2018-2019年度部编版七年级下册数学单元测试 第七章 平面直角坐标系4C3
七年级下学期第七章坐标系单元检测数学试题
七年级下学期第七章坐标系单元检测数学试题1、点P(3.-5)关于y轴的对称点的坐标是。
2、在平面直角坐标系中.把点P(-1.-2)向上平移4个单位长度所得点的坐标是。
3、将点A(4.3)向平移个单位长度后.坐标变为( 6, 3 ) 。
4、已知AB∥x轴.A点的坐标为(3.2).并且AB=5.则B的坐标为。
-5、已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为________.-6、如果P、Q两点坐标分别是(1.1).(-5.-3).那么线段PQ的中点坐标为____ ____。
7、正方形的四个顶点中,A(-1,2),B(3,2),C(3,-2),则第四个顶点D的坐标为_________。
8、△ABC中,如果A(1,1),B(-1,-1),C(2,-1),则△ABC的面积为________。
9、在比例尺为1:20000的地图上,相距3cm的A,B两地的实际距离是________.10、已知点A1(1.1)、A2(2.3)、A3(3.5)、A4(4.7)……,用你发现的规律确定点A2015的坐标为。
二、精心选一选.你一定很棒的(每小题4分,共40分)11、如图(1)所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B 的位置是 ( )A.(4,5); B.(5,4); C.(4,2); D.(4,3)12、如图(2)所示,点A的坐标是 ( )A.(3,2) B.(3,3) C.(3,-3) D.(-3,-3)13、如图(2)所示,横坐标和纵坐标都是负数的点是( )A.A点B.B点C.C点D.D点14、如图(2)所示,坐标是(-2,2)的点是 ( )A.点A B.点B C.点C D.点D-15、如图(3)所示,将点A向右平移( )个单位长度可得到点BA.3个单位长度B..4个单位长度;C.5个单位长度D.6个单位长度-16、如图(3)所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到A′,将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B′,则A′与B′相距()A.4个单位长度B.5个单位长度;C .6个单位长度D .7个单位长度17、已知点P (a,b ),a b >0,a +b <0,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限18、确定一个地点的位置.下列说法正确的是( )A .偏东30°.1000米B .西北方向C .距此500米D .正南方向.距此600米19、从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则 ( )A .小强家在小红家的正东B .小强家在小红家的正西C .小强家在小红家的正南D .小强家在小红家的正北20、已知,a b 为实数,则点P(21,1a b -+-)落在( ).A .第二象限B .第二象限或x 轴的负半轴C .第三象限或x 轴的负半轴D .第三象限三、用心做一做.你一定是生活中的智者。
2018-2019年人教版七年级数学下册 第七章 平面直角坐标系 单元综合能力测试卷
第七章平面直角坐标系单元综合能力测试卷(时间:120分钟总分:120分)一、选择题(每小题3分,共30分)1.如图,小强告诉小华图中A、B两点的坐标分别为(-3,3)、(3,3),小华一下就说出了C在同一坐标系下的坐标()A.(-1,5) B.(-5,1) C.(5,-1) D.(1,-5)2.点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,-2)B.(4,0)C.(2,0)D.(0,-4)3.已知点A(-3,2),B(3,2),则A,B两点相距()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度4.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)5.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A 的对应点A1的坐标为( )A.(4,3) B.(2,4) C.(3,1) D.(2,5)6.如图,小明家相对于学校的位置,下列描述最正确的是( )A.在距离学校300米处B.在学校的西北方向C.在西北方向300米处D.在学校西北方向300米处7.张强在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,其他四个景点大致用坐标表示肯定错误的是( )A.熊猫馆(1,4) B.猴山(6,0) C.百鸟园(5,-3) D.驼峰(3,-2)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)9.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,“距离坐标”为(2,3)的点的个数是( )A.2 B.1 C.4 D.310.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0) B.(5,0) C.(0,5) D.(5,5)二、填空题(每小题4分,共24分)11.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是.12将点A(1,-3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.13.如图所示,把图1中的圆A经过平移得到圆O(如图2),如果图1中圆A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为.14、坐标原点O(0,0)及A(-2,0)、B(-2,3)三点围成的△ABO的面积为____________.15、已知线段MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为.16.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为.三、解答题(共66分)17.(6分)如图所示,是小慧所在学校的平面示意图,小慧可以如何描述她所住的宿舍位置呢?18.(8分)如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.19.(8分)已知平面直角坐标系中有一点M(m-1,2m+3).(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?20.