B B 作BH DG ⊥于H ,∵直线y x b =-+平行于直线=1y x --,∴45HGB HBG ∠=∠=︒,∴45GDO ∠=︒,∴BH HG =,OD OG =,∴2BG ==,∴325OD OG OB BG ==+=+=,∴5b =,观察图象可知,满足条件的b 的值为15b -≤≤;(2)解:设直线1y =+交y 轴于C (0,1),交x 轴于()D ,∴1OC =,OD =∴2CD =,∴12CO CD =,∴30CDO ∠=︒,当等边PMN 在y 轴的右侧时,过点P 作PQ CD ⊥于Q ,如图3,当PQ=2时,24PD PQ ==,∴4OP DP DO =-=-∴()4P ,当等边PMN 在y 轴的左侧,且点N 到直线CD 的距离为2时,过点P 作PQ CD ⊥于Q ,如图4,当PQ=2时,24PD PQ ==,∴4OP DP DO =-=-∴()4P --.综上所述,点()4P 或()4P -,观察图象可知,满足条件的点P横坐标a的取值范围为44-≤-a。
浙教版八年级上册数学期末测试卷
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、A,B,C,D,E五人参加“五羊杯”初中数学竞赛得分都超过91分.其中E 排第三,得96分.又知A,B,C平均95分,B,C,D平均94分.若A排第一,则D得多少分()A.98B.97C.93D.922、如图,Rt△ABC中,于点D则下列结论不一定成立的是()A. B. C. D.3、如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C (0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8B.12C.D.4、下列图形中,既是轴对称图形又是中心对称图形的是()A.角B.等腰三角形C.平行四边形D.正六边形5、如图,一个扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短6、如图,直线与交于点,则不等式的解集为()A. B. C. D.7、如果等腰三角形的两边长是6cm和3cm,那么它的周长是()A.9cmB.12cmC.12cm或15cmD.15cm8、如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()A.②④B.①④C.②③D.①③9、一水池有甲、乙、丙三个水管,其中甲、丙两管为进水管,乙管为出水管.单位时间内,甲管水流量最大,丙管水流量最小.先开甲、乙两管,一段时间后,关闭乙管开丙管,又经过一段时间,关闭甲管开乙管.则能正确反映水池蓄水量y(立方米)随时间t(小时)变化的图象是()A. B. C. D.10、如果ax>a的解是x<1,那么a必须满足 ( )A.a<0B.a>1C.a>-1D.a<-111、如图,在边长为2的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则周长的最小值为A. B.3 C. D.12、如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是()A.30°B.35°C.40°D.50°13、甲以每小时20km的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=20t来表示,则下列说法正确的是()A.数20和s,t都是变量B.s是常量,数20和t是变量C.数20是常量,s和t是变量D.t是常量,数20和s是变量14、如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C 地,分别连接AB、AC、BC,形成一个三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级上册数学期末测试卷相信自己,放好心态向前冲。
祝你八年级数学期末考试成功! 为大家整理了浙教版八年级上册数学期末测试卷,欢迎大家阅读!浙教版八年级上册数学期末测试题一、选择题:(本大题共有8小题,每小题3分,共24分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.二次根式可化简成( )A.﹣2B.4C.2D.2.下列各选项的图形中,不是轴对称图形的是( )A. B. C. D.3.如图,已知AE=CF,AFD= CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A. A= CB.AD=CBC.BE=DFD.AD∥BC4.下列说法正确的是( )A.﹣4的平方根是2B.(﹣3)2的平方根是﹣3C.1的立方根是1D.0的平方根是05.如图,Rt△ABC中,C=90 ,ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是( )A.5cmB.4cmC.3cmD.2cm6.关于函数y=﹣2x+1,下列结论正确的是( )A.图象经过点(﹣2,1)B.y随x的增大而增大C.图象不经过第三象限D.图象不经过第二象限7.估算﹣2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间8.