苏科版江苏省苏州市梁丰2017-2018学年初二(下)数学阶段测试卷(2)及答案

合集下载

苏科版2017-2018学年度第二学期八年级数学期中试卷及解析

苏科版2017-2018学年度第二学期八年级数学期中试卷及解析

2017-2018学年度第二学期八年级数学期中试卷一、填空题(共12题,每小题2分,共计24分)1.调查市场上某品牌酸奶的质量情况,采用调查方式是.(填“普查”或“抽样调查”)2.把一个正六边形绕着其对称中心旋转一定的角度,要使旋转后的图形与原来的图形重合,那么旋转的角度至少是°.3.在菱形ABCD中,AC=10,BD=24,则菱形的边长等于.4.如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出巧克力口味雪糕的数量是支.5.某种玉米种子在相同条件下发芽试验的结果如下:根据以上数据可以估计,该玉米种子发芽的概率为(精确到0.1).6.“平行四边形的对角线相等”是事件.(填“必然”、“随机”、“不可能”)7.在平行四边形ABCD中,AC、BD相交于点O,已知AC=10,BD=6,则边AB的取值范围是.如图,平行四边形ABCD与平行四边形DCFE周长相等,且∠BAD=60°,∠F=100°,则8.如图,把∆ABC绕着点A顺时针旋转α后,得到∆AB,C,,若∠C=20°,点C、B,、C,共线,则∠α= °.9.已知,在矩形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交边AD于F.若AB=3,EF=1,则AD= .10.如图,在正方形ABCD中,点F在边BC上,把∆ABF沿着AF折叠,点B落在正方形内一点E处,射线DE与射线AF交于点G,则∠AGD= .11.如图,在四边形ABCD中,∠A=90°,AB=9,AD=12,点E、F分别是AB、AD的中点,点H是线段EF上的一个动点,连接CH,点P是线段CH的中点,当点H从点E沿着EF向终点F运动的过程中,点P移动的路径长为.二、选择题(共6题,每小题3分,共计18分)13、下列图形中,既是轴对称图形又是中心对称图形的是()A B C D14、今年我市有近3500名考生参加中考,为了解这些考生的数学成绩,从中抽取800名考生的数学成绩进行统计分析,这个问题中样本是()A、每位考生的数学成绩B、3500名考生的数学成绩C、被抽取的800名考生的数学成绩D、被抽取的800名学生15、下列命题中正确的是()A、有一组邻边相等的四边形是菱形B、有一个角是直角的平行四边形是矩形C、对角线垂直的平行四边形是正方形D、一组对边平行的四边形是平行四边形16、顺次连接下列各四边形各边中点所得的四边形一定是矩形的是()A、等腰梯形B、矩形C、平行四边形D、对角线互相垂直的四边形17、如图,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB,C,D,,则图中阴影部分的面积为()A、1+3B、2+3C、3D、3-318、如图,在矩形ABCD中,∠CAD=68°,将矩形ABCD绕点D逆时针旋转90°得到矩形DGEF,顶点G在边CD上,AC的对应边为GF,连接BE,则∠CBE的度数为()A、23°B、30°C、22°D、18°三、解答题(共8小题,共计78分)19、已知,在四边形ABCD中,AD=AC=BC,∠B=∠D=40°(1)求∠DAC的度数(2)求证:四边形ABCD是平行四边形(1)表中a=___,b=___,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60⩽x<70对应扇形的圆心角度数是___;(3)请估计该年级分数良好(分数在80及80以上为良好)的学生有多少人?21.如图,在正方形网格中,每个小正方形的边长为1个单位长度,平面直角坐标系xoy 的原点O 在格点上,x 轴、y轴都在网格线上,△ABC 的顶点A 、B 、C 都在格点上(1)将△ABC 向左平移两个单位得到△A 1B 1C 1,请在图中画出△A 1B 1C 1(2)△ABC 和△A 2B 2C 2关于原点O 成中心对称,请在图中画出△A 2B 2C 2(3)请写出C 2的坐标_________,并判断以点B 1、C 1、B 2、C 2为顶点的 .22、如图,在矩形ABCD 中,AB=3,E 在边AD 上,且AE=4,点F 是CD 的中点,EF 平分∠BED ,求DE 的长23. (本题满分10分)如图,在平面直角坐标系中,四边形ABCD 是正方形,点A ()a ,2、C都在直线x y 21=上,且点C 在点A 的右侧,求点C 的坐标.24. (本题满分8分)我们数学上将内角度数小于0180的四边形叫做凹凸四边形,形如上图(1),(2),(4)是凸四边形,(3)不是凸四边形.操作:已知如图,两个全等的三角形纸片△ABC 和△DEF ,其中4,3,6===BC AC AB ,按照下列要求把这两个三角形纸片无缝拼接,且没有重叠,画出所有可能的示意图,并写出所拼出图形的周长.(1)拼接成轴对称的凸四边形,写出对应的周长.(2)拼接成中心对称的凸四边形,写出对应的周长.25.(本题满分12分)如图,在△ABC中,∠C=90°,∠A=30°BC=4cm,点D从点B出发沿BC方向以每秒1个单位长的速度向点C匀速运动,同时点E从点A出发沿AB方向以每秒a个单位长的速度向点B匀速运动,当其中一个点到达终点时,两点同时停止.设点D 运动的时间是t秒(t>0).过点E作EF⊥AC,垂足为点F,连接DF,得到平行四边形BDFE.(1)求出a的值;(2)分别连接BF、DE,在运动过程中,BF能与DE互相垂直吗?如果能,求出t的值,如果不能,请说明理由.(3)当△DEF为直角三角形,求t的值.26.如图(1),矩形OABC的边OA、OC在坐标轴上,点B坐标为(5,4),点P是射线BA上的一动点,把矩形OABC沿着CP折叠,点B落在点D处;(1)当点C、D、A共线时,AD=;(2)如图(2),当点P与点A重合时,CD与x轴交于点E,过点E作EF⊥AC,交BC于点F,请判断四边形CEAF的形状,并说明理由;(3)若点D正好落在x轴上,请直接写出点P的坐标.2017-2018学年度第二学期八年级数学期中试卷解析一填空题(共12题,每小题2分,共计24分)1 抽样调查2 60°3 134 1005 0.86 随机7 2<AB<88 20°9 140°10 5或711 45°12 如图所示,当点H与点E重合时,中点P的位置为P1,当点H与点F重合时,中点P的位置为P2,点P运动的路径即为P1P2的长度.要求得P1P2的长度,即要求出EF的长度,EF的长度可以根据勾股定理求出.15答案:413 A既是轴对称图形又是中心对称图形,B是轴对称图形,C是中心对称图形,D是轴对称图形 A14 A是个体,B是总体,C是样本答案:C15A、有一组邻边相等的平行四边形是菱形,C对角线垂直的平行四边形是菱形D、两组组对边平行的四边形是平行四边形B16 顺次连接任意四边形各边中点所得的四边形一定是平行四边形,如果四边形的对角线相等所得中点四边形是菱形,如果对角线垂直所得中点四边形是矩形D17 设线段C ,D ,与线段BC 的交点为E ,由菱形性质可得∠CD ,E=60°,∠D ,CE=30°,所以∠CED ,=90°,S 阴影部分的面积=S △ABC - S △CD ,E ,S △ABC =21S 菱形ABCD =3, CD ,=AC-AD ,=23-2,则D ,E=3-1,CE=3-3,可以求出S △CD ,E =23-3 ;D18 连接BD 和DE ,则三角形BDE 为等腰直角三角形,所以∠BED=45°,因为∠GED=90°-68°=22°,所以∠BEG=45°-22°=23°,因为BC ∥GE ,所以∠CBE=∠BEG=23°A19 因为AD=AC ,∠D=40°,所以∠ACD=40°,∠DAC=180°-40°-40°=100°(3)因为AC=BC ,∠B=40°,所以∠BAC=40°,所以∠BAC=∠ACD ,所以AB ∥CD ,又因为∠DAB+∠B=180°,所以AD ∥BC ,所以四边形ABCD 是平行四边形20、(1)a=8 b=0.3 (2)72° (3)16021.平移变换、中心对称作图、矩形判定(1)略 (2)略 (3) (-3,-1) 矩形22 延长EF 交BC 的延长线于点G ,则△DEF ≌△CGF ,所以DE=CG ;因为EF 平分∠BED ,所以∠BEF=∠DEF ,又因为AD ∥BG ,所以∠DEF=∠BGF ,所以∠BEF=∠BGF ,所以BE=BG ;在RT △ABE 中由勾股定理得BE=5,所以BG=5,设DE=x ,则BG=4+2x ,所以CG=ED=21 2123 因为点A 在直线x y 21上,将A 点坐标代入求出a 值,然后DC AD =,∠ADC=090,考虑到分别从A 、C 两点向x 轴作垂线交于E 、F 两点,从而得到△AED ≌△DFC ,令b DE =,从而得出C 点坐标,且点C 在直线x y 21=上,将C 点坐标代入求出b 值,进而求出C 点坐标. ()3,6C24 首先根据题目所给材料,理解凸四边的特点就是每一个内角都小于0180.结合题目所给的△ABC 和△DEF三边的数值或者观察,可知∠ACB=∠DFE>090.第一问中,要组成轴对称图形,考虑对称性和不重叠的关系,所以有以下情况: 第一种A 、C 两点分别与D 、F 两点对应重合;第二种C 、B 两点分别与F 、E 两点对应重合;第三种A 、B 两点分别与D 、E 两点对应重合.但是第一种和第二种不属于凸四边形,只有第三种符合题意要求.在第二问中,要求组成中心对称图形,所以有以下情况:第一种A 、C 两点分别与F 、D 两点对应重合,且此时四边形ABCE 为平行四边形; 第二种C 、B 两点分别与E 、F 两点对应重合,同理得到四边形ABDC 为平行四边形; 第三种A 、B 两点分别与E 、D 两点对应重合,同理得到四边形DCEF 为平行四边形。