(10分)四边形ABCD各顶点的坐标分别为A(0,1),B(5,1),C(7,3),D(2,5).(1)在平面直角坐标系中画出该四边形;(2)四边形ABCD内(边界点除外)一共有13个整点(即横坐标和纵坐标都是整数的点);(3)求四边形ABCD的面积.21.(10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少;(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.22.(12分)小明给右图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?23.(12分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B 与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.参考答案1、A2、C3、D4、A5、D6、D7、C8、A9、C10、B11、3排4号12、(-2,2)13、(m+2,n-1)14、315、(-1,6)或(-1,-2)16、4917、用(0,0)表示教学楼的位置,(2,0)表示操场的位置,(-2,2)表示实验楼的位置,则小慧所住的宿舍位置为(2,3).建立不同的坐标系,小慧所住的宿舍位置坐标不相同.(答案不唯一)18、答案不唯一,如:(1)(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(2)(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3)(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(4)(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(5)(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.19、(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2.(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1.20、(1)如图所示:(3)如图所示:∵S四边形ABCD=S三角形ADE+S三角形DFC+S四边形BEFG+S△BCG,S三角形ADE=12×2×4=4,S三角形DFC=12×2×5=5,S四边形BEFG=2×3=6,S△BCG=12×2×2=2,∴S四边形ABCD=4+5+6+2=17.21、(1)四边形ABCD的面积为3×(22-2)=3 2.(2)A′(2,-2),B′(5,-2),C′(5,0),D′(2,0).22、(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5).(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限.(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.23、(1)A(2,3)与D(-2,-3);B(1,2)与E(-1,-2);C(3,1)与F(-3,-1).对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a+3=-2a,4-b=-(2b-3).解得a=-1,b=-1.。
七年级数学下册《第七章 平面直角坐标系》单元测试卷及答案
七年级数学下册《第七章平面直角坐标系》单元测试卷及答案一、选择题(每题3分,共30分)1.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣52.第24届冬季奥林匹克运动会将于2022年在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是()A.离北京市200千米B.在河北省C.在宁德市北方D.东经114.8°,北纬40.8°3.已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1B.3C.﹣1D.54.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,0)C.(﹣1,2)D.(﹣2,2)5、已知点P(x,y)的坐标满足|x|=3,y=2,且xy<0,则点P的坐标是( )A.(3,-2)B.(-3,2)C.(3,-4)D.(-3,4)6、已知点A(1,0)B(0,2),点P在x轴上,且△P AB的面积为5,则点P的坐标为( )A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.(0,12)或(0,-8)7.已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1B.3C.﹣1D.58.将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.点A(﹣3,﹣5)向上平移4个单位,再向左平移4个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1 )D.(0,﹣1)10.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A .(1,3)B .(2,2)C .(2,4)D .(3,3)二、填空题(每题3分,共24分)11.如图是小兰观看马戏表演的门票若小敏的座位是3排4座,简记为(3,4),则小兰的座位可简记为 .12.点P(x ,y)在第二象限,且x 2=4,y =3.则点P 的坐标为 .13.已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为 .14.如图,平面直角坐标系中,A 、B 两点的坐标分别为(2,0)、(0,1),若将线段AB 平移至A 1B 1,点A 1的坐标为(3,1),则点B 1的坐标为 .15、若点P ,m n 在第二象限,则点Q,m n 在第 象限。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析
人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。
第七章《平面直角坐标系》单元测试卷(含答案)
