2014届八年级全国数学竞赛赛前专项训练:三角形的四心及性质、平移、旋转、覆盖(含详解)
三角形“四心”问题
三角形“四心”问题一、三角形的“重心”1、重心的定义:中线的交点,重心将中线长度分成2:1三角形中线向量式:AM ⃗⃗⃗⃗⃗⃗ =12(AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 2、重心的性质:(1)重心到顶点的距离与重心到对边中点的距离之比为2:1。
(2)重心和三角形3个顶点组成的3个三角形面积相等。
(3)在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即(x A +x B +x C 3,y A +y B +y C3).3、常见重心向量式:设O 是∆ABC 的重心,P 为平面内任意一点 ①OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ②PO⃗⃗⃗⃗⃗ =13(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) ③若AP⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),λ∈[0,+∞),则P 一定经过三角形的重心 ④若AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC ),λ∈[0,+∞),则P 一定经过三角形的重心二、三角形的“垂心”1、垂心的定义:高的交点。
锐角三角形的垂心在三角形内; 直角三角形的垂心在直角顶点上; 钝角三角形的垂心在三角形外。
2、常见垂心向量式:O 是∆ABC 的垂心,则有以下结论: 1、OA⃗⃗⃗⃗⃗ ∙OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ∙OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ∙OA ⃗⃗⃗⃗⃗ 2、|OA⃗⃗⃗⃗⃗ |2+|BC ⃗⃗⃗⃗⃗ |2=|OB ⃗⃗⃗⃗⃗ |2+|CA ⃗⃗⃗⃗⃗ |2=|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2 3、动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ |cosC ),λ∈(0,+∞),则动点P 的轨迹一定通过∆ABC 的垂心4、奔驰定理推论:S ∆BOC :S ∆COA :S ∆AOB =tanA:tanB:tanC ,tanA ∙OA ⃗⃗⃗⃗⃗ +tanB ∙OB⃗⃗⃗⃗⃗ +tanC ∙OC ⃗⃗⃗⃗⃗ =0⃗ . 三、三角形的“内心”1、内心的定义:角平分线的交点(或内切圆的圆心)。
(易错题精选)初中数学图形的平移,对称与旋转的解析含答案
(易错题精选)初中数学图形的平移,对称与旋转的解析含答案一、选择题1.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B .2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴BD= 22AB AD +=2211+=2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.2.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B 2C 3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒ ∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.3.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】 由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得【详解】AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.4.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C .【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.5.如图,△ABC 绕点A 逆时针旋转使得点C 落在BC 边上的点F 处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC ≌△AEF ,∴AC=AF ,EF=BC ,①③正确,∠EAF=∠BAC ,即∠EAB+∠BAF=∠BAF+∠FAC ,∴∠EAB=∠FAC ,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.6.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.7.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】 解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.8.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选B .11.下列图形中,不是轴对称图形的是( )A .有两个内角相等的三角形B .有一个内角为45°的直角三角形C .有两个内角分别为50°和80°的三角形D .有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形. 故选:D.12.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【解析】【分析】先利用平移的性质求出AD、CF,进而完成解答.【详解】解:将△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,又∵△ABC的周长等于9,∴四边形ABFD的周长等于9+1+1=11.故答案为C.【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.13.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.14.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A .1B .2C .3D .22【答案】C【解析】【分析】根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.17.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.18.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形④矩形是轴对称图形A.①②③④ B.①②③ C.②④ D.②③④【答案】C【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.19.下列图形中,是轴对称图形不是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;而在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断求出答案即可.【详解】A:是轴对称图形,但不是中心对称图形,符合题意;B:是轴对称图形,也是中心对称图形,不符合题意;C:是中心对称图形,但不是轴对称图形,不符合题意;D:是轴对称图形,也是中心对称图形,不符合题意;故选:A.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.20.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.。
数学初中竞赛《三角形的五心》专题训练(包含答案)
数学初中竞赛《三角形的五心》专题训练一.选择题1.如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC的()A.垂心B.重心C.内心D.外心2.课本第5页有这样一个定义“三角形的三条中线的交点叫做三角形的重心”.现在我们继续定义:①三角形三边上的高线的交点叫做三角形的垂心;②三角形三条内角平分线的交点叫做三角形的内心;③三角形三边的垂直平分线的交点叫做三角形的外心.在三角形的这四“心”中,到三角形三边距离相等的是()A.重心B.垂心C.内心D.外心3.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心4.如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF等于()A.a:b:c B.::C.sin A:sin B:sin C D.cos A:cos B:cos C5.在△ABC中,两中线AD与CF相交于点G,若∠AFC=45°,∠AGC=60°,则∠ACF的度数为()A.30°B.45°C.60°D.75°6.如图,已知△ABC的三个顶点分别在反比例函数y=(k>0)的图象上,那么△ABC的()也一定在该函数图象上.A.重心B.内心C.外心D.垂心7.如图,已知H是△ABC的垂心,△ABC的外接圆半径为R,△BHC的外接圆半径为r,则R 与r的大小关系是()A.R=r B.R>r C.R<r D.无法确定8.以Rt△ABC的两条直角边AB、BC为边,在三角形ABC的外部作等边三角形ABE和等边三角形BCF,EA和FC的延长线相交于点M,则点B一定是三角形EMF的()A.垂心B.重心C.内心D.外心9.如图,锐角△ABC的垂心为H,三条高的垂足分为D、E、F,则H是△DEF的()A.垂心B.重心C.内心D.外心10.三个等圆O 1,O 2,O 3有公共点H ,点A 、B 、C 是其他交点,则H 是三角形ABC 的( )A .外心B .内心C .垂心D .重心二.填空题11.在半径为1的⊙O 中内接有锐角△ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,则BC = .12.如图,ADCFBE 是某工厂车间的一种剩余残料,且∠ACB =90°,现需要利用这块残料在△ABC 的外部制作3个等边△ADC 、△CBF 、△ABE 的内切圆⊙O 1、⊙O 2、⊙O 3,若其中最大圆⊙O 3的半径为0.5米,可使生产成本节约3元(节约成本与圆面积成正比),照此计算,则10块这样的残料可使生产成本节约 元.13.如图,在△ABC 中M 为垂心,O 为外心,∠BAC =60°,且△ABC 外接圆直径为10,则AM = .14.如图,锐角三角形ABC 内接于半径为R 的⊙O ,H 是三角形ABC 的垂心,AO 的延长线与BC 交于点M ,若OH ⊥AO ,BC =10,OA =6,则OM 的长= .15.设凸四边形ABCD 的对角线AC 与BD 相交于O ,△OAB ,△OBC ,△OCD ,△ODA 的重心分别为E ,F ,G ,H ,则S EFGH :S ABCD = .16.如图,I 是Rt △ABC (∠C =90°)的内心,过I 作直线EF ∥AB ,分别交CA 、CB 于E 、F .已知EI=m,IF=n,则用m、n表示S△ABC=.17.已知点I是锐角三角形ABC的内心,A1、B1、C1分别是点I关于边BC,CA,AB的对称点,若点B在△A1B1C1的外接圆上,则∠ABC等于.三.解答题18.如图所示,已知锐角△ABC的外接圆半径R=1,∠BAC=60°,△ABC的垂心和外心分别为H、O,连接OH、BC交于点P(1)求凹四边形ABHC的面积;(2)求PO•OH的值.19.如图,AD,BE,CF是△ABC的高,K,M,N分别为△AEF,△BFD,△CDE的垂心,求证:△DEF≌△KMN.20.如图,点H为△ABC的垂心,以AB为直径的⊙O1和△BCH的外接圆⊙O2相交于点D,延长AD交CH于点P,求证:点P为CH的中点.21.如图,△ABC的三边满足关系BC=(AB+AC),O、I分别为△ABC的外心、内心,∠BAC 的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,求证:(1)AI=BD;(2)OI=AE.22.如图,H是锐角△ABC的垂心,O为△ABC的外心,过O作OD⊥BC,垂足为D.(1)求证:AH=2OD;(2)若AO=AH,求∠BAC的度数.23.如图,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B .又设△AFE ,△BDF ,△CED 均为锐角三角形,它们的垂心依次为H 1,H 2,H 3,求证:1.∠H 2DH 3=∠FH 1E ;2.△H 1H 2H 3≌△DEF .24.如图,△ABC 为锐角三角形,CF ⊥AB 于F ,H 为△ABC 的垂心.M 为AH 的中点,点G 在线段CM 上,且CG ⊥GB .(1)求证:∠MFG =∠GCF ;(2)求证:∠MCA =∠HAG .25.如图,已知H 为锐角△ABC 的垂心,D 是使四边形AHCD 为平行四边形的一点,过BC 的中点M 作AB 的垂线,垂足为N ,K 为MN 的中点,过点A 作BD 的平行线交MN 于点G ,若A ,K ,M ,C 四点共圆.求证:直线BK 平分线段CG .参考答案一.选择题1.解:如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F∵MN∥AB,OD=OE=OF(夹在平行线间的距离处处相等)如图2,过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F',由裁剪知,OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点,∴点O是△ABC的内心,故选:C.2.解:内心是三角形的三条内角平分线的交点,而角平分线上的点到角的两边的距离相等,所以在三角形的四“心”中,到三角形三边距离相等的是内心;到三个顶点的距离相等的是外心.故选:C.3.解:如图,连接OA、OB、OC、OD,设每一个小方格的边长为1,由勾股定理可求得OA=OB=OC=,OD=2,∴O点在AB、AC、BC的垂直平分线上,∴点O为△ABC的外心,∵OA=OC≠OD,∴点O即不是△ACD的重心,也不是△ACD的内心,故选:B.4.解:如图,连接OA、OB、OC;∵∠BOC=2∠BAC=2∠BOD,∴∠BAC=∠BOD;同理可得:∠BOF=∠BCA,∠AOE=∠ABC;设⊙O的半径为R,则:OD=R•cos∠BOD=R•cos∠A,OE=R•cos∠AOE=R•cos∠B,OF=R•cos∠BOF=R•cos∠C,故OD:OE:OF=cos∠A:cos∠B:cos∠C,故选:D.5.解:∵点G是△ABC的重心,∴=2,作CE⊥AG于点E,连接EF,∴△CEG是直角三角形,∵∠EGC=60°,∴∠ECG=30°,那么EG=CG=GF,∴GE=GF,∠FGE=120°,∴∠GFE=∠FEG=30°,而∠ECG=30°,∴EF=EC,∵∠EFA=45°﹣30°=15°,∠FAD=∠AGC﹣∠AFC=15°,∴∠FAD=∠EFA,∴EF=AE,∴AE=EC,∵△AEC是等腰直角三角形,∴∠ACE=45°,∴∠ACF=∠ACE+∠ECF=30°+45°=75°,故选:D.6.解:结论:△ABC的垂心也一定在该函数图象上;理由:∵A、B、C都在y=上,∴可设A、B、C的坐标依次是:(a,)、(b,)、(c,).令H的坐标为(x,y).容易得出:AB的斜率==﹣,BC的斜率==﹣,AH的斜率=,CH的斜率=,∵AH⊥BC,CH⊥AB,∴=,=,∴a•=c•,∴(k﹣ay)(c﹣x)=(k﹣cy)(a﹣x),∴ck﹣kx﹣acy+axy=ak﹣kx﹣acy+cxy,∴(a﹣c)xy=(a﹣c)k.