如图,MON=90 ,边长为2的等边三角形ABC的顶点A、B分别在边OM,ON上当B在边ON上运动时,A随之在边OM 上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为( )A.2.4B.C.D.二、填空题:(本大题共10小题,每小题3分,共30分,把答案直接填在答题纸相对应的位置上)9.要使二次根式有意义,字母x必须满足的条件是__________.10.如果等腰三角形的周长为10,底边长为4,那么腰长为__________.11.16的平方根是__________.12.姜堰区溱湖风景区2013年接待游客的人数为289700人次,将这个数字精确到万位,并用科学记数法表示为__________.13.小亮在镜子中看到一辆汽车的车牌号为,实际车牌号为__________.14.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.若AB=10,AC=8,则四边形AEDF的周长为__________.15.如图,直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b 4x+2的解集为__________.16.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别4cm2和15cm2,则正方形③的面积为__________.17.在平面直角坐标系中,已知点A(﹣,0),B( ,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标__________.18.若[x]表示不超过x的最大整数(如[ ]=3,[﹣2 ]=﹣3等),则[ ]+[ ]+ [ ]=__________.三、解答题(本大题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(2) .20.如图,小明将三角形纸片ABC(AB AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①),再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A B C(3)写出点B 的坐标.22.如图,有人在岸上点C的地方,用绳子拉船靠岸开始时,绳长CB=5米,拉动绳子将船身岸边行驶了2米到点D后,绳长CD= 米,求岸上点C离水面的高度CA.23.如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分ADC,连接CE.试判断CE和DF的位置关系,并说明理由.24.某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).(1)写出y与x之间的函数关系式;(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.25.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求ABC的度数.26.甲、乙两地相距300千米,一辆轿车从甲地出发驶向乙地,同时一辆货车从乙地驶向甲地.如图,线段AB表示货车离甲地的距离y (千米)与行驶的时间x(小时)之间的函数关系;折线O﹣C﹣D表示轿车离甲地的距离y(千米)与行驶时间x(小时)之间的函数关系,请根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)求线段AB的函数关系式,并求出轿车出发多少小时与货车相遇?(3)当轿车出发多少小时两车相距80千米?27.已知正比例函数y1=2x和一次函数y2=﹣x+b,一次函数的图象与x轴、y轴分别交于点A、点B,正比例函数的图象与一次函数的图象相交于点P.(1)若P点坐标为(3,n),试求一次函数的表达式,并用图象法求y1 y2的解;(2)若S△AOP=3,试求这个一次函数的表达式;(3)x轴上有一定点E(2,0),若△POB≌△EPA,求这个一次函数的表达式.28.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,ABC=90 ,BO AC于点O,点P、D分别在AO和BC上,PB=PD,DE AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P 时,满足题中条件的点D也随之在直线BC上运动到点D ,请直接写出CD 与AP 的数量关系.(不必写解答过程)浙教版八年级上册数学期末测试卷参考答案一、选择题:(本大题共有8小题,每小题3分,共24分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.二次根式可化简成( )A.﹣2B.4C.2D.【考点】二次根式的性质与化简.【分析】根据=a(a 0),可得答案.【解答】解:=2,故选:C.【点评】本题考查了二次根式的性质与化简,二次根式的性质是解题关键.2.下列各选项的图形中,不是轴对称图形的是( )A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项不合题意.