第七章《平面直角坐标系》测试卷班级_______ 姓名________ 坐号_______ 成绩_______一、选择题(每小题3分,共30 分)1、根据下列表述,能确定位置的是( )A、红星电影院2排B、北京市四环路C、北偏东30°D、东经118°,北纬40°2、若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是()A、第一象限B、第二象限C、第三象限D、第四象限3、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为()A、(3,3)B、(-3,3)C、(-3,-3)D、(3,-3)4、点P(x,y),且xy<0,则点P在()A、第一象限或第二象限B、第一象限或第三象限C、第一象限或第四象限D、第二象限或第四象限5、如图1,与图1中的三角形相比,图2中的三角形发生的变化是()A、向左平移3个单位长度B、向左平移1个单位长度C、向上平移3个单位长度D、向下平移1个单位长度6、如图3所示的象棋盘上,若错误!位于点(1,-2)上,错误!位于点(3,-2)上,则错误!位于点()A、(1,-2)B、(-2,1)C、(-2,2)D、(2,-2)7、若点M(x,y)的坐标满足x+y=0,则点M位于( )A、第二象限B、第一、三象限的夹角平分线上C、第四象限D、第二、四象限的夹角平分线上8、将△ABC的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是()A、将原图形向x轴的正方向平移了1个单位;B、将原图形向x轴的负方向平移了1个单位C、将原图形向y轴的正方向平移了1个单位D、将原图形向y轴的负方向平移了1个单位9、在坐标系中,已知A(2,0),B(-3,-4),C(0,0),则△ABC的面积为()A、4B、6C、8D、310、点P(x-1,x+1)不可能在()A、第一象限B、第二象限C、第三象限D、第四象限二、填空题(每小题3分,共18分)11、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________。
人教版七年级数学下册第七章《平面直角坐标系》单元测试卷附答案
第七章《平面直角坐标系》单元测试卷(共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.(跨学科融合)如图,气象台为了预报台风,首先要确定台风中心的位置,则下列能确定台风中心位置的是()A.西太平洋B.北纬128°,东经36°C.距珠海500海里D.湛江附近第1题图第3题图第4题图2.在平面直角坐标系中,点P(-3,-8)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限3.(跨学科融合)如图是象棋棋盘的一部分,若位于点(1,-2)上,位于点(3,-2)上,则位于点 ()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(北偏东40°,35海里)B.(北偏西40°,35海里)C.(南偏西50°,35海里)D.(北偏东50°,35海里)5.已知x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(0,3)C.(0,3)或(0,-3)D.(3,0)或(-3,0)6.若点P(5,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥07.在平面直角坐标系中,一个三角形的三个顶点的横坐标保持不变,纵坐标都增加3个单位长度,则所得的图形与原图形相比()A.形状不变,大小扩大为原来的3倍B.形状不变,向右平移了3个单位长度C.形状不变,向上平移了3个单位长度D.三角形被纵向拉伸为原来的3倍8.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)9.一个长方形在平面直角坐标系中,其中三个顶点的坐标分别为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)10.(创新题)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)二、填空题(本大题共5小题,每小题3分,共15分)11.把点A(-4,6)先向左平移2个单位长度,再向下平移4个单位长度,此时的位置是.12.在坐标平面内,已知点M(1,2)和点N(1,-4),那么线段MN的长为个单位长度.13.如图,表示北偏西50°方向的是射线.14.观察下图,与图1中的鱼相比,图2中的鱼发生了一些变化.若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标为(图中的方格是1×1).图1图215.(创新题)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).一只蚂蚁从点A处出发,并按A-B-C-D-A-B…的规律在四边形ABCD的边上以每秒1个单位长度的速度运动,运动时间为t秒.若t=2 023,则这只蚂蚁所在位置的点的坐标是.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.如图,写出点A,B,C,D,E,F的坐标.17.如图,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?18.如图,在平面直角坐标系中,O是原点,四边形ABCD是长方形,A,B,C的坐标分别是A(-3,1),B(-3,3),C(2,3).(1)直接写出点D的坐标;(2)画出将长方形ABCD先向右平移3个单位长度,再向下平移5个单位长度后所得的长方形A1B1C1D1,直接写出点D1的坐标.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位长度,再向右平移5个单位长度得到△A'B'C',画出△A'B'C'并写出C'的坐标.20.如图是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(-3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(-1,-1),在图中标出行政楼的位置.21.在如图所示的平面直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(-4,-2),B(4,-2),C(2,2),D(-2,3),求这个四边形的面积.五、解答题(三)(本大题共2小题,每小题12分,共24分))为“开心点”.22.(创新题)已知当m,n都是实数,且满足2m=8+n时,称P(m−1,n+22(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a-1)是“开心点”,请判断点M在第几象限?并说明理由.23.如图,A(-1,0),C(1,4),点B在x轴上,且AB=2.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为7?