显然,a﹣c≠0,∴xy=k,即:y=.∴点H(x,y)在反比例函数y=的图象上.故选:D.7.解:如图,延长AD交△ABC的外接圆于G,连接BG,CG,∴△ABC的外接圆的半径等于△BGC的外接圆的半径,∵△ABC的外接圆半径为R,∴△BGC的外接圆半径为R,∵点H是△ABC的垂心,∴AD⊥BC,BE⊥AC,∴∠ADC=∠BEC=90°,∴∠CAD+∠ACB=90°,∠CBE+∠ACB=90°,∴∠CAD=∠CBE,∵∠CBG=∠CAD,∴∠CBE=∠CBG,同理:∠BCF=∠BCG,在△BCH和△BCG中,,∴△BCH≌△BCG(ASA),∴△BHC的外接圆的半径等于△BGC的外接圆的半径,∵△BHC的外接圆半径为r,∴△BGC的外接圆的半径为r,∴R=r,故选:A.8.解:如图,连接CE,AF,延长EB交MF于G,延长FB交ME于H,∵以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,∴∠CBE=90°+60°=150°,∠FBE=360°﹣90°﹣60°﹣60°=150°,在△CBE与△FBE中,,∴△CBE≌△FBE(SAS);∴CE=FE,∠FEB=∠CEB,∴BE⊥CF于G,∴EG是△MEF的边FM上的高,同理:FH是△MEF的边EM上的高,∴点B是△MEF的三边的高,即:点B是△MEF的垂心.故选:A.9.解:∵BE丄AC,CF丄AB,∴四点B、C、E、F共圆(以BC为直径),∴∠EBF=∠FCE,∵HD丄BD,HF丄BF,∴四点B、D、H、F共圆(以BH为直径),∴∠HBF=∠FDH,同理,四点C、D、H、E共圆,(以CH为直径),∠HDE=∠HCE,∴∠HDE=∠HDF,∴DA平分∠EDF即可.同理可证EB平分∠DEF,FC平分∠EFD,∴H是△DEF的角平分线的交点,∴H是△DEF的内心.故选:C.10.解:延长AH交BC于E点,延长CH交AB于F点,如图,∵三个等圆O1,O2,O3有公共点H,∴∠1所对的弧BH与∠4所对的弧BH为等弧;∠2所对的弧CH与∠5所对的弧CH为同弧;∠3所对的弧AH与∠6所对的弧AH为同弧,∴∠1=∠4,∠2=∠5,∠3=∠6,∵∠1+∠2+∠3+∠4+∠5+∠6=180°,∴2∠2+2∠3+2∠4=180°,2∠1+2∠3+2∠2=180°,∴∠2+∠3+∠4=90°,∠1+∠3+∠2=90°,∴AE⊥BC,CF⊥AB,∴点H为△ABC的垂心.故选:C.二.填空题(共7小题)11.解:设AL与⊙O交于点D,与OH交于点N,连接OD,交BC于点M,连接CO并延长交⊙O于点G,连接GA、GB、AO,如图所示,∵CG是⊙O的直径,∴∠CBG=∠CAG=90°,∴BG⊥BC,AG⊥AC.∵H为△ABC的垂心,∴AE⊥BC,BF⊥AC,∴AE∥BG,AG∥BF,∴四边形AGBH是平行四边形,∴BG=AH.∵AL平分∠BAC,∴∠BAD=∠CAD,∴=,根据垂径定理的推论可得:OD⊥BC.∵AE⊥BC,∴OD∥AE,∴∠ODA=∠EAD.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EAD.∵AL垂直于OH,∴∠ANO=∠ANH=90°.在△ANO和△ANH中,,∴△ANO≌△ANH(ASA),∴AO=AH,∴BG=AH=AO=1.在Rt△GBC中,∵BG=1,GC=2,∴BC==.故答案为:.12.解:由勾股定理和相似图形的性质可知,⊙O1的面积+⊙O2的面积=⊙O3的面积,∵⊙O3可使生产成本节约3元,∴1块这样的残料可使生产成本节约6元.则10块这样的残料可使生产成本节约6×10=60元.故答案为:60.13.解:延长AM交BC于D,延长CM交AB于E,作直径BF,连结AF,如图,∵BF为⊙的直径,∴∠BAF=90°,∴sin F==,∴AB=10•sin F=10•sin∠ACB,又∵点M为△ABC的垂心,∴AD⊥BC,CE⊥AB,∴∠ADB=∠AEC=90°,∴△AEM∽△ADB,∴=,即AM=,在Rt△AEC中,∠EAC=60°,AC=2AE,即AE=AC,在Rt△ADC中,sin∠ACD=,即AD=AC•sin∠ACD,∴AM==5.故答案为5.14.解:如图,连接BO并延长交圆于F,连接CF,AH,连接AF,CH,过点O作ON⊥BC于N,∵BF是⊙O的直径,∴∠BCF=∠BAF=90°,∴ON∥FC,∵OB=OF,∴ON是△BCF的中位线,∴CF=2ON.∴BN=CN=BC=5,在Rt△OBN中,OB=OA=6,BN=5,∴ON==,∴CF=2ON=2,∵H是△ABC的垂心,∴AH⊥BC,∵CF⊥BC,∴AH∥CF,同理可得:CH∥AF,∴四边形AHCF是平行四边形,∴AH=CF=2∵H是△ABC的垂心,∴AH⊥BC,∵ON⊥BC,∴AH∥ON,∴∠OAH=∠NOM,∵OH⊥AM,∴∠AOH=∠ONM=90°,∴△AOH∽△ONM,∴,∴,∴OM=.故答案为.15.解:如图:∵E、F分别是△OAB与△OBC的重心,∴,∴EF∥AC,同理:FG∥BD,HG∥AC,HE∥BD,∴ERUQ,RUSF,USGT,THQU,EFGH是平行四边形,∵,∴,同理:,∴,∴,同理:,,.∴.16.解:如图,过I分别作三边的垂线,垂足为D、F、G,设AB=c,BC=a,AC=b,ID=IH=IG=r,由△ABC∽△EIG∽△IFH,得=,=,解得a=,b=,由勾股定理,得c2=a2+b2,得1=+,解得r=,又ab=2S△ABC=r(a+b+c),∴=r(++c),解得c=m+n+=m+n+,∴S△ABC=ab==()2(m+n+)2=.故答案为:.17.解:∵I是锐角三角形ABC的内心,∴∠DBI=∠ABC,∵A1、B1、C1分别是点I关于边BC,CA,AB的对称点,∴ID=A1D=IA1,∠BDI=90°,∵点B在△A1B1C1的外接圆上,∴IB=IA1,∴ID=IB,∴∠IBD=30°,∴∠ABC=60°.故答案为:60°.三.解答题(共8小题)18.解:(1)如图:连接BO并延长交⊙O于点G,连接AG、CG、CO,延长CH交AB于F,延长BH交AC于E,延长AH交BC于N,作OM⊥BC于M.∵BG是直径,∴GA⊥AB,GC⊥BC,∵H为垂心,∴BE⊥AC,CF⊥AB,AN⊥BC,∴GA∥CH,GC∥AH,∴AGCH是平行四边形,∴AG=GC,∵∠BA C=60°,OB=OC,∴∠OBC=∠OCB=30°,∴OM=OB=,BM=,∴BC=,又∵OM=CG,∴AH=2OM=1,设凹四边形的面积为S,则S=S△AHB+S△AHC=×AH×BN+×AH×CN=×AH×BC=,(2)∵BE⊥AC,CF⊥AB,AN⊥BC,∠BAC=60°,∴∠ACF=30°,∴∠CHE=60°,∴∠BHC=120°,∴B、C、H、O四点共圆,∵∠OBC=∠OCB=30°,∴∠CHP=∠OBC=30°,∴∠OHC=∠OCP=150°,∴△OHC∽△OCP,∴OH•OP=OC2=1.19.证明:如图:∵OD⊥BC,FM⊥BC,∴OD∥FM,∵OF⊥AB,DM⊥AB,∴OF∥DM,∵DMFO是平行四边形,同理OFKE,ODNE均为平行四边形,∴MD∥KE,MD=KE,∴MDEK也是平行四边形,∴DE=MK,同理DF=KN,EF=MN∴△DEF≌△KMN(SSS).于点Q,20.证明:如图,延长AP交⊙O2连接AH,BD,QB,QC,QH.因为AB为⊙O的直径,1所以∠ADB=∠BDQ=90°.(5分)故BQ为⊙O的直径.2于是CQ⊥BC,BH⊥HQ.(10分)又因为点H为△ABC的垂心,所以AH⊥BC,BH⊥AC.所以AH∥CQ,AC∥HQ,四边形ACQH为平行四边形.(15分)所以点P为CH的中点.(20分)21.证明:(1)作IG⊥AB于G点,连BI,BD,如图,∴AG=(AB+AC﹣BC),而BC=(AB+AC),∴AG=BC,又∵AD平分∠BAC,AE平分∠BAC的外角,∴∠EAD=90°,∴O点在DE上,即ED为⊙O的直径,而BD弧=DC弧,∴ED垂直平分BC,即BH=BC,∴AG=BH,而∠BAD=∠DAC=∠DBC,∴Rt△AGI≌Rt△BHD,∴AI=BD;(2)∵∠BID=∠BAI+∠ABI,而∠BAI=∠DBC,∠ABI=∠CBI,∴∠DBI=∠BID,∴ID=DB,而AI=BD,∴AI=ID,∴OI为三角形AED的中位线,∴OI=AE.22.(1)证明:如图1,连接BH并延长交AC于E,∴BE⊥AC,过O作OF⊥AC于F,则F为AC的中点,连接CH,取CH中点N,连接FN,DN,则FN∥AM,AH=2FN,DN∥BE,∵AM⊥BC,OD⊥BC,∴OD∥AM,∴FN∥OD,∵BE⊥AC,OF⊥AC,∴BE∥OF,∵OD⊥BC,∴D为BC中点,∵N为CH中点,∴DN∥BE,∴DN∥OF,∴四边形ODNF是平行四边形,∴OD=FN,∵AH=2FN,∴AH=2OD.(2)解:如图2,连接OB,OC,∴OA=OB,∵OA=AH,∴OB=AH,由(1)知,AH=2OD,∴OB=2OD,在Rt△ODB中,cos∠BOD==,∴∠BOM=60°,∵OD⊥BC,∴∠BOC=2∠BOD=120°,∴∠BAC=∠BOC=60°.23.证明:(1)∵H2是△BDF的垂心,⊥BF,∴DH2DB=90°﹣∠B,∴∠H2同理:∠H 3DC =90°﹣∠C ,∴∠H 2DH 3=180°﹣∠H 2DB ﹣∠H 3DC =∠B +∠C , ∵H 1是△AEF 的垂心,∴∠H 1EF =90°﹣∠AFE ,∠H 1FE =90°﹣∠AEF , ∴∠EH 1F =180°﹣∠H 1EF ﹣∠H 1FE =180°﹣(90°﹣∠AFE )﹣(90°﹣∠AEF ) =180°﹣∠A =∠B +∠C ,∴∠H 2DH 3=∠FH 1E ;(2)如图,由(1)知,∠FH 1E =∠B +∠C , ∵∠FDE =∠A ,∠A +∠B +∠C =180°,∴∠FH 1E +∠EDF =180°,∴H 1在△DEF 的外接圆上,同理:H 2,H 3也在△DEF 的外接圆上,∴D ,H 2,F ,H 1,E ,H 3六点共圆,由(1)知,∠EH 1F =∠H 2DH 3,∴EF =H 2H 3,同理:DF =H 1H 3,DE =H 1H 2,∴△DEF ≌△H 1H 2H 3(SSS ).24.证明:(1)如图延长AH 交BC 于T .∵H 是△ABC 的垂心,∴∠THC =∠HFA =90°,∵∠THC =∠AHF ,∴∠HCT =∠FAH ,在Rt △AFH 中,∵AM =MH ,∴FM=AM=MH,∴∠FAH=∠MFA,∴∠MFA=∠HCT,∵BG⊥CM,∴∠BFC=∠BGC=90°,∴B、C、G、F四点共圆,∴∠AFG=∠BCG,∴∠AFM+∠MFG=∠HCT+∠MCF,∴∠MFG=∠GCF.(2)∵∠FMG=∠FMC,∠MFG=∠MCF,∴△MFG∽△MCF,∴=,∴MF2=MG•MC,∵MA=MF,∴MA2=MG•MC,∴=,∵∠AMG=∠AMC,∴△MAG∽△MCA,∴∠MCA=∠HAG.25.证明:如图,设BK交CG于E,连接AG,AK,∵A,K,M,C四点共圆,∴∠AC B=∠AKG(外角等于内对角),∵H是△ABC的垂心,∴AH⊥BC,CH⊥AB,∵四边形AHCD是平行四边形,∴CH∥AD,AH∥CD,∴CD⊥BC,AD⊥AB,∴∠BCD=∠BAD=90°,∴∠BAD+∠BCD=180°,∴点A,B,C,D四点共圆,∴∠5=∠ACB=∠AKG,∵AH⊥BC,MN⊥AB,AD⊥AB,∴∠1=∠2=∠4,∵AG∥BD,∴∠3=∠4=∠2,在△ANG和△ANK中,,∴△ANG≌△ANK,∴GN=KN=MK,∴MK=KG,∵直线BKE截得△GMC,由梅涅劳斯定理得:,∵点M是CB中点,∴CB=2BM,∴GE=EC,∴直线BK平分线段CG.。
初中数学竞赛 知识点和真题 第19讲 三角形的四心
第19讲三角形的“四心”有一个人开始跟欧几里德学习几何学,当他学完第一个命题时,他就问欧几里德:我能通过学习这些东西得到什么好处呢?于是欧几里德叫来他的仆人,并说:给他三个便士,因为他想从所学的知识中获取实利。
——斯托比亚斯知识方法扫描1.三角形的三条角平分线交于一点,这点是三角形的内切圆的圆心,称为三角形的内心。
如果△ABC的内心为I,则有①I 到△ABC的三边距离相等;1∠C;②∠AIB=90°+2③若延长CI交三角形ABC的外接圆于D,则DA=DB=DI。
2.三角形的三边的垂直平分线交于一点,这点是三角形的外接圆的圆心,称为三角形的外心。
如果△ABC的外心为O,则有①O到三个顶点的距离相等;②∠AOB=2∠C;③外心到一边的距离等于这边所对的顶点到垂心的距离的一半。
3.三角形的三条中线交于一点,这点称为三角形的重心。
如果△ABC的重心为G,则有①重心到一个顶点的距离是到对边中点距离的2倍;②△ABG,△BCG,△CAG的面积相等。
4.三角形的三条高所在的直线交于一点,这点称为三角形的垂心。
如果△ABC的垂心为H ,则有①若△ABC是锐角三角形,则∠AHB=180°-∠C;②若AD是△ABC的高,AD交三角形ABC的外接圆于E,则DE=DH。
经典例题解析例1(1995年全国初中数学联赛试题)如图, 已知∠ACE=∠CDE=90°, 点B在CE上, CA=CB=CD, 过A、C、D三点的圆交AB于F. 求证:F为△CDE 的内心.分析若连结DF、CF, 显然要证明DF平分∠CDE,CF平分∠DCE. 证明DF平分∠CDE只要证∠CDF=45°,这是容易解决的. 证明CF平分∠DCE可以转证∠CFD=∠CFB, 这样便于与已知条件CA=CD沟通起来.证明∵∠ACE=90°, CA=CB, ∴∠A=45°.连结DF, 则∠CDF=∠A=45°.∵∠CDE=90°, ∴DF平分∠CDE.连结AD、CF. ∵CA=CD, ∴∠CAD=∠CDA.∵∠CFD 与∠CAD 互补, ∠CFB 与∠CFA 互补, 而∠CFA =∠CDA, ∴∠CFB 与∠CDA 互补. ∴∠CFD =∠CFB. ∴F 是△CDE 的内心.例2 (河南省第三届初中数学竞赛试题) 一条直线DE 平分△ABC 的周长, 同时直线DE 又平分了△ABC 的面积. 求证:直线DE 经过△ABC 的内切圆圆心O.证明 如图, 设点D 、E 分别在边AB 、AC 上, r 为△ABC 的内切圆半径, 连结AO 、BO 、CO 、DO 、EO, 由题设, 得:AD +AE =BD +BC +CE,∵r >0, ∴2r (AD +AE)=2r (BD +BC +CE).结合图形, 得:S △AOD +S △AOE =S △DOB +S △BOC +S △COE ① 又∵DE 平分△ABC 的面积, 由图可知 S △ADE =S 四边形BCED ②比较①、②, 可知只有当S △DOE =0时, 才能使两个等式都成立.,所以直线DE 经过△ABC 的内切圆圆心O.从而O 点必在DE 上, 即直线DE 经过△ABC 的内切圆圆心.例3(2001年我爱数学初中生夏令试题)在锐角△ABC 中,AD ⊥BC ,D 为垂足;DE ⊥AC ,E 为垂足;DF ⊥AB ,F 为垂足,O 为△ABC 的外心,求证:(1)△ABC ∽△AEF ;(2)AO ⊥EF 。
初二数学图形的对称平移与旋转试题答案及解析