苏科版2018年第二学期期末八年级数学试题二及答案

苏科版2018年第二学期期末八年级数学试题二及答案

2017~2018学年第二学期期末考试卷八年级数学试题2018.06(时间120分钟,满分120分)一、选择题(本大题共10小题,每题3分.)1.下列图形中,既是轴对称图形,又是中心对称图形的是……………………………………………(▲)A.D .2.下列各式: a -b 2 ,x -3x ,5+y ,a +b a -b ,1n (x -y )中,是分式的共有…………………………(▲ ) A .1个B .2个C .3个D .4个3.下列式子从左到右变形一定正确的是 ………………………………………………………………(▲) A .a b =a 2b2B .ab =a +1b +1C .ab =a -1b -1D .a 2ab =ab4.若2x -1在实数范围内有意义,则x 的取值范围是………………………………………………(▲) A .x ≥12B .x ≥-12C .x >12D .x ≠125.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)(2-3)=-1,其中结果正确的个数为 …………………………………………………………………………………………(▲) A .1B .2C .3D .46.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是………… ……………………………………………………………………………(▲) A .至少有1个球是黑球 B .至少有1个球是白球 C .至少有2个球是黑球D .至少有2个球是白球7.已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =6x 的图像上三点,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是 …………………………………………………………………………………………(▲) A . x 1<x 2<x 3B . x 3<x 2<x 1C . x 2<x 1<x 3D . x 2<x 3<x 18.关于x 的分式方程7xx -1 +5=2m -1x -1 有增根,则m 的值为 ……………(▲)A .5B .4C .3D .19.如图,在菱形ABCD 中,∠BCD =110°,AB 的垂直平分线交对角线AC 于点F ,F E DBA (第9题)E 为垂足,连接DF ,则∠CDF 等于 …………………………………………(▲) A .15°B .25°C .45°D .55°10.如图,在平面直角坐标系中,直线y =33x +2与x 轴交于点A ,与y 轴交于点B ,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线y =kx (k ≠0)上,则k 的值为……(▲) A .-4B .-2C .-2 3D .-3 3二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置.......上.) 11.若分式x -3x值为0,则x 的值为▲. 12.若最简二次根式2a -3与5是同类二次根式,则a 的值为▲.13.若反比例函数y =k -2x 的图像经过第二、四象限,则k 的取值范围是▲.14.关于x 的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是▲. 15.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =2,BC =6,则OB 的长为▲. 16.如图,正方形ABCD 的边长为6,点G 在对角线BD 上(不与点B 、D 重合),GF ⊥BC 于点F ,连接AG ,若∠AGF =105°,则线段BG =▲. 17.如图,在平面直角坐标系中,点A 的坐标为(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转75°,若点C 的对应点E 恰好落在y 轴上,则边AB 的长为▲.18.如图,已知点A 是一次函数y =23x (x ≥0)图像上一点,过点A 作x 轴的垂线,B 是上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰三角形ABC ,反比例函数y =kx (x >0)的图像过点B 、C ,若△OAB 的面积为5,则△ABC 的面积是▲.三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.) 19.(本题满分16分) 计算:(1)6×33-(12)-2+|1-2|; (2)(312-213+48)÷3;MDABOCADG BFC(第15题)(第16题)(3)1m -2-4m 2-4;(4)解方程:1x -2-1-x 2-x=-3.20.(本题满分4分)先化简,再求值:x -1x ÷(x - 1x ),其中x =3-1.21.(本题满分8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少? (2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.22.(本题满分8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE =∠DCF . 求证:BF =DE .日人均阅读时间各时间段人数所占的百分比FEABCD23.(本题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度. Rt △ABC 的三个顶点A (-2,2),B (0,5),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出的图形△A 1B 1C . (2)平移△ABC ,使点A 的对应点A 2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2. (3)请用无刻度的直尺在第一、四象限内画出一个以A 1B 2为边,面积是7的矩形A 1B 1EF .(保留作图痕迹,不写作法) (4)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标. 24.(本题满分8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)25.(本题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =k x (k >0,x >0)的图像上,点D 的坐标为(2,32),设AB所在直线解析式为y =kx +b (a ≠0),(1)求k 的值,并根据图像直接写出不等式ax +b >kx 的解集;(2)若将菱形ABCD 沿x 轴正方向平移m 个单位,① 当菱形的顶点B 落在反比例函数的图像上时,求m 的值;② 在平移中,若反比例函数图像与菱形的边AD 始终有交点,求m 的取值范围.26.(本题满分12分)在矩形ABCD 中,AB =4,AD =3,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原. (1)若点P 落在矩形ABCD 的边AB 上(如图1).① 当点P 与点A 重合时,∠DEF =▲°,当点E 与点A 重合时,∠DEF =▲°. ② 当点E 在AB 上时,点F 在DC 上时(如图2),若AP =72,求四边形EPFD 的周长.(2)若点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M (如图3),当AM =DE 时,请求出线段AE 的长度. (3)若点P 落在矩形的内部(如图4),且点E 、F 分别在AD 、DC 边上,请直接写出AP 的最小值.AP BCFDE AEP DFCBDCEMAP BDFCEPAB(图1)(图2)(图3)(图4)2017-2018学年初二数学第二学期期末参考答案与评分标准一、选择题(本大题共10小题,,每小题3分,共30分.) 1.C 2.C3.D 4.A5.D 6.A 7.C 8.B 9.A10.D二、填空题(本大题共8小题,每小题2分,共16分.)11.312.413.2k <14.62m m <≠且15117.18.53三、解答题(本大题共8小题,共74分.) 19. (本题满分16分)解:(1)原式41= ·········································································· 3分5=.································································································· 4分(2)原式= ··································································· 3分 283= 4分(3)原式142(2)(2)m m m =--+- ·································································· 1分 24(2)(2)m m m +-=+- ··························································································· 2分12m =+ ······································································································· 4分 (4)1)1(1)3(2)x x +-=-- ········································································· 2分 ∴2x =经检验是原方程的增根,原方程无解 ································································· 4分 20.(本题满分4分)解:原式=x x x x 112-÷-= )1)(1(1+-⋅-x x xx x ······································································ 1分 =11+x 2分 当13-=x 时,原式=1131+-=31=33 ······································································· 4分 21.(本题满分8分)解:(1)样本容量是:30÷20%=150; ···················································································· 2分 (2)日人均阅读时间在0.5~1小时的人数是:150-30-45=75(人).画图略 ···················· 4分(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×45150 =108°; ··············· 6分(4)12000×75+45150 =9600(人). ························································································· 8分22. (本题满分8分)证明:∵□ABCD ∴AB ∥CD ,AB =CD ··························································· 2分 ∴∠ABE =∠CDF ·························································································································· 4分 在△ABE 和△DCF 中,BAE DCFAB CDABE CDF =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴ △ABE ≌△DCF (ASA ), ······································································ 6分 ∴BE =DF ································································································ 7分 ∴BE +EF =DF +EF 即BF =DE ······································································ 8分 23. (本题满分8分)(1)如图;(2)如图;(3)如图; (4)(0,-2); (2)或24.(本题满分8分)解:⑴设甲队单独完成此项工程需x 天,则乙队单独完成此项工程需(x +5)天. 由题意,得:1144155x x x x -⎛⎫+⨯+=⎪++⎝⎭···························································· 2分 解得:x =20. ································································································ 3分 经检验:x =20是原分式方程的解. ∴(x +5)=25.答:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天; ················· 4分 (2)设甲队施工a 天,乙队施工b 天,需支付工程费w 万元由题意,得:12025a b +≥ ··············································································· 5分 当a =13,b =9时,w =29.4;当a =12,b =10时,w =29;当a =11,b =12时,w =29.7;当a =10,b =13时,w =29.3 ········································· 7分∴当甲施工12天,乙施工10天,即在要求的13天内甲队施工12天,乙队施工10天,支付工程费最少为29万元. ···································································································· 8分 25. (本题满分10分)解:(1)延长AD 交x 轴于F ,由题意得AF ⊥x 轴 ∵点D 的坐标为(2,32),∴OF =2,DF =32, ∴OD =52,∴AD =52······················································································ 1分 ∴点A 坐标为(2,4),∴k =xy =2×4=8, ····························································· 3分 由图像得解集:2x >; ·················································································· 5分 (2)①将菱形ABCD 沿x 轴正方向平移m 个单位, 则平移后B′坐标为(m ,52), 因B′落在函数8y x =(x >0)的图象上, 则165m =. ············································· 7分 ②将菱形ABCD 沿x 轴正方向平移m 个单位,使得点D 落在函数8y x=(x >0)的图象D′点处,∴点D′的坐标为3(2,)2m + ························································································ 8分 ∵点D′在8y x =的图象上∴3822m =+,解得:103m =, ····································· 9分 ∴1003m ≤≤. ····························································································· 10分 26. (本题满分12分)(1) ①90,45 ································································································ 2分 ②设EF 与PD 交于点O ,由折叠知EF 垂直平分PD∴DO =PO ,EF ⊥PD ························································································· 3分 ∵矩形ABCD ∴DC ∥AB ∴∠FDO =∠EPO ∵∠DOF =∠EOP ∴△DOF ≌△POE ∴DF =PE∵DF ∥PE ∴四边形DEPF 是平行四边形 ·························································· 4分 ∵EF ⊥PD ∴四边形DEPF 是菱形 ··································································· 5分 当AP =72时,设菱形边长为x ,则72AE x =-,DE =x在Rt △ADE 中,222AD AE DE +=∴22273()2x x +-= ······································· 6分∴8528x =∴菱形的周长=857············································································ 7分 (2)连接EM ,设AE =x由折叠知PE =DE ,∠CDB =∠EPM =90°,CD =CP =4 ∵AM =DE ∠A =90° EM =EM∴Rt △AEM ≌Rt △PME (HL )·············································································· 8分 ∴AE =PM =x , ∴CM =4-x ,BM =AB -AM =AB -DE =4-(3-x )=1+x 在Rt △BCM 中,222BM BC CM +=∴2223(1)(4)x x ++=-得x =0.6 ····································································· 10分 (3) AP 的最小值=5-4=1 ················································································· 12分.。

苏科版2017~2018学年初二数学第二学期期末测试卷 有答案

苏科版2017~2018学年初二数学第二学期期末测试卷 有答案

2017-2018学年第二学期初二数学期末试卷一.选择题(共10小题,每小题3分,共30分) 1.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是……………………( ) A .对重庆市中学生每天学习所用时间的调查;B .对全国中学生心理健康现状的调查; C .对某班学生进行6月5日是“世界环境日”知晓情况的调查; D .对重庆市初中学生课外阅读量的调查;2.下列标识中,既是轴对称图形,又是中心对称图形的是…………………………( )A .B .C .D .3.分式的值为0,则…………………………………………………………( )A . x=﹣2B . x=±2C . x=2D . x=0 4.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是………………( ) A .(6,1) B . (3,2) C . (2,3) D . (﹣3,2)5.( )A B ;C ;D6.下列等式一定成立的是……………………………………………………………( )A -=B =; C 3±; D .=9;7.(2015•巴中)下列说法中正确的是………………………………………………( ) A .“打开电视,正在播放新闻节目”是必然事件 B .“抛一枚硬币,正面向上的概率为12”表示每抛两次就有一次正面朝上;C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近;D .为了解某种节能灯的使用寿命,选择全面调查; 8.函数y=kx+1与函数k y x=在同一坐标系中的大致图象是……………………( )A .B .C .D .9.如图,正比例函数1y 与反比例函数2y 相交于点E (﹣1,2),若1y >2y >0,则x 的取值范围是( )A . x <﹣1;B . ﹣1<x <0;C . x >1;D . 0<x <1;10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为………………………………………………( ) A .2B .4C.D.二.填空题(共8小题,每小题3分,共24分) 111= ;12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是 . 13.若双曲线21k y x-=的图象经过第二、四象限,则k 的取值范围是 .14()210n +=,则m n -的值为 . 15.若关于x 的方程2111x m x x ++=--产生增根,则m = .16.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE ∥BD ,DE ∥AC ,若AD=4,则四边形CODE 的周长 .18.如图,已知点A 是双曲线y =3x在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (∠AOB =90°),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图像上运动,则这个函数关系式为 .第10题图第9题图 第17题图第16题图第18题图三.解答题(共10小题,共76分) 19.计算:(1)-; (2)22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭;20.解方程: (1)=(2)= ﹣3.21.先化简,再求值:221ab a b a b ⎛⎫-÷⎪--⎝⎭,其中1a =+,1b =.22.如图,平行四边形ABCD 中,EF 过AC 的中点O ,与边AD 、BC 分别相交于点E 、F . (1)试判断四边形AECF 的形状,并说明理由.(2)若EF ⊥AC ,试判断四边形AECF 的形状,并说明理由.(3)请添加一个EF 与AC 满足的条件,使四边形AECF 是矩形,并说明理由.23. 如图,平行四边形ABCD 放置在平面直角坐标系A (-2,0)、B (6,0),D (0,3),反比例函数的图象经过点C .(1)求点C 的坐标和反比例函数的解析式;(2)将四边形ABCD 向上平移m 个单位后,使点B 恰好落在双曲线上,求m 的值.24.(2015•岳阳)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调(1)频数分布表中的m= ,n= ; (2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为 ;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是 .25.如图,已知反比例函数1k y x=和一次函数2y a x b =+的图象相交于点A 和点D ,且点A的横坐标为1,点D 的纵坐标为-1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1. (1)求反比例函数和一次函数的解析式.(2)若一次函数2y a x b =+的图象与x 轴相交于点C ,求∠ACO 的度数. (3)结合图象直接写出:当12y y >时,x 的取值范围.26.(2015•济南)济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.27.如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线kyx=(x>0)也恰好经过点A.(1)求k的值;(2)如图2,过O点作OD⊥AC于D点,求22C D A D-的值;(3)如图3,点P为x轴上一动点.在(1)中的双曲线上是否存在一点Q,使得△PAQ是以点A为直角顶点的等腰三角形.若存在,求出点P、点Q的坐标,若不存在,请说明理由.28. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.参考答案一、选择题:1.C ;2.A;3.C;4.C;5.D;6.B;7.C;8.A;9.A;10.C;二、填空题:1;12.712;13. 12k<;14.2;15.2;16.3;17.16;18. 3yx=;三、解答题:19.(13;(2)1x -;20.(1)3x =-;(2)2x =;21. ab +=22. 解:(1)四边形AECF 的形状是平行四边形,理由是:∵平行四边形ABCD ,∴AD ∥BC ,∴∠DAO=∠ACF ,∠AEO=∠CFO , ∵EF 过AC 的中点O ,∴OA=OC ,在△AEO 和△CFO 中∠EAO =∠OCF ,∠AEO =∠CFO ,OA =OC ,∴△AEO ≌△CFO , ∴OE=OF ,∵OA=CO ,∴四边形AECF 是平行四边形, (2)四边形AECF 是菱形,理由是:由(1)知四边形AECF 是平行四边形, ∵EF ⊥AC ;∴四边形AECF 是菱形. (3)添加条件:EF=AC ,理由是:由(1)知四边形AECF 是平行四边形, ∵EF=AC ,∴四边形AECF 是矩形. 23.(1)C (8,3),24yx=;(2)4m=;24.(1)24,0.3;(2)108°;(3)110;25.(1)12y x=,21y x =+;(2)45°;(3)2x <- 或01x <<;26.240; 27. 解:(1)过点A 分别作AM ⊥y 轴于M 点,AN ⊥x 轴于N 点,△AOB 是等腰直角三角形,∴AM=AN .∴可设点A 的坐标为(a ,a ),点A 在直线y=3x-4上,∴a=3a-4, 解得a=2,则点A 的坐标为(2,2). 将点A (2,2)代入反比例函数的解析式为k y x=,求得k=4.则反比例函数的解析式为4yx=.(2)点A 的坐标为(2,2),在Rt △AMO 中,222A O A MM O=+=4+4=8.∵直线AC 的解析式为y=3x-4,则点C 的坐标为(0,-4),OC=4. 在Rt △COD 中,222O C O D C D =+(1);在Rt △AOD 中,222A O A DO D=+(2);(1)-(2),得2222C D A DO CO A-=-=16-8=8.(3)双曲线上是存在一点Q (4,1),使得△PAQ 是等腰直角三角形.过B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过A 点作AP ⊥AQ 交x 轴于P 点,则△APQ 为所求作的等腰直角三角形.在△AOP 与△ABQ 中,∠OAB-∠PAB=∠PAQ-∠PAB ,∴∠OAP=∠BAQ ,AO=BA ,∠AOP=∠ABQ=45°,∴△AOP ≌△ABQ (ASA ),∴AP=AQ , ∴△APQ 是所求的等腰直角三角形.∵B (4,0),点Q 在双曲线4yx=上,∴Q (4,1),则OP=BQ=1.则点P 、Q 的坐标分别为(1,0)、(4,1).28. 解:(1)1(2)如图1,当∠EMC=90°时,四边形DCEF 是菱形.∵∠EMC=∠ACD=90°,∴DC ∥EF .∵BC ∥AD ,∴四边形DCEF 是平行四边形,∠BCA=∠DAC .由(1)可知:CD=4,AC=∵点M 为AC 的中点,∴CM= Rt △EMC 中,∠CME=90°,∠BCA=30°.∴CE=2ME ,可得(()2222EM E +=,解得:ME=2.∴CE=2ME=4.∴CE=DC .又∵四边形DCEF 是平行四边形, ∴四边形DCEF 是菱形.(3)点E 在运动过程中能使△BEM 为等腰三角形.理由:如图2,过点B 作BG ⊥AD 与点G ,过点E 作EH ⊥AD 于点H ,连接DM . ∵DC ∥AB ,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°-30°-90°=60°.∴∠ABG=30°.∴AG=12AB=2,BG=∵点E 的运动速度为每秒1个单位,运动时间为t 秒, ∴CE=t ,BE=8-t .在△CEM 和△AFM 中∠BCM =∠MAF,MC =AM,∠CME =∠AMF,∴△CEM ≌△AFM .∴ME=MF ,CE=AF=t .∴HF=HG-AF-AG=BE-AF-AG=8-t-2-t=6-2t .∵EH=BG= Rt △EHF 中,ME=12=.∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM=BM .∵在Rt △DBG 中,DG=AD+AG=10,BG=BM=12⨯=要使△BEM 为等腰三角形,应分以下三种情况: 当EB=EM 时,有()()221812624t t ⎡⎤-=+-⎣⎦,解得:t=5.2.当EB=BM 时,有8-t=t=8-当EM=BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t=5.2或t=8-时,△BEM 为等腰三角形.。

苏科版江苏省苏州市张家港市2017-2018学年八年级(下)期末数学试卷(含解析)

苏科版江苏省苏州市张家港市2017-2018学年八年级(下)期末数学试卷(含解析)