若存在,请求出点P的坐标;若不存在,请说明理由.第七章《平面直角坐标系》单元测试卷1.B 2.C 3.C 4.A 5.D 6.A7.C8.C9.B10.D11.(-6,2)12.613.OC14.(4,2.2)15.(-1,0)16.解:A(-3,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).17.解:(1)MN=x2-x1.(2)PQ=y2-y1.18.解:(1)D(2,1).(2)图略,D1(5,-4).×3×5=7.5.19.解:(1)△ABC的面积是12(2)作图如下:所以点C'的坐标为(1,1).20.解:(1)如图.(2)由平面直角坐标系知,教学楼的位置为(1,0),体育馆的位置为(-4,3).(3)行政楼的位置如图所示.21.解:如图,过D作DE⊥AB,过C作CF⊥AB,垂足分别为E,F.S四边形ABCD=S△ADE+S梯形DEFC+S△BCF=1 2×2×5+12×(4+5)×4+12×2×4=5+18+4=27.22.解:(1)点A(5,3)为“开心点”,理由如下:当A(5,3)时,m-1=5,n+22=3,得m=6,n=4,则2m=12,8+n=12,∴2m=8+n,∴A(5,3)是“开心点”.点B(4,10)不是“开心点”,理由如下:当B(4,10)时,m-1=4,n+22=10,解得m=5,n=18, 则2m=10,8+18=26,∴2m≠8+n,∴点B(4,10)不是“开心点”.(2)点M在第三象限,理由如下:∵点M(a,2a-1)是“开心点”,∴m-1=a,n+22=2a-1,∴m=a+1,n=4a-4,代入2m=8+n有2a+2=8+4a-4,∴a=-1,∴2a-1=-3,∴M(-1,-3),故点M在第三象限.23.解:(1)如图:△AB'C或△AB″C是所求作的三角形.由图形可知:点B的坐标为(-3,0)或(1,0).(2)S△ABC=12AB·CB'=12×2×4=4,即△ABC的面积为4.(3)存在.设点P(0,y),因为以A,B,P三点为顶点的三角形的面积为7,所以S△ABP=12AB·|y|=7,即12×2×|y|=7,解得y=±7,故点P的坐标为(0,7)或(0,-7).。
初中数学 第七章平面直角坐标系单元测试题解析及答案含试题解析
第七章 平面直角坐标系测试题一、填空题(每小题3分,共30分)1.已知点A (0,1)、B (2,0)、C (0,0)、D (-1,0)、E (-3,0),则在y 轴上的点有 个。
2.如果点A ()b a ,在x 轴上,且在原点右侧,那么a ,b3.如果点()1,-a a M 在x 轴下侧,y 轴的右侧,那么a 的取值范围是4..如图所示,○A 表示三经路与一纬路的十字路口,○B 表示一经路与三纬路的十字路口,如果用(3,1)→(3,2)→(3,3)→(2,3)→(1,3)表示由○A 到○B 的一条路径,用同样的方式写出另一条由○A 到○B 的路径:(3,1)→ → → →(1,3)新-课- 标-第 -一 -网○A○B5.如图所示,在一个规格为84⨯的球台上,有两只小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则点O 的位置可以表示为.6.已知两点A ()m ,3-,B ()4,-n ,若AB ∥y 轴,则n = , m 的取值范围是 .7.∆ABC 上有一点P (0,2),将∆ABC 先沿x 轴负方向平移2个单位长度,再沿y 轴正方向平移3个单位长度,得到的新三角形上与点P 相对应的点的坐标是 .8.如图所示,象棋盘上,若“将”位于点 (3,-2),“车”位于点(-1,-2),则“马”位于.9.李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为(3,2),若周伟的座位在李明的后面相距2排,同时在他的左边相距3列,则周伟的座位可简记为. X|k |B| 1 . c|O |m10.将∆ABC 绕坐标原点旋转180后,各顶点坐标变化特征是: .路章豫路明明路经三路经二路经一路纬二路纬一路纬三A 马将车4题图 5题图 8题图二、选择题(每小题3分,共30分)11.下列语句:(1)点(3,2)与点(2,3)是同一点;(2)点(2,1)在第二象限;(3)点(2,0) 在第一象限;(4)点(0,2)在x 轴上,其中正确的是()A.(1)(2)B.(2)(3)C.(1)(2)(3)(4)D. 没有12.如果点M ()y x ,的坐标满足0=yx ,那么点M 的可能位置是( ) A.x 轴上的点的全体 B. 除去原点后x 轴上的点的全体C.y 轴上的点的全体D. 除去原点后y 轴上的点的全体13.已知点P 的坐标为()63,-2+a a ,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A.(3,3)B.(3,-3)C. (6,-6)D.(3,3)或(6,-6)14.如果点()3,2+x x 在x 轴上方,y 轴右侧,且该点到x 轴和y 轴的距离相等,则x 的值为( )A.1B.-1C.3D.-315.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形( )A.横向右平移2个单位B.横向向左平移2个单位16.下面是小明家与小刚家的位置描述:小明家:出校门向东走150m ,再向北走200m ;小刚家:出校门向南走100m ,再向西走300m ,最后向北走50m如果以学校所在位置为原点,分别以正东、正北方向为x 轴,y 轴正方向建立平面直角坐标系, 并取比例尺1∶10 000. 则下列说法正确的是( )①点(150,200)是小明家的位置;② 点(-300,-50)是小刚家的位置;③从小明家向西走200m ,到达点(200,-50);○4从小刚家向东走100m 到达点(50,-300). A.①②B.③○4C.①③D.②○4 17.一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5km 处,乙车位于雕像北方7km 处,若甲、乙两车以相同的速度向雕像的方向同时出发,当甲车到雕像西方1km 处乙车在( )A.雕像北方1km 处B.雕像北方3km 处C.雕像南方1km 处D.雕像南方3km 处18.已知如图所示,方格纸中的每个小方格边长为1的正方形,AB 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格顶点上确定一点C ,连接AB 、AC 、BC ,使∆ABC 的面积为2个平方单位,则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2)19.如图所示,若三角形ABC 中经平移后任意一点P ()00,y x 的对应点为()3,5001-+y x P ,则点A 的对应点1A 的坐标是( )A.(4,1)B.(9,-4)C.(-6,7)D.(-1,2)20.如图所示,是郑州市某天的温度随时间变化的图象,通过观察可知下列说法错误的是( )A.这天15点温度最高B.这天3点时温度最低C.这天最高温度与最低温度的差是15度D.这天21时温度是30度三、解答题(共40分) 21.(6分)如图所示,是一个规格为88 的球桌,小明用A 球撞击B 球,到C 处反弹,再撞击桌边D 处,请选择适当的平面直角坐标系,并用坐标表示各点的位置.新 课 标第 一 网22.(7分)以点A 为圆心的圆可表示为⊙A 。
