第十一章《三角形》检测题0104420
第十一章《三角形》检测题含答案解析
∴∠EOD=180°-45°=135°,故选C.
11.140 解析:根据三角形内角和定理得∠C=40°,则∠C的外角为 .
12.270 解析:如图,根据题意可知∠5=90°,
∴∠3+∠4=90°,
∵∠1=∠2(已知),
∴∠1=∠ACD(等量代换),
∴EF∥CD(同位角相等,两直线平行).
∴∠AEF=∠ADC(两直线平行,同位角相等).
∵EF⊥AB(已知),∴∠AEF=90°(垂直定义),
∴∠ADC=90°(等量代换).
∴CD⊥AB(垂直定义).
25.分析:(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;
解:根据三角形的三边关系,得
<<,
0<<6-,0<<.
因为2,3-x均为正整数,所以=1.
所以三角形的三边长分别是2,2,2.
因此,该三角形是等边三角形.
23.分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;
(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;
14.(·呼和浩特中考)等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为___.
15.设为△ABC的三边长,则.
16.如图所示,AB=29,BC=19,AD=20,CD=16,若AC=,则的取值范围为.
17.如图所示,AD是正五边形ABCDE的一条对角线,则∠BAD=_______°.
6.C 解析:多边形的内角和公式是 ,当 时, .
7.C 解析:因为三角形的中线、角平分线都在三角形的内部,而钝角三角形的高有的在三角形的外部,所以答案选C.
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
八年级数学上册第十一章《三角形》单元测试题附答案
八年级数学上册第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.下列说法正确的是()A.三角形分为等边三角形和三边不相等的三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形,直角三角形,钝角三角形2.如图,△ABC中,△ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若△A=24°,则△BDC等于()A. 42°B. 66°C. 69°D. 77°3.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A. 7B. 8C. 9D. 104.如图,在△BDF和△ABC中,它们相同的角是()A. △AB. △CC. △ABCD. △ACB5.如图,AB△CD,AD与BC相交于点O,已知角α、β,则用角α、β表示△AOC,则△AOC=()A.α+βB. 180°-α+βC. 2α-βD. 180°+α-β6.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 107.如图所示的图形中,属于多边形的有()个.A. 3个B. 4个C. 5个D. 6个8.如图,△ABC中,△1=△2,△3=△4,若△D=25°,则△A=()A. 25°B. 65°C. 50°D. 75°9.适合条件△A=△B=△C的三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形10.八边形的内角和是()A. 1440°B. 1080°C. 900°D. 720°11.如图,点D在BC的延长线上,连接AD,则△EAD是()的外角.A. △ABCB.△ACDC. △ABDD.以上都不对12.如图,在△ABC中,EF△AC,BD△AC,BD交EF于G,则下面说法中错误的是()A.BD是△BDC的高B.CD是△BCD的高C.EG是△BEF的高D.BE是△BEF的高二、填空题13.一副三角板,如图所示叠放在一起,则图中△α的度数是.14.如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若△C=30°,则△AEC′=.15.如图,写出△ADE的外角.16.在图中过点P任意画一条直线,最多可以得到____________个三角形.17.如图,已知△A=30°,△B=40°,△C=50°,那么△AOB=度.三、解答题18.如图,点D是△ABC的边BC上的一点,△B=△BAD=△C,△ADC=72°.试求△DAC的度数.19.如图,已知AB△CD,EF与AB、CD分别相交于点E、F,△BEF与△EFD的平分线相交于点P,求证:△EPF为直角三角形.20.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)•180°.例如:如图四边形ABCD的内角和:N=△A+△B+△C+△D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.21.已知:在△ABC中,△BAC=90°,AD△BC于点D,△ABC的平分线BE交AD于F,试说明△AEF=△AFE.22.已知凸四边形ABCD中,△A=△C=90°.(1)如图1,若DE平分△ADC,BF平分△ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分△ABC、△ADC的邻补角,判断DE与BF位置关系并证明.答案解析1.【答案】D【解析】A.三角形分为等腰三角形和三边不相等的三角形,故本选项错误,B.等边三角形是等腰三角形,故本选项错误,C.等腰三角形不一定是等边三角形,故本选项错误,D.三角形分为锐角三角形,直角三角形,钝角三角形,故本选项正确,故选D.2.【答案】C【解析】在△ABC中,△ACB=90°,△A=24°,△△B=90°-△A=66°.由折叠的性质可得:△BCD=△ACB=45°,△△BDC=180°-△BC D-△B=69°.故选C.3.【答案】A【解析】设这个多边形的边数为n,根据题意得,(n-2)•180°=360°×2+180°,解得n=7.故选A.4.【答案】C【解析】△BDF的角有△D,△DBF,△DFB;△ABC的角有△A,△ACB,△ABC;它们相同的角是△ABC.5.【答案】A【解析】△AB△CD,△△ABO=β.在△AOB中,利用三角形的外角性质得到△AOC=△A+△ABO=α+β.故选A.6.【答案】B【解析】△4﹣3=1,4+3=7,△1<x<7,△x的值可能是6.故选B.7.【答案】A【解析】根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫多边形.显然只有第一个、第二个、第五个.故选A8.【答案】C【解析】△BD是△ABC的平分线,△△DBC=△ABC,△CD是△ABC的外角平分线,△△ACD=(△A+△ABC),△△D+△DBC+△ACB+△ACD=180°,即△ABC+△ACB+(△A+△ABC)=155°△,△A+△ABC+△ACB=180°△,△△ABC+△ACB=130°,△△A=50°.故选C.9.【答案】B【解析】设△A=x°,则△B=x°,△C=3x°.根据三角形的内角和定理,得x+x+3x=180,x=36.则△C=108°.则该三角形是钝角三角形.故选B.10.【答案】B【解析】由题意得:180°(8-2)=1080°,故选B.11.【答案】C【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中△EAD是△ABD的外角,所以正确的选项是C.12.【答案】D【解析】A.BD△AC,则BD是△BDC的高,故命题正确;B.CD△BD,则CD是△BCD的高,故命题正确;C.EG△BG,则EG是△BEF的高,故命题正确;D.错误;13.【答案】75°【解析】如图,△1=45°-30°=15°, △α=90°-△1=90°-15°=75°.故答案为:75°14.【答案】60°【解析】根据折叠可得:EC=EC′, △△EC′D=△C,△△C=30°, △△EC′D=30°,△△AEC′=30°+30°=60°,故答案为:60°.15.【答案】△BDF、△DEC和△AEF【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中符合条件的角是△BDF、△DEC和△AEF.16.【答案】6【解析】如图1,有2个三角形;如图2,有4个三角形;如图3,有4个三角形;如图4,有5个三角形;如图5,有6个三角形.综上所述,最多有6个三角形.17.【答案】120【解析】延长BO交AC于D, △△B=40°,△C=50°,△△ADO=40°+50°=90°,△△A=30°, △△AOB=30°+90°=120°,故答案为:120.18.【答案】解:△△ADC是△ABD的外角,△ADC=72°,△△ADC=△B+△BAD.又△△B=△BAD,△△B=△BAD=36°.△△B=△BAD=△C,△△C=36°.在△ADC中,△△DAC+△ADC+△C=180°△△DAC=180°-△ADC-△C=180°-72°-36°=72°.【解析】先根据三角形外角的性质得出△ADC=△B+△BAD,再由△B=△BAD可知△B=△BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.19.【答案】证明:△AB△CD, △△BEF+△EFD=180°,又EP、FP分别是△BEF、△EFD的平分线,△△PEF=△BEF,△EFP=△EFD,△△PEF+△EFP=(△BEF+△EFD)=90°,△△P=180°-(△PEF+△EFP)=180°-90°=90°,△△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证△PEF+△EFP=90°,由角平分线的性质和平行线的性质可知,△PEF+△EFP=(△BEF+△EFD)=90°.20.【答案】解:(1)N=(5-2)×180°=540°(2)根据题意得:(n-2)×180°=720°解得n=6.【解析】(1)将n=5代入公式,依据公式计算即可;(2)将N=720°代入公式,得到关于n的方程,然后求解即可.21.【答案】证明:△BE平分△ABC,△△CBE=△ABE,△△BAC=90°,△△ABE+△AEF=90°,△DA△BC,△△CBE+△BFD=90°,△△AEF=△BFD,△△BFD=△AFE(对顶角相等),△△AEF=△AFE【解析】根据角平分线的定义求出△ABE=△EBC,再利用△BAC=90°,AD△BC于点D推出△AEF=△AFE.22.【答案】解:(1)DE△BF,延长DE交BF于点G△△A+△ABC+△C+△ADC=360°又△△A=△C=90°,△△ABC+△ADC=180°△△ABC+△MBC=180°△△ADC=△MBC,△DE、BF分别平分△ADC、△MBC△△EDC=△ADC,△EBG=△MBC,△△EDC=△EBG,△△EDC+△DEC+△C=180°△EBG+△BEG+△EGB=180°又△△DEC=△BEG△△EGB=△C=90△DE△BF;(2)DE△BF,连接BD,△DE、BF分别平分△NDC、△MBC△△EDC=△NDC,△FBC=△MBC,△△ADC+△NDC=180°又△△ADC=△MBC△△MBC+△NDC=180°△△EDC+△FBC=90°,△△C=90°△△CDB+△CBD=90°△△EDC+△CDB+△FBC+△CBD=180°即△EDB+△FBD=180°,△DE△BF.【解析】(1)DE△BF,延长DE交BF于G.易证△ADC=△CBM.可得△CDE=△EBF.即可得△EGB=△C=90゜,则可证得DE△BF;(2)DE△BF,连接BD,易证△NDC+△MBC=180゜,则可得△EDC+△CBF=90゜,继而可证得△EDC+△CDB+△CBD+△FBC=180゜,则可得DE△BF.。