初二数学图形的对称平移与旋转试题答案及解析1.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C.【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选C.【考点】轴对称图形和中心对称图形.3.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.4.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.正确的有()A.1个B.2个C.3个D.4个【答案】A【解析】①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误;③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A.5.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形6.如图,已知△ABC和△DCE是等边三角形,则△ACE绕着点按逆时针方向旋转度可得到△.【答案】,60,【解析】因为△和△是等边三角形,故∠,则∠.要由△通过旋转得到△,只需要将△绕着点按逆时针方向旋转60°即可得到.7.点P(-3,5)关于y轴的对称点的坐标是()A.(-3,-5)B.(3,-5)C.(5,-3)D.(3,5)【答案】D.【解析】根据关于y轴对称的点的坐标规律:纵坐标相同,横坐标互为相反数可直接得到答案.∵P(-3,5),∴关于y轴的对称点P′的坐标是(3,5),故选D.考点: 关于x轴、y轴对称的点的坐标.8.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.【答案】130°.【解析】依题意有∠AOB=2(∠A+∠ACO)=2(∠A+∠BCO)=130°.【考点】轴对称的性质.9.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.【答案】答案见试题解析.【解析】作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.试题解析:如图所示:【考点】1.利用轴对称设计图案;2.网格型.10.点P(-3,2)关于x轴对称的点P′的坐标是.【答案】(3,2).【解析】点P(m,n)关于x轴对称点的坐标P′(m,-n),然后将题目已经点的坐标代入即可求得解.根据轴对称的性质,得点P(3,-2)关于x轴对称的点的坐标为(3,2).【考点】关于x轴、y轴对称的点的坐标.11.下列是我国几家银行的标志图象,其中哪一个不是轴对称图形?()【答案】D【解析】由题,ABC选项是轴对称图形,而D图形找不到这样的直线,所以D选项不是轴对称图形,选D.轴对称图形的定义是图形按照某条直线对折后,图形重合,由题,ABC选项是轴对称图形,而D 图形找不到这样的直线,所以D选项不是轴对称图形,选D.【考点】轴对称图形.12.如图,△ABC是格点三角形,且A(-3,-2),B(-2,-3),C(1,-1).(1)请在图中画出△ABC关于y轴的对称△A’B’C’.(2)写出△A’B’C’各点坐标,并计算△A’B’C’的面积.【答案】(1)作图见解析;(2) △A’B’C’的面积=2.5.【解析】(1)要作出一个三角形关于y轴的对称图形,只需要作出三个顶点关于y轴对称的对称点,然后连接这三个对称点即可,如图,过点A作y轴的垂线交y轴与点G,延长AG至点A’,使得AG=" A’G," 点A’是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B’,使得BI=" B’I," 点B’是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C’,使得CH= C’H, 点C’是点C关于y轴的对称点,连接A’B’C’,得到图形△A’B’C’; (2)将要求三角形放在一个矩形里面,三角形的面积等于矩形的面积减去三个直角三角形的面积,如图,作矩形FEC’D,△A’B’C’的面积=矩形FE C’D的面积-△B’C’D的面积-△A’C’E-△A’B’F的面积=2×4-×2×3-×1×4-×1×1= 8-3-2-=2.5.试题解析:(1)如图,过点A作y轴的垂线交y轴与点G,延长AG至点A’,使得AG=" A’G," 点A’是点A关于y 轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B’,使得BI=" B’I," 点B’是点B关于y 轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C’,使得CH= C’H, 点C’是点C关于y轴的对称点,连接A’B’C’,得到图形△A’B’C’.(2)如图,作矩形FE C’D,△A’B’C’的面积=矩形FE C’D的面积-△B’C’D的面积-△A’C’E-△A’B’F的面积=2×4-×2×3-×1×4-×1×1= 8-3-2-=2.5.【考点】三角形关于直线对称的作图和格点三角形面积的求法.13.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.14.如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出△ABC关于y轴对称图形△A1B1C1.【答案】作图见解析.【解析】要作出一个三角形关于y轴的对称图形,只需要作出三个顶点关于y轴对称的对称点,然后连接这三个对称点即可,如图,过点A作y轴的垂线交y轴与点G,延长AG至点A1,使得AG= A1G,点A1是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B1,使得BI= B1I,点B1是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C1,使得CH=C1H, 点C1是点C关于y轴的对称点,连接A1B1C1,得到图形△A1B1C1.试题解析:如图,过点A作y轴的垂线交y轴与点G,延长AG至点A1,使得AG= A1G, 点A1是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B1,使得BI= B1I, 点B1是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C1,使得CH= C1H, 点C1是点C关于y轴的对称点,连接A1B1C1,得到图形△A1B1C1.【考点】轴对称图形的作图.15.画出将左图绕点O逆时针旋转90°后的图形,画出将右图以直线MN为对称轴翻折后的图形.【答案】作图详见解析【解析】(1)根据图形旋转的方法,把三角形左边的两条边绕左边的顶点逆时针旋转90°,再把第三条边连接起来,即可得出旋转后的三角形.(2)根据轴对称的性质,先找出6个顶点关于直线MN的对称点,再依次连接起来即可得出图形.试题解析:作图如下:考点: 1.网格问题;2.作图(旋转变换和轴对称变换).16.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.17.如图,将△沿着射线的方向平移到△的位置,若cm,则平移的距离是 cm.【答案】7【解析】由于BC平移得到CE,即,由于cm,所以cm,即平移7cm【考点】图形的平移,中点的定义点评:此题难度不大,关键在于C为BE中点18.下列图案中,是轴对称图形的有A.4个B.3个C.2个D.1个【答案】C【解析】如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫轴对称图形.根据轴对称图形的定义可得第二个图形和第三个图形都不是轴对称图形,故选C.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.19.下面的图形中,既是轴对称图形又是中心对称图形的是()【答案】B【解析】根据轴对称图形与中心对称图形的定义依次分析各选项即可判断.A、D只是轴对称图形,C只是中心对称图形,B既是轴对称图形又是中心对称图形,故选B.【考点】轴对称图形,中心对称图形点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.20.下列图形中,既是轴对称图形又是中心对称图形有()A.1个B.2个C.3个D.4个【答案】B【解析】中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
初中数学竞赛第十九讲三角形的四心(含解答)
第十九讲三角形的四心【趣题引路】你知道欧拉线吗?欧拉线是欧拉发现的.欧拉(1707-1783),瑞士数学家,•变分法的奠基人,复变函数论的先驱者,理论流体力学的创始人,受学于贝努利家族.著作浩如烟海.几乎每一个数学分支都可见到他的名字.如多面体的欧拉定理,•空间解析几何的欧拉变换公式,四方方程的欧拉解法,数论中的欧拉函数,•微分方程中的欧拉方程,等等.他在数论和微分方程等方面有重大成就,•在天文学和物理学等方面也有很大贡献,对航海和弹道研究起了一定作用 .初等几何中的欧拉线.欧拉线定理的内容是:三角形任一顶点到垂心的距离等于外心到对边的距离的两倍,且三角形的外心、重心、垂心共线.你会证明这个定理吗?证明 (1)连BO交圆于E,则BE是直径,如图1,BO=OE,做OD⊥BC•于点D,•则BD=DC.∴OD//12EC.∵BE是直径.∴CE⊥BC,EA⊥AB.∴CE∥AH.AE∥CH,AHCE是平行四边形.∴AH//EC,∴AH=2OD;(1)(2) (2)△ABC中,AE为高,H为垂心,O为外心如图2.OD⊥BC于点D,连AD交HO于G′.∵AH//2OD,∴△AHG′∽△DOG′.∴AG′=2G′D.又∵AD是中线,∴G′与△ABC重心重合.∴三角形的外心,重心,•垂心三点共线.即H、G′、O共线.【知识延伸】三角形的四心,指的是外心、内心、重心、垂心.•由于三角形的四心处在特殊的位置上,因而它们具有独特的性质.这些是解与四心相关问题的基础.外心是三角形外接圆的圆心,它是三角形各边中垂线的交点.若O 为锐角△ABC•的外心,则有(1):∠BOC=2∠BAC,或∠BOC=360°-2∠A;(2)OA=OB=OC.内心是三角形三条内角平分线的交点,它是三角形内切圆的圆心.如I 是△ABC•的内心.则有:(1)∠BIC=90°+12∠A; (2)内切圆半径与半周长的积为三角形面积; (3)•内心I 到△ABC 的三边距离相等;(4)若延长AI 交△ABC 的外接圆于点E,则EI=EB=EC.(5)•在Rt △ABC 中,斜边为c,内切圆半径为r,两直角边分别为a 、b,则r=12(a+b+c). 重心是三角形三条中线的交点,设G 是△ABC 的重心,则有: (1)重心G•分每条中线为2:1; (2)S △BCG =S △CAG =S △ABC ;(3)若AD 是△ABC 的BC 边上的中线,•则有AD 2=12(AB 2+AC 2- BC 2).这就是中线长公式.(称斯台沃特定理).垂心是三角形三条高所在直线的交点,•常利用它构造相似三角形及判定四点共圆. 例1 已知G 、L 、H 分别是△ABC 的重心,内心,垂心,且AB>AC,则关系式: 甲: S △AGB > S △AGC ;乙: S △ALB > S △ALC ; 丙: S △ABC = S △AHC + S △BHC + S △AHC . 其中正确的有( )A.0个B.1个C.2个D.3个解析 如图3,若G 为△ABC 的重心.由重心的性质知, S △AGB = S △AGC .(3) (4) 如图4 ,若L 为△ABC 的内心,设三角形内切圆半径为r, 则S △ALC =12AB ·r. S △ALC =12AC ·r.∵AB>AC,∴S △ALB > S △ALC .当△ABC 为钝角三角形时,若H 为△ABC 的垂心,显然S △ABC ≠S △AHC + S △BHC+ S △BHA . 故选B. 点评利用重心、内心、垂心的性质,用排除法排除了甲和丙不成立,最后确定乙成立. 例2 如图,在Rt △ABC 中,∠A=90°,BC=a,CA=b,AB=c,I 为其内心,则tan 2B +tan 2C 的值为( ). A.2a a b c ++ B.aa b c ++C.22a a b c++ D.以上答案均不对 解析 连BI,AI,CI,过I 分别作三边的垂线ID,IE,IF,垂足分别为点D 、E 、F,•设△ABC 的内切圆I 的半径为r,则ID=IE=IF=r.在Rt △CIF 中,tan 2C =rCE .在Rt △BIF 中,tan 2B rBF=,∴tan 2B +tan 2C =r rCF BF +=()BF CF r BF CF +=ar BF CF.由切线长可知:CF+BF=a,CE+AE=b,AD+BD=c.又∵CE=CF,AD=AE,BD=BF,∴CF=12(a+b-c),BF=12(a+c-b). ∴CF ·BF=12(a+b-c)(a+c-b)=14[a 2-(c-b )2]=14[b 2+c 2-(c-b)2]=12bc.又∵12bc= (a+b+c)r =S △ABC ,∴bc=(a+b+c)r.∴BF ·CF=12(a+b+c)r. ∴tan 2B +tan 2C =2ara b c r ++=2a a b c ++.选A.点评由于I 为内心,由2B , 2C联想到连结BI,IC.在Rt △ABC 中用BF,CF 来表示出tan 2B ,tan 2C的值.再利用切线长定理表示出CF,BF 的长.【好题妙解】佳题新题品味例1 如图,△ABC 的外接圆为⊙O,∠ACB=60°,N 是弧AB 的中点,H 是垂心. 求证:CN ⊥OH.证明 连OC 、ON,延长AH 交⊙O 于H ′,连OH ′,CH ′. 由∠ACB=60°,得∠CAH ′=•30°, ∴∠COH ′=2∠CAH ′=60°.∵OC=OH ′,∴△OCH ′是正三角形,即OC=OH ′=CH ′. ∵AH ⊥BC,CH ⊥AB.∴B 、•Q 、H 、P 四点共圆,得∠CHH ′=∠CBA. 又∠CH ′B=∠CBA,从而知∠CHH ′=∠CH ′A,• 于是△CHH ′为等腰三角形.且有CH=CH ′. 由于H 为垂心,N 为AB 的中点. ∴CH ⊥AB,ON ⊥AB,从而得CH ∥OH.又ON=OC=CH ′=CH,由此知四边形OCHN 为菱形. ∴OH ⊥CN. 点评本题设法证明OH,CN 是菱形的对角线,从而使问题获证.例2 在△ABC 中,BC=a,AC=b,AB=c,∠ACB=90°,CD 和BE 是△ABC 的两条中线,•且CD ⊥BE,求a:b:c.解析 如图,设CD 、BE 相交于点F,则F 为△ABC 的重心.设EF=x,DF=y,•则FB=2x,CF=2y. 在Rt △BCE 中,∵CF ⊥BE,∴Rt △BCF ∽Rt △BEC, ∴a 2=2x ·3x=6x 2.同理,(12b )2=x ·3x, 即b 2=12x 2.在Rt △DFB 中,由勾股定理,得 (12c )2=(2x)2+y 2,∴c 2=16x 2+4y 2. ① 又∵Rt △FEC ∽Rt △FCB,∴C F 2=EF ·BF.即(2y 2)=x ·2x,∴y 2=12x 2. ②以②式代入①得c 2=18x 2,∴a 2:b 2:c 2=6x 2:12x 2:18x 2=1:2:3 ∴点评由F 为Rt △ACB 的重心,因而a 、b 、•c•均能用两条中线长的代数式来表示.•又由CF 2=EF ·BF,问题获解.本题应用方程的思想方法处理平面几何的有关计算问题,其思路清晰,解题步骤规范.中考真题欣赏例1 (2003年南宁市中考题) 已知E 是△ABC 的内心,∠A 的平分线交BC 于点F,且与△ABC 的外接圆相交于点D,如图. (1)求证:∠DBE=∠DEB;(2)若AD=8cm,DF:FA=1:3,求DE 的长.证明 (1)∵E 是△ABC 的内心,∴∠1=∠2,∠3=∠4. ∵∠BED=∠3+∠1,∠5=∠2, ∴∠4+∠5=∠3+∠2=∠3+∠1, 即∠EBD=∠BED;(2)∵∠EBD=∠BED,∴DE=DB.∵∠D=∠D,∠5=∠2=∠1,∴BD 2=AD ·FD.∵DF:FA=1:3,AD=8, ∴FD:AD=1:4,184DF ,∴DF=2(cm). ∴B D 2=8×2=16,∴DE=BD=4(cm).点评利用内心,圆周角等性质将已知和未知关系联系起来,从而使问题获解.例2 (2001年上海市业务数学招生试题)如图,已知O 是△ABC 的边AB 、AC 的中垂线的交点,I 是∠ABC 、∠ACB 的平分线的交点,且∠I+∠BOC=180°.求∠BAC 的度数.解析 ∵O,I 分别是△ABC 的外心和内心,∴∠BOC=2∠BAC,∠I=90°+12∠BAC, 又∵∠I+∠BOC=180°, ∴90°+12∠BAC+2∠BAC=180°. ∴∠BAC=36°. 