江苏省苏州市张家港市2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答题卡上正确答案对应的字母涂黑)1.要使二次根式有意义,则x的取值范围是()A.x>0B.x≤2C.x≥2D.x≥﹣22.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.在某次国际乒乓球单打比赛中,两名中国运动员马龙、樊振东进入最后决赛,那么下列事件为必然事件的是()A.冠军属于中国运动员马龙B.冠军属于中国运动员樊振东C.冠军属于中国运动员D.冠军属于外国运动员4.下列计算正确的是()A.=﹣4 B.+=C.=π﹣1 D.=3+45.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=6.用配方法解方程x2+3x+1=0,经过配方,得到()A.(x+)2=B.(x+)2=C.(x+3)2=10D.(x+3)2=87.为了帮助一名患“白血病”的高中生,某爱心小组的15名同学积极捐款,他们捐款数额如下表:捐款的数额(单位:元)5102050100人数(单位:个)24531这15名同学所捐款数额的中位数是()A.10B.20C.50D.1008.如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=2,CD=,则EF的长为()A.B.C.D.9.如图,矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,则△DCE的面积为()A.B.C.2D.110.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若分式的值为0,则x的值等于.12.已知一组数据为4,8,9,7,7,8,7,10,则这组数据的众数为.13.若+(y﹣3)2=0,则x+y=.14.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:摸球的次数100200300400500600摸到白球的次数58118189237302359摸到白球的频率0.580.590.630.5930.6040.598从这个袋中随机摸出一个球,是白球的概率约为.(结果精确到0.1)15.关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0实数根,则k的取值范围是.16.如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为°.17.如图,正方形ABCD中,AB=8,点E、F分别在边AB、BC上,BE=BF=2,点P是对角线AC上的一个动点,则PE+PF的最小值是.18.如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为.三、解答题(共76分。

2017-2018学年八年级数学下期中考试试题(苏州市带答案)

2017-2018学年八年级数学下期中考试试题(苏州市带答案)

2017-2018学年八年级数学下期中考试试题(苏州市带答案)2017-2018学年第二学期期中试卷初二数学考试时间120分钟总分130分一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在答题卡相应的位置上) 1.下列图形中,既是中心对称图形又是轴对称图形的是………………………………(▲ )A. B. C. D. 2.在代数式、中,分式的个数有………………………(▲ ) A.2个 B.3个 C.4个 D.5个 3.若将分式中的字母的值分别扩大为原来的倍,则分式的值…………(▲ ) A.扩大为原来的倍 B.缩小为原来的 C.不变 D.缩小为原来的 4.若二次根式有意义,则的取值范围是………………………………………(▲ ) A. B. C. D. 5.如果与最简二次根式是同类二次根式,那么a的值是………………(▲ ) A.-2 B.-1 C.1 D.2 6.已知反比例函数的图像经过点(-1,2),则这个函数的图像一定经过点……(▲ ) A.(1,2) B.(2,1) C.(-1,-2) D.(-2,1) 7.若M( ,)、N( ,)、P( , )三点都在函数(k>0)的图象上,则、、的大小关系是……………………………………………………………(▲ ) A. B. C. D. 8.矩形具有而菱形不具有的性质是………………………………………………………(▲ ) A.对角线互相垂直 B.对角线互相平分 C.对角线相等 D.每条对角线平分一组对角 9.如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是……………(▲ ) A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形 C.若AD⊥BC,则四边形AEDF是菱形 D.若∠A=90°,则四边形AEDF是矩形 10.如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x 轴、y轴,若双曲线(k≠0)与有交点,则 k的取值范围是………………………………………………(▲ ) A、 B、 C、 D、二、填空题(本大题共8题,每小题3分,共24分,请将答案填在答题卡相应的位置上) 11.当时,的值为0. 12. 若分式方程有增根,则的值为. 13.已知函数是反比例函数,则 = . 14.已知函数的图象与反比例函数的图象的一个交点为A ,则= . 15.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则 EF 的长为. 16.若分式方程的解为非负数,则的取值范围是. 17.如图,正方形的面积是12,是等边三角形,点在正方形内,在对角线上有一点 ,使最小,则这个最小值为 18. 如图:两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是.(把你认为正确结论的序号都填上)2017-2018学年第二学期期中试卷初二数学命题人:谢煜校对:高东一、选择题:(每题3分,共30分) 1 2 3 4 5 6 7 8 9 10 二、填空题:(每题3分,共24分) 11. 12. 13. 14. 15. 16. 17. 18.三、解答题:(共76分) 19. (16分)计算:① ②20.(8分)解方程:① ② .21. (5分)先化简,再求值:,其中 .22.(6分)如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC ,DF∥BE ,AE=CF.求证:(1)△AFD △CEB;(2)四边形ABCD是平行四边形.23. (6分) 如图,在平面直角坐标系中,△ABC和△A1B1C1 关于点E成中心对称. (1) 画出对称中心E,并写出点E的坐标; (2) 画出△A1B1C1绕点O逆时针旋转90°后的△ A2B2C2; (3) 画出与△A1B1C1关于点O成中心对称的△A3B3C3.24.(5分)甲、乙两人每小时共做35个零件,甲做160个零件所用的时间与乙做120个零件所用的时间相等。

苏科版2017-2018学年第二学期初二期中试卷含答案1

苏科版2017-2018学年第二学期初二期中试卷含答案1

2017~2018学年第二学期初二期中调研测试含答案数学 2018.4注意事项:1.本试卷满分130分,考试时间120分钟;2.答卷前将密封线内的项目填写清楚,所有解答均须写在答题卷上,在本试卷上答题无效.一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.下列图形中,中心对称图形是2.若代数式12x +在实数范围内有意义,则实数x 的取值范围是 A.2x =- B.2x ≠- C.2x <- D.2x >-3.下列式子为最简二次根式的是4.一只不透明的袋子中装有一些白球和红球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.不可能事佚B.必然事件C.确定事件D.随机事件5.去年我市有约7万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是A.这1000名考生是总体的一个样本B.约7万名考生是总体C.每位考生的数学成绩是个体D. 1000名学生是样本容量6.如图,在ABCD Y 中,90ODA ∠=︒,10AC =cm ,6BD = cm ,则AD 的长为A. 4 cmB. 5 cmC. 6 cmD. 8 cm7.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等8.在反比例函数2k y x-=的图像上有两点1122(,),(,)A x y B x y .若120x x >>时,12y y > , 则k 取值范围是A. 2k ≥B. 2k >C. 2k ≤D. 2k <9.如图,矩形纸片ABCD 中,AB =6cm, BC =8cm ,现将其沿AE 对折,使得点B 落在边 AD 上的点1B 处,折痕与边BC 交于点E ,则CE 的长为A. 6cmB. 4cmC. 2cmD. 1 cm10.如图,在ABCD Y 中,2AD AB =, F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,连接,EF CF ,则下列结论中一定成立的是①2BCD DCF ∠=∠;②EF CF =; ③2BEC CEF S S ∆∆=; ④3DFE AEF ∠=∠.A.①②③B.①③④C.①②④D.②③④二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.)11.化简: = .12.当x = 时,分式211x x -+的值为零. 13.“抛掷图钉实验”的结果如下:由表可知,“针尖不着地的”的概率的估计值是 .(精确到0.01)14.在ABCD Y 中,220A C ∠+∠=︒,则B ∠= .15.菱形ABCD 的对角线AC =6cm, BD =8cm ,则菱形ABCD 的面积是 cm 2 .16.某物质的密度ρ (kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V 之间的 函数表达式是ρ= .17.如图,在四边形ABCD 中,P 是对角线BD 的中点,,E F 分别是,AB CD 的中点, ,100A D B C F P E =∠=︒,则PFE ∠= ° .18.如图,正方形ABCD 的边长为4. E 为BC 上一点,1,BE F =为AB 上一点,2,AF = P 为AC 上一点,则PF PE +的最小值为 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色,墨水签字笔.)19.计算:(本题满分8分,每小题4分)(1) 01(3)π--; (2) 22111a a a a a ++---.20.解方程: (本题满分8分,每小题4分)(1) 512552x x x +=--; (2) 221x x x x +=-+.21.(本题满分6分)先化简,再求值: 35(2)242a a a a -÷+---,其中12a =-.22.(本题满分6分)如图所示,在平面直角坐标系中,方格纸中的每个小正方形的边长为1个 单位,己知(1,0),(2,2),(4,1)A B C -----,请按要求画图:(1)以A 点为旋转中心,将ABC ∆绕点A 顺时针旋转90°得11AB C ∆,画出11AB C ∆;(2)作出ABC ∆关于坐标原点O 成中心对称的222A B C ∆.23.(本题满分6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是 度;(3)若全校八年级共有学生900人,估计八年级一周课外阅读时间为6小时的学生有多少人?24.(本题满分6分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,己知小明的速度是小芳速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.25.(本题满分8分)如图,在矩形ABCD 中,,M N 分别是边,AD BC 的中点,,E F 分别是线段,BM CM 的中点.(1)判断四边形MENF 是什么特殊四边形,并证明你的结论;(2)若四边形MENF 是正方形,求:AD AB 的值.26.(本题满分9分)如图,在平面直角坐标系xoy 中,直线2y x =-与y 轴相交于点A ,与反比例函数k y x=在第一象限内的图象相交于点(,2)B m . (1)求该反比例函数关系式; (2)当14x ≤≤时,求k y x =的函数值的取值范围; (3)将直线2y x =-向上平移后与反比例函数在第一象限内的图象相交于点C ,且ABC ∆的面积为18,求平移后的直线的函数关系式.27.(本题满分9分)我们宅义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD 是等对角四边形,,60,75A C A B ∠≠∠∠=︒∠=︒, 则: C ∠= ° ,D ∠= °;(2)图①、图②均为4×4的正方形网格,线段,AB BC 的端点均在网点上.按要求在图①、图②中以AB 和BC 为边各画一个等对角四边形ABCD .(要求:四边形ABCD 的顶点D 在格点上,所画的两个四边形不全等)(3)已知:在等对角四边形ABCD 中,60,90,2,1DAB ABC AB CD ∠=︒∠=︒==, 求BC 的长.(在直角三角形中,30°角所对直角边等于斜边的一半).28.(本题满分10分)如图1,已知直线2y x =分别与双曲线8,k y y x x==交于第一象限内,P Q 两点,且OQ PQ =.(1)则P 点坐标是 ; k = .(2)如图2,若点A 是双曲线8y x =在第一象限图像上的动点,//AB x 轴,//AC y 轴, 分别交双曲线k y x=于点,B C ; ①连接BC ,请你探索在点A 运动过程中,ABC ∆的面积是否变化,若不变,请求出ABC ∆的面积;若改变,请说明理由;②若点D 是直线2y x =上的一点,请你进一步探索在点A 运动过程中,以点,,,A B C D 为顶点的四边形能否为平行四边形,若能,求出此时点A 的坐标;若不能,请说明理由.1112。