(完整版)第十一章《三角形》单元测试题及答案
精品word完整版-行业资料分享2017—2018学年度上学期八年级数学学科试卷(检测内容:第十一章三角形)一、选择题(每小题3分,共30分)1.如图,图中三角形的个数为( )A.3个 B.4个 C.5个 D.6个第1题图) ,第5题图) ,第10题图)2.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形3.一个多边形的内角和是720°,则这个多边形的边数是( )A.4条 B.5条 C.6条 D.7条4.已知三角形的三边长分别为4,5,x,则x不可能是( )A.3 B.5 C.7 D.95.如图,在△ABC中,下列有关说法错误的是( )A.∠ADB=∠1+∠2+∠3 B.∠ADE>∠BC.∠AED=∠1+∠2 D.∠AEC<∠B6.下列长方形中,能使图形不易变形的是( )7.不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A.45° B.135° C.45°或67.5° D.45°或135°9.一个六边形共有n条对角线,则n的值为( )A.7 B.8 C.9 D.1010.如图,在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以点A,B,C为顶点的三角形面积为1,则点C的个数有( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共24分)11.等腰三角形的边长分别为6和8,则周长为___________________.12.已知在四边形ABCD中,∠A+∠C=180°,∠B∶∠C∶∠D=1∶2∶3,则∠C=__________________.13.如图,∠1+∠2+∠3+∠4=________________.14.一个三角形的两边长为8和10,则它的最短边a的取值范围是________,它的最长边b 的取值范围是________.15.下列命题:①顺次连接四条线段所得的图形叫做四边形;②三角形的三个内角可以都是锐角;③四边形的四个内角可以都是锐角;④三角形的角平分线都是射线;⑤四边形中有一组对角是直角,则另一组对角必互补,其中正确的有________.(填序号)16.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为__________________.第13题图第16题图第17题图第18题图17.如图,小亮从A点出发前进10 m,向右转15°,再前进10 m,又右转15°……这样一直走下去,他第一次回到出发点A时,一共走了________________m.18.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,与BD 交于点D,若∠D=∠α,试用∠α表示∠A,∠A=________________.三、解答题(共66分)19.(8分)如图,一个宽度相等的纸条,如图折叠,则∠1的度数是多少?20.(8分)一块三角形的实验田,平均分成四份,由甲、乙、丙、丁四人种植,你有几种方法?(至少要用三种方法)21.(8分)如图,五个半径为2的圆,圆心分别是点A,B,C,D,E,则图中阴影部分的面积和是多少?(S扇形=nπR2 360°)22.(8分)如图,在六边形ABCDEF中,AF∥CD,AB∥DE,BC∥EF,且∠A=120°,∠B=80°,求∠C及∠D的度数.精品word完整版-行业资料分享23.(8分)如图,已知△ABC中,∠B>∠C,AD为∠BAC的平分线,AE⊥BC,垂足为E,试说明∠DAE=12(∠B-∠C).24.(8分)有两个各内角相等的多边形,它们的边数之比为1∶2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.25.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.26.(10分)(1)如图①,△ABC是锐角三角形,高BD,CE相交于点H.找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD,CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?参考答案1.C ;2.B ;3.C ;4.D ;5.D ;6.B ;7.C ;8.D ;9.C ;10.D ;11.20或22;12.60;13.360;14.1810,82 b a ≤≤;15.②⑤;16.70;17.240;18.α2; 19.40; 20.21.π6; 22. 分析:连接AC ,根据平行线的性质以及三角形的内角和定理,可以求得∠BCD 的度数;连接BD ,根据平行线的性质和三角形的内角和定理可以求得∠CDE 的度数.解答:解:连接AC .∵AF ∥CD ,∴∠ACD=180°-∠CAF ,又∠ACB=180°-∠B-∠BAC ,∴∠BCD=∠ACD+∠ACB=180°-∠CAF+180°-∠B-∠BAC=360°-120°-80°=160°. 连接BD .∵AB ∥DE ,∴∠BDE=180°-∠ABD .又∵∠BDC=180°-∠BCD-∠CBD ,∴∠CDE=∠BDC+∠BDE=180°-∠ABD+180°-∠BCD-∠CBD=360°-80°-160°=120°. 23解:∵AD 为∠BAC 的平分线∴∠DAC=21∠BAC又∵∠BAC=180°-(∠B+∠C )∴∠DAC=90°-21(∠B+∠C )又∵AE ⊥BC∴∠DAE+∠ADE=90°精品word 完整版-行业资料分享又∵∠ADE=∠DAC+∠C24. 设一个多边形的边数是n ,则另一个多边形的边数是2n ,因而这两个多边形的外角是n360和n 2360 , 第二个多边形的内角比第一个多边形的内角大15°,即是第一个多边形的外角比第二个多边形的外角大15°,就得到方程:n 360-n2360=15°, 解得n=12, 故这两个多边形的边数分别为12,24. 25. 能判断BE ∥DF因为BE ,DF 平分∠ABC 和∠ADC ,又因为∠A=∠C=90°,所以∠ABC+∠ADC=180°所以∠ABE+∠AEB=90°所以∠AEB=∠ADF 所以BE//DF 。
人教版八年级数学上册《第11章三角形》单元测试题含答案
第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。
部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十一章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为( C )A.3 B.4 C.5 D.6 ,第3题图) ,第6题图) 2.(2015·泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.(2015·广元)一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( A )A.16 B.14 C.12 D.10,第7题图) ,第9题图) ,第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△F MN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.(2015·南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图) ,第13题图) ,第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.(2015·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°_ _.16.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C 点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B ,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠A CD=2x°=36°20.(8分)如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.解:∵∠BAD=90°-∠B=20°,∴∠BAE=∠BAD+∠DAE=38°.∵AE是角平分线,∴∠CAE=∠BAE=38°,∴∠DAC=∠DAE+∠CAE=56°,∴∠C=90°-∠DA C=34°21.(9分)已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.解:设腰长为x cm,底边长为y cm,则{2x+y=18,x-y=3,或{2x+y=18,y-x=3,解得{x=7,y=4,或{x=5,y=8,经检验均能构成三角形,即三角形的三边长是7 cm,7 cm,4 cm或5 cm,5 cm,8 cm22.(9分)如图,小明从点O出发,前进5 m后向右转15°,再前进5 m后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10 cm,BC=8 cm,AC=6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC=12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°。