点评利用外心和内心的性质,将∠BOC 、∠BIC 用∠BAC 来表示,然后建立方程得解.竞赛样题展示例1 (2003年黄冈数学特长生选拔试题)如图,△ABC 中,AB=1998,BC=1999,AC=2000,I 为内心,G 为重心,求IG 的长.解析 连结AI 并延长交BC 于O,连AG 并延长交BC 于J,连BI,IG,由角平分线的性质定理得又∵BO+OC=1999,∴BO=999,OC=1000.又∵BJ=JC=19992,∴OJ=12又∵BI 为角的平分线,∴1998999AB AI BO IO ===2,而AG GJ=2, ∴IG ∥OJ,∴23IG OJ =, GI=23×12=13.点评连结AI,AG 并延长交边BC 于O 、J,连BI.由角平分线的性质可求出BO 、OC 的长,利用角的平分线的性质可计算出AI IO 的值,因为G 为重心,同样可知AG GJ 的值,发现AI IO =AG GJ,从而计算出IG 的长.例2 (第23届加拿大奥赛预选题)△ABC 的外心为O,AB=AC,如图,D 是AB•的中点,E 是△ACD 的重心.证明:OE ⊥CD.证明 设F 、F 分别为AC 、BC 的中点,连结AG 、DF,设AG 交DC 于H,GF 交DC 于I,• 则O 在AG 上,E 在OF 上. ∵AB=AC,AG ⊥BC,DF //12BC. ∴HO ⊥DE,∵D 、F 、G 分别为AB 、AC 和BC 的中点,知H 为△ABC 的重心, ∴DH=13DC=23DI. 由E 为△ADC 的重心,知DE=23DF. 由23DH DEDI DF==,∴EH ∥IF,即EH ∥AB, 由O 为△ABC 的外心,知OD ⊥AB,OD ⊥EH,OH ⊥DE,OD ⊥HE.知O 为△DEH 的垂心.∴EO ⊥DH,即EO ⊥CD. 点评本例综合运用了重心,垂心和外心的概念与性质.全能训练A 卷1.在△ABC 中,∠A 是钝角,O 是垂心,AO=BC,则cos(∠OBC+∠OCB)的值是( )2.设G 为△ABC 的重心,且AG=6,BG=8,CG=10,则△ABC 的面积为( )A.58B.66C.72D.843.在△ABC 中,BC=3,AC=4,BC 和AC 的中线AE,BD 互相垂直,则AB 等于( ).4.如图,△ABC 的三边是a,b,c,它的外心到三边的距离分别为m,n,p,则m:n:p 等于( ) A.111::a b cB.a:b:cC.cosA:cosB:cosCD.sinA:sinB:sinC 5.如图,在锐角△ABC 中,AD ⊥BC,点D 为垂足,DE ⊥AC,点E 为垂足,DF ⊥AB,•F 为垂曲心,O 为△ABC 的外心. 求证:(1)△AEF ∽△ABC; (2)AO ⊥EF.6.如图,直线PQ过△ABC的重心M,P、Q分别内分AB、AC的比值为p、q。
数学初中竞赛《三角形的五心》专题训练(含答案) (1)
数学初中竞赛《三角形的五心》专题训练一.选择题1.如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC的()A.垂心B.重心C.内心D.外心2.课本第5页有这样一个定义“三角形的三条中线的交点叫做三角形的重心”.现在我们继续定义:①三角形三边上的高线的交点叫做三角形的垂心;②三角形三条内角平分线的交点叫做三角形的内心;③三角形三边的垂直平分线的交点叫做三角形的外心.在三角形的这四“心”中,到三角形三边距离相等的是()A.重心B.垂心C.内心D.外心3.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心4.如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF等于()A.a:b:c B.::C.sin A:sin B:sin C D.cos A:cos B:cos C5.在△ABC中,两中线AD与CF相交于点G,若∠AFC=45°,∠AGC=60°,则∠ACF的度数为()A.30°B.45°C.60°D.75°6.如图,已知△ABC的三个顶点分别在反比例函数y=(k>0)的图象上,那么△ABC的()也一定在该函数图象上.A.重心B.内心C.外心D.垂心7.如图,已知H是△ABC的垂心,△ABC的外接圆半径为R,△BHC的外接圆半径为r,则R 与r的大小关系是()A.R=r B.R>r C.R<r D.无法确定8.以Rt△ABC的两条直角边AB、BC为边,在三角形ABC的外部作等边三角形ABE和等边三角形BCF,EA和FC的延长线相交于点M,则点B一定是三角形EMF的()A.垂心B.重心C.内心D.外心9.如图,锐角△ABC的垂心为H,三条高的垂足分为D、E、F,则H是△DEF的()A.垂心B.重心C.内心D.外心10.三个等圆O 1,O 2,O 3有公共点H ,点A 、B 、C 是其他交点,则H 是三角形ABC 的( )A .外心B .内心C .垂心D .重心二.填空题11.在半径为1的⊙O 中内接有锐角△ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,则BC = .12.如图,ADCFBE 是某工厂车间的一种剩余残料,且∠ACB =90°,现需要利用这块残料在△ABC 的外部制作3个等边△ADC 、△CBF 、△ABE 的内切圆⊙O 1、⊙O 2、⊙O 3,若其中最大圆⊙O 3的半径为0.5米,可使生产成本节约3元(节约成本与圆面积成正比),照此计算,则10块这样的残料可使生产成本节约 元.13.如图,在△ABC 中M 为垂心,O 为外心,∠BAC =60°,且△ABC 外接圆直径为10,则AM = .14.如图,锐角三角形ABC 内接于半径为R 的⊙O ,H 是三角形ABC 的垂心,AO 的延长线与BC 交于点M ,若OH ⊥AO ,BC =10,OA =6,则OM 的长= .15.设凸四边形ABCD 的对角线AC 与BD 相交于O ,△OAB ,△OBC ,△OCD ,△ODA 的重心分别为E ,F ,G ,H ,则S EFGH :S ABCD = .16.如图,I 是Rt △ABC (∠C =90°)的内心,过I 作直线EF ∥AB ,分别交CA 、CB 于E 、F .已知EI=m,IF=n,则用m、n表示S△ABC=.17.已知点I是锐角三角形ABC的内心,A1、B1、C1分别是点I关于边BC,CA,AB的对称点,若点B在△A1B1C1的外接圆上,则∠ABC等于.三.解答题18.如图所示,已知锐角△ABC的外接圆半径R=1,∠BAC=60°,△ABC的垂心和外心分别为H、O,连接OH、BC交于点P(1)求凹四边形ABHC的面积;(2)求PO•OH的值.19.如图,AD,BE,CF是△ABC的高,K,M,N分别为△AEF,△BFD,△CDE的垂心,求证:△DEF≌△KMN.20.如图,点H为△ABC的垂心,以AB为直径的⊙O1和△BCH的外接圆⊙O2相交于点D,延长AD交CH于点P,求证:点P为CH的中点.21.如图,△ABC的三边满足关系BC=(AB+AC),O、I分别为△ABC的外心、内心,∠BAC 的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,求证:(1)AI=BD;(2)OI=AE.22.如图,H是锐角△ABC的垂心,O为△ABC的外心,过O作OD⊥BC,垂足为D.(1)求证:AH=2OD;(2)若AO=AH,求∠BAC的度数.23.如图,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B .又设△AFE ,△BDF ,△CED 均为锐角三角形,它们的垂心依次为H 1,H 2,H 3,求证:1.∠H 2DH 3=∠FH 1E ;2.△H 1H 2H 3≌△DEF .24.如图,△ABC 为锐角三角形,CF ⊥AB 于F ,H 为△ABC 的垂心.M 为AH 的中点,点G 在线段CM 上,且CG ⊥GB .(1)求证:∠MFG =∠GCF ;(2)求证:∠MCA =∠HAG .25.如图,已知H 为锐角△ABC 的垂心,D 是使四边形AHCD 为平行四边形的一点,过BC 的中点M 作AB 的垂线,垂足为N ,K 为MN 的中点,过点A 作BD 的平行线交MN 于点G ,若A ,K ,M ,C 四点共圆.求证:直线BK 平分线段CG .参考答案一.选择题1.解:如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F∵MN∥AB,OD=OE=OF(夹在平行线间的距离处处相等)如图2,过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F',由裁剪知,OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点,∴点O是△ABC的内心,故选:C.2.解:内心是三角形的三条内角平分线的交点,而角平分线上的点到角的两边的距离相等,所以在三角形的四“心”中,到三角形三边距离相等的是内心;到三个顶点的距离相等的是外心.故选:C.3.解:如图,连接OA、OB、OC、OD,设每一个小方格的边长为1,由勾股定理可求得OA=OB=OC=,OD=2,∴O点在AB、AC、BC的垂直平分线上,∴点O为△ABC的外心,∵OA=OC≠OD,∴点O即不是△ACD的重心,也不是△ACD的内心,故选:B.4.解:如图,连接OA、OB、OC;∵∠BOC=2∠BAC=2∠BOD,∴∠BAC=∠BOD;同理可得:∠BOF=∠BCA,∠AOE=∠ABC;设⊙O的半径为R,则:OD=R•cos∠BOD=R•cos∠A,OE=R•cos∠AOE=R•cos∠B,OF=R•cos∠BOF=R•cos∠C,故OD:OE:OF=cos∠A:cos∠B:cos∠C,故选:D.5.解:∵点G是△ABC的重心,∴=2,作CE⊥AG于点E,连接EF,∴△CEG是直角三角形,∵∠EGC=60°,∴∠ECG=30°,那么EG=CG=GF,∴GE=GF,∠FGE=120°,∴∠GFE=∠FEG=30°,而∠ECG=30°,∴EF=EC,∵∠EFA=45°﹣30°=15°,∠FAD=∠AGC﹣∠AFC=15°,∴∠FAD=∠EFA,∴EF=AE,∴AE=EC,∵△AEC是等腰直角三角形,∴∠ACE=45°,∴∠ACF=∠ACE+∠ECF=30°+45°=75°,故选:D.6.解:结论:△ABC的垂心也一定在该函数图象上;理由:∵A、B、C都在y=上,∴可设A、B、C的坐标依次是:(a,)、(b,)、(c,).令H的坐标为(x,y).容易得出:AB的斜率==﹣,BC的斜率==﹣,AH的斜率=,CH的斜率=,∵AH⊥BC,CH⊥AB,∴=,=,∴a•=c•,∴(k﹣ay)(c﹣x)=(k﹣cy)(a﹣x),∴ck﹣kx﹣acy+axy=ak﹣kx﹣acy+cxy,∴(a﹣c)xy=(a﹣c)k.显然,a﹣c≠0,∴xy=k,即:y=.∴点H(x,y)在反比例函数y=的图象上.故选:D.7.解:如图,延长AD交△ABC的外接圆于G,连接BG,CG,∴△ABC的外接圆的半径等于△BGC的外接圆的半径,∵△ABC的外接圆半径为R,∴△BGC的外接圆半径为R,∵点H是△ABC的垂心,∴AD⊥BC,BE⊥AC,∴∠ADC=∠BEC=90°,∴∠CAD+∠ACB=90°,∠CBE+∠ACB=90°,∴∠CAD=∠CBE,∵∠CBG=∠CAD,∴∠CBE=∠CBG,同理:∠BCF=∠BCG,在△BCH和△BCG中,,∴△BCH≌△BCG(ASA),∴△BHC的外接圆的半径等于△BGC的外接圆的半径,∵△BHC的外接圆半径为r,∴△BGC的外接圆的半径为r,∴R=r,故选:A.8.解:如图,连接CE,AF,延长EB交MF于G,延长FB交ME于H,∵以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,∴∠CBE=90°+60°=150°,∠FBE=360°﹣90°﹣60°﹣60°=150°,在△CBE与△FBE中,,∴△CBE≌△FBE(SAS);∴CE=FE,∠FEB=∠CEB,∴BE⊥CF于G,∴EG是△MEF的边FM上的高,同理:FH是△MEF的边EM上的高,∴点B是△MEF的三边的高,即:点B是△MEF的垂心.故选:A.9.解:∵BE丄AC,CF丄AB,∴四点B、C、E、F共圆(以BC为直径),∴∠EBF=∠FCE,∵HD丄BD,HF丄BF,∴四点B、D、H、F共圆(以BH为直径),∴∠HBF=∠FDH,同理,四点C、D、H、E共圆,(以CH为直径),∠HDE=∠HCE,∴∠HDE=∠HDF,∴DA平分∠EDF即可.同理可证EB平分∠DEF,FC平分∠EFD,∴H是△DEF的角平分线的交点,∴H是△DEF的内心.故选:C.10.解:延长AH交BC于E点,延长CH交AB于F点,如图,∵三个等圆O1,O2,O3有公共点H,∴∠1所对的弧BH与∠4所对的弧BH为等弧;∠2所对的弧CH与∠5所对的弧CH为同弧;∠3所对的弧AH与∠6所对的弧AH为同弧,∴∠1=∠4,∠2=∠5,∠3=∠6,∵∠1+∠2+∠3+∠4+∠5+∠6=180°,∴2∠2+2∠3+2∠4=180°,2∠1+2∠3+2∠2=180°,∴∠2+∠3+∠4=90°,∠1+∠3+∠2=90°,∴AE⊥BC,CF⊥AB,∴点H为△ABC的垂心.故选:C.二.填空题(共7小题)11.解:设AL与⊙O交于点D,与OH交于点N,连接OD,交BC于点M,连接CO并延长交⊙O于点G,连接GA、GB、AO,如图所示,∵CG是⊙O的直径,∴∠CBG=∠CAG=90°,∴BG⊥BC,AG⊥AC.∵H为△ABC的垂心,∴AE⊥BC,BF⊥AC,∴AE∥BG,AG∥BF,∴四边形AGBH是平行四边形,∴BG=AH.∵AL平分∠BAC,∴∠BAD=∠CAD,∴=,根据垂径定理的推论可得:OD⊥BC.∵AE⊥BC,∴OD∥AE,∴∠ODA=∠EAD.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EAD.∵AL垂直于OH,∴∠ANO=∠ANH=90°.在△ANO和△ANH中,,∴△ANO≌△ANH(ASA),∴AO=AH,∴BG=AH=AO=1.在Rt△GBC中,∵BG=1,GC=2,∴BC==.故答案为:.12.解:由勾股定理和相似图形的性质可知,⊙O1的面积+⊙O2的面积=⊙O3的面积,∵⊙O3可使生产成本节约3元,∴1块这样的残料可使生产成本节约6元.则10块这样的残料可使生产成本节约6×10=60元.故答案为:60.13.解:延长AM交BC于D,延长CM交AB于E,作直径BF,连结AF,如图,∵BF为⊙的直径,∴∠BAF=90°,∴sin F==,∴AB=10•sin F=10•sin∠ACB,又∵点M为△ABC的垂心,∴AD⊥BC,CE⊥AB,∴∠ADB=∠AEC=90°,∴△AEM∽△ADB,∴=,即AM=,在Rt△AEC中,∠EAC=60°,AC=2AE,即AE=AC,在Rt△ADC中,sin∠ACD=,即AD=AC•sin∠ACD,∴AM==5.故答案为5.14.解:如图,连接BO并延长交圆于F,连接CF,AH,连接AF,CH,过点O作ON⊥BC于N,∵BF是⊙O的直径,∴∠BCF=∠BAF=90°,∴ON∥FC,∵OB=OF,∴ON是△BCF的中位线,∴CF=2ON.∴BN=CN=BC=5,在Rt△OBN中,OB=OA=6,BN=5,∴ON==,∴CF=2ON=2,∵H是△ABC的垂心,∴AH⊥BC,∵CF⊥BC,∴AH∥CF,同理可得:CH∥AF,∴四边形AHCF是平行四边形,∴AH=CF=2∵H是△ABC的垂心,∴AH⊥BC,∵ON⊥BC,∴AH∥ON,∴∠OAH=∠NOM,∵OH⊥AM,∴∠AOH=∠ONM=90°,∴△AOH∽△ONM,∴,∴,∴OM=.故答案为.15.解:如图:∵E、F分别是△OAB与△OBC的重心,∴,∴EF∥AC,同理:FG∥BD,HG∥AC,HE∥BD,∴ERUQ,RUSF,USGT,THQU,EFGH是平行四边形,∵,∴,同理:,∴,∴,同理:,,.∴.16.