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,已知AE=CF,AFD= CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A. A= CB.AD=CBC.BE=DFD.AD∥BC【考点】全等三角形的判定.【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,AE+EF=CF+EF,AF=CE,A、∵在△ADF和△CBE中△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,AFD= CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,A= C,∵在△ADF和△CBE中△ADF≌△CBE(ASA),正确,故本选项错误;故选B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.下列说法正确的是( )A.﹣4的平方根是2B.(﹣3)2的平方根是﹣3C.1的立方根是1D.0的平方根是0【考点】平方根;立方根.【分析】根据平方根和立方根的概念进行解答即可.【解答】解:﹣4没有平方根,A错误;(﹣3)2的平方根是3,B错误;1的立方根是1,C错误;0的平方根是0,D正确,故选:D.【点评】本题考查的是平方根和立方根,掌握平方根和立方根的概念是解题的关键.5.如图,Rt△ABC中,C=90 ,ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是( )A.5cmB.4cmC.3cmD.2cm【考点】角平分线的性质.【分析】过D作DE AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:过D作DE AB于E,∵BD是ABC的平分线,C=90 ,DE AB,DE=CD,∵CD=3cm,DE=3cm.故选C.【点评】本题主要考查角平分线的性质;作出辅助线是正确解答本题的关键.6.关于函数y=﹣2x+1,下列结论正确的是( )A.图象经过点(﹣2,1)B.y随x的增大而增大C.图象不经过第三象限D.图象不经过第二象限【考点】一次函数的性质.【分析】根据一次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵当x=﹣2时,y=﹣4+1=3 1,图象不经过点(﹣2,1),故本选项错误;B、∵﹣2 0,y随x的增大而减小,故本选项错误;C、∵k=﹣2 0,b=1 0,图象不经过第三象限,故本选项正确;D、∵k=﹣2 0,b=1 0,图象经过第二象限,故本选项错误.故选C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k 0),当k 0,b 0时函数图象经过一、二、四象限是解答此题的关键.7.估算﹣2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】估算无理数的大小.【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5 6,3 ﹣2 4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,夹逼法是估算的一般方法,也是常用方法.8.如图,MON=90 ,边长为2的等边三角形ABC的顶点A、B分别在边OM,ON上当B在边ON上运动时,A随之在边OM 上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为( )A.2.4B.C.D.【考点】直角三角形斜边上的中线;线段的性质:两点之间线段最短;等边三角形的性质.【分析】如图,取AB的中点D.连接CD.根据三角形的边角关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,由等边三角形的边长为2,根据D为AB中点,得到BD为1,根据三线合一得到CD垂直于AB,在直角三角形BCD中,根据勾股定理求出CD的长,在直角三角形AOB 中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD等于AB的一半,由AB的长求出OD的长,进而求出DC+OD,即为OC的最大值.【解答】解:如图,取AB的中点D,连接CD.∵△ABC是等边三角形,且边长是2,BC=AB=2,∵点D是AB边中点,BD= AB=1,CD= = = ,即CD= ;连接OD,OC,有OC OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,由(1)得,CD= ,又∵△AOB为直角三角形,D为斜边AB的中点,OD= AB=1,OD+CD=1+ ,即OC的最大值为1+ .故选:C.【点评】此题考查了等边三角形的性质,直角三角形斜边上的中线等于斜边的一半,以及勾股定理,其中找出OC最大时的长为CD+OD是解本题的关键.二、填空题:(本大题共10小题,每小题3分,共30分,把答案直接填在答题纸相对应的位置上)9.要使二次根式有意义,字母x必须满足的条件是x ﹣1.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x+1 0,解得x ﹣1.