人教版八年级数学上册《第十一章三角形形》章节检测卷-带答案
人教版八年级数学上册《第十一章三角形形》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(满分32分)1.三角形结构在生产实践中有着广泛的应用,如图所示的斜拉索桥结构稳固,其蕴含的数学道理是()A.两点之间,线段最短B.三角形的稳定性C.三角形的任意两边之和大于第三边D.三角形的内角和等于180°2.下列三条线段中,能够首尾相接构成一个三角形的是()A.1cm,2cm,3cm B.2cm,2cm,4cmC.2cm,4cm,5cm D.2cm,3cm,5cm3.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3∠CC.∠A−∠B=90°D.∠A=∠B=124.某人到瓷砖商店购买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正方形C.正五边形D.正六边形5.正六边形的外角和为()A.60°B.180°C.360°D.720°6.如图,在△ABC中AB=17,AC=12,AD为中线,则△ABD与△ACD的周长之差为()A.5B.3C.4D.27.两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠DEF=45°,∠C=30°若AB∥EF,则∠DEB的度数为()A.82.5°B.75°C.67.5°D.60°8.如图,△ABC的两条中线AM,BN相交于点O,已知△ABO的面积为8,△BOM的面积为4,则四边形MCNO的面积为()A.7B.7.5C.8D.8.5二、填空题(满分32分)9.一个n边形的内角和是720°,则n=.10.如图,在△ABC中,点D在BC边上,且∠DAC=2∠BAD,则∠1、∠2\∠3的数量关系为.11.如果三角形的两边长分别是2cm和6cm,第三边长是偶数,那么这个三角形的第三边长为cm.12.如图,△ABC中∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE,则∠CDF=.13.直接写出图中∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数为.14.如图,D、E分别是△ABC边AB,BC上的点AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=36,则S1−S2的值为.15.在Rt△ACD,Rt△ECB中∠ACD=∠ECB=90°,∠A=50°,∠E=45°现将直角顶点C按照如图方式叠放,点E在直线AC上方,且0°<∠ACE<180°能使△ADC有一条边与EB平行的所有∠ACE的度数为.16.如图,E为BC延长线上一点,点D是线段AC上一点.连接DE,∠ABC的平分线与∠ADE的平分线相交于点P.若∠A=46°,∠E=32°则∠P的度数为.三、解答题(满分56分)17.已知一个多边形的内角和比外角和的3倍少180°.(1)求这个多边形的边数.(2)若截去该多边形的一个角,求截完后所形成的新多边形的内角和.18.已知a,b,c是△ABC的三边长,且a,b,c都是整数.(1)若a,b,c满足|a−b|+|b−c|=0,试判断△ABC的形状;(2)若a=2,b=5且c是奇数,试判断△ABC的形状;(3)化简:|a−b−c|+|b−c−a|+|c−a−b|.19.画图并填空:如图,每个小正方形的边长为1个单位长度.(1)将△ABC向左平移8个单位长度,请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线AD和高线AE;(3)△A′B′C′的面积为______.20.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD交BC于G,EG平分∠BEH,EH⊥BE交BC于H.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=47°,求∠BAC的度数.21.如图所示,已知AD,AE分别是△ABC的高和中线AB=6cm,AC=8cm,BC=10cm,∠BAC=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.22.我们知道,三角形的一个外角等于与它不相邻的两个内角和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?(1)如图1,∠1和∠2分别是△ABC的两个外角,请说明∠A与∠1+∠2之间的数量关系.(2)如图2,在△ABC中裁去△AMN得到四边形MBCN,若∠3=100°,则利用(1)的结论可得∠4−∠A=_____°.(3)如图3,△ABC两个外角平分线相交于点P,直接利用(1)的结论说明∠P和∠A的数量关系.(4)如图4,在四边形MBCN中,BP\CP分别平分外角∠DBC和∠ECB,利用(1)(3)得到的结论,直接写出∠P 与∠M\∠N之间的数量关系:____________________.参考答案1.解:如图所示的斜拉索桥结构稳固,其蕴含的数学道理是三角形的稳定性故选:B.2.解:A、∵1+2=3∴长为1cm,2cm,3cm的三条线段不能组成三角形,本选项不符合题意;B、∵2+2=4∴长为2cm,2cm,4cm的三条线段不能组成三角形,本选项不符合题意;C、∵2+4>5∴长为2cm,4cm,5cm的三条线段能组成三角形,本选项符合题意;D、∵3+5<9∴长为3cm,5cm,9cm的三条线段不能组成三角形,本选项不符合题意;故选:C.3.解:A:∠A+∠B=∠C代入∠A+∠B+∠C=180°得:2∠C=180°∴∠C=90°故此选项不符合题意;B:∠A:∠B:∠C=1:2:3根据∠A+∠B+∠C=180°得:∠C=180°×31+2+3=90°∴∠C=90°故此选项不符合题意;C:∠A−∠B=90°∴∠A=90°+∠B>90°∴△ABC为钝角三角形,故此选项符合题意;D:∠A=∠B=12∠C代入∠A+∠B+∠C=180°得:12∠C+12∠C+∠C=180°∴∠C=90°,故此选项不符合题意;故选:C.4.解:A.正三角形的每一个内角度数为60°,360°÷60°=6故可铺设无缝地板,不符合题意;B.正方形的每一个内角度数为90°,360°÷90°=4故可铺设无缝地板,不符合题意;C.正五边形的每一个内角度数为(5−2)×180°5=108°,360°÷108°=3...36°故不可铺设无缝地板,符合题意;D.正六边形的每一个内角度数为(6−2)×180°6=120°,360°÷120°=3故可铺设无缝地板,不符合题意;故选:C5.解:∴任意一个多边形的外角和都是360°∴正六边形的外角和为360°.故选:C.6.解:∴AD为中线∴BD=CD∴△ABD的周长=AB+AD+BD,△ACD的周长=AC+AD+CD∴△ABD与△ACD的周长之差为AB+AD+BD−AC−AD−CD=AB−AC=5故选:A.7.解:∵∠BAC=90°,∠C=30°∴∠B=60°∵AB∥EF∴∠B+∠FEB=180°∴∠FEB=180°−∠B=120°∴∠DEB=∠FEB−∠DEF=120°−45°=75°.故选:B.8.解:∵△ABC的两条中线AM,BN相交于点O∴ON=12OB,OM=12AO∴S△AON=12S△AOB,S BOM=12SΔAOB∴S△AON=S△BOM∵AM是△ABC的中线∴MB=CM∴△ABM的面积=△ACM的面积∴四边形MCNO的面积=△AOB的面积=8.故选:C9.解:依题意有:(n−2)⋅180°=720°解得n=6.故答案为:6.10.解:∴∠2=∠1+∠BAD,∠3=∠2+∠DAC∴∠BAD=∠2−∠1,∠DAC=∠3−∠2∴∠DAC=2∠BAD∴∠3−∠2=2(∠2−∠1)=2∠2−2∠1,∴∠3=3∠2−2∠1故答案为:∠3=3∠2−2∠111.解:根据三角形的三边关系,得:第三边的取值范围是大于4而小于8又∴第三边又是偶数,则第三边是6.∴它的第三边是6.故答案为6.12.解:∵∠A=40°,∠B=72°∴∠ACB=180°−∠A−∠B=68°∵CE平分∠ACB∴∠BCE=12∠ACB=34°∵CD⊥AB∴∠CDB=90°∴∠BCD=90°−∠B=18°∴∠DCF=∠BCE−∠BCD=16°∵DF⊥CE∴∠CFD=90°∴∠CDF=90°−∠DCF=74°故答案为:74°13.解:如图,连接BE则∠CBE+∠DEB=∠D+∠C∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F+∠G=∠A+∠ABE+∠BEF+∠F+∠G=(5−2)×180°=540°故答案为:540°14.解:∵BE=CE∴BE=12 BC∵S△ABC=36∴S△ABE=12S△ABC=18∵AD=2BD,S△ABC=36∴S△BCD=13S△ABC=12∴S△ABE−S△BCD=(S1+S四边形BEFD )−(S2+S四边形BEFD)=S1−S2=18−12=6故答案为:6.15.解:当AC∥BE时∠ACE=∠E=45°当BE∥CD时,如图∴∠DCE=∠E=45°∴∠ECB=90°,∠E=45°∴∠ACD=90°∴∠ACE=∠ACD+∠DCE=135°;当BE∥AD时,延长AC交BE于点F∴∠CFB=∠A=50°∴∠ECF=∠CFB−∠E=5°∴∠ACE=180°−∠ECF=175°;综上所述,能使△ADC有一条边与EB平行的所有∠ACE的度数为45°或135°或175°.故答案为:45°或135°或175°16.解:如图,BP交AC于点K设∠ABK=x,∠AKB=y,∠ADP=z则∠ABC=2∠ABK=2x,∠ADE=2∠ADP=2z∴∠DCE=∠A+∠ABC=∠A+2x,∠CDE=180°−∠ADE=180°−2z∴∠E=180°−∠DCE−∠CDE=180°−(∠A+2x)−(180°−2z)=−2x+2z−∠A ∵∠AKP是△PKD和△ABK的外角∴∠P=∠AKP−∠ADP,∠AKP=∠A+∠ABK∴∠P=∠A+∠ABK−∠ADP=180°−∠AKB−∠ADP=180°−y−z∴在△ABK中∠A=180°−∠ABK−∠AKB∴∠A=180°−x−y∴∠E=−2x+2z−(180°−x−y)=2z−x+y−180°∴∠A−∠E=(180°−x−y)−(2z−x+y−180°)=2(180°−y−z)=2∠P∴∠P=12(∠A−∠E)=12×(46°−32°)=7°故答案为:7°.17.