人教版七年级下册数学单元同步检测卷:第七章 平面直角坐标系(含答案)
人教版七年级数学下册第七章 平面直角坐标系 单元测试题(二)一、填空题1. 观察下列的有序数对:(3,-1),(-5,12),(7,-13),(-9,14),…,根据你发现的规律,第2019个有序数对是 .2.A ,B 两点的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,点A 1,B 1的坐标分别为(2,a ),(b ,3),则a+b= .3.已知点A (1+2a ,4a-5),且点A 到两坐标轴的距离相等,则点A 的坐标为 .4.观察如图,回答下面的问题:(1)学校在小明家北偏 ( °)的方向上,距离是400米; (2)邮局在小明家的西偏 ( °)的方向上,距离是 500 米.二、选择题5.有一个学生方队,学生B 的位置是第8列第7行,记为(8,7),则学生A 在第2列第3行的位置可以表示为() A .(2,1) B .(3,3) C .(2,3)D .(3,2)6. 如图所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到P'(4,3)位置,则飞机Q ,R 的位置Q',R'分别为()A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)7.下列选项中,平面直角坐标系的画法正确的是()8.七(1)班的座位表如图所示,如果建立如图所示的平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)9.如图所示,一方队正沿箭头所指的方向前进,P的位置为五列二行,表示为(5,2),则(4,3)表示的位置是()A.AB.BC.CD.D10.在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向下平移4个单位长度得到点P'的坐标是()A.(2,4)B.(1,-3)C.(1,5)D.(-5,5)11.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限12.如图,学校在李老师家的南偏东30°方向,距离是500 m,则李老师家在学校的()A.北偏东30°方向,相距500 m处B.北偏西30°方向,相距500 m处C.北偏东60°方向,相距500 m处D.北偏西60°方向,相距500 m处13.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2),(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置14.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A'B'上的对应点P'的坐标为()A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)15.下列说法中,正确的是()A.点P(3,2)到x轴的距离是3B.在平面直角坐标系中,点(2,-3)和点(-2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号16.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(-3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)三、解答题17.如图,用点A(3,1)表示3个胡萝卜,1棵青菜;点B(2,3)表示2个胡萝卜,3棵青菜.同理点C(2,1),D(2,2),E(3,2),F(3,3)各表示相应的胡萝卜个数与青菜的棵数.若1只兔子从A到B(顺着方格走),有以下几条路可供选择①A→C→D→B;②A→E→D→B;③A→E→F→B.问:兔子顺着哪条路走吃到的胡萝卜最多?顺着哪条路走吃到的青菜最多?各是多少?18.如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,-2),C(5,1),D(4,4).(1)求四边形ABCD的面积;(2)把四边形ABCD向左平移3个单位得四边形A1B1C1D1,画出平移后的图形并写出平移后四边形各个顶点的坐标.19.如图是某台阶的一部分,每级台阶的高与长都相等.如果点A的坐标为(0,0),点B的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?20.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→ A (-3,-4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E点.21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};(2)如图,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.22.已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.23.某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O 来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1-y2|;(1)已知点A(-1,0),B为y轴上的动点.①若点A与点B的“识别距离”为2,写出满足条件的B点的坐标(0,2)或(0,-2);②直接写出点A与点B的“识别距离”的最小值1.m+3),D(0,1),求点C与点D的“识别距离”的最小(2)已知点C与点D的坐标分别为C(m,34值及相应的C点坐标.参考答案1. (4039,−12019)2.23.(7,7)或 (73,-73)4. 东 25 南 30 5-9:CABCC 10-14:BDBCA 15-16:DB17.解:按①走吃到的胡萝卜为3+2+2+2=9(个),青菜为1+1+2+3=7(棵); 按②走吃到的胡萝卜为3+3+2+2=10(个),青菜为1+2+2+3=8(棵); 按③走吃到的胡萝卜为3+3+3+2=11(个),青菜为1+2+3+3=9(棵). 