2017~2018学年苏科版八年级数学下册期末试卷含答案解析

2017~2018学年苏科版八年级数学下册期末试卷含答案解析

2017~2018学年八年级(下)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥22.下列根式中,最简二次根式是()A.B. C.D.3.对于函数y=,下列说法错误的是()A.它的图象分布在一、三象限B.它的图象与直线y=﹣x无交点C.当x<0时,y的值随x的增大而减小D.当x>0时,y的值随x的增大而增大4.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为()A.1 B.2 C.4 D.85.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=06.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.7.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=8.如图已知双曲线y=(k<0)经过直角△OAB斜边OA的中点D,且与直角边AB交于点C,若点A 坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题(本大题共有10小题,每小题3分,共30分)9.化简:=.10.若反比例函数y=图象经过点A(﹣,),则k=.11.当x=2014时,分式的值为.12.将一批数据分成5组,列出频率分布表,其中第一组与第五组的概率之和是0.2,第二与第四组的概率之和是0.25,那么第三组的概率是.13.菱形的两条对角线的长分别为6和8,则它的面积是.14.为了了解10000只灯泡的使用寿命,从中抽取10只进行试验,则该考察中的样本容量是.15.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是.16.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长.17.已知(﹣1,y1),(﹣2,y2)是反比例函数y=﹣的图象上的两个点,则y1、y2的大小关系是(用“<”表示)18.如图,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA 上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是.三、解答题(本大题共有9小题,共86分)19.计算:.20.解方程: +=1.21.先化简,再求值:(1﹣)÷,其中x=2.22.2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.24.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE 分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.25.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求一次函数和反比例函数的表达式及点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数.26.某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.27.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.28.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.(3)在x轴上是否存在点Q,使得△QBC是等腰三角形?若存在,请直接写出Q点坐标;若不存在,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【专题】计算题.【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:2﹣x≥0,解得:x≤2.故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.2.下列根式中,最简二次根式是()A.B. C.D.【考点】最简二次根式.【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.3.对于函数y=,下列说法错误的是()A.它的图象分布在一、三象限B.它的图象与直线y=﹣x无交点C.当x<0时,y的值随x的增大而减小D.当x>0时,y的值随x的增大而增大【考点】反比例函数的性质.【分析】根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、∵函数y=中k=6>0,∴此函数图象的两个分支分别在一、三象限,故本选项正确;B、∵函数y=位于一三象限,直线直线y=﹣x位于二四象限,故无交点,故本选项正确;C、∵当x<0时,函数的图象在第一象限,∴y的值随x的增大而减小,故本选项正确;D、∵当x>0时,函数的图象在第三象限,∴y的值随x的增大而减小,故本选项错误.故选D.【点评】本题考查的是反比例函数的性质,即反比例函数y=xk(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.4.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为()A.1 B.2 C.4 D.8【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2EF.【解答】解:∵点E、F分别为AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4.故选C.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.5.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=0【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件得到x2﹣4=0且x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解x2﹣4=0得x=±2,而x≠﹣2,∴x=2.故选A.【点评】本题考查了分式的值为零的条件:当分式的分子为零并且分母不为零时,分式的值为零.6.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】由五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的有①⑤,直接利用概率公式求解即可求得答案.【解答】解:∵五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:.故答案选:B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m所用天数相同”可得方程=.【解答】解:设甲队每天修路x m,依题意得:=,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.如图已知双曲线y=(k<0)经过直角△OAB斜边OA的中点D,且与直角边AB交于点C,若点A 坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数图象上点的坐标特征;反比例函数系数k的几何意义.【分析】根据A点坐标可直接得出D点坐标,代入双曲线y=(k<0)求出k的值,进可得出△OBC的面积,由S△AOC=S△AOB﹣S△OBC即可得出结论.【解答】解:∵D是OA的中点,点A的坐标为(﹣6,4),∴D(﹣3,2),∵知双曲线y=(k<0)经过点D,∴k=(﹣3)×2=﹣6,∴S△OBC=×|6|=3,∴S△AOC=S△AOB﹣S△OBC=×6×4﹣3=9.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(本大题共有10小题,每小题3分,共30分)9.化简:=3.【考点】二次根式的性质与化简.【专题】计算题.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.10.若反比例函数y=图象经过点A(﹣,),则k=﹣1.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣,)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=图象经过点A(﹣,),∴=,即k=﹣1.故答案为:﹣1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.当x=2014时,分式的值为2017.【考点】分式的值.【分析】先把分子因式分解,再约去x﹣3,得x+3,把x=2014代入求值【解答】解:==x+3,当x=2014时,==x+3=2014+3=2017,故答案为:2017.【点评】本题主要考查了分式的值,解题的关键是把分子进行因式分解.12.将一批数据分成5组,列出频率分布表,其中第一组与第五组的概率之和是0.2,第二与第四组的概率之和是0.25,那么第三组的概率是0.55.【考点】利用频率估计概率.【专题】推理填空题.【分析】根据一组数据总的概率是1,可以得到第三组的概率是多少.【解答】解:由题意可得,第三组的概率是:1﹣0.2﹣0.25=0.55,故答案为:0.55.【点评】本题考查利用频率估计概率,解题的关键是明确题意,知道一组数据总的概率是1.13.菱形的两条对角线的长分别为6和8,则它的面积是24.【考点】菱形的性质.【专题】计算题.【分析】菱形的面积等于对角线乘积的一半.【解答】解:∵菱形的面积等于对角线乘积的一半,∴面积S=×6×8=24.故答案为24.【点评】此题考查菱形的面积计算方法,属基础题.菱形的面积=底×高=对角线乘积的一半.14.为了了解10000只灯泡的使用寿命,从中抽取10只进行试验,则该考察中的样本容量是10.【考点】总体、个体、样本、样本容量.【分析】样本容量是样本中包含个体的数目,不带单位.依据定义即可判断.【解答】解:根据样本容量的定义得:样本容量为10.故答案为:10.【点评】本题样本容量的定义,特别需要注意的是:样本容量不能带单位,比较简单.15.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是.【考点】几何概率.【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故答案为:.【点评】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.16.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长16.【考点】菱形的判定与性质;矩形的性质.【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=4,即可判定四边形CODE是菱形,继而求得答案.【解答】解:∵四边形ABCD是矩形,∴BD=AC,DO=BO,AO=CO,∴OD=OA,∵∠AOB=120°,∴∠DOA=60°,∴△AOD是等边三角形,∴DO=AO=AD=OC=4,∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×4=16,故答案为:16.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.17.已知(﹣1,y1),(﹣2,y2)是反比例函数y=﹣的图象上的两个点,则y1、y2的大小关系是2<y1(用“<”表示)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质可找出反比例函数在第二象限内为减函数,再结合﹣1>﹣2即可得出结论.【解答】解:∵在反比例函数y=﹣中k=﹣4<0,∴该反比例函数在第二象限内y随x的增加而减小,∵﹣1>﹣2,∴y2<y1.故答案为:y2<y1.【点评】本题考查了反比例函数的性质,解题的关键是根据反比例函数的系数找出反比例函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数的单调性比求出点的坐标再进行比较要简便很多,因此我们可以根据反比例函数的性质找出其单调性来解决问题.18.如图,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是2.【考点】轴对称-最短路线问题;坐标与图形性质;正方形的性质.【分析】作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长,利用勾股定理即可求解.【解答】解:作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长.则OD′=2,因而AD′===2.则PD+PA和的最小值是2.故答案是:2.【点评】本题考查了正方形的性质,以及最短路线问题,正确作出P的位置是关键.三、解答题(本大题共有9小题,共86分)19.计算:.【考点】实数的运算;负整数指数幂.【专题】探究型.【分析】先根据绝对值的性质、负整数指数幂及算术平方根计算岀各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=3﹣2﹣4+3=﹣1.【点评】本题考查的是实数的运算,熟知绝对值的性质、负整数指数幂及算术平方根的计算是解答此题的关键.20.解方程: +=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.先化简,再求值:(1﹣)÷,其中x=2.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=2时,原式==1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取80名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;(2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C”所对扇形的圆心角的度数,然后补全条形统计图即可;(3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.【解答】解:(1)本次调查的居民人数=56÷70%=80人;(2)为“C”的人数为:80﹣56﹣12﹣4=8人,“C”所对扇形的圆心角的度数为:×360°=36°补全统计图如图;(3)该区从不闯红灯的人数=1600×70%=1120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【考点】作图-旋转变换.【分析】(1)点B关于点A对称的点的坐标为(2,6);(2)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;(3)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.【解答】解:(1)点B关于点A对称的点的坐标为(2,6);(2)所作图形如图所示:,点B'的坐标为:(0,﹣6);(3)当以AB为对角线时,点D坐标为(﹣7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(﹣5,﹣3).【点评】本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE 分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.【考点】平行四边形的判定与性质;直角三角形斜边上的中线;菱形的判定.【专题】证明题.【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形,即得AD=CE;(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;【解答】证明:(1)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE∥BD,且AE=BD又∵AD是BC边的中线,∴BD=CD,∴AE=CD,∵AE∥CD,∴四边形ADCE是平行四边形,∴AD=EC;(2)∵∠BAC=90°,AD是斜边BC上的中线,∴AD=BD=CD,又∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点评】本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.25.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求一次函数和反比例函数的表达式及点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数.【考点】反比例函数与一次函数的交点问题.【分析】(1)设反比例函数的解析式为y=(k≠0),把A点坐标代入即可得出k的值,进而得出反比例函数的解析式,再把B点坐标代入即可得出a的值,利用待定系数法即可得出一次函数的解析式;(2)直接根据两函数的交点即可得出结论.【解答】解:(1)设反比例函数的解析式为y=(k≠0),∵反比例函数图象经过点A(﹣4,﹣2),∴﹣2=,解得k=8,∴反比例函数的解析式为y=.∵B(a,4)在y=的图象上,∴4=,∴a=2,∴点B的坐标为B(2,4);设一次函数表达式为y=mx+n,将点A,点B代入得,,解得,∴一次函数表达式为y=x+2;(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.【点评】本题考查的是反比例函数与一次函数的交点问题,能直接利用函数图象求出不等式的解集是解答此题的关键.26.某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.【考点】分式方程的应用.【分析】首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【解答】解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.27.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【解答】解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;第21页(共23页)(2)∵a=,b=5,c=4, ∴a +b=+5>4, ∴以a 、b 、c 为边能构成三角形,∵a 2+b 2=()2+52=32=(4)2=c 2,∴此三角形是直角三角形,∴S △==.【点评】本题考查了勾股定理的逆定理,非负数的性质,求三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.28.如图,直线y=x ﹣1与反比例函数y=的图象交于A 、B 两点,与x 轴交于点C ,已知点A 的坐标为(﹣1,m ).(1)求反比例函数的解析式;(2)若点P (n ,﹣1)是反比例函数图象上一点,过点P 作PE ⊥x 轴于点E ,延长EP 交直线AB 于点F ,求△CEF 的面积.(3)在x 轴上是否存在点Q ,使得△QBC 是等腰三角形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将点A 的坐标代入直线AB 的解析式中即可求出m 的值,根据点A 的坐标利用反比例函数图象上点的坐标特征即可求出k 值,从而得出反比例函数解析式;(2)由直线AB 的解析式可求出点C 的坐标,将点P 的坐标代入反比例函数解析式中可求出n 值,从而可得出点E 、F 的坐标,由此可得出线段EF 、CE 的长度,再根据三角形的面积公式即可得出结论;第22页(共23页)(3)假设存在,设点Q 的坐标为(a ,0).联立直线AB 与反比例函数解析式可求出点B 的坐标,由此即可得出线段BC 、BQ 、CQ 的长,根据等腰三角形的性质分BC=BQ 、BC=CQ 以及BQ=CQ 三种情况考虑,由此可得出关于a 的方程,解方程即可求出点Q 的坐标,此题得解.【解答】解:(1)把A (﹣1,m )代入y=x ﹣1,∴m=﹣2,∴A (﹣1,﹣2).∵点A 在反比例函数图象上,∴k=﹣1×(﹣2)=2,∴反比例函数的表达式为:y=.(2)令y=x ﹣1中y=0,则0=x ﹣1,解得:x=1,∴C (1,0).把P (n ,﹣1)代入y=中,得:﹣1=,解得:n=﹣2,∴P (﹣2,﹣1).∵PE ⊥x 轴,∴E (﹣2,0).令y=x ﹣1中x=﹣2,则y=﹣2﹣1=﹣3,∴F (﹣2,﹣3).∴CE=3,EF=3,∴S △CEF =CE •EF=.(3)假设存在,设点Q 的坐标为(a ,0).联立直线AB 和反比例函数解析式得:,解得:或,∴B (2,1).∴BC==,CQ=|a ﹣1|,BQ=.△QBC 是等腰三角形分三种情况:①当BC=CQ 时,有=|a ﹣1|,第23页(共23页)解得:a 1=1+,a 2=1﹣,此时点Q 的坐标为(1+,0)或(1﹣,0);②当CQ=BQ 时,有|a ﹣1|=, 解得:a 3=2,此时点Q 的坐标为(2,0);③当BC=BQ 时,有=,解得:a 4=3,a 5=1,此时点Q 的坐标为(3,0)或(1,0)(舍去). 综上可知:在x 轴上存在点Q ,使得△QBC 是等腰三角形,Q 点坐标为(1+,0)、(1﹣,0)、(2,0)或(3,0).【点评】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、三角形的面积公式、两点间的距离公式以及等腰三角形的性质,解题的关键是:(1)求出点A 的坐标;(2)求出点C 、E 、F 的坐标;(3)分三种情况找出关于a 的方程.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,根据点的坐标利用反比例函数图象上点的坐标特征求出反比例函数解析式是关键.。

2017-2018学年江苏省苏州市张家港市八年级(下)期末数学试卷(解析版)

2017-2018学年江苏省苏州市张家港市八年级(下)期末数学试卷(解析版)

2017-2018学年江苏省苏州市张家港市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答题卡上正确答案对应的字母涂黑)1.(3分)要使二次根式有意义,则x的取值范围是()A.x>0B.x≤2C.x≥2D.x≥﹣22.(3分)下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.(3分)在某次国际乒乓球单打比赛中,两名中国运动员马龙、樊振东进入最后决赛,那么下列事件为必然事件的是()A.冠军属于中国运动员马龙B.冠军属于中国运动员樊振东C.冠军属于中国运动员D.冠军属于外国运动员4.(3分)下列计算正确的是()A.=﹣4B.+=C.=π﹣1D.=3+45.(3分)下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=6.(3分)用配方法解方程x2+3x+1=0,经过配方,得到()A.(x+)2=B.(x+)2=C.(x+3)2=10D.(x+3)2=87.(3分)为了帮助一名患“白血病”的高中生,某爱心小组的15名同学积极捐款,他们捐款数额如下表:这15名同学所捐款数额的中位数是( ) A .10B .20C .50D .1008.(3分)如图,在四边形ABCD 中,∠C =90°,E 、F 分别为AB 、AD 的中点,BC =2,CD =,则EF 的长为( )A .B .C .D .9.(3分)如图,矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则△DCE 的面积为( )A .B .C .2D .110.(3分)在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C ′的坐标为( )A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.(3分)若分式的值为0,则x的值等于.12.(3分)已知一组数据为4,8,9,7,7,8,7,10,则这组数据的众数为.13.(3分)若+(y﹣3)2=0,则x+y=.14.(3分)某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为.(结果精确到0.1)15.(3分)关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0实数根,则k的取值范围是.16.(3分)如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为°.17.(3分)如图,正方形ABCD中,AB=8,点E、F分别在边AB、BC上,BE=BF=2,点P是对角线AC上的一个动点,则PE+PF的最小值是.18.(3分)如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为.三、解答题(共76分。