解:(1)设这个多边形的边数为n则内角和为(n−2)⋅180°,外角和为360°由题意,得(n−2)⋅180°=3×360°−180°解得n=7.∴这个多边形的边数为7.(2)∵剪掉一个角以后,多边形的边数可能减少了1,也可能不变,或者增加了1.∴截完后所形成的新多边形的边数可能是6或7或8.①当多边形为六边形时.其内角和为(6−2)×180°=720°;②当多边形为七边形时,其内角和为(7−2)×180°=900°;③当多边形为八边形时,其内角和为(8−2)×180°=1080°.综上所述,截完后所形成的新多边形的内角和为720°或900°或1080°.18.(1)解:∴|b−c|≥0,|a−b|≥0,|a−b|+|b−c|=0∴a−b=0,b−c=0解得:a=b=c∴△ABC是等边三角形;(2)解:∴a=2,b=5∴5−2<c<5+2即3<c<7∴c是奇数∴c=5∴△ABC是等腰三角形;(3)解:由三边关系得a−b<c,b−c<a,c−a<b∴原式=−a+b+c+(−b)+c+a+(−c)+a+b=a+b+c.19.(1)解:由平移的性质作图,如图1,△A′B′C′即为所作;(2)解:由中线、高线的定义作图,如图1,中线AD和高线AE即为所作;×4×4=8(3)解:由题意知S△A′B′C′=12故答案为:8.20.(1)解:∵EH⊥BE∴∠BEH=90°∵EG平分∠BEH∴∠BEG=∠HEG=12∠BEH=45°又∵EG∥AD∴∠BFD=∠BEG=45°;(2)解:∵∠BFD=∠BAD+∠ABE,∠BAD=∠EBC∴∠BFD=∠EBC+∠ABE=∠ABC=45°∵∠C=47°∴∠BAC=180°−∠ABC−∠C=180°−45°−47°=88°.21.(1)解:∵∠BAC=90°,AD是边BC上的高∴12AB⋅AC=12BC⋅AD∴AD=AB⋅ACBC=6×810=4.8(cm)即AD的长度为4.8cm;(2)解:如图,∵△ABC是直角三角形BAC=90°,AB=6cm,AC=8cm∴S△ABC=12AB⋅AC=12×6×8=24(cm2).又∵AE是边BC的中线∴S△ABE=12S△ABC=12(cm2).∴△ABE的面积是12cm2.(3)解:∵AE为BC边上的中线∴BE=CE∴△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE)=AC−AB=8−6=2(cm)即△ACE和△ABE的周长的差是2cm.22.(1)解:∵∠1=∠A+∠ACB,∠2=∠A+∠ABC∴∠1+∠2=∠A+∠A+∠ABC+∠ACB又∵∠A+∠ABC+∠ACB=180°∴∠1+∠2=∠A+180°;(2)解:利用(1)的结论可得∠3+∠4=∠A+180°∴∠4−∠A=180°−∠3=180°−100°=80°故答案为:80;(3)解:利用(1)的结论可得∠DBC+∠ECB=∠A+180°∵PB是∠DBC的角平分线,PC是∠ECB的角平分线∴∠PBC=12∠DBC,∠PCB=12∠ECB∴∠PBC+∠PCB=12(∠DBC+∠ECB)=12(∠A+180°)又∵∠P+∠PBC+∠PCB=180°∴∠P+12(∠A+180°)=180°∴∠A+2∠P=180°;(4)解:利用(1)的结论可得∠M+∠N=∠A+180°利用(3)的结论可得∠A+2∠P=180°,即∠A=180°−2∠P∴∠M+∠N=∠A+180°=(180°−2∠P)+180°=360°−2∠P∴∠M+∠N+2∠P=360°故答案为:∠M+∠N+2∠P=360°.。
八年级上册数学第11章《三角形》测试题
数学第11章《三角形》测试题一. 选择题(每题3分,共36分)1、下列长度的三条线段中,能组成三角形的是 ( )A 、3cm ,5cm ,8cmB 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm2、 在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( ) A. 150° B. 135° C. 120° D. 100°3、 若一个三角形的三边长是三个连续的自然数,其周长m 满足2210<<m ,则这样的三角形有( )A. 2个B. 3个C. 4个 4、 一个多边形的内角和比它的外角和的3倍少0180,这个多边形边数是( ) A. 5条 B. 6条 C. 7条D. 8条5、已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=( ) A 、 55° B 、 70° C 、 40° D 、 110°6、如图所示,已知△ABC 为直角三角形,∠B=90°,若沿图中虚线剪去∠B ,则∠1+∠2 等于( )A 、90°B 、135°C 、270°D 、315°7、 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P ,若∠A=500 ,则 ∠BPC 等于( )第5题图DC BA第7题图第6题图A 、90°B 、130°C 、270°D 、315° 8、 如图,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定 9、 如图4,△ABC 中,AD 为△ABC 的角平分线,BE 为 △ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( ) A. 59° B. 60° C. 56° D. 22° 10、下列说法错误的是( )A.锐角三角形的三条高线、三条角平分线分别交于一点 B. 钝角三角形有两条高线在三角形的内部C. 直角三角形只有一条高线D. 任意三角形都有三条高线、中线、角平分线11、下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( ) A.1个 B.2个 C.3个 D.4个12、一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形的边数是( )A.14边B.13边或15边C.13边或14边D.13边或14边或15边 二、选择题(每小题3分,共24分)13、已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b-c|=_____________。
第十一章-三角形》单元测试卷含答案(共5套)
第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2.3.6.B。
2.4.6C。
2.2.4.D。
6、6、62.如图, 图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。
7.B。
8.C。
9.D。
104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。
10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。
若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。
11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。
若△DEF的面积是1cm², 则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。
八年级数学上册第十一章《三角形》测试题-人教版(含答案)
八年级数学上册第十一章《三角形》测试题-人教版(含答案)一、选择题(30分)1.下列说法错误的是()A.三角形的角平分线把三角形分成面积相等的两部分B.三角形的三条中线相交于一点C.直角三角形的三条高交于三角形的直角顶点处D.钝角三角形的三条高所在直线的交点在三角形的外部2.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④3.如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°5.如图,△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE,∠F, ②2∠BEF,∠BAF,∠C,③∠F,∠BAC,∠C,④∠BGH,∠ABE,∠C,其中正确个数是()A.4个B.3个C.2个D.1个6.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.147.如图,直线AB,CD被BC所截,若AB,CD,,1,45°,,2,35°,则∠3,( )A.80°B.70°C.60°D.90°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定9.若a,b,c是△ABC的三边的长,则化简|a,b,c|,|b,c,a|,|a,b,c|的结果是()A.a,b,c B.,a,3b,c C.a,b,c D.2b,2c10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6B.7C.8D.9二、填空题(15分)11.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.12.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x,150°时,对应的和谐数对有一个,它为(10,20);当x,66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________,13.根据如图所示的已知角的度数,求出其中∠α的度数为______.14.在图中过点P任意画一条直线,最多可以得到____________个三角形.15.如图,点O是△ABC的两条角平分线的交点,若△BOC=118°,则△A的大小是。
人教版八年级数学上册《第十一章三角形》章节检测卷-带有答案