故按③走吃到的胡萝卜和青菜都是最多的,分别为胡萝卜11个,青菜9棵. 18.解:(1)S 四边形ABCD =4×6-12×2×3-12×1×3-12×2×4-12×2×3=12.5.(2)图略,A 1(-2,2),B 1(0,-2),C 1(2,1),D 1(1,4).19.解:(1)以A 点为原点,水平方向为x 轴,建立平面直角坐标系,所以C (2,2),D (3,3),E (4,4),F (5,5).(2)因为每级台阶高为1,所以10级台阶的高度是10. 20.解:(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m . (3)略.21.解:(1){3,1}+{1,2}={4,3}.(2)由题可得O 到P 的“平移量”为{2,3},P 到Q 的“平移量”为{3,2},从Q 到O 的“平移量”为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}. 22.解:(1)由题意,得2m+4=0,解得m=-2,∴点P 的坐标为(0,-3).(2)由题意,得(m-1)-(2m+4)=3,解得m=-8,∴点P 的坐标为(-12,-9). (3)由题意,得|m-1|=2,解得m=-1或m=3.当m=-1时,点P 的坐标为(2,-2); 当m=3时,点P 的坐标为(10,2).∵点P 在第四象限,∴点P 的坐标为(2,-2).23.解:(1)北偏东40°的方向上有两个目标:敌方战舰B 和小岛.要想确定敌方战舰B 的位置,还需要知道敌方战舰B 距我方潜艇的距离. (2)敌方战舰A 和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角. 24.解:(2)令|m-0|=|34m+3-1|,解得m=8或-87.当m=8时,“识别距离”为8;当m=-87时,“识别距离”为87.所以当m=-87时,“识别距离”取最小值87,相应的C 点坐标为(-87,157).。
精选七年级下册数学第七章平面直角坐标系单元测试(含答案解析)(2)
人教版七年级数学下册第七章平面直角坐标系期中复习检测试题一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,2)在( B )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( B )A.经过原点 B.平行于x轴C.平行于y轴D.无法确定3.若y轴上的点P到x轴的距离为3,则点P的坐标是( D )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1) B.B(1,7)C.(1,1) D.(2,1)5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使三角形ABC的面积为3,则这样的点C共有( B )A.2个B.3个C.4个D.5个6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2) C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是(A)A.(11,3)B.(3,11)C.(11,9)D.(9,11)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.在平面直角坐标系xOy中,对于点,我们把点叫做点伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(2,4),点的坐标为( D )A. (-3,3)B.(-2,-2)C.(3,-1)D.(2,4)二、填空题(每空3分,共18分)11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是(﹣3,4)。
人教版七年级第七章平面直角坐标系单元测试精选(含答案)4
人教版七年级第七章平面直角坐标系单元测试精选(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3 B C D【来源】湖北省荆门市沙洋县2017-2018学年八年级下学期期中考试数学试题【答案】A2.已知点A(a,b)在第四象限,那么点B(b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】福建省闽侯大湖中学人教版七年级数学下册:7平面直角坐标系测试题【答案】B3.中国象棋是中华民族的文化瑰宝,它源远流长,趣味浓厚.如图,在平面直角坐标系中,“炮”所在位置的坐标为(−3,1),“相”所在位置的坐标为(2,−1),那么,“帅”所在位置的坐标为()A.(0,1)B.(4,0)C.(−1,0)D.(0,−1)【来源】练出好成绩北师大版八年级上第三章章末复习回顾提升【答案】D4.如图,若在象棋盘上建立直角坐标系xOy,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“炮”位于点()A.(-2,-1)B.(0,0)C.(1,-2)D.(-1,1)【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B5.如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是()A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)【来源】2017年北京市东城区中考数学二模试卷【答案】C6.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A.(1,0) B.(-1,0) C.(-1,1) D.(1,-1)【来源】黑龙江省佳木斯市桦南县实验中学2018-2019年七年级数学下册期末复习检测试题【答案】A7.点P(4,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【来源】2015年初中毕业升学考试(浙江金华卷)数学(带解析)【答案】A8.点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册数学第7章平面直角坐标系单元测试【答案】D9.点M(3,-1)经过平移得到点N,点N的坐标为(2,1),那么平移的方式可以是() A.先向左平移1个单位长度,再向下平移2个单位长度B.先向右平移1个单位长度,再向下平移2个单位长度C.先向左平移1个单位长度,再向上平移2个单位长度D.先向右平移1个单位长度,再向上平移2个单位长度【来源】人教版初中数学七年级下册第七章《平面直角坐标系》单元检测题【答案】C10.在直角坐标系中,点P(-2,3)向右平移3个单位长度后的坐标为()A.(3,6)B.(1,3)C.(1,6)D.