故答案为:x ﹣1.【点评】本题考查的知识点为:二次根式的被开方数是非负数.10.如果等腰三角形的周长为10,底边长为4,那么腰长为3.【考点】等腰三角形的性质;三角形三边关系.【分析】由等腰三角形的周长是10,则底边长4,根据等腰三角形的两腰相等,即可求得其腰长的值【解答】解:∵等腰三角形的底边长为4,周长为10,腰长为:(10﹣4) 2=3.故答案为:3.【点评】此题考查了等腰三角形的性质.此题比较简单,注意掌握等腰三角形的两腰相等是解此题的关键.11.16的平方根是4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵( 4)2=16,16的平方根是4.故答案为:4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.姜堰区溱湖风景区2013年接待游客的人数为289700人次,将这个数字精确到万位,并用科学记数法表示为2.9 105.【考点】科学记数法与有效数字.【分析】根据四舍五入,可得精确到万位的数,根据科学记数法表示的方法,可得答案案.【解答】解:289700 29万,故答案为:2.9 105.【点评】本题考查了科学记数法,a 10n,a是一位整数,n是数位的位数减一.13.小亮在镜子中看到一辆汽车的车牌号为,实际车牌号为100968.【考点】镜面对称.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称性质得出:实际车牌号是100968.故答案为:100968【点评】本题考查了镜面反射的性质;解决本题的关键是得到对称轴,进而得到相应数字.14.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.若AB=10,AC=8,则四边形AEDF的周长为18.【考点】直角三角形斜边上的中线.【分析】根据在直角三角形中,斜边上的中线等于斜边的一半可得ED=EB= AB,DF=FC= AC,再由AB=10,AC=8可得答案.【解答】解:∵AD是高,ADB= ADC=90 ,∵E、F分别是AB、AC的中点,ED=EB= AB,DF=FC= AC,∵AB=10,AC=8,AE+ED=10,AF+DF=8,四边形AEDF的周长为10+8=18,故答案为:18.【点评】此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.15.如图,直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b 4x+2的解集为x ﹣1.【考点】一次函数与一元一次不等式.【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),观察直线y=kx+b落在直线y=4x+2的上方的部分对应的x的取值即为所求.【解答】解:∵直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),观察图象得:当x ﹣1时,kx+b 4x+2,不等式kx+b 4x+2的解集为x ﹣1.故答案为:x ﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别4cm2和15cm2,则正方形③的面积为19.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形的性质就可以得出EAB= EBD= BCD=90 ,BE=BD,AEB= CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE2的值,进而得出结论.【解答】解:∵四边形1、2、3都是正方形,EAB= EBD= BCD=90 ,BE=BD,AEB+ ABE=90 ,ABE+ DBC=90 ,AEB= CBD.在△ABE和△CDB中,,△ABE≌△CDB(AAS),AE=BC,AB=CD.∵正方形①、②的面积分别4cm2和15cm2,AE2=4,CD2=15.AB2=15.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=19,正方形③为19.故答案为:19.【点评】本题考查了正方形的性质的运用,勾股定理的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.17.在平面直角坐标系中,已知点A(﹣,0),B( ,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0).【考点】勾股定理;坐标与图形性质.【专题】压轴题;分类讨论.【分析】需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标.【解答】解:如图,①当点C位于y轴上时,设C(0,b).则+ =6,解得,b=2或b=﹣2,此时C(0,2),或C(0,﹣2).如图,②当点C位于x轴上时,设C(a,0).则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).【点评】本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标.18.