人教版八年级数学上册《第十一章三角形》章节检测卷-带有答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的三条线段能组成三角形的是()A.1,2,2 B.2,2,4 C.3,2,1 D.3,4,82.一个凸多边形的内角和比它的外角和的 3 倍还多 180°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形3.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=70°,则∠F=()A.125°B.130°C.135°D.140°4.如图,∠A=40°,∠BCD=65°,CB是∠DCE的角平分线,则∠B度数为()A.15°B.25°C.30°D.35°5.如图,在△ABC中∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△BDE的高6.如图,AD是△ABC的边BC上的中线,BE是△ABD的边AD上的中线,若△ABC的面积是16,则△ABE的面积是()A.16 B.8 C.4 D.27.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是()A.50°B.40°C.130°D.120°8.在物理实验中,一位同学研究一个小木块在斜坡上滑下时的运动状态.如图,在Rt△ABC中,∠C=90°,∠B=15°,小木块△DEF(斜坡AB上,且DE//BC,EF//AC,则∠DFE的度数是()A.15°B.65°C.75°D.85°二、填空题9.师傅在做完门框后,为防止门框变形,常常需钉两根斜拉的木条,这样做的数学原理是.10.如图,∠1是五边形的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D的度数为.11.如图,在△ABC中DE∥BC,∠A=50°,∠C=70°则∠ADE的度数是.12.如图,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A=.13.如图,把△ABC纸片沿DE折叠,使点A落在图中的A′处,若∠A=29°,∠BDA′=90°,则∠A′EC 的大小为.三、解答题14.如图,在△ABC中,∠B=40°,∠C=60°,AD是△ABC的角平分线,求∠ADB的度数.15.如图,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于点E,CD平分∠ACB且分别与AB、AE交于点D、F,求∠AFC的度数.16.如图,△ABC中,∠A=60°,∠B=40°DE∥BC.(1)求∠AED的度数;(2)点F在直线AB上,连接EF,若△AEF为直角三角形,则∠DEF的度数为度.17.如图,在△ABC中,点D是边BC上的一点,连接AD.(1)若∠ADC=60°,∠B=2∠BAD求∠BAD的度数;(2)若AD平分∠BAC,∠B=40°,∠ADC=65°试说明:AC⊥BC.18.如图,已知AE⊥BC,FG⊥BC,∠1=∠2.(1)求证:AB//CD.(2)若∠3=40°,∠D−∠CBD=40°直接写出∠D的度数.参考答案1.A2.A3.A4.B5.C6.C7.D8.C9.三角形具有稳定性10.430°11.60°12.30°13.32°14.解:在△ABC中∵∠B=40°,∠C=60°∴∠BAC=180°-40°-60°=80°∵AD是△ABC的角平分线∴∠CAD=1∠BAC=40°2∴∠ADB=∠CAD+∠C=40°+60°=100°.15.解:∵AE⊥BC,∴∠AEB=90°.∵∠B=60°∴∠BAE=90°﹣60°=30°.∴∠CAE=50°﹣30°=20°∵∠BAC+∠B+∠ACB=180°∴∠ACB=180°﹣∠BAC﹣∠B=70°.又∵CD平分∠ACB∠ACB=35°.∴∠ACD=12∴∠AFC=180°﹣35°﹣20°=125°.16.(1)80°(2)10°或50°17.(1)解:∵∠ADC=60°∠B=2∠BAD又∵∠B+∠BAD=∠ADC=60°∴2∠BAD+∠BAD=60°∴∠BAD=20°∴∠BAD的度数为20°;(2)证明:∵∠B=40°∠ADC=65°∴∠BAD=∠ADC−∠B=65°−40°=25°∵AD平分∠BAC∴∠DAC=∠BAD=25°∴∠ADC+∠DAC=65°+25°=90°∴∠C=180°−(∠ADC+∠DAC)=180°−90°=90°∴AC⊥BC.18.(1)证明:∵AE⊥BC,FG⊥BC∴AE//FG ∴∠2=∠A.∵∠1=∠2 ∴∠1=∠A,∴AB//CD,(2)∵AB//CD ∴∠C=∠3=40°.∵∠D−∠CBD=40°∴∠CBD=∠D−40°.∵∠C+∠CBD+∠D=180°∴40°+(∠D−40°)+∠D=180°解得∠D=90°。
人教版初中数学八年级上册第十一章《三角形》单元测试题(含答案)
第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 102.三角形按边可分为()A.等腰三角形,直角三角形,锐角三角形B.直角三角形,不等边三角形C.等腰三角形,不等边三角形D.等腰三角形,等边三角形3.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACD的度数是()A. 80°B. 85°C. 100°D. 110°4.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上的点,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A. 110°B. 140°C. 220°D. 70°5.如图,在△ABC中,∠A=60度,点D,E分别在AB,AC上,则∠1+∠2的大小为()度.A. 140B. 190C. 320D. 2406.如图,以点E为顶点的三角形的个数为()A. 3个B. 4个C. 5个D. 6个7.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A. 140°B. 160°C. 170°D. 150°8.如图,在△ABC中,EF∥AC,BD⊥AC,BD交EF于G,则下面说法中错误的是()A.BD是△BDC的高B.CD是△BCD的高C.EG是△BEF的高D.BE是△BEF的高9.已知a,b,c是三角形的三条边,则|a+b﹣c|﹣|c﹣a﹣b|的化简结果为()A. 0B. 2a+2bC. 2cD. 2a+2b﹣2c10.如图,∠A=60°,∠B=80°,则∠1+∠2=()A. 100°B. 120°C. 140°D. 150°二、填空题11.图中∠AED分别为△,△中,边所对的角,在△AFD中,∠AFD是边,组成的角.12.△ABC中,D为BC边上任意一点,DE、DF分别是△ADB和△ADC的角平分线,连接EF,则△DEF的形状为.13.锐角三角形的三条高的交点位于它的,钝角三角形的三条高的交点位于它的,直角三角形的三条高的交点位于它的.14.若一个六边形的各条边都相等,当边长为3cm时,它的周长为cm.15.如图,胶州湾大桥是一座斜拉式大桥,斜拉式大桥多采用三角形结构,使其不易变形,这种做法的依据是.三、解答题16.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和∠α+∠β的度数.17.如图,在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点O,∠A=60°,∠ABE=15°,∠ACD=25°,求∠COE的度数.18.如图,在△AB C中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?19.已知凸四边形ABCD中,∠A=∠C=90°.(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.答案解析1.【答案】B【解析】∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选B.2.【答案】C【解析】按边分为:不等边三角形和等腰三角形;按角分为:锐角三角形、直角三角形、钝角三角形.三角形按边分类分为不等边三角形和等腰三角形.故选C.3.【答案】C【解析】∵∠B=30°,∠DAE=55°,∴∠D=∠DAE-∠B=55°-30°=25°,∴∠ACD=180°-∠D-∠CAD=180°-25°-55°=100°.故选C.4.【答案】B【解析】∵∠A=70°,∴∠ADE+∠AED=180°-70°=110°,∵△ABC沿着DE折叠压平,A与A′重合,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠1+∠2=180°-(∠A′ED+∠AED)+180°-(∠A′DE+∠ADE)=360°-2×110°=140°.故选B.5.【答案】D【解析】∵∠A+∠ADE=∠1,∠A+∠AED=∠2,∴∠A+(∠A+∠ADE+∠AED)=∠1+∠2,∵∠A+∠ADE+∠AED=180°,∠A=60°,∴∠1+∠2=60°+180°=240°.故选D.6.【答案】A【解析】以点E为顶点的三角形有△ABE,△CDE,△BCE.7.【答案】B【解析】∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°-20°=70°,∴∠BOC=90°+70°=160°.故选B.8.【答案】D【解析】A.BD⊥AC,则BD是△BDC的高,故命题正确;B.CD⊥BD,则CD是△BCD的高,故命题正确;C.EG⊥BG,则EG是△BEF的高,故命题正确;D.错误;9.【答案】A【解析】∵a、b、c是三角形的三边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+c﹣a﹣b=0,故选A.10.【答案】C【解析】设AD与BC的延长线交于点E在△ABE和△DCE中∠A+∠B=∠1+∠2∵∠A=60°,∠B=80°,∴∠1+∠2=360°-220°=140°.故选C.11.【答案】ADE;ABE;AD;AB;AF;ED.【解析】∠AED分别为△ADE,△ABE中AD、AB边所对的角,在△AFD中,∠AFD是边AF,ED组成的角,12.【答案】直角三角形【解析】∵DE、DF分别是△ADB和△A DC的角平分线,∴∠ADE=∠ADB,∠ADF=∠ADC,∴∠EDF=∠ADE+∠ADF=∠ADB+∠ADC=90°,∴△DEF是直角三角形.故答案为:直角三角形.13.【答案】内部;外部;直角顶点处【解析】锐角三角形的三条高的交点位于它的内部,钝角三角形的三条高的交点位于它的外部,直角三角形的三条高的交点位于它的直角顶点处.14.【答案】18【解析】一个多边形的周长是它所有边长之和,因为题中六边形的各边相等,且每边长为3cm,所以它的周长是18cm.15.【答案】三角形的稳定性【解析】胶州湾大桥是一座斜拉式大桥,斜拉式大桥多采用三角形结构,使其不易变形,这种做法的依据是:三角形的稳定性.16.【答案】解:∵AB⊥AF,BC⊥DC,∴∠A+∠C=180°,∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°,∴∠α+∠β=360°-(∠EDC+∠ABC)=80°.