(3,3)【来源】2011-2012学年辽宁鞍山26中学第二学期4月月考数学试卷【答案】B11.在下列所给出坐标的点中,在第二象限的是A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【来源】2013年初中毕业升学考试(广西柳州卷)数学(带解析)【答案】B12.在平面直角坐标系中,点P(-2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【来源】2014-2015学年贵州省黔南州七年级下学期期末数学试卷(带解析)【答案】C13.把点A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是(). A.(-5,3) B.(1,3) C.(1,-3) D.(-5,-1)【来源】2011年初中毕业升学考试(江西南昌卷)数学【答案】B14.一个长方形在平面直角坐标系中的三个顶点的坐标分别为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)【来源】人教版七年级数学下册七章平面直角坐标系单元测试【答案】B15.平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】D16.平面直角坐标系中,图形上的点A向右平移2个单位后得坐标为(-2,3),则该图形上所以点A.横坐标不变B.纵坐标不变C.横、纵坐标都不变D.横、纵坐标都变【来源】2011-2012学年河南平顶山市弘扬中学七年级下期中考试数学试题(带解析)【答案】B17.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A.(-2,6) B.(-2,0) C.(-5,3) D.(1,3)【来源】2010年高级中等学校招生考试数学卷(广东珠海)【答案】D18.点A(﹣3,﹣2)向上平移2个单位,再向右平移2个单位到点B,则点B的坐标为()A.(1,0)B.(1,﹣4)C.(﹣1,0)D.(﹣5,﹣1)【来源】沪教版七年级数学上册第11章图形的运动单元测试【答案】C19.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4)B.(4,3)C.(-1,-2)D.(-2,-1)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】A20.如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位【来源】内蒙古乌兰浩特市卫东中学2018-2019学年七年级下学期期中数学试题【答案】B21.若点P(a,b)在第四象限,则点Q(﹣a,b﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】2019年辽宁省抚顺一中学北师大版七年级(下)期末数学试卷【答案】C22.点P(-3,4)到y轴的距离是()A.-3 B.4 C.3 D.5【来源】2012-2013学年安徽马鞍山博望中学八年级上学期期中数学试题(带解析)【答案】C23.将A(1,1)先向左平移2个单位,再向下平移2个单位得点B,则点B的坐标是()A.(-1,-1)B.(3,3)C.(0,0)D.(-1,3)【来源】2011-2012学年河南平顶山市弘扬中学七年级下期中考试数学试题(带解析)【答案】A24.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(1,3)D.(-5,3)【来源】新人教版数学七年级下册第七章平面直角坐标系7.2.2《用坐标表示平移》同步练习【答案】C25.在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是( )A .(-2,3)B .(-1,2)C .(0,4)D .(4,4)【来源】山东省蒙阴县2016-2017学年七年级下学期期末考试数学试题【答案】C二、填空题26.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.【来源】2016-2017学年河南省周口市西华县七年级下学期期中考试数学试卷(带解析)【答案】(4,0)或(﹣4,0)27.点P 到x 轴的距离为2,到y 轴的距离为3,且在第四象限,则P 点坐标是________.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(3,-2)28.已知点P (2a ﹣6,a+1),若点P 在坐标轴上,则点P 的坐标为________.【来源】人教版七年级数学下册七章平面直角坐标系单元测试【答案】(﹣8,0)或(0,4)29.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是_________.【来源】2016-2017学年内蒙古鄂尔多斯市鄂托克旗八年级(下)期末数学试卷【答案】(7,3)30.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.【来源】湖南省常德外国语学校2017-2018学年八年级下学期期中考试数学试题【答案】-131.在平面直角坐标系中,线段AB=5,AB ∥x 轴,若A 点坐标为(-1,3),则B 点坐标为______.【来源】广东省汕头市潮阳实验学校2018-2019学年七年级下学期期中考试数学试题【答案】(4,3)或(−6,3).32.点(﹣3,﹣5)关于y轴对称的点的坐标是________.【来源】2014-2015学年广东省汕头市龙湖区八年级上学期期末数学试卷(带解析)【答案】(3,﹣5).33.在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B 的坐标为_______.【来源】人教版七年级数学下册第7章平面直角坐标系单元提优测试题【答案】(-5,3)或(3,3)34.若点M(a-2,2a+3)是y轴上的点,则a的值是________.【来源】湘教版八年级数学下册第3章图形与坐标单元测试题【答案】235.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是________.【来源】2015年人教版初中数学七年级7本章检测练习卷(带解析)【答案】(51,50)36.点M(a+b,ab)在第二象限,那么点N(a,b)在第_______象限.【来源】2014年青岛版初中数学七年级下册第十四章14.2练习卷(带解析)【答案】三37.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是.【来源】2016年初中毕业升学考试(山西卷)数学(带解析)【答案】(3,0)38.将点A(1,1)先向左平移2个单位长度,再向下平移3个单位长度得到点B,则点B的坐标是______.