解:如图,过I分别作三边的垂线,垂足为D、F、G,设AB=c,BC=a,AC=b,ID=IH=IG=r,由△ABC∽△EIG∽△IFH,得=,=,解得a=,b=,由勾股定理,得c2=a2+b2,得1=+,解得r=,又ab=2S△ABC=r(a+b+c),∴=r(++c),解得c=m+n+=m+n+,∴S△ABC=ab==()2(m+n+)2=.故答案为:.17.解:∵I是锐角三角形ABC的内心,∴∠DBI=∠ABC,∵A1、B1、C1分别是点I关于边BC,CA,AB的对称点,∴ID=A1D=IA1,∠BDI=90°,∵点B在△A1B1C1的外接圆上,∴IB=IA1,∴ID=IB,∴∠IBD=30°,∴∠ABC=60°.故答案为:60°.三.解答题(共8小题)18.解:(1)如图:连接BO并延长交⊙O于点G,连接AG、CG、CO,延长CH交AB于F,延长BH交AC于E,延长AH交BC于N,作OM⊥BC于M.∵BG是直径,∴GA⊥AB,GC⊥BC,∵H为垂心,∴BE⊥AC,CF⊥AB,AN⊥BC,∴GA∥CH,GC∥AH,∴AGCH是平行四边形,∴AG=GC,∵∠BA C=60°,OB=OC,∴∠OBC=∠OCB=30°,∴OM=OB=,BM=,∴BC=,又∵OM=CG,∴AH=2OM=1,设凹四边形的面积为S,则S=S△AHB+S△AHC=×AH×BN+×AH×CN=×AH×BC=,(2)∵BE⊥AC,CF⊥AB,AN⊥BC,∠BAC=60°,∴∠ACF=30°,∴∠CHE=60°,∴∠BHC=120°,∴B、C、H、O四点共圆,∵∠OBC=∠OCB=30°,∴∠CHP=∠OBC=30°,∴∠OHC=∠OCP=150°,∴△OHC∽△OCP,∴OH•OP=OC2=1.19.证明:如图:∵OD⊥BC,FM⊥BC,∴OD∥FM,∵OF⊥AB,DM⊥AB,∴OF∥DM,∵DMFO是平行四边形,同理OFKE,ODNE均为平行四边形,∴MD∥KE,MD=KE,∴MDEK也是平行四边形,∴DE=MK,同理DF=KN,EF=MN∴△DEF≌△KMN(SSS).于点Q,20.证明:如图,延长AP交⊙O2连接AH,BD,QB,QC,QH.因为AB为⊙O的直径,1所以∠ADB=∠BDQ=90°.(5分)故BQ为⊙O的直径.2于是CQ⊥BC,BH⊥HQ.(10分)又因为点H为△ABC的垂心,所以AH⊥BC,BH⊥AC.所以AH∥CQ,AC∥HQ,四边形ACQH为平行四边形.(15分)所以点P为CH的中点.(20分)21.证明:(1)作IG⊥AB于G点,连BI,BD,如图,∴AG=(AB+AC﹣BC),而BC=(AB+AC),∴AG=BC,又∵AD平分∠BAC,AE平分∠BAC的外角,∴∠EAD=90°,∴O点在DE上,即ED为⊙O的直径,而BD弧=DC弧,∴ED垂直平分BC,即BH=BC,∴AG=BH,而∠BAD=∠DAC=∠DBC,∴Rt△AGI≌Rt△BHD,∴AI=BD;(2)∵∠BID=∠BAI+∠ABI,而∠BAI=∠DBC,∠ABI=∠CBI,∴∠DBI=∠BID,∴ID=DB,而AI=BD,∴AI=ID,∴OI为三角形AED的中位线,∴OI=AE.22.(1)证明:如图1,连接BH并延长交AC于E,∴BE⊥AC,过O作OF⊥AC于F,则F为AC的中点,连接CH,取CH中点N,连接FN,DN,则FN∥AM,AH=2FN,DN∥BE,∵AM⊥BC,OD⊥BC,∴OD∥AM,∴FN∥OD,∵BE⊥AC,OF⊥AC,∴BE∥OF,∵OD⊥BC,∴D为BC中点,∵N为CH中点,∴DN∥BE,∴DN∥OF,∴四边形ODNF是平行四边形,∴OD=FN,∵AH=2FN,∴AH=2OD.(2)解:如图2,连接OB,OC,∴OA=OB,∵OA=AH,∴OB=AH,由(1)知,AH=2OD,∴OB=2OD,在Rt△ODB中,cos∠BOD==,∴∠BOM=60°,∵OD⊥BC,∴∠BOC=2∠BOD=120°,∴∠BAC=∠BOC=60°.23.证明:(1)∵H2是△BDF的垂心,⊥BF,∴DH2DB=90°﹣∠B,∴∠H2同理:∠H 3DC =90°﹣∠C ,∴∠H 2DH 3=180°﹣∠H 2DB ﹣∠H 3DC =∠B +∠C , ∵H 1是△AEF 的垂心,∴∠H 1EF =90°﹣∠AFE ,∠H 1FE =90°﹣∠AEF , ∴∠EH 1F =180°﹣∠H 1EF ﹣∠H 1FE =180°﹣(90°﹣∠AFE )﹣(90°﹣∠AEF ) =180°﹣∠A =∠B +∠C ,∴∠H 2DH 3=∠FH 1E ;(2)如图,由(1)知,∠FH 1E =∠B +∠C , ∵∠FDE =∠A ,∠A +∠B +∠C =180°, ∴∠FH 1E +∠EDF =180°,∴H 1在△DEF 的外接圆上,同理:H 2,H 3也在△DEF 的外接圆上, ∴D ,H 2,F ,H 1,E ,H 3六点共圆, 由(1)知,∠EH 1F =∠H 2DH 3, ∴EF =H 2H 3,同理:DF =H 1H 3,DE =H 1H 2,∴△DEF ≌△H 1H 2H 3(SSS ).24.证明:(1)如图延长AH 交BC 于T . ∵H 是△ABC 的垂心,∴∠THC =∠HFA =90°,∵∠THC =∠AHF ,∴∠HCT =∠FAH ,在Rt △AFH 中,∵AM =MH ,∴FM=AM=MH,∴∠FAH=∠MFA,∴∠MFA=∠HCT,∵BG⊥CM,∴∠BFC=∠BGC=90°,∴B、C、G、F四点共圆,∴∠AFG=∠BCG,∴∠AFM+∠MFG=∠HCT+∠MCF,∴∠MFG=∠GCF.(2)∵∠FMG=∠FMC,∠MFG=∠MCF,∴△MFG∽△MCF,∴=,∴MF2=MG•MC,∵MA=MF,∴MA2=MG•MC,∴=,∵∠AMG=∠AMC,∴△MAG∽△MCA,∴∠MCA=∠HAG.25.证明:如图,设BK交CG于E,连接AG,AK,∵A,K,M,C四点共圆,∴∠AC B=∠AKG(外角等于内对角),∵H是△ABC的垂心,∴AH⊥BC,CH⊥AB,∵四边形AHCD是平行四边形,∴CH∥AD,AH∥CD,∴CD⊥BC,AD⊥AB,∴∠BCD=∠BAD=90°,∴∠BAD+∠BCD=180°,∴点A,B,C,D四点共圆,∴∠5=∠ACB=∠AKG,∵AH⊥BC,MN⊥AB,AD⊥AB,∴∠1=∠2=∠4,∵AG∥BD,∴∠3=∠4=∠2,在△ANG和△ANK中,,∴△ANG≌△ANK,∴GN=KN=MK,∴MK=KG,∵直线BKE截得△GMC,由梅涅劳斯定理得:,∵点M是CB中点,∴CB=2BM,∴GE=EC,∴直线BK平分线段CG.。
三角形四心的向量性质及应用(详细答案版)
三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。
三角形四心竞赛讲义
三角形四心竞赛讲义一、“四心”分类讨论 (1)1、外心 (1)2、内心 (2)3、垂心 (3)4、重心 (5)5、外心与内心 (6)6、重心与内心 (6)7、外心与垂心 (7)8、外心与重心 (8)9、垂心与内心 (8)10、垂心、重心、外心 ............................................................................................................................................ 8 旁心 . (9)二、“四心”的联想 (9)1、由内心、重心性质产生的联想 (9)2、重心的巧用 (11)3、三角形“四心”与一组面积公式 (12)三角形各心间的联系 (15)与三角形的心有关的几何命题的证明 (16)三角形的内心、外心、垂心及重心(以下简称“四心”)是新颁发的初中数学竞赛大纲特别加强的内容。
由于与四心有关的几何问题涉及知识面广、难度大、应用的技巧性强、方法灵活,是考查学生逻辑思维能力和创造思维能力的较佳题型,因此,它是近几年来升学、竞赛的热点。
92、93、94、95连续四年的全国初中数学联赛均重点考察了这一内容。
本讲拟分别列举四心在解几何竞赛中的应用,以期帮助同学们掌握这类问题的思考方法,提高灵活运用有关知识的能力。
一、“四心”分类讨论1、外心三解形三条垂直平分线的交点叫做三角形的外心,即外接圆圆心。
△ABC 的外心一般用字母O 表示,它具有如下性质:(1)外心到三顶点等距,即OA=OB=OC 。
(2)∠A=AOB C AOC B BOC ∠=∠∠=∠∠21,21,21。
如果已知外心或通过分析“挖掘”出外心,与外心有关的几何定理,尤其是圆周角与圆心角关系定理,就可以大显神通了。
下面我们举例说明。
例2证明三角形三边的垂直平分线相交于一点,此点称为三角形的外心.已知:△ABC 中,XX ′,YY ′,ZZ ′分别是BC ,AC ,AB 边的垂直平分线,求证:XX ′,YY ′,ZZ ′相交于一点(图3-111). 分析先证XX ′,YY ′交于一点O ,再证O 点必在ZZ ′上即可. 证因为XX ′,YY ′分别是△ABC 的BC 边与AC 边的中垂线,所以XX ′,Y 'X 'Z ' 3-111O Z Y X C B AYY ′必相交于一点,设为O(否则,XX ′∥YY ′,那么∠C 必等于180°,这是不可能的).因为OB=OC ,OC=OA ,所以OB=OA ,所以O 点必在AB 的垂直平分线ZZ ′上,所以XX ′,YY ′,ZZ ′相交于一点.说明由于O 点与△ABC 的三个顶点A ,B ,C 距离相等,所以以O 点为圆心,以OA 长为半径作圆,此圆必过A ,B ,C 三点,所以称此圆为三角形的外接圆,O 点称为三角形的外心.例1、如图9-1所示,在△ABC 中,AB=AC ,任意延长CA 到P ,再延长AB 到Q ,使AP=BQ ,求证:△ABC 的外心O 与点A 、P 、Q 四点共圆。
2014届八年级竞赛赛前专项训练三角形的四心及性质、平移
初中数学竞赛专项训练(三角形的四心及性质、平移、旋转、覆盖)一、填空题:1、G 是△A BC 的重心,连结AG 并延长交边BC 于D ,若△ABC 的面积为6cm 2, 则△BGD 的面积为( )A. 2cm 2B. 3 cm 2C. 1 cm 2D. 23 cm 22、如图10-1,在Rt △ABC 中,∠C =90°,∠A =30°,∠C 的平分线与∠B 的外角的平分线交于E 点,则∠AEB 是( ) A. 50° B. 45° C. 40° D. 35°3、在△ABC 中,∠ACB =90°,∠A =20°,如图10-2,将△ABC 绕点C 按逆时针方向旋转角α到∠A ’C ’B ’的位置,其中A ’、B ’分别是A 、B 的对应点,B 在A ’B ’上,CA ’交AB 于D ,则∠BDC 的度数为( ) A. 40° B. 45° C. 50° D. 60°4、设G 是△ABC 的垂心,且AG =6,BG =8,CG =10,则三角形的面积为( ) A. 58 B. 66 C. 72 D. 845、如图10-3,有一块矩形纸片AB CD ,AB =8,AD =6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,△CEF 的面积为( ) A. 2 B. 4 C. 6 D. 86、在△ABC 中,∠A =45°,BC =a ,高BE 、CF 交于点H ,则AH =( )A.a 21B. a 22C. aD. a 2 7、已知点I 是锐角三角形ABC 的内心,A 1、B 1、C 1分别是点I 关于BC 、CA 、AB 的对称点,若点B 在△A 1B 1C 1的外接圆上,则∠ABC 等于( ) A. 30° B. 45° C. 60° D. 90°8、已知AD 、BE 、CF 是锐角△ABC 三条高线,垂心为H ,则其图中直角三角形的个数是( ) A. 6 B. 8 C. 10 D. 12二、填空题1、如图10-4,I 是△ABC 的内心,∠A =40°,则∠CIB =__2、在凸四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠ABC =90°,则∠DAB 的度数是_____图10-1B ’图10-2 D A EB CA D EBC F图10-3 图10-4A BCD E D ’图10-53、如图10-5,在矩形ABCD 中,AB =5,BC =12,将矩形ABCD 沿对角线对折,然后放在桌面上,折叠后所成的图形覆盖桌面的面积是_______4、在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过____秒钟后,△OAB 的面积第一次达到最大。
高中数学三角形四心性质及例题
三角形“四心”向量形式的充要条件应用1)O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅; 若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==) 若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ∆的充要条件是|CB |CB |CA |CA OC |BC |BC |BA |BA (OB ACAC |AB |AB (OA =-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC∆内心的充要条件可以写成0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆ 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);一. 范例(一).将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的() (A )外心(B )内心(C )重心(D )垂心 AB AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B. 点评:这道题给人的印象当然是“新颖、陌生”AB 是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。
八年级数学竞赛培训:图形的平移与旋转