故两外角和∠α+∠β的度数为80°.【解析】先根据垂直的定义和多边形内角和定理得到∠EDC+∠ABC的度数,再根据多边形内角与外角的关系即可求解.17.【答案】解:在△ABE中,∵∠A=60°,∠ABE=15°,∴∠CEO=∠ABE+∠A=15°+60°=75°,在△COE中,∠COE=180°-∠CEO-∠ACD=180°-75°-25°=80°.【解析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠CEO=∠ABE+∠A,再利用三角形的内角和定理列式计算即可得解.18.【答案】解:(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠FAE=∠GAD,∴∠FAE=∠BAD,∵∠EFD=∠AEB-∠FAE,∠ADC=∠ABC-∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.【解析】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠FAE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB-∠FAE,∠ADC=∠ABC-∠BAD,进而得∠EFD=∠ADC.19.【答案】解:(1)DE⊥BF,延长DE交BF于点G∵∠A+∠ABC+∠C+∠ADC=360°又∵∠A=∠C=90°,∴∠ABC+∠ADC=180°∵∠ABC+∠MBC=180°∴∠ADC=∠MBC,∵DE、BF分别平分∠ADC、∠MBC∴∠EDC=∠ADC,∠EBG=∠MBC,∴∠EDC=∠EBG,∵∠EDC+∠DEC+∠C=180°∠EBG+∠BEG+∠EGB=180°又∵∠DEC=∠BEG∴∠EGB=∠C=90∴DE⊥BF;(2)DE∥BF,连接BD,∵DE、BF分别平分∠NDC、∠MBC∴∠EDC=∠NDC,∠FBC=∠MBC,∵∠ADC+∠NDC=180°又∵∠ADC=∠MBC∴∠MBC+∠NDC=180°∴∠EDC+∠FBC=90°,∵∠C=90°∴∠CDB+∠CBD=90°∴∠EDC+∠CDB+∠FBC+∠CBD=180°即∠EDB+∠FBD=180°,∴DE∥BF.【解析】(1)DE⊥BF,延长DE交BF于G.易证∠ADC=∠CBM.可得∠CDE=∠EBF.即可得∠EGB=∠C=90゜,则可证得DE⊥BF;(2)DE∥BF,连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF.。
人教版数学八年级上册第11章《三角形》单元检测题含答案解析
八年级数学第11章《三角形》单元检测题分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.已知三条线段的长度比如下:,其中能构成三角形的有A. 1个B. 2个C. 3个D. 4个2.如图,在中,点D在CB的延长线上,,,则等于A. B. C. D.(第2题图)(第3题图)3.如图,在中,,,AE是BC边上的高,AD是的平分线,则的度数为A. B. C. D.4.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为A. 7B. 8C. 9D. 105.如图所示,CD、CE、CF分别是的高、角平分线、中线,则下列各式中错误的是A. B.C. D.6.一个多边形的内角和是外角和的2倍,则它是A. 四边形B. 五边形C. 六边形D. 八边形7.如图,在中,D,E,F分别是BC,AD,CE的中点,,则等于A. B. C. D.(第7题图)(第8题图)8.如下图,在中,BE是的平分线,CE是的外角的平分线,BE与CE相交于点E,若,则A. B. C. D.9.一个多边形除一个内角外,其余各内角之和是,则这个内角的度数为.A. B. C. D.10.锐角三角形ABC中,,且最大内角比最小内角大,则的取值范围是A. AB. AC. AD. A11.如图,AD是的角平分钱,,垂足为若,,则的度数为A. B. C. D.12.如图,,BD、CD分别平分的内角、外角,BE平分外角交DC的延长线于点以下结论:其中正确的结论有A. 1个B. 2个C. 3个D. 4个(第11题图)(第12题图)二、填空题(本大题共6小题,共18分)13.为使一个四边形木架不变形我们会从中钉一根木条,这是利用了三角形的______.14.若a,b,c分别为的三边,化简:______.15.如图,小林从P点向西直走8米后,向左转,转动的角度为,再走8米,如此重复,小林共走了72米回到点P,则为______.(第15题图)(第16题图)16.如图所示,在中,BP,CP分别平分和,且,则________.17.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为的新多边形,则原多边形的边数为_________.18.如图,AD、BE是的两条中线,的面积是2,则的面积是______ .(第17题图)(第18题图)三、解答题(本大题共7小题,共66分)19.已知,如图,在中,AD,AE分别是的高和角平分线,若,求的度数;写出与的数量关系______,并证明你的结论.20.一个多边形切去一个角后,形成的另一个多边形的内角和为,求原多边形的边数.21.如图,AF,AD分别是的高和角平分线,且,,求的度数.22.如图,在中,点P是,的平分线的交点.若,求的度数.有一名同学在解答后得出的规律,你认为正确吗请给出理由.23.已知a、b、c为的三边长,且b、c满足,a为方程的解,求的周长,并判断的形状.24.小明准备用长20cm,90cm,100cm的三根木条钉成一个三角形架,由于不小心,将长100cm的一根折去了一部分,怎么也钉不成三角形架.小明把长100cm的木条至少折去了多长如果把长100cm的木条折去了40cm,你能通过截木条的办法,帮助小明钉成一个三角形架吗25.阅读并填空:如图,BD、CD分别是的内角、的平分线试说明的理由.解:因为BD平分已知,所以 ______ 角平分线定义.同理: ______ .因为,,______ ,所以 ______ 等式性质.即:.探究,请直接写出结果,并任选一种情况说明理由:如图,BD、CD分别是的两个外角、的平分线试探究与之间的等量关系.答:与之间的等量关系是______ .如图,BD、CD分别是的一个内角和一个外角的平分线试探究与之间的等量关系.答:与之间的等量关系是______ .参考答案一、选择题(本大题共12道小题,共36分)1-5 CBACC 6-10 CBBCD 11-12 BD二、填空题(本大题共6小题,共18分)13、稳定性14、15、16、17、1418、4三、解答题(本大题共7小题,共66分)19、解:,,,.是的角平分线,.为的外角,.是的高,..由知,又.,.20、解:设新多边形的边数为n,则,解得,原多边形的边数为7时:原多边形的边数为8时:原多边形的边数为9时:所以多边形的边数可以为7,8或9.21、解:,,,是角平分线,,是高,,,,.22、解:,CP分别为,的平分线,..正确理由如下:,CP分别为,的平分线,A.A.23、解:,解得为方程的解,或1,当,,时,三边长分别为1,5,7,,不能组成三角形,故不符合题意当,,时,三边长分别为5,5,7,,能组成三角形,故符合题意,的周长.,是等腰三角形.24、解:设把长100cm的木条折去xcm,可以钉成三角形架,则,解得,则,所以把长100cm的木条至少折去30cm时,钉不成三角形架.即小明把长100cm的木条至少折去了30cm.设将长90cm的木条截去ycm可以钉成三角形架,则,解得,因此,将长90cm的木条截去一段,使其截去长度在∽之间不包括10cm和,就能钉成三角形架.25、三角形的内角和等于解:解:因为BD平分已知,所以角平分线定义.同理:.因为,,三角形的内角和等于,所以等式性质.即:.故答案为:,,三角形的内角和等于,.解:与之间的等量关系是:.理由:、CD分别是的两个外角、的平分线,,,,,而,,,,,,,故答案为:;与之间的等量关系是:.理由:、CD分别是的一个内角和一个外角的平分线,,即:.故答案为:.。
八年级数学上册《第十一章 三角形》单元检测卷及答案-人教版
八年级数学上册《第十一章 三角形》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.若一个多边形的内角和等于720°,则这个多边形的边数是( )A .5B .6C .7D .82.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,称为平面图形的镶嵌.在镶嵌图案里若基本图形只有一种,则称为单元镶嵌.下面基本图形不能进行单元镶嵌的是( )A .等边三角形B .正方形C .正五边形D .正六边形3.如图,已知l 1l 2,∠A =45°,∠2=100°,则∠1的度数为( )A .50°B .55°C .45°D .60°4.如图,在△ABC 中,∠C =70º,沿图中虚线截去∠C ,则∠1+∠2=( )A .360ºB .250ºC .180ºD .140º5.如图,在△ABC 中,AD 、AE 分别是边BC 上的中线与高,AE=4,△ABC 的面积为12,则CD 的长为( )A .2B .3C .4D .56.如图,在 ABC 中80BAC ∠=︒ , 60ABC ∠=︒ 若 BF 是 ABC 的高,与角平分线 AE 相交于点 O ,则 EOF ∠ 的度数为( )A.130°B.70°C.110°D.100°7.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.58.如图,在△ABC中,∠B=46°,∠ADE=40°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠C的大小是()A.46°B.66°C.54°D.80°二、填空题:(本题共5小题,每小题3分,共15分.)9.△ABC的两条边的长度分别为3和5,若第三条边为偶数,则△ABC的周长为. 10.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠C= .11.如图,已知AD是 ABC的中线,AB=13cm,AC=5cm, ABD与 ACD的周长的差是.12.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=36,则S1-S2= .13.如图,△ABC中,AC=BC,CE为△ABC的中线,BD为AC边上的高,BF平分∠CBD交CE于点G,连接AG交BD于点M,若∠AFG=53°,则∠GAB的度数为.三、解答题:(本题共5题,共45分)14.