若[x]表示不超过x的最大整数(如[ ]=3,[﹣2 ]=﹣3等),则[ ]+[ ]+ [ ]=2014.【考点】估算无理数的大小.【分析】首先化简,可得=1﹣,然后由取整函数的性质,可得:[ ]=[1﹣]=1,则代入原式即可求得结果,注意n是从2开始到2015结束,共有2014个.【解答】解:∵= =1﹣=1﹣,[ ]=[1﹣]=1,[ ]+[ ]+ [ ]=1+1+ +1=2014.故答案为:2014.【点评】此题主要考查了二次根式的化简与取整函数的性质,注意求得=1﹣是解此题的关键.三、解答题(本大题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(2) .【考点】二次根式的混合运算.【分析】(1)先算除法,再合并同类二次根式即可;(2)先根据公式求出每一部分的值,再合并即可.【解答】解:(1)原式=2 ﹣3 +4=3 ;(2)原式=9+12 +20﹣16+7=20+12 .【点评】本题考查了二次根式的混合运算,平方差公式,完全平方公式的应用,主要考查学生的计算和化简能力.20.如图,小明将三角形纸片ABC(AB AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①),再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.【考点】翻折变换(折叠问题);等腰三角形的判定.【分析】由两次折叠知,点A在EF的中垂线上,所以AE=AF.【解答】答:同意.证明:如图,设AD与EF交于点G.∵BAD= CAD.又∵AGE= DGE,AGE+ DGE=180 ,AGE= AGF=90 ,AEF= AFE.AE=AF,即△AEF为等腰三角形.【点评】本题考查了折叠的性质,理解折叠过程中出现的相等的线段与相等的角是关键.21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A B C(3)写出点B 的坐标.【考点】作图-轴对称变换.【分析】(1)根据顶点A,C的坐标分别为(﹣4,5),(﹣1,3)建立坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B 在坐标系中的位置写出其坐标即可.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,B (2,1).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.22.如图,有人在岸上点C的地方,用绳子拉船靠岸开始时,绳长CB=5米,拉动绳子将船身岸边行驶了2米到点D后,绳长CD= 米,求岸上点C离水面的高度CA.【考点】勾股定理的应用.【分析】首先在两个直角三角形中利用勾股定理求得AD的长,然后再利用勾股定理求得AC的长即可.【解答】解:设AD=x,根据题意得13﹣x2=25﹣(x+2)2解得:x=2,∵BD=2,AB=4,由勾股定理得:,答:岸离水面高度AC为3米.【点评】本题考查了勾股定理的应用,从实际问题中整理出直角三角形是解答本题的关键.23.如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分ADC,连接CE.试判断CE和DF的位置关系,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由全等三角形的判定定理AAS证得结论;(2)由(1)中全等三角形的对应边相等推知点E是边DF的中点,1= 根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的三线合一的性质推知CE DF.【解答】(1)证明:∵四边形ABCD是平行四边形,AD∥BC.又∵点F在CB的延长线上,AD∥CF,1= 2.∵点E是AB边的中点,AE=BE.∵在△ADE与△BFE中,,△ADE≌△BFE(AAS);(2)解:CE DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,DE=FE,即点E是DF的中点,1= 2.∵DF平分ADC,1= 3,3= 2,CD=CF,CE DF.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边、对顶角以及公共角.24.某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).(1)写出y与x之间的函数关系式;(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.【考点】一次函数的应用.【分析】(1)首先表示出B种产品的数量进而利用A,B种产品的利润进而得出总利润;(2)利用不等式组求出x的取值范围,进而利用一次函数增减性进而得出最大利润.【解答】解:(1)设生产两种产品的获利总额为y(元),生产A 产品x(件),则B种产品共(50﹣x)件,y与x之间的函数关系式为:y=1200x+700(50﹣x)=500x+35000;(2)∵生产A、B两种产品的件数均不少于10件,,解得:10 x 40,∵y=500x+35000,y随x的增大而增大,当x=40时,此时达到总利润的最大值为:40 500+35000=55000(元),答:总利润的最大值为55000元.