2017-2018学年江苏省江阴八年级下数学阶段检测试卷(2)含答案苏科版

2017-2018学年江苏省江阴八年级下数学阶段检测试卷(2)含答案苏科版

九下数学第一次月质量检测 2018.3.26考试时间为120分钟.试卷满分130分.一、选择题(本大题共10小题,每小题3分,共30分.) 1.-2的倒数是( ) A .-12 B .12 C .±2D .22.函数y =x -2中自变量x 的取值范围是( ) A .x >2 B .x ≥2 C .x ≤2 D .x ≠2 3.sin45°的值是 ( )A .12B .22C .32D .14.下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 ( )5.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( )A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2 6.六多边形的内角和为 ( )A .180°B .360°C .720°D .1080° 7.已知,AB 是⊙O 的弦,且OA =AB ,则∠AOB 的度数为 ( )A .30°B .45°C .60°D .90° 8.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是 ( )A .中位数B .众数C .方差D .平均数 9.在△ABC 中,AC =4,AB =5,则△ABC 面积的最大值为 ( ) A .6 B .10 C .12 D .2010.直线l :y =mx -m +1(m 为常数,且m ≠0)与坐标轴交于A 、B 两点,若△AOB (O 是原点)的面积恰为2,则符合要求的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条 二、填空题(本大题共8小题,每小题2分,共16分.) 11.分解因式:xy ―x = .12.去年无锡GDP(国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为 元.13.分式方程4x = 2x +1的解是 .14.若点A (1,m )在反比例函数y =3x的图像上,则m 的值为 .15.写出命题“两直线平行,同位角相等”的结论部分: . 16.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8,E 是CD 的中点,则OE 的长等于___________.A . D .B .C . A17.如图,∠A =110°,在边AN 上取B ,C ,使AB =BC .点P 为边AM 上一点,将△APB沿PB 折叠,使点A 落在角内点E 处,连接CE ,则∠BPE +∠BCE = °.18.已知,在平面直角坐标系中,点A (4,0),点B (m ,33m ),点C 为线段OA 上一点(点O 为原点),则AB +BC 的最小值为 .三、解答题(本大题共10小题,共84分.)19.(本小题满分8分)计算:(1)tan30º-(-2)2-. (2)(2x -1)2+(x-2)(x +2) .20.(本题满分8分)(1)解方程: 1x -3 = 2+x3-x. (2) 解不等式组:⎩⎪⎨⎪⎧x -3(x -2)≤4,1+2x3>x -1. 21.(本题满分8分)已知,如图,等边△ABC 中,点D 为BC 延长线上一点,点E 为CA延长线上一点,且AE =DC ,求证:AD =BE . 22.(本题满分8分)某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:(1)表中的a = ,m = ; (2)请把频数分布直方图补充完整;(画图后请标注相应的数据) (3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?A CB DE 30秒跳绳次数的频数分布直方图23.(本题满分8分)在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程) 24.(本题满分8分)已知,如图,线段AB ,利用无刻度的直尺和圆规,作一个满足条件的△ABC :① △ABC 为直角三角形;② tan ∠A =13.(注:不要求写作法,但保留作图痕迹)25.(本题满分8分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH ,如图2.设小正方形的边长为x 厘米.(1)当矩形纸板ABCD 的一边长为90厘米时,求纸盒的侧面积的最大值; (2)当EH :EF =7:2,且侧面积与底面积之比为9:7时,求x 的值.26.(本题满分8分)已知二次函数y =ax 2-8ax (a <0)的图像与x 轴的正半轴交于点A ,它的顶点为P .点C 为y 轴正半轴上一点,直线AC 与该图像的另一交点为B ,与过点P 且垂直于x 轴的直线交于点D ,且CB :AB =1:7.(图2) (图1) AB C D E F GH(1)求点A 的坐标及点C 的坐标(用含a 的代数式表示); (2)连接BP ,若△BDP 与△AOC 相似(点O 为原点),求此二次函数的关系式.27.(本题满分10分)如图,一次函数y =-12x +m点A、B ,点C 在线段OA 上,点C 的横坐标为n 将△ACD 绕点D 旋转180°后得到△A 1C 1D . (1)若点C 1恰好落在y 轴上,试求nm的值;(2)当n =4时,若△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,求该一次函数的解析式.28.(本题满分10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理——“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC 中,点D 为BC 的中点,根据“中线长定理”,可得: AB 2+AC 2=2AD 2+2BD 2.小明尝试对它进行证明,部分过程如下:解:过点A 作AE ⊥BC 于点E ,如图2,在Rt △ABE 中,AB 2=AE 2+BE 2,同理可得:AC 2=AE 2+CE 2,AD 2=AE 2+DE 2, 为证明的方便,不妨设BD =CD =x ,DE =y , ∴AB 2+AC 2=AE 2+BE 2+AE 2+CE 2=…… (1)请你完成小明剩余的证明过程;理解运用:(2) ① 在△ABC 中,点D 为BC的中点,AB =6,AC =4,; A B C D (图1)A B C D E (图2)(图3)② 如图3,⊙O 的半径为6,点A 在圆内,且OA =22,点B 和点C 在⊙O 上,且∠BAC =90°,点E 、F 分别为AO 、BC 的中点,则EF 的长为________; 拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O 的半径为55,以A (−3,4)为直角顶点的△ABC 的另两个顶点B ,C 都在⊙O 上,D 为BC 的中点,求AD 长的最大值.请你利用上面的方法和结论,求出AD 长的最大值. 九下数学第一次月质量检测答案一、选择题: 1.A 2.B 3.B 4.D 5.D 6.C 7.C 8.二、填空题: 11.x (y -1)12.9.16×101113.x =-2 14.3 15.同位角相等 16.417.70°18.2 3三、解答题: 19.解:(1)原式=32-4-33+……(3分)(2)原式=4x 2-4x +1+(x 2-4) =6-334(4分) =4x 2-4x +1+x 2-4 …(3分) =5x 2-4x -3. ……(4分) 20.解:(1)1=2(x -3)-x …(2分) (2)第1个不等式解得:x ≥1∴x =7 …(3分) 第1个不等式解得:x <4 …(2分) 经检验x=7是原方程的解.…(4分) ∴原不等式组的解集为1≤x <4 …(4分)21.证明:在等边△ABC 中,AB =CA ,∠BAC =∠ACB =60°,∴∠EAB =∠DCA =120°.………(2分)在△EAB 和△DCA 中,⎩⎪⎨⎪⎧AE =DC ,∠EAB =∠DCA ,AB =CA .………(5分)∴△EAB ≌△DCA ,………(6分)∴AD =BE .………(8分) 22.(1)a =0.2,m =16; ……(4分) (2)图略,柱高为7;……(6分)(3)600×16+1250=336(人).……(8分)23.解:画树状图,得(图4)(画树状图或列表正确,得5分)∵共有4种等可能的结果,其中甲队获胜的情况有1种,………(6分)∴甲队获胜的概率为:P (甲队获胜)=14;……………………(8分)24.解:(1)延长AB 至M ,使得AM =3AB ;………(3分) (2)过点M 作MN ⊥AB ,且截取MN =AB ;………(5分) (3)过点B 作AB 的垂线,交AN 于点C .………(7分) ∴Rt △ABC 即为所求.………(8分) 作出垂线或垂直,得2分;构出3倍或13,得3分;构图正确,得2分;结论1分. 25.解:(1)S 侧=2[x (90-2x )+x (40-2x )] =-8x 2+260x …………………(2分)=-8(x -654)2+42252.………………………………………(3分)∵-8<0,∴当x =654时,S 侧最大=42252.…………………(4分)(2)设EF =2m ,则EH =7m ,………………………………………(5分)则侧面积为2(7mx +2mx )=18mx ,底面积为7m ·2m =14m 2, 由题意,得18mx :14m 2=9:7,∴m =x . …………………(7分) 则AD =7x +2x =9x ,AB =2x +2x =4x由4x ·9x =3600,且x >0,∴x =10.…………………………(8分) 26.解:(1)P (4,-16a ),A (8,0),…………………………(2分)∵CB :AB =1:7,∴点B 的横坐标为1,…………(3分) ∴B (1,-7a ),∴C (0,-8a ).………………………(4分) (2)∵△AOC 为直角三角形,∴只可能∠PBD =90°,且△AOC ∽△PBD .………(5分) 设对称轴与x 轴交于点H ,过点B 作BF ⊥PD 于点F ,易知,BF =3,AH =4,DH =-4a ,则FD =-3a ,∴PF =-9a , 由相似,可知:BF 2=DF ·PF ,∴9=-9a ·(-3a ),……(6分)∴a =33, a =-33(舍去).…………………(7分)∴y =-33x 2-833x .…………………(8分) 27.解:(1)由题意,得B (0,m ),A (2m ,0).……………………………(1分)如图,过点D 作x 轴的垂线,交x 轴于点E ,交直线A 1C 1于点F ,易知:DE =23m ,D (23m ,23m ) ,C 1(43m -n ,43m ).………………(3分)∴43m -n =0,∴n m =43;……………………………………………(4分) (2)由(1)得,当m >3时,点C 1在y 轴右侧;当2<m <3时,点C 1在y 轴左侧. ① 当m >3时,设A 1C 1与y 轴交于点P ,连接C 1B ,A B MN C由△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,∴S △BA 1P :S △BC 1P =3:1,∴A 1P :C 1P =3,∴23m =3(43m -4),∴m =185.……………………(6分)∴y =-12x +185.………………………………………………………(7分)② 当2<m <3时,同理可得:y =-12x +187.……(10分)(参照①给分)综上所述,y =-12x +187或y =-12x +185.28(x +y )2+(x -y )2=2AE 2+2x 2+2y 2 2+2BD 2.………………(3分)(2)①10;②4;………………(7分)(3)连接OA ,取OA 的中点E ,连接DE .………………(8分)由(2)的②可知:DE =152,………………(9分)在△ADE 中,AE =52, DE =152,∴AD 长的最大值为52+152=10.……(10分)注:只写答案,只给1分.。

苏州市梁丰2017-2018学年初二下数学阶段测试卷(2)有答案AKUMKH

 苏州市梁丰2017-2018学年初二下数学阶段测试卷(2)有答案AKUMKH

2017-2018初三数学第一次课堂练习一、选择题:本大题共有10小题,每小题3分,共30分. 1. 14-的相反数是 A. 14-B. 14C. 4-D. 4 2. 下列图形中,既是中心对称图形又是轴对称图形的是A B C D 3. 下列运算中,正确的是A. 23325a a a +=B. 44a a a ⋅=C. 632a a a ÷= D. 326(3)9x x -=4. 2016年1月份,我市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是5. 如图,直线//a b ,点C 在直线b 上,90DCB ∠=︒,若170∠=︒,则2∠的度数为 A. 20° B. 25° C. 30° D. 40°6. 菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(6,0),点A 的纵坐标是1,则点B 的坐标是 A. (3,1) B. (1,-3) C. (3,-1) D. (1,3)7. 若3a >,化简3a a --的结果为A. 3B.-3C. 23a -D. 23a +8. 已知一个圆锥的侧面积是l0πcm 2,它的侧面展开图圆心角为144°,则这个圆锥的底面半径为A.45cm B. C. 2 cm D. 9. 已知一次函数y kx b =+的图象如图所示,则关于x 的不等式(4)20k x b --≥的解集为 A. 2x ≥- B. 2x ≤- C. 3x ≤ D. 3x ≥10. 如图,ABC ∆中, AD BC ⊥,垂足为,3,2D AD BD CD ===,点P 从点B 出发沿线段BC 的方向移动到点C 停止,过点P 作PQ BC ⊥,交折线BA AC -于点Q ,连接DQ 、CQ ,若ADQ ∆与CDQ ∆的面积相等,则线段BP 的长度是A. 95或4B. 65或4C. 95或135D. 65或135二、填空题:本大题共8小题,每小题3分,共24分. 11. 因式分解:241x -= .12. 国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258000 m 2.那么,258000用科学计数法表示为 .13. 如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中时某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为 .14. 如图,A 、B 、C 、D 是⊙O 上的四点,D 是弧AB 的中点,CD 交OB 于点,E 100,55A O B C B O ∠=︒∠=︒,那么CEO ∠= °. 15. 在一次数学实验活动中,老师带领学生去测一条南北流向的河的宽度.如图,某同学在河东岸点A 处观测河对岸水边有点C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45°的方向上,则这条河的宽度 米. (参考数据:31tan 31,sin 3152︒=︒≈)16. 如图,将矩形ABCD 绕点A 旋转至矩形AB C D '''位置,此时AC 的中点恰好与D 点重合,AB '交CD于点E .若DE =1,则矩形ABCD 的面积为 .17. 如图,直线y x b =-+与双曲线1(0)y x x=>交于、A 、B 两点,与x 轴、y 轴分别交干E 、F 两点,AC x ⊥轴于点,C BD y ⊥轴于点D ,当b = 时,ACE ∆、BDF ∆与ABO ∆面积的和等于EFO ∆面积的34.18. 对于二次函数223(0)y x mx m =-+>,有下列说法:①如果m =2,则y 有最小值-1; ②如果当1x ≤时y 随x 的增大而减小,则m =1;③如果将它的图象向左平移3个单位后的函数的最小值是-9,则m = ④如果当x =1时的函数值与x =2015时的函数值相等,则当x =2016时的函数值为3.其中正确的说法是 .(把你认为正确的结论的序号都填上)三、解答题:本大题共11小题,共76分. 19. (本题满分5分)计算: 1013()(1)3π--+--+. 20. (本题满分5分)解不等式组: 13x +≥3(2)x x -<+4 .21. (本题满分6分)先化简,再求值: 2221(1)21x x x x x-⋅--+,其中x =22. (本题满分6分)已知,如图, ,12AC BD =∠=∠.(1)求证: ABC ∆≌BAD ∆;(2)若2325∠=∠=︒,则D ∠= °.23. (本题满分8分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A :实心球;B :立定跳远;C :跳绳;D :跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②所示的统计图.请结合图中的信息解答下列问题: (1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.24. (本题满分8分)如图1,线段AB =12厘米,动点P 从点A 出发向点B 运动,动点Q 从点B 出发向点A运动,两点同时出发,到达各自的终点后停止运动.已知动点Q 运动的速度是动点P 运动的速度的2倍.设两点之间的距离为s (厘米),动点P 的运动时间为t (秒),图2表示s 与t 之间的函数关系. (1)求动点P 、Q 运动的速度;(2)图2中,a = ,b = ,c = ;(3)当a t c ≤≤时,求s 与t 之间的函数关系式(即线段MN 对应的函数关系式).(本题满分8分)25. 如图,矩形OABC 的顶点A 、C 在x 、y 轴的正半轴上,点D 为BC 边分别点,A B B D=,反比例函数上的(0)ky k x=≠在第一象限内的图象经过点(,2)D m 和AB 边上的点2(,)3E n .(1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点,F G ,求线段FG 的长.26. (本题满分10分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OB ,垂足为M ,DE=4,连接AD ,过E 作AD 平行线交AB 延长线于点C .(1)求⊙O 的半径;(2)求证:CE 是⊙O 的切线;(3)若弦DF 与直径AB 交于点N ,当∠DNB=30°时,求图中阴影部分的面积.27. (本题满分10分) 如图,在矩形OABC 中,2OA OC ,顶点O 在坐标原点,顶点A 的坐标为(8,6).(1)顶点C 的坐标为( , ),顶点B 的坐标为( , );(2)现有动点P 、Q 分别从C 、A 同时出发,点P 沿线段CB 向终点B 运动,速度为每秒2个单位,点Q 沿折线A →O →C 向终点C 运动,速度为每秒k 个单位.当运动时间为2秒时,以点P 、Q 、C 顶点的三角形是等腰三角形,求k 的值.(3)若矩形OABC 以每秒53个单位的速度沿射线AO 下滑,直至顶点A 到达坐标原点时停止下滑.设矩形OABC 在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围.28. (本题满分10分)已知:如图一,抛物线2y ax bx c =++与x 轴正半轴交于A 、B 两点,与y 轴交于点C ,直线2y x =-经过A 、C 两点,且2AB =. (1)求抛物线的解析式;(2)若直线DE 平行于x 轴并从C 点开始以每秒1个单位的速度沿y 轴正方向平移,且分别交y 轴、线段BC 于点,E D ,同时动点P 从点B 出发,沿BO 方向以每秒2个单位速度运动,(如图2);当点P 运动到原点O 时,直线DE 与点P 都停止运动,连DP ,若点P 运动时间为t 秒;设ED OPs ED OP+=⋅,当t 为何值时,s 有最小值,并求出最小值.(3)在(2)的条件下,是否存在t 的值,使以P 、B 、D 为顶点的三角形与ABC ∆相似;若存在,求t 的值;若不存在,请说明理由.。