如图,BO,CO分别是∠ABC,∠ACB的平分线,它们相交于点O,过点O作EF∥BC交AB于E,交AC于F,若∠ABC=50°,∠ACB=60°,试求∠BOC度数.15.如图所示,DE⊥AB于E,DF⊥BC于D,∠AFD=155°,∠A=∠C,求∠EDF的度数.16.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.如图,在△ABC中,∠A=∠ABC,直线EF分别交AB、AC和CB的延长线于点D、E、F,过点B 作BP//AC交EF于点P.(1)若∠A =70°,∠F =25°,求∠BPD 的度数.(2)求证:∠F+∠FEC =2∠ABP.18.如图,在ABC 中,AE 是ABC 的高.(1)如图1,AD 是BAC ∠的平分线,若38B ∠=︒,62C ∠=︒求DAE ∠的度数.(2)如图2,延长AC 到点F ,CAE ∠和BCF ∠的平分线交于点G ,求G ∠的度数.参考答案:1.B 2.C 3.B 4.B 5.B 6.A 7.C 8.C9.12或1410.37o11.8cm12.613.45°14.解:∵BO 平分∠ABC ,CO 平分∠ACB∠ABC =50°,∠ACB =60°∴∠EBO =∠OBC = 12 ∠ABC =25°∠FCO =∠OCB = 12 ∠ACB =30°在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB =125°.15.解:∵DE ⊥AB ,DF ⊥BC ∴∠AED=90°,∠FDC=90° ∵∠AFD=∠FDC+∠C=155°∴∠C=155°﹣∠FDC=155°﹣90°=65°∵∠A=∠C∴∠A=65°∵∠A+∠AED+∠EDF+∠AFD=360°∴∠EDF=360°﹣65°﹣90°﹣155°=50°.16.解:∵AD 是高,∠ABC=70°∴∠BAD=90°﹣70°=20° ∵AE 、BF 是角平分线,∠BAC=80°,∠ABC=70°∴∠ABO=35°,∠BAO=40°∴∠AOF=∠ABO+∠BAO=75°17.(1)解:∵∠A =∠ABC =70°,BP//AC∴∠ABP =∠A =70°=∠ABC∴∠PBF =180°﹣2×70°=40°∴∠BPD =∠F+∠PBF =25°+40°=65°(2)证明:∵∠F+∠FEC =180°﹣∠C ,∠A+∠ABC =180°﹣∠C ∴∠F+∠FEC=∠A+∠ABC =2∠A =2∠ABP.18.(1)解:在ABC 中∵38B ∠=︒ 62C ∠=︒ 180BAC B C ∠+∠+∠=︒ ∴180386280BAC ∠=︒-︒-︒=︒∵AD 是BAC ∠的平分线 ∴1402CAD BAD BAC ∠==∠=︒ ∵AE 是ABC 的高∴90AEC ∠=︒∵62C ∠=︒∴906228CAE ∠=︒-︒=︒∴402812DAE CAD CAE ∠=∠-∠=︒-︒=︒.∴DAE ∠的度数为12︒.(2)解:∵CAE ∠和BCF ∠的平分线交于点G ∴2CAE CAG ∠=∠ 2FCB FCG ∠=∠∵CAE FCB AEC ∠=∠-∠ CAG FCG G ∠=∠-∠ ∴()2222FCG AEC FCG G FCG G ∠-∠=∠-∠=∠-∠ ∴2AEC G ∠=∠∵AE 是ABC 的高∴90AEC ∠=︒∴45G ∠=︒.∴G ∠的度数为45︒。
人教版初中数学八年级上册第11章《三角形》综合检测试题含答案
人教版初中数学第11章《三角形》综合检测试题(时间:120分钟,总分:120分)一、选择题1.如图,△ABC 中,BC 边上的高是线段( )A.ADB.BEC.CFD.以上都不对2.如图,下列关系一定成立的是( ) A.∠AEB >∠DBC B.∠ADB >∠BED C.AE +AB >BC D.∠C <∠ABE3.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形4.若一个多边形的内角和等于720°,则这个多边形的边数是( )A.5B.6C.7D.85.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A.13cmB.6cmC.5cmD.4cm6.三角形中,最大角α的取值范围是( )A.0°<α<90°B.60°<α<180°C.60°≤α<90°D.60°≤α<180°7.如图,AB ∥CD ,∠A =38°,∠C =80°,那么∠M 等于( ) A.52° B.42° C.10° D.40°8.如图,将等腰直角三角形沿虚线裁去顶角后,∠1+∠2=( )A.225°B.235°C.270°D.与虚线的位置有关9.将一副直角三角尺如图放置,已知AE ∥BC ,则∠AFD 的度数是( )A.45°B.50°C.60°D.75°10.用一块等边三角形的硬纸片(如图1)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图2),在△ABC 的每个顶点处各需剪掉一个四边形,其中四边形AMDN 中,∠MDN 的度数为( )A.100°B.110°C.120°D.130°BD A CF E C B A D E C B A DM E二、填空题11.如图是妮妮卧室面朝南的一扇窗户,窗户打开后,妮妮用窗钩AB 可以将其固定,你认为妮妮这样做的数学根据是___.12.在△ABC 中,∠A =55︒,∠B =25︒,则∠C =___.13.婷婷在作业纸上随便画了一个等腰三角形,并在其中画出所有的角平分线、高线和中线,那么你认为婷婷画出的角平分线、高线和中线总数最多的是___条.14.如图是明明不小心将一块三角形玻璃打碎所剩下的残余部分,于是他量得∠A =100°,∠B =40°,这块三角形玻璃的另外一个角是___度.15.如图,点D 、B 、C 在同一直线上,∠A =60°,∠C =50°,∠D =25°,则∠BED =___度.16.如图,一花坛的形状是正六边形(设其为六边形ABCDEF ),管理员从BC 边上的一点H 出发,沿HC →CD →DE →EF →F A →AB →BH 的方向走了一圈回到H 处,则管理员从出发到回到原处在途中身体转过了___度.17.芳芳利用课余时间,用长分别为4cm 和7cm 的小木棒搭成一个等腰三角形,那么你认为芳芳所搭的这个等腰三角形的周长应该是___cm.18.小明同学在计算多边形的内角和时,将一个多边形的内角和误求为1125°,他检查时,发现计算时少算了一个内角,则这个多边形是___边形.三、解答题19.某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你B C图1 图2 A CE B DH C B A CB A设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法).20.从一个五边形中切去一个三角形,得到一个三角形和一个新的多边形,那么这个新的多边形的内角和等于多少度?请画图说明.21.如图,已知CD 是△ABC 中∠BCA 相邻外角的平分线,试说明为什么∠ABC >∠A ?22.湖边上有A ,B 两个村庄,如图,从A 到B 有两条路可走,即A →P →B 和A →Q →B .试判别哪条路更短,并说明理由.23.如图1所示,△ABC 是直角三角形,BD 是斜边上的高,若AB =3,BC =4,AC =5,求BD 的长.解:因为S △ABC =12AB ·BC ,S △ABC =12AC ·BD ,所以12AB ·BC =12AC ·BD , 所以3×4=5BD ,则BD =125. 以上求解的基本思想是以三角形的面积不变为相等关系,通过从不同角度表示同一三角形的面积来发现三角形各边及其上的高的关系,这种解决问题的方法我们常称为“面积法”,根据你的理解回答下面的问题:如图2所示,△ABC 中,AD ,CE 都是△ABC 的高,且AD =3cm ,CE =2cm ,AB =6cm ,求CB 的长.24.已知4条线段的总长度是48cm ,且第一条线段的长是a cm ,第二条线段比第一条线段的2倍多3cm ,第三条线段的长等于第一、二两条线段的和.(1)用含a 的代数式表示第四条线段的长.(2)当a =83时,这4条线段首尾相接能构成一个四边形吗?为什么? (3)已知a 为整数,如果这4条线段首尾相接能构成一个四边形,请你直接写出满足上述条件的所有a 的值.25.如图所示的图形是五角星和它的变形.A B C D E DC BA E (1) D CB A E (2) DC B A E (3) AB E D C图2D C B A图1(1)如图(1)中是一个五角星,求∠A +∠B +∠C +∠D +∠E .(2)如图(1)中的点A 向下移到BE 上时,五个角的和(即∠CAD +∠B +∠C +∠D +∠E )有无变化?如图(2),说明你的结论的正确性.(3)把如图(2)中的点C 向上移动到BD 上时,五个角的和(即∠CAD +∠B +∠ACD +∠D +∠E )有无变化?如图(3),说明你的结论的正确性.26.阅读理解如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n +1折叠,点B n 与点C 重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.小丽展示了确定∠BAC 是△ABC 的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角∠BAC 的平分线AB 1折叠,点B 与点C 重合;情形二:如图3,沿△ABC 的∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,此时点B 1与点C 重合.探究发现(1)△ABC 中,∠B =2∠C ,经过两次折叠,∠BAC 是不是△ABC 的好角?___(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC 是△ABC 的好角,请探究∠B 与∠C (不妨设∠B >∠C )之间的等量关系.根据以上内容猜想:若经过n 次折叠∠BAC 是△ABC 的好角,则∠B 与∠C (不妨设∠B >∠C )之间的等量关系为___.应用提升(3)小丽找到一个三角形,三个角分别为15º,60º,105º,发现60º和105º的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4º,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.参考答案:一、1.A ;2.A ;3.D ;4.B ;5.B ;6.D ;7.B ;8.C.