【点评】此题主要考查了一次函数的应用以及不等式组的解法和函数最值求法等知识,得出y与x的关系式是解题关键.25.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求ABC的度数.【考点】勾股定理.【专题】作图题.【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD= = ,ACB=90 ,由勾股定理得:AC=BC= = ,ABC= BAC=45 .【点评】本题考查了勾股定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.26.甲、乙两地相距300千米,一辆轿车从甲地出发驶向乙地,同时一辆货车从乙地驶向甲地.如图,线段AB表示货车离甲地的距离y (千米)与行驶的时间x(小时)之间的函数关系;折线O﹣C﹣D表示轿车离甲地的距离y(千米)与行驶时间x(小时)之间的函数关系,请根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)求线段AB的函数关系式,并求出轿车出发多少小时与货车相遇?(3)当轿车出发多少小时两车相距80千米?【考点】一次函数的应用.【分析】(1)利用待定系数法求出线段CD对应的函数关系式即可;(2)利用待定系数法求出线段AB对应的函数关系式即可,再利用两车行驶的时间和距离进而得出相遇所用的时间;(3)利用两车的速度进而结合两车相遇前距80km,以及相遇后相距80km,分别求出即可.【解答】解:(1)设线段CD的解析式为:y=kx+b,将(1,80),(3.2,300)代入得出:,解得:线段CD对应的函数关系式为:y=100x﹣20;(2)设线段AB的解析式为:y=ax+c,将(0,300),(5,0)代入得出:,解得:,线段AB的函数关系式为:y=﹣60x+300;∵货车的速度为:300 5=60(km/h),轿车开始1小时的速度为:80km/h,1小时后速度为:(300﹣80) (3.2﹣1)=100(km/h),轿车出发1小时后两车相距:300﹣(80+60)=160(km),160 (100+60)=1(小时),轿车出发2小时与货车相遇;(3)∵轿车开始1小时的速度为:80km/h,1小时后速度为:100km/h,轿车出发1小时后两车相距:160km,继续行驶当两车相距80km,则所需时间为:80 (100+60)= ,轿车出发小时两车相距80千米;当两车相遇后再次相距80km时,即2小时后再次相距80km,则还需小时,轿车出发小时或小时两车相距80千米.【点评】此题主要考查了一次函数的应用以及待定系数法求一次函数解析式等知识,利用图象得出两车的速度是解题关键.27.已知正比例函数y1=2x和一次函数y2=﹣x+b,一次函数的图象与x轴、y轴分别交于点A、点B,正比例函数的图象与一次函数的图象相交于点P.(1)若P点坐标为(3,n),试求一次函数的表达式,并用图象法求y1 y2的解;(2)若S△AOP=3,试求这个一次函数的表达式;(3)x轴上有一定点E(2,0),若△POB≌△EPA,求这个一次函数的表达式.【考点】一次函数综合题.【分析】(1)将点P的坐标代入到正比例函数中求得n值,然后代入到一次函数中即可确定其表达式,然后根据其图象的位置和交点坐标确定不等式的解集;(2)用b表示出点A和点P的坐标,根据S△AOP=3求得点P 的坐标即可求得一次函数的表达式;(3)分一次函数经过一、二、四象限和经过二、三、四象限两种情况并利用全等三角形的性质求得一次函数的表达式即可.【解答】解:(1)∵正比例函数y1=2x和一次函数y2=﹣x+b的图象相交于点P,P点坐标为(3,n),代入正比例函数求得n=6,点P的坐标为(3,6),代入y2=﹣x+b得b=9,所以一次函数的表达式为y2=﹣x+9;图象为:y1 y2的解为:x(2)∵一次函数y2=﹣x+b的图象与x轴、y轴分别交于点A(b,0)、点B(0,b),两函数的图象交与点( ,),S△AOP= b =3,解得:b= 3,所以一次函数的表达式为:y2=﹣x 3;(3)当b 0时,如图:∵△POB≌△EPA,PO=PE,∵E(2,0),点P的横坐标为1,∵点P在y=2x上,点P的纵坐标为2,点P的坐标为(1,2),代入y2=﹣x+b得:y2=﹣x+3;当b 0时,如图:∵△POB≌△EPA,PO=PE,∵点P在第三象限,不成立;综上所叙:若△POB≌△EPA时,一次函数的表达式为y=﹣x+3.【点评】本题考查了一次函数的综合知识,特别是本题中与三角形的面积的知识相结合使得问题变难,此类题目往往是中考的压轴题,应该重点掌握.28.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,ABC=90 ,BO AC于点O,点P、D分别在AO和BC上,PB=PD,DE AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P 时,满足题中条件的点D也随之在直线BC上运动到点D ,请直接写出CD 与AP 的数量关系.(不必写解答过程)【考点】全等三角形的判定与性质.【专题】压轴题.。