八年级数学竞赛培训图形的平移与旋转一、填空题(共6小题,每小题5分,满分30分)1.(5分)如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=_________.2.(5分)(2002•河南)如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=3,则PP′=_________.3.(5分)如图,P是等边△ABC内一点,PA=6,PB=8,PC=10,则∠APB=_________.4.(5分)如图,四边形ABCD中,AB∥CD,∠D=2∠B,若AD=a,AB=b,则CD的长是_________.5.(5分)(2002•济南)在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°到Rt△DEF,则旋转前后两个直角三角形重叠部分的面积为_________cm2.6.(5分)如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC 上,AE、BC的延长线交于点F,若AE=10,则S△ADE+S△CEF的值是_________.二、选择题(共6小题,每小题3分,满分18分)7.(3分)如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n为边长的三角形的形状是()8.(3分)(2005•乌兰察布)如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是().﹣1 .9.(3分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①△PFA≌△PEB;②∠PFE=45°;③EF=AP;④图中阴影部分的面积是△ABC的面积的一半;当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的有()10.(3分)(2009•临夏州)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=().11.(3分)如图,在△ABC中,∠BAC=120°,P是△ABC内一点,则()12.(3分)如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为()..三、解答题(共11小题,满分72分)13.(5分)如图,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,对边之差BC﹣EF=ED﹣AB=AF﹣CD>0,试判断该六边形的各角是否相等?若相等,请说明理由.14.(6分)如图,在等腰△ABC的两腰AB、AC上分别取点E和F,使AE=CF.已知BC=2,求证:EF≥1.15.(5分)如图所示,等边△ABC的边长a=,点P是△ABC内的一点,且PA2+PB2=PC2,若PC=5,求PA,PB的长.16.(9分)(2007•玉溪)正方形ABCD和正方形EFGH的边长分别为2和,对角线BD和FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH也随之平移(其形状大小没有变化).(所谓正方形的中心,是指正方形两条对角线的交点;两个正方形的公共点,是指两个正方形边的公共点)(1)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2=_________;(2)设计表格完成问题:随着中心O2在直线l上平移,两个正方形的公共点的个数的变化情况和相应的中心距的值或取值范围.17.(9分)(2002•河北)图形的操作过程:在图①中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=_________,S2=_________,S3=_________.(3)联想与探索:如图④在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少并说明你的猜想是正确的.18.(9分)已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,可以说明:△ACN≌△MCB,从而得到结论:AN=BM.现要求:(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹);(2)在(1)所得到的图形中,结论“AN=BM”是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)在(1)所得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并说明你的结论的正确性.19.(5分)如图,已知△ABC中,AB=AC,D为AB上一点,E为AC延长线上一点,BD=CE,连DE,求证:DE>BC.20.(5分)如图,P为等边△ABC内一点,PA、PB、PC的长为正整数,且PA2+PB2=PC2,设PA=m,n为大于5的实数,满m2n+30m+9n≤5m2+6mn+45,求△ABC的面积.21.(5分)如图,五羊大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米?22.(5分)如图,△ABC是等腰三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离等于1,将△ABC绕点O顺时针旋转45°得到△A1B1C1,两三角形的公共部分为多边形KLMNPQ.①证明:△AKL,△BMN,△CPQ都是等腰直角三角形.②求证:△ABC与△A1B1C1公共部分的面积.23.(9分)(2008•旅顺口区)(1)操作:如图2,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.(2)思考:如图1,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或边长为a的正五边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为_________时,正三角形的边被纸板覆盖部分的总长度为定值a;如图3,当扇形纸板的圆心角为_________时,正五边形的边被纸板覆盖部分的总长度为定值a.(直接填空)(3)探究:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转,当扇形纸板的圆心角为_________度时,正n边形的边被纸板覆盖部分的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n 边形面积S之间的关系(不需证明);若不是定值,请说明理由.新课标八年级数学竞赛培训第29讲:图形的平移与旋转参考答案与试题解析一、填空题(共6小题,每小题5分,满分30分)1.(5分)如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=135°.2.(5分)(2002•河南)如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=3,则PP′=.=3;3.(5分)如图,P是等边△ABC内一点,PA=6,PB=8,PC=10,则∠APB=150°.4.(5分)如图,四边形ABCD中,AB∥CD,∠D=2∠B,若AD=a,AB=b,则CD的长是b ﹣a.5.(5分)(2002•济南)在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°到Rt△DEF,则旋转前后两个直角三角形重叠部分的面积为 1.44cm2.,PS=PQ=,6.(5分)如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC 上,AE、BC的延长线交于点F,若AE=10,则S△ADE+S△CEF的值是48或30.=)×(=二、选择题(共6小题,每小题3分,满分18分)7.(3分)如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n为边长的三角形的形状是()8.(3分)(2005•乌兰察布)如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是().﹣1 .B=9.(3分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①△PFA≌△PEB;②∠PFE=45°;③EF=AP;④图中阴影部分的面积是△ABC的面积的一半;当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的有()10.(3分)(2009•临夏州)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=().BE==11.(3分)如图,在△ABC中,∠BAC=120°,P是△ABC内一点,则()12.(3分)如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为()..三、解答题(共11小题,满分72分)13.(5分)如图,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,对边之差BC﹣EF=ED﹣AB=AF﹣CD>0,试判断该六边形的各角是否相等?若相等,请说明理由.14.(6分)如图,在等腰△ABC的两腰AB、AC上分别取点E和F,使AE=CF.已知BC=2,求证:EF≥1.15.(5分)如图所示,等边△ABC的边长a=,点P是△ABC内的一点,且PA2+PB2=PC2,若PC=5,求PA,PB的长.)PA=25+1216.(9分)(2007•玉溪)正方形ABCD和正方形EFGH的边长分别为2和,对角线BD和FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH也随之平移(其形状大小没有变化).(所谓正方形的中心,是指正方形两条对角线的交点;两个正方形的公共点,是指两个正方形边的公共点)(1)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2=3;(2)设计表格完成问题:随着中心O2在直线l上平移,两个正方形的公共点的个数的变化情况和相应的中心距的值或取值范围.17.(9分)(2002•河北)图形的操作过程:在图①中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=ab﹣b,S2=ab﹣b,S3=ab﹣b.(3)联想与探索:如图④在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少并说明你的猜想是正确的.18.(9分)已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,可以说明:△ACN≌△MCB,从而得到结论:AN=BM.现要求:(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹);(2)在(1)所得到的图形中,结论“AN=BM”是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)在(1)所得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并说明你的结论的正确性.19.(5分)如图,已知△ABC中,AB=AC,D为AB上一点,E为AC延长线上一点,BD=CE,连DE,求证:DE>BC.20.(5分)如图,P为等边△ABC内一点,PA、PB、PC的长为正整数,且PA2+PB2=PC2,设PA=m,n为大于5的实数,满m2n+30m+9n≤5m2+6mn+45,求△ABC的面积.==﹣,﹣=sinQ=+=1+=25+12,1212,BD=CD==9+9+21.(5分)如图,五羊大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米?=18+=18+200=21822.(5分)如图,△ABC是等腰三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离等于1,将△ABC绕点O顺时针旋转45°得到△A1B1C1,两三角形的公共部分为多边形KLMNPQ.①证明:△AKL,△BMN,△CPQ都是等腰直角三角形.②求证:△ABC与△A1B1C1公共部分的面积.=﹣(N=(CH=CO+OH=(=2+)﹣(2﹣=,2+﹣)﹣,23.(9分)(2008•旅顺口区)(1)操作:如图2,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.(2)思考:如图1,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或边长为a的正五边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为120°时,正三角形的边被纸板覆盖部分的总长度为定值a;如图3,当扇形纸板的圆心角为72°时,正五边形的边被纸板覆盖部分的总长度为定值a.(直接填空)(3)探究:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转,当扇形纸板的圆心角为度时,正n边形的边被纸板覆盖部分的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由.时,正与中心构成的三角形的面积,且为,是定值,被纸板覆盖部分的面积是;。
三角形四心概念及性质
三角形“四心”概念及性质(学生填表时,教师巡视,看到有的学生不会填“四心”位置,启发他们多画几个不同形状的三角形试试,让学生会从特殊到一般的思想方法。
)师:三角形的重心有什么性质?生甲:分中线为1:2。
生乙:分中线为3:1。
师:应当把重心看成中线的内分点,即顶点到重心与重心到对边中点的距离之比是2:1。
三角形的垂心性质,课本上没有明确提出过,不必填上。
但如果题中有两条以上的高线,就应想到“四点共圆”。
如图1,H是垂心,有几组四点共圆?(学生回答略。
)师:外心与内心各有什么性质?(学生回答略。
)[通过上述问题的讨论,让学生从对比中认识点到点的距离与点直线距离的区别,从而更好地理解概念,加深印象。
](教师在黑板上画一个直角三角形,一个钝角三角形,让学生上黑板作垂心,然后归纳总结。
)师:锐角三角形的垂心必在形内,钝角三角形的垂心必在形外,直角三角形的垂心就是直角顶点。
[通过实际画图,强化垂心可能在形外的情况,练一遍胜过背几遍。
]师:至于外心,请同学们课后用同样的方法画几个不同形状的三角形来验证结论的正确性。
上面,我们归纳了“四心”中每个“心”与三角形的相对位置关系。
下面,我们再考虑“四心”在同一三角形中的位置有什么关系?先考虑在等腰三角形中“四心”的位置关系。
生:都在同一条直线上。
师:在哪一条直线上?生:在底边上的中线或底边上的高或顶角的平分线上。
师:对!三线合一,“四心”在三角形的对称轴上。
师:等边三角形的“四心”位置又有什么关系呢?生:都重合成一个点了。
师:这“四心”共点,这个点叫什么名称?生:“中心”,师:等边三角形叫做正三角形。
正三角形的重心、内心、垂心、外心重合成一个点,就是正三角形的“中心”。
“中心”是正多边形所特有的,不是正多边形就没有中心。
因此三角形中只有等边三角形才有中心,其他三角形都没有中心。
[把课本中学过的几个“心”都串起来了,揭示出其内在的联系,让学生能够系统地掌握知识。
]二、练习师:我们先做下面的练习:已知三角形的三边长分别为5、12、13,那么垂心到外心的距离是多少?生:6.5。
八年级数学竞赛培优专题及答案 29 几何变换