点拨:由直角三角形的两个互余,所以∠1+∠2+90°=360°,所以∠1+∠2=270°,故应选C ;9.D ;10.C.图1 图2 图3 C A 1B 2B 1B A B 1C A C B n+1B n B 2B 1A n A 2A 1A B二、11.三角形的稳定性;12.100︒;13.7;14.40;15.45;16.360︒;17.15或18;18.九. 三、19.答案不惟一,只要符合题意即可.以下几种供参考.20.如图,分三种情况:①l 1分得的新多边形为四边形,则内角和为360°;②l 2分得的新多边形为五边形,则内角和为(5-2)×180°=540°;③l 1分得的新多边形为六边形,则内角和为(6-2)×180°=720°.21.因为CD 是△ABC 中∠BCA 相邻外角的平分线,所以∠DCB =12∠ECB ,因为∠ABC 是△DCB 的外角,所以∠ABC =∠D +∠DCB ,所以∠ABC =∠D +12∠ECB ,因为∠ECB =∠A +∠ABC ,所以∠ABC =∠D +12(∠ABC +∠A ),所以∠D =12(∠ABC -∠A ),即∠ABC -∠A =2∠D ,因为∠D >0,所以∠ABC -∠A >0,即∠ABC >∠A .22.A →Q →B 更短.理由:延长AQ 交BP 于E .在△APE 中,AP +PE >AQ +QE …①,在△BEQ 中,QE +BE >BQ …②,①+②,得AP +PE +QE +BE >AQ +QE +BQ ,即AP +BP >AQ +BQ .23.因为S △ABC =12BC ·AD =12AB ·CE ,所以BC ·AD =AB ·CE ,所以3BC =6×2,即BC =4,所以CB 的长为4cm.24.(1)因为第一条线段的长是a cm ,第二条线段比第一条线段的2倍多3cm ,第三条线段的长等于第一、二两条线段的和,所以第二条线段的长为(2a +3)cm ,第三条线段的长为(3a +3)cm ,第四条线段的长为(42-6a )cm.(2)当a =83时,这4条线段分别为83、253、11、26,因为83+253+11<<26, 这4条线段首尾相接不能构成一个四边形.(3)满足条件的所有a 的值:4,5,6.25.(1)连结CD ,则∠B +∠E =∠BDC +∠ECD ,在△ACD 中,因为∠A +∠ACD +∠ADC =180°,所以∠A +∠B +∠C +∠D +∠E =180°.(2)无变化.理由:因为∠BAC 是△ACE 的外角,所以∠BAC =∠C +∠E ,又因为∠EAD 是△ABD 的外角,所以∠EAD =∠B +∠D ,而∠BAE 是平角,所以∠BAC +∠CAD +∠EAD =180°,即∠A +∠B +∠C +∠D +∠E =180°.(3)无变化.理由:因为∠BAC 是△ACE 的外角,所以∠BAC =∠ACE +∠E ,又因为∠EAD 是△ABD 的外角,所以∠EAD =∠B +∠D ,而∠BAE 是平角,所以∠BAC +∠CAD +∠EAD =180°,即∠A +∠B +∠C +∠D +∠E =180°. ED B CA l 3 l 2 l 1 ABC A B C (BC 边四等分) (D 、E 、F 分别为三角形三边中点) F E D B C B CA A (各边中点的连结) (D 为BC 中点,E 为AD 中点) E D26.(1)由折叠的原理,得∠B =∠AA 1B 1.因为∠AA 1B 1=∠A 1B 1C+∠C ,而∠B =2∠C ,所以∠A 1B 1C =∠C ,就是说第二次折叠后∠A 1B 1C 与∠C 重合,因此∠BAC 是△ABC 的好角.(2)因为经过三次折叠∠BAC 是△ABC 的好角,所以第三次折叠的∠A 2B 2C =∠C .如图所示.因为∠ABB 1=∠AA 1B 1,∠AA 1B 1=∠A 1B 1C +∠C ,又∠A 1B 1C =∠A 1A 2B 2,∠A 1A 2B 2=∠A 2B 2C +∠C ,所以∠ABB 1=∠A 1B 1C +∠C =∠A 2B 2C +∠C +∠C =3∠C .由上面的探索发现,若∠BAC 是△ABC 的好角,折叠一次重合,有∠B =∠C ;折叠二次重合,有∠B =2∠C ;折叠三次重合,有∠B =3∠C ;…;由此可猜想若经过n 次折叠∠BAC 是△ABC 的好角,则∠B =n ∠C .(3)因为最小角是4º是△ABC 的好角,根据好角定义,则可设另两角分别为4m º,4mn º(其中m 、n 都是正整数).由题意,得4m +4mn +4=180,即m +mn =44,逆用乘法的分配律,得m (n +1)=44.因为m 、n 都是正整数,所以m 与n +1是44的整数因子,因此有:m =1,n +1=44;m =2,n +1=22;m =4,n +1=11;m =11,n +1=4;m =22,n +1=2.所以m =1,n =43;m =2,n =21;m =4,n =10;m =11,n =3;m =22,n =1.所以4m =4,4mn =172;4m =8,4mn =168;4m =16,4mn =160;4m =44,4mn =132;4m =88,4mn =88.所以该三角形的另外两个角的度数分别为:4º,172º;8º,168º;16º,160º;44º,132º;88º,88º.B 3B 2B 1A 2A 1CB A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章《三角形》检测题
一、选择题
1. 在△ABC 中,AB=4a,BC=14,AC=3a.则a 的取值范围是( )
A 、a>2
B 、2<a<14
C 、7<a<14
D 、a<14
2. 图中有三角形的个数为( )
A 、4个
B 、6个
C 、8个
D 、10个
第(4)题
E D C B
A
3. 如图,在△ABC 中,点D 在BC 上,AB=AD=DC,∠B=80°,则∠C 的度数为( )
A 、30°
B 、40°
C 、45°
D 、60°
4. 五边形的内角和是( )
A 、180°
B 、360°
C 、540°
D 、600°
5. 如图,已知直线AB∥CD,当点E 直线AB 与CD 之间时,有∠BED=∠ABE+∠CDE 成立;而当点E 在直线AB 与CD 之外时,下列关系式成立的是( )
A 、∠BED=∠ABE+∠CDE 或∠BED=∠ABE -∠CDE
B 、∠BED=∠ABE -∠CDE
C 、∠BED=∠CDE -∠ABE 或∠BED=∠ABE -∠CDE
D 、∠BED=∠CD
E -∠ABE
6.在下列正多边形材料中,不能单独用来铺满地面的是( ).
A 、正三角形
B 、正四边形
C 、正五边形
D 、正六边形
7. (n+1)边形的内角和比n 边形的内角和大( )。 A: 180° B: 360° C:n×180° D:n×360°
8. 边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )
A 、正方形与正三角形
B 、正五边形与正三角形
C 、正六边形与正三角形
D 、正八边形与正方形
9. 若a b c 、、是ABC 的三边的长,化简a b c a b c a b c +-++++--的结果为( )
A 、a 3b c ++
B 、0
C 、3a b c +-
D 、a b c +-
10. 三条线段5,3,a b c ==的值为整数,由a b c 、、为边可组成三角形( ).
A .5个
B .3个
C .1个
D .无数个
二、填空题
1. 等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角
形的腰长为___________.
2. 一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原
理是____________。
3. 已知等腰三角形两边长是4cm和9cm,则它的周长是
________。
4.一个多边形的内角和是外角和的3倍,它是( )边形;
一个多边形的各内角都等于1200,它是( )边形。5. 一个多边形的每一个外角都等于30°,这个多边形的边数
是______,它的内角和是____________
6. 造房子时屋顶常用三角结构,从数学角度来看,是应用了
_______,而活动挂架则用了四边形的________.
8. 如图,将123
、、按从大到小的顺序排列是( ).其根据∠∠∠
是( ).
9. 如图,在△ABC中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分
别为D、C、F、E,则_______是△ABC中BC边上的
高,_________是△ABC中AB边上的高,_________是△ABC 中AC边上的高,CF是△ABC的高,也是△_______、△
_______、△_______、△_________的高.
10. 如图所示,AB∥CD,∠A=45°,∠C=29°,则∠E=______.
三、解答题
1. 如图,在△ABC中,O为△ABC内一点,证
明:AO+BO+CO>(AB+AC+BC)
A
C
O
2. 读句画图:
⑴画钝角△ABC(900<∠A<1800),且AB>AC
⑵BC上的中线AD
⑶画AC上的高BE
⑷画角平分线CF
3.
4. 如图所示,直线AD和BC相交于
O,AB∥CD,∠AOC=95°,∠B=50°, 求∠A和∠D.
5. 如图,已知ABC
⑴.作出ABC的角的平分线AD,ADC的高DE;
⑵.若ABC70ACB50
,,求ADE
∠=∠=
∠的度数?
6. 一块三角形优良品种试验田,现引进四个良种进行对比实
验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.
7. 小强从A到B共有三条路
线:①.A B;②.A D B;③.A C B.
⑴.在不考虑其他因素的情况下,我们可以肯定小明会走
路线①.请说明理由.
⑵.小明绝对不会走路线③,路线③路程最长,即
+>+;你能说明其原因吗?
AC BC AD DB
8. 在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的
高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF 和∠BHC的度数.
9. 如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数。
10. 如图所示,有一块三角形ABC空地,要在这块空地上种
植草皮来美化环境,已知这种草皮每平方米售价230
元,AC=12m,BD=15m,(1)购买这种草皮至少需要多少元?(2)现在学校想到这块空地上种红、黄、白、紫色四种花,而且要保证这四种花的面积相等,画出你的分法。。