2017-2018学年江苏省苏州市八年级(下)期中数学试卷

2017-2018学年江苏省苏州市八年级(下)期中数学试卷

2017-2018学年江苏省苏州市八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在答题卡相应的位置上)1.(3分)下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.(3分)在代数式212x +、3xy π、3x y +、1a m +中,分式的个数有( )A .2个B .3个C .4个D .5个3.(3分)若将分式a bab+中的字母a ,b 的值分别扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的12 C .不变D .缩小为原来的144.(3有意义,则x 的取值范围是( ) A .3x <B .3x ≠C .3x …D .3x …5.(3a 的值是( ) A .2-B .1-C .1D .26.(3分)如果反比例函数ky x=的图象经过点(1,2)-,那么这个反比例函数的图象一定经过点( ) A .1(2,2)B .1(2-,2)C .(2,1)-D .(2,1)--7.(3分)若1(2M -,1)y 、1(4N -,2)y 、1(2P ,3)y 三点都在函数(0)ky k x =>的图象上,则1y 、2y 、3y 的大小关系是( ) A .231y y y >>B .213y y y >>C .312y y y >>D .321y y y >>8.(3分)矩形具有而菱形不具有的性质是( ) A .对角线互相平分 B .对角线互相垂直 C .对角线相等D .对角线平分一组对角9.(3分)如图,点D 、E 、F 分别是ABC ∆三边的中点,则下列判断错误的是( )A .四边形AEDF 一定是平行四边形B .若AD 平分A ∠,则四边形AEDF 是正方形C .若AD BC ⊥,则四边形AEDF 是菱形 D .若90A ∠=︒,则四边形AEDF 是矩形10.(3分)如图:等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x=上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线(0)ky k x=≠与ABC ∆有交点,则k 的取值范围是( )A .12k <<B .13k 剟C .14k 剟D .14k <…二、填空题(本大题共8题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.(3分)当x = 时,分式242x x --的值为0.12.(3分)若分式方程244x ax x =+--有增根,则a 的值为 . 13.(3分)已知22(1)ay a x -=-是反比例函数,则a = .14.(3分)函数5y x =+的图象与反比例函数2y x-=的图象的一个交点为(,)A a b ,则11a b-= . 15.(3分)如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若24AC BD cm +=,OAB ∆的周长是18cm ,则EF = cm .16.(3分)若分式方程1222x mx x +-=--的解为非负数,则a 的取值范围是 . 17.(3分)如图所示,正方形ABCD 的面积为12,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为 .18.(3分)两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x=的图象上,PC x ⊥轴于点C ,交1y x =的图象于点A ,PD y ⊥轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论: ①ODB ∆与OCA ∆的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,答案格式:“①②③④”).三、解答题:(共76分) 19.(16分)计算:①22|(-33()2a b -③211x x x -++ ④211(1)(1)11a a +÷+--.20.(8分)解方程:①31144x x x --=-- ②23193xx x +=--.21.(5分)先化简,再求值:22212(1)1x x x x x ++÷+--,其中x =22.(6分)如图,E ,F 是四边形ABCD 对角线AC 上的两点,//AD BC ,//DF BE ,AE CF =. 求证:(1)AFD CEB ∆≅∆; (2)四边形ABCD 是平行四边形.23.(6分)如图,在平面直角坐标系中,ABC ∆和△111A B C 关于点E 成中心对称. (1)画出对称中心E ,并写出点E 的坐标 ; (2)画出△111A B C 绕点O 逆时针旋转90︒后的△222A B C ; (3)画出与△111A B C 关于点O 成中心对称的△333A B C .24.(5分)甲、乙两人每小时共做35个零件,甲做160个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?25.(6分)如图,点O 是菱形ABCD 对角线的交点,//CE BD ,//EB AC ,连接OE . (1)求证:OE CB =;(2)如果:1:2OC OB =,CD ,求菱形的面积.。

苏科版2017-2018学年度第二学期期中测试卷八年级数学试卷

苏科版2017-2018学年度第二学期期中测试卷八年级数学试卷

2017-2018学年度第二学期期中测试卷八 年 级 数 学 2018年4月(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.对于反比例函数xy 2=,下列说法不正确的是 A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小3.为了解我市老年人的健康状况,下列抽样调查最合理的是A.在公园调查部分老年人的健康状况B.在医院调查部分老年人的健康状况C.利用户籍网调查部分老年人的健康状况D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等 5.在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。

若120x x <<,12y y >,则k 取值范围是A. k>0B.2k >C.k<0D.2k <6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B <<B .()()()P B P C P A << C .()()()P C P B P A <<D .()()()P B P A P C << 7.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是8.如图,在ABC ∆中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为A. 1B.2C.2.5D. 3 9.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为A.4B.D.10.如图,在平面直角坐标系中,点(1,4)P 、(,)Q m n 在函数的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 A.减小 B.增大 C.先减小后增大 D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数ky x=的图像经过点(1,6)和(,3)m -,则m =. 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240,则∠EDC= °.14.已知直线y =kx(k>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值为_______. 15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.17.如图,一次函数y kx b =+图象与反比例函数my x=的图象都经过点(2,6)A -和点(4,)B n .则不等式k y x=mkx b x+≤的解集为. 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有.(把你认为正确的结论的序号都填上) 三、解答题19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有_______人,并补全条形统计图;(2)在扇形统计图中___,___m n ==,表示区域C 的圆心角为____度;(3)全校学生中喜欢篮球的人数大约有多少?20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE∥AC,AE∥BD. (1)求证:四边形AODE 是矩形;(2)若AB=12,∠BCD=120°,求四边形AODE 的面积.21.(本题6分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y = (k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y (mg/L)与时间x (天)的变化规律如图所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y 与时间x 成反比例关系. (1)求整改过程中硫化物的浓度y 与时间x 的函数表达式; (2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1. 0 mg/L?为什么?23.(本题7分)如图,已知一次函数y kx b =+的图像与反比例函数my x=的图像交于点 (4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式.(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD ∆的面积.24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD=,//ABCD ,//CE DA ,//DF CB .(1)求证:四边形CDEF 是平行四边形; (2)填空:①当四边形ABCD 必须满足条件时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件时,四边形CDEF 是菱形.25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x=(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN . (1)当点M 是边BC 的中点时.①求反比例函数的表达式; ②求OMN ∆的面积;(2)在点M 的运动过程中,试证明:MBNB是一个定值.26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为5,求点D 的纵坐标;(2)如图2,当k =2时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A′B′C′D′有重叠部分时,求k 的取值范围.初二数学答案1-10. ACCBB CCBDB 11.-2 12.20 13.57 14.-6 1516.5317.-2≦x<0或x>4 18. ④ 19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)36321. (1)32 (2)320 22. (1)y=-2x+10 y=x12(2)能23. (1)y=x 4 y=-43x+4 (2) 62124. (1)略 (2) AD=BC AD ⊥BC 25. (1)y=x4 3 (2 ) 2 26. (1)5 (2) 621。

苏科版2017-2018学年八年级数学下学期期末调研测试模拟试题

苏科版2017-2018学年八年级数学下学期期末调研测试模拟试题

2017-2018学年八年级数学下学期期末调研测试模拟试题本试卷分卷Ⅰ(1至2页) 和卷Ⅱ(3至6页) 两部分 考试时间:100分钟,满分100分 卷Ⅰ一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项填写第3页相应答题栏内,在卷Ⅰ上答题无效)1. 靖江市今年约5000名初三学生参加数学中考,从中抽取300名考生的数学成绩进行分析,则在该调查中,样本指的是A .300B . 300名C . 5000名考生的数学成绩D . 300名考生的数学成绩2.下列图形中,既是轴对称图形又是中心对称图形的是3. 下列各式:()351,,,,2a b x y a b x y x a b n π--++--中,是分式的共有A . 1个B . 2个C . 3个D . 4个4.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为,那么袋中共有球( ▲ )个A .6个B .7个C .9个D .12个5. 已知点A (﹣2,y 1)、B (﹣1,y 2)、C (3,y 3)都在反比例函数()0ky k x =>的图象上,则A . y 1<y 2<y 3B .y 2<y 1<y 3C . y 3<y 1<y 2D .y 3<y 2<y 16. 如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论: ①△ABG ≌△AFG ; ②BG=GC ; ③AG ∥CF ; ④∠GAE=45°. 则正确结论的个数有31A. B. C. D.D.A .1B .2C . 3D .4二、填空题(本大题共10小题,每小题2分,共20分.请将答案填写第3页相应答题栏内,在卷Ⅰ上答题无效)7. 当x = ▲ 时,分式3x x -的值为零.8. 在比例尺为1:5 000 000的地图上,量得甲、乙两地的距离是15cm ,则两地的实际距离 ▲ km .9. 若方程255x m x x =--- 有增根,则m = ▲ .一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中 有白球2个,黄球1个,红球3个.若从中任意摸出一个球,这个球是白球的为 ▲ .11.已知y= 1x 与y=x ﹣5相交于点P (a ,b ),则11a b -的值为 ▲ .12. 化简:()b a b a ---1= ▲ .13. 计算:111113355720152017++++⨯⨯⨯⨯= ▲ .14.若方程x 2-2x -1=0 的两根分别为x 1,x 2,则x 1+x 2-x 1x 2 的值为 ▲ .15.如图,菱形ABCD 中,AB=4,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 ▲ .如图,已知双曲线ky x(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为6,则k = ▲ .八年级数学答题卷卷Ⅱ7.________;8.____________;9._____________10.______________;11._______________;12.__________;13.___________;14._____________;15.____________;16._____________.三、解答题(本大题共有9小题,共68分,解答时在试卷相应的位置上写出必要的文字说明、证明过程或演算步骤.)17. (每小4分, 共8分)计算:(1)1+;⑵22213691121x x xx x x x--+-÷--++;18. (每小4分, 共8分)解方程:(1) 3x 2+5x-2=0 ; (2)4-3222x x x x =+--19. (本小题满分6分)已知,如图△ABC ,请在网格纸中画. (1)下移5,左移1个单位;(2)△ABC 关于O 点成中心对称图形;(3)△ABC 以点O 为旋转中心,顺时针旋转90°.20. (本小题满分6分)某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题:⑴求户外活动时间为1.5小时的人数,并补全频数分布直方图(图1);⑵若该中学共有1000名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.21.(本小题满分6分)已知关于x的方程14)3(222=--+--kkxkx.⑴若这个方程有实数根,求k的取值范围;⑵若这个方程有一个根为1,求k的值.22. (本小题满分8分)如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.⑴求证:△AOE≌△COF;⑵当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.23.(本小题满分8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.24. (本小题满分8分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE 后,再把△ABC 沿射线平移至△FEG ,DF 、FG 相交于点H . ⑴判断线段DE 、FG 的位置关系,并说明理由; ⑵连结CG ,求证:四边形CBEG 是正方形.25.(本小题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数ky x(k >0,x >0)的图象上,点D 的坐标为(4,3). ⑴求k 的值;⑵若将菱形ABCD 沿x 轴正方向平移m 个单位,①当菱形的顶点B 落在反比例函数的图象上时,求m 的值;②在平移中,若反比例函数图象与菱形的边AD 始终有交点, 求m 的取值范围.八年级数学参考答案一、选择题DACCBD二、填空题7. 3 8. 750 9. -5 10.1311.﹣512.13.1008201714. 315.16. 4三、解答题17. (1)原式=1=1.………………4分(2)原式=()()()()221131113xxx x x x+--⋅--+-………………2分=()()11113xx x x+----=()()413x x---.………………4分18. (1)原方程可化为(3x-1)(x+2)=0………………2分∴原方程的解为:x1=13和x2=-2. ………………4分(2)解:方程两边同乘(x﹣2),整理得:x2-5x+6=0解得:x=2或x=3,………………3分经检验x=2是增根,∴原分式方程解为x=3.………………4分19. 解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所求;(3)如图,△A3BC3为所求.(每小题2分)20.解:(1)根据题意得:10÷20%=50(人),……2分1.5小时的人数是:50×24%=12(人),如图:.………………4分根据题意得:1000×=400(人),答:该校每天参加户外活动的时间为1小时的学生人数是400人.…………6分21.解: (1)由题意得△=()[]()1443222--⨯---k k k ≥0化简得-2k+10≥0,解得k ≤5.………………3分(2)将1代入方程,整理得2660k k -+=,解这个方程得13k =23k =分22. ⑴证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAO=∠FCO ,∵O 是OA 的中点,∴OA=OC ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA );………………4分⑵解:EF ⊥AC 时,四边形AFCE 是菱形;………………5分理由如下:∵△AOE ≌△COF ,∴AE=CF ,∵AE ∥CF ,∴四边形AFCE 是平行四边形,∵EF ⊥AC , ∴四边形AFCE 是菱形.………………8分23.解:⑴设甲队单独完成此项工程需x 天,则乙队单独完成此项工程需(x+5)天. 依题意,得:1144155x x x x -⎛⎫+⨯+= ⎪++⎝⎭………………2分解得:x=20.经检验:x=20是原分式方程的解.∴(x+5)=25.答:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天;…………4分(2)由(1)得到:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天.这三种施工方案需要的工程款及延期损失总款为:方案1:1.5×20=30(万元);方案2:1.1×(20+5)+0.3×5=29(万元);方案3:1.5×4+1.1×20=28(万元).………………6分∵30>29>28,∴选择第三种施工方案最划算.………………8分24.解:FG⊥ED.………………1分理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;………………4分⑵证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG+∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.………………8分25. 解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;………………4分(2)①将菱形ABCD沿x轴正方向平移m个单位, 则平移后B′坐标为(m,5),因B′落在函数(x>0)的图象上, 则325m.………………7分②将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,………8分∴FF′=﹣4=,……9分∴203m≤≤.………………10分。