专题29 几何变换阅读与思考几何变换是指把一个几何图形1F 变换成另一个几何图形2F 的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、对称、旋转是常见的合同变换.l图3图2图1F 1F 21.平移变换如图1,如果把图形1F 上的各点都按一定方向移动一定距离得到图形2F 后,则由1F 到2F 的变换叫平移变换.平移变换前后的对应线段相等且平行,对应角的两边分别平行且方向一致. 2.对称变换如图2,将平面图形1F 变换到与它成轴对称的图形2F ,这样的几何变换就叫做关于直线l (对称轴)的对称变换.对称变换前后的对应线段相等,对应角相等,其对称轴是连结各对应点线段的垂直平分线. 3.旋转变换如图3,将平面图形1F 绕这一平面内一定点M 旋转一个定角α,得到图形2F ,这样的变换叫旋转变换,M 叫旋转中心,α叫旋转角.旋转变换前后的图形是全等的,对应点到旋转中心的距离相等,对应线段的夹角等于旋转角.例题与求解【例l 】如图,∠AOB =045,角内有点P ,PO =10,在角的两边上有两点Q ,R (均不同于O ),则△PQR 的周长的最小值为_______________. (黄冈市竞赛试题)解题思路:作P 点关于OA ,OB 的对称点,确定Q ,R 的位置,化折线为直线,求△PQR 的最小值.O【例2】如图,P是等边△ABC的内部一点,∠APB,∠BPC,∠CP A的大小之比是5:6:7,则以P A,PB,PC为边的三角形的三个角的大小之比(从小到大)是()A. 2:3:4B. 3:4:5C. 4:5:6D.不能确定(全国通讯赛试题)B C解题思路:解本例的关键是如何构造以P A,PB,PC为边的三角形,若把△P AB,△PBC,△PCA中的60,就可以把P A,PB,PC有效地集中在一起.任一个,绕一个顶点旋转0【例3】如图,在△ABC中,AD⊥BC于D,∠B=2∠C,求证:AB+BD=CD.(天津市竞赛试题)解题思路:用截长法或补短法证明,实质都利用AD翻折造全等.C【例4】如图,六边形ABCDEF中,AB∥DE,BC∥FE,CD∥AF,对边之差BC-FE=ED-AB=AF-CD >0,求证:该六边形的各角都相等.(全俄数学奥林匹克竞赛试题)解题思路:设法能将复杂的条件BC-FE=ED-AB=AF-CD>0,用一个基本图形表示,题设条件有平行条件,考虑实施平移变换.【例5】已知Rt △ABC 中,AC=BC ,∠ACB =090,∠MCN =045 (1) 如图1,当M 、N 在AB 上时,求证:222MN AM BN =+(2) 如图2,将∠MCN 绕C 点旋转,当M 在BA 的延长线时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.(天津市中考试题)解题思路:222MN AM BN =+符合勾股定理的形式,需转化为直角三角形可将△ACM 沿直线CM 对折,得△DCM . 连DN ,只需证DN=BN ,∠MDN =090;或将△ACM (或△BCM )旋转.【例6】如图,∠DAC=012,∠DBC=024,∠CAB=036,∠ABD=048,求∠DCA 的度数.(日本算术奥林匹克试题)解题思路:已知角的度数都是12的倍数,0362460+=,这使我们想到构作正三角形.A图2图1MA B B能力训练1.在如图所示的单位正方形网格中,将△ABC 向右平移3个单位后得到△A B C ''',则BA A '∠的度数是_______.(泰安市中考试题)B(第1题) (第2题) (第3题)2.如图,P 是等边△ABC 内一点,P A =6,PB =8,PC =10,则∠APB =_________.3.如图,直线143y x =与双曲线2(0)k y k x =>交于点A ,将直线143y x =向右平移92个单位后,与双曲线2k y x =交于点B ,与x 轴交于点C . 若2AOBC=,则k =______________. (武汉市中考试题) 4.如图,△ABC 中,∠BAC =045,AD ⊥BC ,DB =3,DC =2,则△ABC 的面积是___________. 5.如图,P 为正方形内一点,若::1:2:3PA PB PC =,则∠APB 的度数是( ). A. 0120 B. 0135 C. 0145 D. 0150(第6题)(第5题)(第4题)ACB ABDABDA'6.如图,边长为2的正方形ABCD 的对角线交于点O ,把边BA 、CD 分别绕点B 、C 同时逆时针旋转060,得四边形A BCD '',下列结论:①四边形A BCD ''为菱形;②12ABCD A BCD S S ''=正方形四边形;③线段OD '的1. 其中正确的结论有( ).A. 0个B. 1个C. 2个D. 3个7. 如图,A ,B 两个电话机离电话线l 的距离分别是3米,5米,CD =6米,若由L 上一点分别向A ,B 连电话线,最短为( ).A. 11米B. 10米C. 9米D. 8米8. 如图,在△ABC 中,∠BAC =0120,P 是△ABC 内一点,若记x PA PB PC =++,y AB AC =+,则( ).A. x y <B. x y =C. x y >D. x 与y 的大小关系不确定l第8题图第7题图CB9. 如图,已知D 是△ABC 中BC 边的中点,过D 作DE ⊥DF ,分别交AB 于E ,交AC 于F ,求证:BE CF EF +>.(天津市竞赛试题)DB10.如图,△ABC ,△A B C '''其各边交成六边形DEFGHK ,且EF ∥KH ,GH ∥DE ,FG ∥KD ,0KH EF FG KD DE GH -=-=->. 求证:△ABC ,△A B C '''均为为正三角形.(“缙云杯”邀请赛试题)A B C A'11.如图,已知△ABC 中,AB=AC ,P ,Q 分别为AC ,AB 上的点,且AP=PQ=QB=BC ,求∠PCQ .(北京市竞赛试题)B12.如图,已知在平面直角坐标系中,A ,B 两点的坐标分别为(2,3)A -,(4,1)B -. (1) 若(,0)P x 是x 轴上的一个动点,当△P AB 的周长最短时,求x 的值;(2)若(,0),(3,0)C a D a +是x 轴上的两个动点,当四边形ABCD 的周长最短时,求a 的值; (3)设M ,N 分别为x 轴,y 轴上的动点,问:是否存在这样的点(,0)M m 和(0,)N n ,使四边形ABMN 的周长最短?若存在,求出,m n 的值;若不存在,请说明理由.(浙江省湖州市中考试题)13.如图,梯形ABCD 中,AD ∥BC ,分别以两腰AB ,CD 为边向两边作正方形ABGE 和正方形DCHF ,设线段AD 的垂直平分线l 交线段EF 于点M ,EP ⊥l 于P ,FQ ⊥l 于Q ,求证:EP=FQ.(全国初中数学联赛试题)14.如图所示,已知Rt △ABC 中,AB=BC ,在Rt △ADE 中,AD=DE ,连结EC ,取EC 中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,求证:BM=DM ,且BM ⊥DM ; (2)如图2中的△ADE 绕点A 逆时针旋转小于045的角,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.(广州市中考试题)图2图1ACBBCA15.如图,在△ABC 中,∠BAC =045,AD ⊥BC 于D ,若BD =3,CD =2,求△ABC 的面积.(山东省竞赛试题)B专题29 几何变换例1 210例2 A 提示:将ABP ∆绕B 点顺时针旋转︒60得CBD ∆,则ABP ∆≌CBD ∆,BPD ∆为等边三角形. 例3 提示:延长BD 至E ,使AB BE =,连接AE ,E ABC ∠=∠2.例4 提示:过E 作ER ∥,CD 过C 作CP ∥AB ,过A 作AQ ∥EF ,则PQR ∆为等边三角形.例5 (1)如图a ,由DCM ∆≌ACM ∆则AM DM AC DC ==,,,ACM DCM ∠=∠A CDM ∠=∠.又由CB CA =,得CB CD =.由DCM DCN ∠-︒=∠45,得BCN DCN ∠=∠,又CN CN =,则DCN ∆≌BCN ∆,有BN DN =,B CDN ∠=∠, ∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN ∴222DN MD MN +=即222BN AM MN +=(2)关系式: 222BN AM MN +=仍成立,方法同上,如图b 例6 如图,作ACD ∆关于AD 所在直线的轴对称图形,APD 则,12,60,APD ACD PAD CAD PAB AP AB AC ∠=∠∠=∠=∠===,连接PB ,则PAB 为正三角,得12PBD ∠=.123648,,,DAB DBA AD BD PAD PBD ∠=+==∠∴=∴≅故30.30APD BPD ACD APD ∠=∠=∴∠=∠=能力训练1. 452. 1503. 12 提示: 如图, 设4(,)3A a a 过A 作AD x ⊥轴, 交于点D , 过B 作BE x ⊥轴, 交于点E由,2AO AD OD AOD BCE BC BE CE ∴===, 则2912,,(,)23223a CE BE a B a a ==+ ,A B 都在双曲线上, 4291()3322a a a a ∴=+, 解得 123,0a a ==(舍去) 3412k ∴=⨯=4. 15 提示: 分别以,AB AC 为对称轴作D 点的对称点,E F , 连接,FC EB 相交于G , 证明四边形AFGE 为正方形5. B6. C7. B8. D9. 提示: 延长FD 至G , 使DG FD =, 连接EG10. 提示: 作//,//,//EQ FG PG KH KR DE ,交成等边三角形PQR11. 提示: 作//CD BQ , 连,PD CD ,∴四边形QBCD 为菱形, DQ QB = , 由,AP QB CD AQ PC === ,A PCD ∠=∠ 得,,DCP PAQ PD PQ QB QD ≅=== QPD ∴为等边三角形,又,CDP A PQA ∠=∠=∠2,QPC A ∠=∠360QPD A ∠=∠=20,A ∴∠=80B ACB ∠=∠=又,QB BC = 50QCB ∴∠= 30PCQ ∠=12. 提示: (1) 作(4,1)B -关于x 轴对称点'(4,1)B ,连','AB AB 交x 轴于P ,PAB 周长最短, (3.5,0)P ∴ (2) 将点(4,1)B -向左平移3个单位得1(1,1)B -,再作1B 关于x 的对称点2(1,1)B ,连2AB 交x 轴于C , 再将C 向右平移3个单位得点D ,(1.25,0), 1.25C a ∴= (3) 作点A 关于y 轴对称点'(2,3)A --,作点B 关于x 轴的对称点'(4,1)B ,连''A B 交x 轴于M , 交y 轴于N 5(2.5,0),(0,)3M N ∴-13. 提示: 过N 作'//NQ DF ,作'//,NP AE 作//,//.NS DC NR AB 由','PP N LNR RN AB AE P N ∠=∠=== 则''Rt PP N Rt LNR PP LN ≅∴= 同理可证: ''PP QQ =又 '//,'//EP AN FQ ND , 又''AN ND EP FP =∴= 从而'',''PE PP P E FQ FQ QQ =+=+则 PE FQ =(1) 11,,22BM EC DM EC BM DM ==∴= 由2BME BCM ∠=∠ 2,DME DCM ∠=∠ 2()90BMD BME DME BCM DCM ∴∠=∠+∠=∠+∠= BM DM ∴⊥(2) 延长DM 至点F ,使DM FM =,连,,BD BF FC . 可证:EMD CMF ≅,ED AD CF DEM FCN ∴==∠=∠ //ED CF延长AD ,交BC 于T ,交CF 延长线于S 90EDS CST ∠=∠= 又BTA CTS ∠=∠BAD BCF ∠=∠,,,AB CB ABD CBF BD BF ABD CBF =∴≅∴=∠=∠,又90ABD DBC CBF DBC ∠+∠=∠+∠=, BDF ∴为等腰三角形, ,BM DM BM DM ∴=⊥15. 如图, 以AB 为对称轴作ADB 的对称AGB ,以AC 为对称轴作ADC 的对称AFC ,并延长,GB FC 交于点E ,则易知四边形AGEF 是正方形, 不妨设AD h =,则2,3,BE h CE h =-=-由2222222(2)(3)5560BC BE CE h h h h =+⇒-+-=⇒--=116561522ABCh S BC AD ⇒=⇒==⨯⨯=。
平面几何三角形四心竞赛题A卷及答案
三角形四心竞赛训练题1一、填空题1、三角形的三条边的垂直平分线的交点叫做三角形的 心;三个角的平分线的交点叫做三角形的 心;三条中线的交点叫做三角形的 心;三条高线的交点叫做三角形的 心。
2、在△ABC 中,∠A=40º,为△ABC 的内心,则∠BOC = 度。
3、圆的外切正三角形的边长是圆内接三角形的边长的 倍。
4、已知三角形三边长分别为3、4、5,则其内切圆半径为 。
5、设△ABC 的垂心为H ,则∠BHC +∠BAC= 度。
二、解答题6、如图1,△ABC 中,AD 为BC 边的高线,点O 为△ABC 的外心,求证:∠BAO=∠DAC 。
7、求证:三角形的三条中线交于一点,且这一点到顶点的距离等于中线长的23。
8、如图2,Rt △ABC 的内切圆⊙O 和斜边BC 的切点为T ,求证:ABCBT TC S ∆⋅=。
9、如图3,已知△ABC 的内心为I ,△BCI 的外心为D ,求证:A 、B 、C 、D 四点共圆。
10、如图4,已知△ABC 的内切圆和BC 相切于D ,求证:△ABD 、△ACD 的内切圆相切。
11、如图5,设△ABC 的垂心为H ,并且直线AH 和外接圆及边BC 的交点分别为E 、D ,求证:HD=DE 。
12、如图6,△ABC 的垂心为H ,外心O 到边BC 的距离为OM ,求证:AH=2OM 。
13、如图7,△ABC 的垂心为H ,外心为O ,若∠A =60º;求证:三直线HO 、AB 、AC 所作成的△APQ 是正三角形。
14、如图8,△ABC 的垂心H ,若垂足三角形DEF 的外接圆和HC 的交点为G ,求证:HG=CG 。
15、设从△ABC 的外接圆的圆心O 向BC 边作垂线OD ,求证:∠BOD=∠A 或者∠BOD+∠A=180º16、如图9,△ABC 中,∠A=2∠B ,由顶点C 作∠A 的平分线AD 的垂线CF ,垂足为F ,求证:CF 经过△ABC 的外心。
三角形四心定理以及相关证明
三角形四心定理以及相关证明一、引言三角形是几何学中最基本的概念之一,它有着丰富的性质和定理。
本文将重点介绍三角形四心定理,这是关于三角形内部的四个特殊点的定理。
我们将详细讨论这个定理以及相关的证明。
二、什么是三角形四心定理三角形四心定理是指在一个三角形内部存在四个特殊的点,它们被称为三角形的四个心,包括三角形的重心、内心、外心和垂心。
这四个点具有重要的性质和几何意义,它们与三角形的边、角和内部点的关系密切相关。
2.1 重心三角形的重心是三角形内部所有中线的交点,其中中线是连接三角形的顶点和对边中点的线段。
重心被称为三角形的质心,它的坐标可以通过三角形顶点坐标的平均值得到。
2.2 内心三角形的内心是三角形内切圆的圆心,内切圆是与三角形的三条边都相切的圆。
内心到三角形的三条边的距离相等,这个距离被称为内心到三角形边的角平分线的距离。
内心的坐标可以通过求解三角形的边长和角的函数表达式得到。
2.3 外心三角形的外心是可以通过三角形的任意两个顶点的垂直平分线的交点得到。
外心到三角形的三个顶点的距离相等,这个距离被称为外心到三角形顶点的距离。
外心的坐标可以通过求解三角形的边长和角的函数表达式得到。
2.4 垂心三角形的垂心是通过三角形的三个顶点和对边的垂直线的交点得到。
垂心到三角形的三边的距离有特殊性质,它们满足垂心到三边距离之和最小。
垂心的坐标可以通过求解三角形的边长和角的函数表达式得到。
三、三角形四心定理的证明三角形四心定理的证明可以通过利用几何性质和数学推导来完成。
下面我们将分别给出重心、内心、外心和垂心的证明过程。
3.1 重心的证明给定一个三角形ABC,我们可以通过连接三角形的三个顶点和对边中点得到三条中线AD、BE和CF。
我们需要证明这三条中线交于一点G,即三角形的重心。
证明过程如下: 1. 由于D是BC的中点,所以AD平行于BC。
2. 同理,BE平行于AC,CF平行于AB。
3. 根据平行线的性质,得到三角形AGF和三角形ABC相似。
三角形四心竞赛讲义全
三角形四心竞赛讲义一、"四心"分类讨论21、外心22、内心33、垂心54、重心65、外心与内心86、重心与内心87、外心与垂心98、外心与重心109、垂心与内心1110、垂心、重心、外心11旁心12二、"四心"的联想121、由内心、重心性质产生的联想122、重心的巧用143、三角形"四心"与一组面积公式16三角形各心间的联系20与三角形的心有关的几何命题的证明21三角形的内心、外心、垂心及重心<以下简称"四心">是新颁发的初中数学竞赛大纲特别加强的内容。
由于与四心有关的几何问题涉及知识面广、难度大、应用的技巧性强、方法灵活,是考查学生逻辑思维能力和创造思维能力的较佳题型,因此,它是近几年来升学、竞赛的热点。
92、93、94、95连续四年的全国初中数学联赛均重点考察了这一内容。
本讲拟分别列举四心在解几何竞赛中的应用,以期帮助同学们掌握这类问题的思考方法,提高灵活运用有关知识的能力。
一、"四心"分类讨论1、外心三解形三条垂直平分线的交点叫做三角形的外心,即外接圆圆心。
△ABC 的外心一般用字母O 表示,它具有如下性质:<1>外心到三顶点等距,即OA=OB=OC 。
<2>∠A=AOB C AOC B BOC ∠=∠∠=∠∠21,21,21。
如果已知外心或通过分析"挖掘"出外心,与外心有关的几何定理,尤其是圆周角与圆心角关系定理,就可以大显神通了。