江苏省苏州市张家港市梁丰初级中学2017_2018学年八年级数学下学期期中试题新人教版2018060

江苏省苏州市张家港市梁丰初级中学2017_2018学年八年级数学下学期期中试题新人教版2018060

江苏省苏州市张家港市梁丰初级中学2017-2018学年八年级数学下学期期中试题一、选择题:(本大题共有10小题,每小题3分,共30分。

)1.下列是中心对称图形的是()2.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系用图象表示大致为()3.不能判定四边形ABCD 是平行四边形的条件是( )A.AB=CD,AD=BC B.AB∥CD,∠B=∠DC.∠A=∠B,∠C=∠D D.AB=C D,∠BAC=∠ACD4.已知反比例函数ym 3的图象具有下列特征:在所在象限内,y的值随x值的增大而增大,x则m的取值范围是( )A.m= 一3 B.m>一3 C.m<一3 D.m>35.方程 2 x 3 x 1 1 的解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根6.如图,将矩形ABCD绕点A顺时针旋转到矩形AB'C'D'的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20° C.28°D.22°7.设x1,x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A.19 B.25 C.31 D.308.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A、6 B、2 3 C、2(1+ 3 )D、1+ 39. 如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点 C 在反比例函数 y=﹣k 2x 的图象上,若点 A 的坐标为 (﹣2,﹣2),则 k 的值为() A.4B.﹣4C.8D.﹣810.如图,在菱形 ABCD 中,AB=BD ,点 E 、F 分别在 BC 、CD 上,且 BE=CF ,连接 BF 、DE 交于点 M ,延长 ED 到 H 使 DH=BM ,连接 AM ,AH ,则以下四个结论: ①△BDF ≌△DCE ;②∠BMD=120°;③△AMH 是等边三角形;④S四 边形 ABCD= 34AM 2.其中正确结论的个数是( ) A .1B .2C .3D .4二 、 填 空 题 : (本 大 题 共 8小 题 , 每 小 题 3分 , 共 24分 , 11. x 的 一 元 二 次 方 程(n 1)x(n 2)x 3n0中,一次项系数是.n 112. 如图,平行四边形 ABCD 的对角线相交于点 O ,BC =7cm ,BD =10 c m ,AC =6cm ,则△AOD 的周长是cm .k 2113.点 A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y的图象上,xD若 x 1<x 2<0<x 3,则 y 1,y 2,y 3的大小关系是.(用“<”号连接)ADDAPOA CFBCBECEF第 12题图 第 15题图第 16题图B第 17 题图14.若一元二次方程 x 2ax b0配方后为 (x 4) 23,则 a,b.15.如图,在□ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为 E 、F ,AE=4, AF=5,□ABCD 的周长为 54, 则□ABCD 的面积为.16. 如图,在四边形 ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=11,点 P 从点 A 出发,以 3个单位/s17.如图,在菱形ABCD中,对角线AC=6,BD=8,点E是边AB上的动点、F分别BC的中点,点P 在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是.yB C2E F18.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x 轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数ky的图像上,正方形ADEF的面积为4,且BF 2AF,x则k值为__ __.三、解答题(本大题共有10题,共76分).19.(按要求解下列方程:每小题3分,共12分)(1)x2 6x16 (用配方法);(2)x2 3x10(用公式法);(3)(3y1)(y1) 4;(4)(2x3)2 2 3(2x3)20. (本题6分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标______21.(本题6分)当m为何值时,关于x的一元二次方程1x2 4x m0 有两个相等的实数根?此时这两个实数根是多少?222.(本题6分)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CF的长.23.(本题6分)如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF⊥GH?请证明你的结论.24.(本题8分)如图,一次函数y=kx+1(k≠0)与反比例函数y m(m≠0)的图象在第一象限有公共点A(1,2).直线l⊥y轴.x于点D(0,3),与反比例函数和一次函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?25.(本题6分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?26.(本题满分6分)如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.(1)求证:MD和NE互相平分;(2)若BD⊥AC,EM= 52,OD+CD=7,求△OCB的面积.27. (本题10分) 如图,在Rt ABC中,B90,AC60 cm,A60,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0 t5) .过点D作DF BC于点F,连接DE、EF.(1)DF,CF;(用含t的代数式表示)(2)若四边形AEFD为菱形,求t的值;(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.28. (本题10分)如图,直线1l: y x b分别与x轴、y轴交于A、B两点,与直线12l2 : y kx 6 交于点C(4, 2) .(1)点A坐标为( ,), B为( ,);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l于点F,设点E的横坐标为m,当2m为何值时,四边形OBEF是平行四边形;能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.在△AOE 和△COF 中,OAE OCFAO COAOE COF,∴△AOE ≌△COF(ASA); (2)∵∠BAD=60∘,AB=AD ∴△ABD 是等边三角形 ∴ADO60,BD=AD=2∴∠OED=90°在 Rt △ODE 中,1 1 ED OD2 2∴ 1 3AEAD ED 22 2∵△AOE ≌△COFCFAE∴3223.24. 解答:(1)∵点 A(1,2)在直线 y=kx+1上, ∴k+1=2,解得 k=1, ∴一次函数解析式为 y=x+1;∴m=1×2=2,8y 2 x∴反比例函数解析式为;(2)∵直线l⊥y轴于点D(0,3),∴B、C点的纵坐标都为3,把y=3代入y=x+1得x+1=3,解得x=2,则C点坐标为(2,3),把y=3代入y2x得x=23 ,则B点坐标为(23 ,3),2 2∴△ABC的面积=12×(3−2)×(2−3)=3 ;(3)∵方程组y x 12yx的解为x 1或y 2x2y 1∴一次函数与反比例函数的图象交点坐标为(1,2)、(−2,−1),∴当x<−2或0<x<1时,一次函数的值小于反比例函数的值。

2017-2018学年江苏省苏州市八年级(下)期中数学试卷(解析版)

2017-2018学年江苏省苏州市八年级(下)期中数学试卷(解析版)

2017-2018学年江苏省苏州市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.若二次根式有意义,则x的取值范围是()A. B. C. D.2.如果反比例函数的图象经过点(-1,2),那么这个反比例函数的图象一定经过点()A. B. C. D.3.矩形具有而菱形不具有的性质是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线平分一组对角4.如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A. 四边形AEDF一定是平行四边形B. 若AD平分,则四边形AEDF是正方形C. 若,则四边形AEDF是菱形D. 若,则四边形AEDF是矩形二、填空题(本大题共8小题,共24.0分)5.当x=______时,分式的值为0.6.若分式方程有增根,则a的值为______.7.已知y=(a-1)是反比例函数,则a=______.8.函数y=x+5的图象与反比例函数y=的图象的一个交点为A(a,b),则-=______.9.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=______cm.10.若分式方程-2=的解为非负数,则a的取值范围是______.11.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为______.12.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC x轴于点C,交的图象于点A,PD y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是______(把你认为正确结论的序号都填上,答案格式:“①②③④”).三、计算题(本大题共3小题,共29.0分)13.计算:①|-2|-(-)2-②•(-)÷③-x+1④(1+)÷(+1).14.解方程:①=1②=1.15.先化简,再求值:÷(1+),其中x=.四、解答题(本大题共7小题,共47.0分)16.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.17.如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E的坐标______;(2)画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)画出与△A1B1C1关于点O成中心对称的△A3B3C3.18.甲、乙两人每小时共做35个零件,甲做160个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?19.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE.(1)求证:OE=CB;(2)如果OC:OB=1:2,CD=,求菱形的面积.20.已知反比例函数y1=图象与一次函数y2=ax+b图象交于点A(1,4)和点B(m,-2).(1)求这两个函数的关系式;(2)观察图象,写出使得y1≥y2成立的自变量x的取值范围;(3)连结OA,OB,求△AOB的面积.21.如图,在平面直角坐标系中,点O为坐标原点,AB∥OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒l个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.(1)在t=3时,M点坐标______,N点坐标______;(2)当t为何值时,四边形OAMN是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.22.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0),B(0,1)、C(m,n).(1)求C点坐标.(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得P、G、M、C′四个点构成的四边形是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.答案和解析1.【答案】D【解析】【分析】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x-3≥0,∴x≥3.故选D.2.【答案】C【解析】解:k=-1×2=-2.A、×2=1,不符合题意;B、-×2=-1,不符合题意;C、2×(-1)=-2,符合题意;D、-2×(-1)=2,不符合题意.故选:C.找到与所给点的横纵坐标的积相等的点即可.考查反比例函数的图象上的点的坐标的特点;用到的知识点为:反比例函数图象上点的横纵坐标的积相等.3.【答案】C【解析】解:A、对角线互相平分是菱形矩形都具有的性质,故A选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D选项错误;故选:C.根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.4.【答案】B【解析】解:A、∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC得中位线,∴ED∥AC,且ED=AC=AF;同理DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,正确.B、若AD平分∠A,如图,延长AD到M,使DM=AD,连接CM,由于BD=CD,DM=AD,∠ADB=∠CDM,(SAS)∴△ABD≌△MCD∴CM=AB,又∵∠DAB=∠CAD,∠DAB=∠CMD,∴∠CMD=∠CAD,∴CA=CM=AB,因AD平分∠A∴AD BC,则△ABD≌△ACD;AB=AC,AE=AF,结合(1)四边形AEDF是菱形,因为∠A不一定是直角∴不能判定四边形AEDF是正方形;C、若AD BC,则△ABD≌△ACD;AB=AC,AE=AF,结合(1)四边形AEDF是菱形,正确;D、若∠A=90°,则四边形AEDF是矩形,正确.故选:B.一组对边平行且相等的四边形是平行四边形;有一个角是直角的平行四边形是矩形;对角线互相垂直的平行四边形是菱形.本题考查三角形中位线定理和平行四边形、矩形、正方形、菱形的判定定理,关键是根据平行四边形、矩形、正方形、菱形的判定定理解答.5.【答案】-2【解析】解:∵=0,∴x=-2.故答案为:-2.分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.此题考查的是对分式的值为0的条件,分子等于0,分母不能等于0,题目比较简单.6.【答案】4【解析】解:方程两边都乘(x-4),得x=2(x-4)+a∵原方程有增根,∴最简公分母x-4=0,解得x=4,当x=4时,a=4.故答案为4.增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x-4)=0,得到x=4,然后代入化为整式方程的方程算出a 的值.本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.【答案】-1【解析】解:根据题意,a2-2=-1,a=±1,又a≠1,所以a=-1.故答案为:-1.根据反比例函数的定义列出方程求解.本题考查了反比例函数的定义和解方程,涉及的知识面比较广.在反比例函数解析式的一般式(k≠0)中,特别注意不要忽略k≠0这个条件.8.【答案】-2.5【解析】解:∵A为两函数图象的交点,∴把A点坐标代入两函数解析式可得,∴ab=-2,b-a=5,∴-===-2.5,故答案为:-2.5.把A点坐标分别代入一次函数和反比例函数,可得到关于a、b的代数式,可求得ab和b-a的值,代入可求得答案.本题主要考查函数图象的交点,掌握两函数图象的交点坐标满足每一个函数解析式是解题的关键,注意整体思想的应用.9.【答案】3【解析】解:∵四边形ABCD是平行四边形,∴OA=AC,OB=BD,∵AC+BD=24cm,∴OA+OB=12cm,∵△OAB的周长是18cm,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF=AB=3cm.故答案为:3.首先由▱ABCD的对角线AC,BD相交于点O,求得OA=AB,OB=BD,又由AC+BD=24cm,可求得OA+OB的长,继而求得AB的长,然后由三角形中位线的性质,求得答案.此题考查了平行四边形的性质以及三角形中位线的性质.注意由平行四边形的性质求得AB的长是关键.10.【答案】m≤5且m≠3【解析】解:-2=,方程两边都乘以x-2得:x+1-2(x-2)=m,解得:x=5-m,∵分式方程-2=的解为非负数,∴5-m≥0且5-m≠2,解得:m≤5且m≠3,故答案为:m≤5且m≠3.先解分式方程,求出方程的解,根据题意得出不等式,求出不等式的解集即可.本题考查了解分式方程和解一元一次不等式,能根据题意求出关于m的不等式是解此题的关键.11.【答案】2【解析】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.12.【答案】①②④【解析】解:①△ODB与△OCA的面积相等都为;②四边形PAOB的面积不会发生变化为k-1;③不能确定PA与PB是否始终相等;④由于反比例函数是轴对称图形,当A为PC的中点时,B为PD的中点,故本选项正确.故其中一定正确的结论有①、②、④.故答案为:①、②、④.本题考查的是反比例函数中k的几何意义,无论如何变化,只要知道过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是个恒等值即易解题.本题主要考查反比例函数系数k的几何意义,反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.【答案】解:①原式=2--3-3=-1-4;②原式=•(-)•=-3a2b;③原式=-==;④原式=÷=•=.【解析】①利用绝对值的意义和二次根式的性质进行计算;②利用二次根式的乘除法则运算;③先通分,然后进行同分母的减法运算;④先把括号内通分,再把除法运算化为乘法运算,然后约分即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式的混合运算.14.【答案】解:①去分母得:3-x+1=x-4,解得:x=4,经检验x=4是增根,分式方程无解;②去分母得:3+x2+3x=x2-9,解得:x=-4,经检验x=-4是分式方程的解.【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.【答案】解:原式=÷=•=,当x=时,原式==.【解析】根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和法则.16.【答案】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.【解析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.本题考查了全等三角形的判定与性质,平行四边形的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.【答案】(-3,-1)【解析】解:(1)连接BB1、CC1,交于点E(-3,-1),故答案为:(-3,-1);(2)如图,△A2B2C2即为所求作三角形;(3)如图,△A3B3C3即为所求作三角形.(1)连接BB1、CC1,交点即为点E;(2)分别作出点A1、B1、C1绕点O逆时针旋转90°后的对应点,顺次连接即可得;(3)分别作出点A1、B1、C1关于点O成中心对称的对应点,顺次连接即可得.本题考查了中心对称、旋转作图,解答本题的关键是熟练中心对称的性质和旋转的性质.18.【答案】解:设甲每小时做x个零件,则乙每小时做(35-x)个零件,由题意得:=,解得:x=20,经检验:x=20是原分式方程的解,则35-20=15(个).答:甲每小时做20个零件,则乙每小时做15个零件.【解析】首先设甲每小时做x个零件,则乙每小时做(35-x)个零件,根据关键语句“甲做160个零件所用的时间与乙做120个零件所用的时间相同”列出方程,再求解即可.本题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系列出方程,注意分式方程不要忘记检验.19.【答案】(1)证明:∵四边形ABCD是菱形,∴AC BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)∵四边形ABCD是菱形,∴BC=CD=,由(1)知,AC BD,OC:OB=1:2,∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积=BD•AC=4;【解析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.20.【答案】解:(1)把A(1,4)代入y1=得到k=4,∴y1=,把B(m,-2)代入y1=,得到m=-2,∴B(-2,-2),把A、B的坐标代入y2=ax+b,则有,解得∴y2=2x+2.(2)观察图象可知,使得y1≥y2成立的自变量x的取值范围:x≤-2或0<x≤1.(3)连接OA、OB,设AB交y轴于C.则C(0,2),∴S△AOB=S△OCB+S△ACO=×2×2+×2×1=3.【解析】(1)利用待定系数法即可解决问题;(2)利用图象法,写出反比例函数图象在余弦函数图象上方的自变量的取值范围即可;(3)连接OA、OB,设AB交y轴于C.则C(0,2),根据S△AOB=S△OCB+S△ACO 计算即可;本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用图象法确定自变量的取值范围,属于中考常考题型.21.【答案】(3,8);(15,0)【解析】解:(1)∵B(15,8),C(21,0),∴AB=15,OA=8,OC=21,当t=3时,AM=1×3=3,CN=2×3=6,∴ON=OC-CN=21-6=15,∴点M(3,8),N(15,0);故答案为:(3,8);(15,0);(2)当四边形OAMN是矩形时,AM=ON,∴t=21-2t,解得t=7秒,故t=7秒时,四边形OAMN是矩形;(3)存在t=5秒时,四边形MNCB能否为菱形.理由如下:四边形MNCB是平行四边形时,BM=CN,∴15-t=2t,解得:t=5秒,此时CN=5×2=10,过点B作BD OC于D,则四边形OABD是矩形,∴OD=AB=15,BD=OA=8,CD=OC-OD=21-15=6,在Rt△BCD中,BC==10,∴BC=CN,∴平行四边形MNCB是菱形,故,存在t=5秒时,四边形MNCB能否为菱形.(1)根据点B、C的坐标求出AB、OA、OC,然后根据路程=速度×时间求出AM、CN,再求出ON,然后写出点M、N的坐标即可;(2)根据有一个角是直角的平行四边形是矩形,当AM=ON时,四边形OAMN 是矩形,然后列出方程求解即可;(3)先求出四边形MNCB是平行四边形的t值,并求出CN的长度,然后过点B作BC OC于D,得到四边形OABD是矩形,根据矩形的对边相等可得OD=AB,BD=OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键.22.【答案】解:(1)过点C作CD x轴于点D,如图1所示.∵∠BAC=90°,∠BAO+∠BAC+∠CAD=180°,∴∠BAO+∠CAD=90°.∵∠BAC+∠ABO=90°,∴∠CAD=∠BAO.在△CAD和△BAO中,,∴△CAD≌△BAO(AAS),∴AD=BO=1,CD=AO=2,∴点C的坐标为(-3,2).(2)设点B′的坐标为(t,1),则点C′的坐标为(t-3,2).∵点B′、C′正好落在反比例函数图象上,∴t=2t-6,解得:t=6,∴点B′(6,1),点C′(3,2),∴反比例函数的解析式为y=.设直线B′C′的解析式为y=kx+b,将B′(6,1)、C′(3,2)代入y=kx+b,得:,解得:,∴直线B′C′的解析式为y=-x+3.(3)当x=0时,y=-x+3=3,∴点G的坐标为(0,3).当GC′为边时,①∵四边形GC′MP为平行四边形,∴点P的坐标为(6,1),点M的坐标为(9,0),∵点M在直线B′C′上,∴舍去;②∵四边形GC′PM为平行四边形,∴点P的坐标为(-6,-1),点M的坐标为(-9,0);当GC′为对角线时,∵四边形GPC′M为平行四边形,∴点P的坐标为(,5),点M的坐标为(,0).综上所述:存在点M、点P使得P、G、M、C′四个点构成的四边形是平行四边形,点M的坐标为(-9,0)或(,0),点P的坐标为(-6,1)或(,5).【解析】(1)过点C作CD x轴于点D,易证△CAD≌△BAO,根据全等三角形的性质可得出AD=BO=1、CD=AO=2,进而即可得出点C的坐标;(2)设点B′的坐标为(t,1),则点C′的坐标为(t-3,2),根据反比例函数图象上点的坐标特征可得出关于t的一元一次方程,解之即可得出t值,进而可得出点B′、C′的坐标,再利用待定系数法即可求出反比例函数和直线B′C′的解析式;(3)利用一次函数图象上点的坐标特征可求出点G的坐标,分GC′为边及GC′为对角线两种情况考虑:当GC′为边时,根据平行四边形的性质可得出点P、M的坐标,验证(看是否在直线B′C′上)即可确定点P、M的坐标;当GC′为对角线时,由平行四边形的对角线互相平分结合点M在x轴上即可得出点P、M的坐标.综上即可得出结论.本题考查了全等三角形的判定与性质、待定系数法求一次函数解析式、一次(反比例)函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)通过证明△CAD≌△BAO找出点C的坐标;(2)利用反比例函数图象上点的坐标特征求出点B′、C′的坐标;(3)分GC′为边及GC′为对角线两种情况求点P、M的坐标.。