下面我们举例说明。
例2证明三角形三边的垂直平分线相交于一点,此点称为三角形的外心.已知:△ABC 中,XX ′,YY ′,ZZ ′分别是BC,AC,AB 边的垂直平分线,求证:XX ′,YY ′,ZZ ′相交于一点<图3-111>.分析先证XX ′,YY ′交于一点O,再证O 点必在ZZ ′上即可.证因为XX ′,YY ′分别是△ABC 的BC 边与AC 边的中垂线,所以XX ′,YY ′必相交于一点,设为O<否则,XX ′∥YY ′,那么∠C 必等于180°,这是不可能的>.因为OB=OC,OC=OA,所以OB=OA,所以O 点必在AB 的垂直平分线ZZ ′上,所以XX ′,YY ′,ZZ ′相交于一点.说明由于O 点与△ABC 的三个顶点A,B,C 距离相等,所以以O 点为圆心,以OA 长为半径作圆,此圆必过A,B,C 三点,所以称此圆为三角形的外接圆,O 点称为三角形的外心.例1、如图9-1所示,在△ABC 中,AB=AC,任意延长CA 到P,再延长AB 到Q,使AP=BQ,求证:△ABC 的外心O 与点A 、P 、Q 四点共圆。
初中数学竞赛 知识点和真题 第19讲 三角形的四心
第19讲三角形的“四心”有一个人开始跟欧几里德学习几何学,当他学完第一个命题时,他就问欧几里德:我能通过学习这些东西得到什么好处呢?于是欧几里德叫来他的仆人,并说:给他三个便士,因为他想从所学的知识中获取实利。
——斯托比亚斯知识方法扫描1.三角形的三条角平分线交于一点,这点是三角形的内切圆的圆心,称为三角形的内心。
如果△ABC的内心为I,则有①I 到△ABC的三边距离相等;1∠C;②∠AIB=90°+2③若延长CI交三角形ABC的外接圆于D,则DA=DB=DI。
2.三角形的三边的垂直平分线交于一点,这点是三角形的外接圆的圆心,称为三角形的外心。
如果△ABC的外心为O,则有①O到三个顶点的距离相等;②∠AOB=2∠C;③外心到一边的距离等于这边所对的顶点到垂心的距离的一半。
3.三角形的三条中线交于一点,这点称为三角形的重心。
如果△ABC的重心为G,则有①重心到一个顶点的距离是到对边中点距离的2倍;②△ABG,△BCG,△CAG的面积相等。
4.三角形的三条高所在的直线交于一点,这点称为三角形的垂心。
如果△ABC的垂心为H ,则有①若△ABC是锐角三角形,则∠AHB=180°-∠C;②若AD是△ABC的高,AD交三角形ABC的外接圆于E,则DE=DH。
经典例题解析例1(1995年全国初中数学联赛试题)如图, 已知∠ACE=∠CDE=90°, 点B在CE上, CA=CB=CD, 过A、C、D三点的圆交AB于F. 求证:F为△CDE 的内心.分析若连结DF、CF, 显然要证明DF平分∠CDE,CF平分∠DCE. 证明DF平分∠CDE只要证∠CDF=45°,这是容易解决的. 证明CF平分∠DCE可以转证∠CFD=∠CFB, 这样便于与已知条件CA=CD沟通起来.证明∵∠ACE=90°, CA=CB, ∴∠A=45°.连结DF, 则∠CDF=∠A=45°.∵∠CDE=90°, ∴DF平分∠CDE.连结AD、CF. ∵CA=CD, ∴∠CAD=∠CDA.∵∠CFD 与∠CAD 互补, ∠CFB 与∠CFA 互补,而∠CFA =∠CDA, ∴∠CFB 与∠CDA 互补.∴∠CFD =∠CFB. ∴F 是△CDE 的内心.例2 (河南省第三届初中数学竞赛试题) 一条直线DE 平分△ABC 的周长, 同时直线DE 又平分了△ABC 的面积. 求证:直线DE 经过△ABC 的内切圆圆心O.证明 如图, 设点D 、E 分别在边AB 、AC 上, r 为△ABC 的内切圆半径, 连结AO 、BO 、CO 、DO 、EO, 由题设, 得:AD +AE =BD +BC +CE,∵r >0, ∴2r (AD +AE)=2r (BD +BC +CE).结合图形, 得:S △AOD +S △AOE =S △DOB +S △BOC +S △COE ①又∵DE 平分△ABC 的面积, 由图可知S △ADE =S 四边形BCED ②比较①、②, 可知只有当S △DOE =0时, 才能使两个等式都成立.,所以直线DE 经过△ABC 的内切圆圆心O.从而O 点必在DE 上, 即直线DE 经过△ABC 的内切圆圆心.例3(2001年我爱数学初中生夏令试题)在锐角△ABC 中,AD ⊥BC ,D 为垂足;DE ⊥AC ,E 为垂足;DF ⊥AB ,F 为垂足,O 为△ABC 的外心,求证:(1)△ABC ∽△AEF ;(2)AO ⊥EF 。
三角形四心定理以及相关证明(二)
三角形四心定理以及相关证明(二)引言概述:三角形四心定理是三角形中一个重要的几何定理,它指出了一个三角形的四个特殊点,即重心、垂心、外心和内心。
这个定理不仅在三角形的各个方面有着深远的应用,而且在数学研究中也有着重要的地位。
本文将通过对三角形四心定理的证明,进一步理解该定理的原理。
正文:一、重心1. 重心定义2. 重心的性质a. 重心位于中位线的交点b. 重心将三角形分成六个小三角形c. 重心到各顶点的距离d. 重心是质心的特例二、垂心1. 垂心定义2. 垂心的性质a. 垂心是三条高线的交点b. 垂心到各顶点的距离c. 垂心是九点圆的圆心d. 垂心是费马点的特例三、外心1. 外心定义2. 外心的性质a. 外心是三角形外接圆的圆心b. 外心到各顶点的距离c. 外心是重心和垂心的中点d. 外心是垂心和内心连线的垂直平分线的交点四、内心1. 内心定义2. 内心的性质a. 内心是三角形内切圆的圆心b. 内心到各边的距离c. 内心是三角形角平分线的交点d. 内心是重心和垂心连线的垂直平分线的交点五、相关证明1. 三角形重心的证明2. 三角形垂心的证明3. 三角形外心的证明4. 三角形内心的证明总结:三角形四心定理是数学领域中的一个重要定理,它涉及到三角形的四个特殊点,即重心、垂心、外心和内心。
通过对每个心的定义和性质的分析,我们可以更好地理解它们在三角形中的位置和作用。
此外,对于相关证明的研究也有助于加深对该定理的理解。
通过学习和应用三角形四心定理,我们可以更好地解决各种与三角形相关的数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专项训练(三角形的四心及性质、平移、旋转、覆盖)一、填空题:1、G 是△ABC 的重心,连结AG 并延长交边BC 于D ,若△ABC 的面积为6cm 2, 则△BGD的面积为( ) A. 2cm 2 B. 3 cm 2C. 1 cm 2D.23cm 2 2、如图10-1,在Rt △ABC 中,∠C =90°,∠A =30°,∠C 的平分线与∠B 的外角的平分线交于E 点,则∠AEB 是( ) A. 50°B. 45°C. 40°D. 35°3、在△ABC 中,∠ACB =90°,∠A =20°,如图10-2,将△ABC 绕点C 按逆时针方向旋转角α到∠A ’C ’B ’的位置,其中A ’、B ’分别是A 、B 的对应点,B 在A ’B ’上,CA ’交AB 于D ,则∠BDC 的度数为( ) A. 40°B. 45°C. 50°D. 60°4、设G 是△ABC 的垂心,且AG =6,BG =8,CG =10,则三角形的面积为( ) A. 58B. 66C. 72D. 845、如图10-3,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使AD 边落在AB边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,△CEF 的面积为( ) A. 2B. 4C. 6D. 86、在△ABC 中,∠A =45°,BC =a ,高BE 、CF 交于点H ,则AH =( ) A.a 21B.a 22 C. a D.a 27、已知点I 是锐角三角形ABC 的内心,A 1、B 1、C 1分别是点I 关于BC 、CA 、AB 的对称点,若点B 在△A 1B 1C 1的外接圆上,则∠ABC 等于( ) A. 30°B. 45°C. 60°D. 90°ACBE图10-1A BC DA ’B ’α图10-2A B CD DA EBC ADEB CF图10-38、已知AD 、BE 、CF 是锐角△ABC 三条高线,垂心为H ,则其图中直角三角形的个数是( ) A. 6 B. 8C. 10D. 12二、填空题1、如图10-4,I 是△ABC 的内心,∠A =40°,则∠CIB =__2、在凸四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠ABC =90°,则∠DAB 的度数是_____3、如图10-5,在矩形ABCD 中,AB =5,BC =12,将矩形ABCD 沿对角线对折,然后放在桌面上,折叠后所成的图形覆盖桌面的面积是_______4、在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过____秒钟后,△OAB 的面积第一次达到最大。
5、已知等腰三角形顶角为36°,则底与腰的比值等于______6、已知AM 是△ABC 中BC 边上的中线,P 是△ABC 的重心,过P 作EF (EF ∥BC ),分别交AB 、AC 于E 、F ,则AFCFAE BE =________ 三、解答题1、如图10-6,在正方形ABCD 的对角线OB 上任取一点E ,过D 作AE 的垂线与OA 交于F 。
求证:OE =OFAC I B D图10ABCDE D ’图10-52、在△ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE =DF ,过E 、F 分别作CA 、CB 的垂线相交于P ,设线段PA 、PB 的中点分别为M 、N 。
求证:①△DEM ≌△DFN ②∠PAE =∠PBF3、如图10-8,在△ABC 中,AB =AC ,底角B 的三等分线交高线AD 于M 、N ,边CN 并延长交AB 于E 。
求证:EM ∥BNAE CB FDPMN图10-7A BCN ME D 图10-84、如图10-9,半径不等的两圆相交于A 、B 两点,线段CD 经过点A ,且分别交两于C 、D 两点,连结BC 、CD ,设P 、Q 、K 分别是BC 、BD 、CD 中点M 、N 分别是弧BC 和弧BD 的中点。
求证:①QBNQPM BP②△KPM ∽△NQKAB CDMNKPQ图10-9参考答案一、选择题 1、解:)(12131312cm S S S ABC ABD BGD =⋅==∆∆∆。
选C 。
2、解:在Rt △ABC 中,∠C =90°,∠A =30°,则∠ABC =60°,因为EB 是∠B 的外角的平分线,所以∠ABE =60°,因为E 是∠C 的平分线与∠B 的平分线的交点,所以E 点到CB 的距离等于E 到AB 的距离,也等于E 点到CA 的距离,从而AE 是∠A 的外角的平分线。
所以︒=︒=∠752150BAE ,∠AEB =180°-60°-75°=45°。
应选B 。
3、解:依题意在等腰三角形B ′CB 中,有∠B ′CB =α,∠B ′=90°-20°=70°。
所以α=180°-2×70°=40°,即∠DCA =α=40°, 从而∠BDC =∠DCA +∠A =40°+20°=60°。
应选D 。
4、解:设AD 为中线,则DG =21AG =3,延长GD 到G ′,DG =DG ′=3, 723246821===⨯⨯==∆∆'∆∆GBC ABC CGG GBC S S S S 。
应选C 。
5、解:由折叠过程知,DE =AD =6,∠DAE =∠CEF =45°,所以△CEF 是等腰直角三角形,且EC =8-6=2,所以S △CEF =2。
故选A 。
6、解:取△ABC 的外心及BC 中点M ,连OB 、OC 、OM ,由于∠A =45°,故∠BOC =90°,OM =21a ,由于AH =2OM ,AH =a 。
应选C 。
7、解:因为IA 1=IB 1=IC 1=2r (r 为△ABC 的内切圆半径),所以I 点同时是△A 1B 1C 1的外接圆的圆心,设IA 1与BC 的交点为D ,则IB =IA 1=2ID ,所以∠IBD =30°。
同理,∠IBA =30°,于是∠ABC =60°。
故选C 。
8、图中有6个直角,每一个直角对应两个直角三角形,共有12个直角三角形:△ADB 、△ADC 、△BEA 、△CFA 、△CFB 、△HDB 、△HDC 、△HEC 、△HEA 、△HFA 、 △BEC 、△HFB 。
故选D 。
二、填空题 1、解:︒=︒+︒=+︒=+++=∠+∠=∠11024090290)22()22( A C A B A DIC BID BIC2、解:连AC ,即AD =a ,则在等腰Rt △ABC 中22222222)3(8AD CD a a a BC AB AC -=-==+= 有∠CAD =90° ∠DAB =∠DAC +∠CAB =90°+45°=135°。
3、解:设折叠后所成圆形覆盖桌面的面积为S ,则:EC EC AB S S S S S S S AECAECABCD AEC C AD ABC 25211=⋅=-=-+=∆∆∆∆∆矩形由Rt △ABE ≌Rt △CD 1E 知EC =AE设EC =x ,则222x BE AB =+,即222)12(5x x =-+解得:4820354884512548845241692524169=-⨯==⨯==∆S S x AEC 4、解:答:591515。
设OA 边上的高为h ,则h ≤OB ,所以OB OA h OA S OAB ⨯≤⨯=∆2121当OA ⊥OB 时,等号成立,此时△OAB 的面积最大。
设经过t 秒时,OA 与OB 第一次垂直,又因为秒针1秒钟旋转6度,分针1秒钟旋转0.1度,于是(6-0.1)t =90,解得t =591515。
5、解:设等腰三角形底边为a ,腰为b ,作底角∠B 的平分线交AC 于D ,则 ︒=︒-︒=∠70)36180(21B ∴△BCD 、△DAB 均为等腰三角形。
BD =AD =BC =a ,而CD =b -a 由△BCD ∽△ABC ∴aab b a BC CD AB BC -== 即 则有21501)()(2-==-+b a b a b a 解得(取正) 6、解:如图分别过B 、C 两点作BG 、CK 平行于AM 交直线EF 于G 、K ,则有APCKAF CE AP BG AE BE == 两式相加AP CK BG AF CF AE BE +=+ 又梯形BCKG 中,PM =21(BG +CK ),而由P 为重心得AP =2PM故122==+PMPM AF CF AE BE三、解答题1、证明:∵正方形ABCD ∴OA ⊥DE∵DF ⊥AE ∴F 是△DAE 的垂心 ∴EF ⊥AD ∴EF ∥AB ∵OA =OB ∴OE =OF2、证明:①如图,据题设可知DM 平行且等于BN ,DN 平行且等于AM , ∴∠AMD =∠BND∵M 、N 分别是Rt △AEP 和Rt △BFP 斜边的中点∴EM =AM =DN FN =BN =DM 又已知DE =DF ∴△DEM ≌△DFN②由上述全等三角形可知∠EMD =∠FND ∴∠AME =∠BNF 而△AME 、△BNF 均为等腰三角形 ∴∠PAE =∠PBF 。
3、证明:连结MC ∵AB =BC ,AD ⊥BC ∴∠1=∠2=∠3 ∵∠4=∠5=∠6 又∵∠7=∠8 ∴M 是△AEC 的内心 ∴EM 是∠AEN 的平分线 ∴MNAMEN AE = 又∵∠EBN =2∠NBD =2∠1 ∠ENB =∠NBD +∠4=2∠1 ∴EB =EN ∴MNAMEB AE = ∴EN ∥BN4、证明:①如图: 因为M 是⌒BC 的中点,P 是BC 的中点,所以MP ⊥BC ,∠BPM =90°,连结AB ,则有∠PBM =21∠CAB =21(180°-∠DAB )=90°-21∠DAB =90°-∠NBD =∠QNB 。
AB MCK F D EG ABCN MED412 3 5 67 8所以Rt △BPM ∽Rt △NQB 。
于是有BQNQMP BP =②因为KP ∥BD ,且KP =21BD =BQ ,所以,四边形PBQK 是平行四边形。