【精品】苏州市梁丰2017-2018学年初二下数学阶段测试卷(含答案)

【精品】苏州市梁丰2017-2018学年初二下数学阶段测试卷(含答案)

苏州市梁丰2017-2018学年初二下数学阶段测试卷(含答案)初二数学阶段练习试卷 姓名 学号一、选择题(每小题3分,共24分)1.在下列函数中表示y 关于x 的反比例函数的是 ( )A 、2xy = B 、12+=x y C 、x y 2= D 、22xy =2.矩形具有而菱形不具有的性质是 ( ). A. 两组对角分别相等 B. 对角线相等 C. 对角线互相平分 D. 对角线互相垂直3.在反比例函数1ky x-=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以是 ( ) A.-1 B.0 C.1 D.24.如图,将一个长为10 cm ,宽为8 cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开得到的菱形的面积为 ( ).A. 10 cm 2B. 20 cm 2C. 40 cm 2D. 80 cm 2第4题 第6题5.平行四边形的一个内角平分线把平行四边形一条边分成2 cm 和3 cm 两部分,则平行四边形的周长为 ( ).A. 10 cmB. 14 cmC. 16 cmD. 14 cm 和16 cm 6.如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数(0)ky x x=>的图象经过顶点B ,则k 的值为 ( ) A.12 B.20 C.24 D.327.已知点1(2,)A y -、2(1,)B y -、3(3,)C y 都在反比例函数4y x=的图象上,则1y 、2y 、3y 的大小关系是 ( ) A.123y y y << B.321y y y << C. 213y y y << D. 312y y y << 8.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( ) A .(3,1) B .(3,) C .(3,) D .(3,2) 二、填空题(每小题3分,共24分)9. 若反比例函数y=(2m-1)22mx - 的图象在第二、四象限,则m 的值为_______10. 在□ABCD 中,如果AC BD =时,那么这个□ABCD 是 形.11.如图,将Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB 'C ',点C '恰好落在斜边AB 上,连接BB ',则∠BB 'C '=_______.第11题 第13题12.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,E 为AD 的中点,若OE=3,则菱形ABCD 的周长为 .13.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE⊥BD,垂足为点E ,若∠EAC=2∠CAD,则∠BAE= 度. 14. 如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线//l y轴,且直线l 分别与反比例函数8(0)y x x =>和(0)ky x x=>的图像交于P 、Q 两点,若12POQ S ∆=,则k 的值为 。

江苏省苏州市20172018学年八年级数学下学期测试试题苏科版

江苏省苏州市20172018学年八年级数学下学期测试试题苏科版

江苏省苏州市2021-2021学年八年级数学放学期3月测试一试题一、选择题(本大题共 8小题,每题3分,共24分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的,把正确答案填在答题卡相应的地点上)1.以下汽车标记中,是中心对称图形的是〔〕A. B. C. D.2.下边检查中,合适采纳普查的是〔〕A.检查你所在的班级同学的身高状况B.检查全国中学生心理健康现状C.检查我市食品合格状况D.检查中央电视台?少儿节目?收视率3.假定代数式x 2在实数范围内存心义,那么x的取值范围是〔〕A. x 2B. x 2C. x 2D. x 24.菱形对角线不.拥有的性质是〔〕A.对角线相互垂直 B. 对角线所在直线是对称轴C.对角线相等 D. 对角线相互均分5.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH 是菱形,那么四边形ABCD只要要知足一个条件是〔〕A.四边形ABCD是梯形B.四边形ABCD是菱形C 对角线AC=BD D .AD=BC6.如图,E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为〔〕A.35°B.30°C.25°D.20°7.如图,在ABC中,BF均分ABC,AF BF于点F,D为AB的中点,连结DF延伸交AC于点E.假定AB10,BC16,那么线段EF的长为〔〕A.2B.3C.4D.58.如图,菱形ABCD中,AB4,A120,点P、Q、K分别为线段BC、CD、BD上1的随意一点,那么PK QK的最小值为〔〕A.4B.25C.43D.233〔第6题〕〔第7题〕〔第8题〕二、填空题(本大题共8小题,每题3分,共24分)9.a3,那么a2b的值是.b a b10.:四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,需增添一个条件是:〔只要填一个你以为正确的条件即可〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018初三数学第一次课堂练习
一、选择题:本大题共有10小题,每小题3分,共30分. 1. 1
4-
的相反数是 A. 14- B. 1
4
C. 4-
D. 4
2. 下列图形中,既是中心对称图形又是轴对称图形的是
A B C D 3. 下列运算中,正确的是
A. 23325a a a +=
B. 44a a a ⋅=
C. 632
a a a ÷= D. 32
6
(3)9x x -=
4. 2016年1月份,我市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是
日期 19 20 21 22 23 24 25 最低气温/℃
2
4
5
3
4
6
7
A. 4,4
B. 5,4
C. 4,3
D. 4,4. 5
5. 如图,直线//a b ,点C 在直线b 上,90DCB ∠=︒,若170∠=︒,则2∠的度数为 A. 20° B. 25° C. 30° D. 40°
6. 菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(6,0),点A 的纵坐标是1,则点B 的坐标是
A. (3,1)
B. (1,-3)
C. (3,-1)
D. (1,3) 7. 若3a >,化简3a a --的结果为
A. 3
B.-3
C. 23a -
D. 23a + 8. 已知一个圆锥的侧面积是l0πcm 2,它的侧面展开图圆心角为144°,则这个圆锥的底面半径为
A.
4
5
cm B. 5cm C. 2 cm D. 25cm
9. 已知一次函数y kx b =+的图象如图所示,则关于x 的不等式(4)20k x b --≥的解集为 A. 2x ≥- B. 2x ≤- C. 3x ≤ D. 3x ≥
10. 如图,ABC ∆中, AD BC ⊥,垂足为,3,2D AD BD CD ===,点P 从点B 出发沿线段BC 的方
CDQ ∆的面积相等,则线段BP 的长度是
A.
95或4 B. 65或4 C. 95或135 D. 65或135
二、填空题:本大题共8小题,每小题3分,共24分. 11. 因式分解:2
41x -= .
12. 国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258000 m 2.那么,258000用科学计数法表示为 .
13. 如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任
其自由停止,其中时某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为 .
14. 如图,A 、B 、C 、D 是⊙O 上的四点,D 是弧AB 的中点,CD 交OB 于点
,E 100,55AOB CBO ∠=︒∠=︒,那么CEO ∠= °
. 15. 在一次数学实验活动中,老师带领学生去测一条南北流向的河的宽度.如图,某同学在河东岸点A 处观
测河对岸水边有点C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行20米到达B 处,测得C 在B
北偏西45°的方向上,则这条河的宽度 米. (参考数据:31
tan 31,sin 3152
︒=
︒≈) 16. 如图,将矩形ABCD 绕点A 旋转至矩形AB C D '''位置,此时AC 的中点恰好与D 点重合,AB '交CD
于点E .若DE =1,则矩形ABCD 的面积为 .
17. 如图,直线y x b =-+与双曲线1
(0)y x x
=>交于、A 、B 两点,与x 轴、y 轴分别交干E 、F 两
点,AC x ⊥轴于点,C BD y ⊥轴于点D ,当b = 时,ACE ∆、BDF ∆与ABO ∆面积的和等于EFO ∆面积的
3
4
. 18. 对于二次函数2
23(0)y x mx m =-+>,有下列说法:
①如果m =2,则y 有最小值-1; ②如果当1x ≤时y 随x 的增大而减小,则m =1; ③如果将它的图象向左平移3个单位后的函数的最小值是-9,则23m =;
④如果当x =1时的函数值与x =2015时的函数值相等,则当x =2016时的函数值为3.其中正确的说法
是 .(把你认为正确的结论的序号都填上)
三、解答题:本大题共11小题,共76分. 19. (本题满分5分)
计算: 10
13()(1)3
π--+--+.
20. (本题满分5分)
解不等式组: 13x +≥
3(2)x x -<+4 .
21. (本题满分6分)
先化简,再求值: 22
21
(1)21x x x x x
-⋅--+,其中x =
22. (本题满分6分)
已知,如图, ,12AC BD =∠=∠. (1)求证: ABC ∆≌BAD ∆;
(2)若2325∠=∠=︒,则D ∠=
°.
23. (本题满分8分)
为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A :实心球;B :立定跳远;C :跳绳;D :跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②所示的统计图.请结合图中的信息解答下列问题: (1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整; (3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
如图1,线段AB =12厘米,动点P 从点A 出发向点B 运动,动点Q 从点B 出发向点A
运动,两点同时出发,到达各自的终点后停止运动.已知动点Q 运动的速度是动点P 运动的速度的2倍.设两点之间的距离为s (厘米),动点P 的运动时间为t (秒),图2表示s 与t 之间的函数关系. (1)求动点P 、Q 运动的速度;
(2)图2中,a = ,b = ,c = ;
(3)当a t c ≤≤时,求s 与t 之间的函数关系式(即线段MN 对应的函数关系式).
25. (本题满分8分)
如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB BD =,
反比例函数(0)k y k x =
≠在第一象限内的图象经过点(,2)D m 和AB 边上的点2(,)3
E n . (1)求m 、n 的值和反比例函数的表达式.
(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点,F G ,求线段FG 的长.
如图,AB是⊙O的直径,弦DE垂直平分半径OB,垂足为M,DE=4,连接AD,过E作AD平行线交AB延长线于点C.
(1)求⊙O的半径;
(2)求证:CE是⊙O的切线;
(3)若弦DF与直径AB交于点N,当∠DNB=30°时,求图中阴影部分的面积.
如图,在矩形OABC 中,2OA OC ,顶点O 在坐标原点,顶点A 的坐标为(8,6). (1)顶点C 的坐标为( , ),顶点B 的坐标为( , );
(2)现有动点P 、Q 分别从C 、A 同时出发,点P 沿线段CB 向终点B 运动,速度为每秒2个单位,点Q 沿折线A →O →C 向终点C 运动,速度为每秒k 个单位.当运动时间为2秒时,以点P 、Q 、C 顶点的三角形是等腰三角形,求k 的值.
(3)若矩形OABC 以每秒5
3
个单位的速度沿射线AO 下滑,直至顶点A 到达坐标原点时停止下滑.设矩形OABC 在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范
围.
已知:如图一,抛物线2
y ax bx c =++与x 轴正半轴交于A 、B 两点,与y 轴交于点C ,直线2y x =-经过A 、C 两点,且2AB =. (1)求抛物线的解析式;
(2)若直线DE 平行于x 轴并从C 点开始以每秒1个单位的速度沿y 轴正方向平移,且分别交y 轴、线
段BC 于点,E D ,同时动点P 从点B 出发,沿BO 方向以每秒2个单位速度运动,(如图2);当点P 运动到原点O 时,直线DE 与点P 都停止运动,连DP ,若点P 运动时间为t 秒;设ED OP
s ED OP
+=
⋅,
当t 为何值时,s 有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t 的值,使以P 、B 、D 为顶点的三角形与ABC ∆相似;若存在,求t 的值;
若不存在,请说明理由.。

相关文档
最新文档