【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】(-1,-2)39.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1B1的坐标分别为(2,a)、(b,3),则a+b=____________.【来源】甘肃省东乡族自治县第二中学2017-2018学年七年级下学期期中数学试题【答案】240.如图所示,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE,如果CB=1,那么OE的长为________.【来源】2015年人教版初中数学七年级下册第七章练习卷(带解析)【答案】741.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P _______【来源】山东省滨州市博兴县2016-2017学年七年级下学期期末考试数学试题【答案】(-1,2);答案不唯一42.如图所示为沱江两个风景区的位置,若麻拐岩风景区的坐标为(﹣4,2),则阳华岩风景区的坐标为________.【来源】沪教版七年级下册数学第15章平面直角坐标系单元检测卷【答案】(0,﹣3)43.在平面直角坐标系中,任意两点A (a ,b ),B (m ,n ),规定运算:A ☆B=[(1﹣m )√a , √bn 3].若A (4,﹣1),且A ☆B=(6,﹣2),则点B 的坐标是________. 【来源】沪教版七年级下册数学第15章平面直角坐标系单元检测卷【答案】(﹣2,8)44.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是()2,1--,黑棋③的坐标是()1,2-,则白棋②的坐标是:______.【来源】江苏省灌云县2018-2019学年八年级上学期期末考试数学试题【答案】()1,3--三、解答题45.如图,平行四边形ABCD 中,AB =4,BC =2.若把它放在平面直角坐标系中,使AB 在x 轴上,点C 在y 轴上,如果点A 的坐标为(-3,0),求点B ,C ,D 的坐标.【来源】北师大版八年级数学上册第三章 位置与坐标 单元测试【答案】点B,C,D的坐标分别为(1,0),(0和(-4.46.如图,在平面直角坐标系中,点D的坐标是(﹣3,1),点A的坐标是(4,3).(1)点B和点C的坐标分别是______、______.(2)将△ABC平移后使点C与点D重合,点A、B与点E、F重合,画出△DEF.并直接写出E、F的坐标.(3)若AB上的点M坐标为(x,y),则平移后的对应点M′的坐标为______.【来源】广东省广州市四校2016-2017学年七年级下学期期中联考数学试题【答案】(1)(3,1),(1,2);(2)画图见解析;点E坐标为(0,2),点F坐标为(﹣1,0);(3)(x﹣4,y﹣1).47.已知:ABC平移后得出△A1B1C1,点A(﹣1,3)平移后得A1(﹣4,2),又已知B1(﹣2,3),C1(1,﹣1),求B、C坐标,画图并说明经过了怎样的平移.【来源】沪教版七年级上册数学第11章图形的运动单元检测卷【答案】点B坐标为:(1,4),点C坐标为(4,0),由点A平移前的坐标为(﹣1,3),平移后的坐标为(﹣4,2),可得平移的规律是:向左平移3个单位,向下平移1个单位48.某市有A,B,C,D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.【来源】人教版初中数学七年级下册第七章《平面直角坐标系》单元检测题【答案】见解析49.如图,正方形网格的每个小正方形边长为1,四边形ABCD的顶点都在格点上.(1)以点A为坐标原点建立平面直角坐标系,写出四边形ABCD各顶点的坐标;(2)计算四边形ABCD的面积.【来源】广东省台山市2016-2017学年七年级第二学期期末测试数学试题【答案】(1)作图见解析;A(0,0),B(4,0),C(3,6),D(-2,4);(2)24. 50.如图所示,在象棋盘上建立平面直角坐标系,使使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标.【来源】沪教版七年级下册数学第15章平面直角坐标系单元检测卷【答案】“兵”所在位置的坐标(﹣2,3).试卷第11页,总11页。
人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)
第七章平面直角坐标系单元测试一、单项选择题(共7 题;共 28 分)1.以下是甲、乙、丙三人看地图时对四个坐标的描绘:甲:从学校向北直走500 米,再向东直走100 米可到图书室.乙:从学校向西直走300 米,再向北直走200 米可到邮局.丙:邮局在火车站西200 米处.依据三人的描绘,若从图书室出发,判断以下哪一种走法,其终点是火车站()A. 向南直走300 米,再向西直走200 米B. 向南直走300 米,再向西直走100 米C. 向南直走700 米,再向西直走200 米D. 向南直走700 米,再向西直走600 米2.平面直角坐标系中,以下各点中,在y 轴上的点是 ()A.(2,0)B. ( -2,3 )C.(0,3)D.(1,-3)3.若 y 轴上的点P 到 x 轴的距离为 3,则点 P 的坐标是()A. (3, 0)B. ( 0,3)C. ( 3, 0)或(﹣ 3, 0)D. (0, 3)或( 0,﹣ 3)4.已知 M(1,﹣ 2), N(﹣ 3,﹣2),则直线 MN 与 x 轴, y 轴的地点关系分别为()A. 订交,订交B. 平行,平行C. 垂直订交,平行D. 平行,垂直订交5.点 P(a,b)在第四象限 ,则点 P 到 x 轴的距离是 ()A. a-B. b-C. -aD. -b6.如图是某校的平面表示图的一部分,若用“(0,0)”表示校门的地点,“(0,3)”表示图书室的地点,则教课楼的地点可表示为()A. (0, 5)B(.5, 3)C(. 3, 5)D(.﹣ 5, 3)7.已知点 P 的坐标( 2a, 6﹣ a),且点 P 到两坐标轴的距离相等,则点P 的坐标是()A. (12,﹣ 12)或( 4,﹣ 4)B. (﹣ 12, 12)或( 4, 4)C.(﹣ 12, 12)D.(4,4)二、填空题(共 6 题;共 30 分)8.假如“2街 5 号”用坐标( 2,5)表示,那么(3 ,1)表示 ________9.将点 A( 1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移 5 个单位长度后获得的点A′的坐标为 ________.10.以下图的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是________.111.电影院里 5 排 2 号能够用( 5, 2)表示,则( 7, 4)表示 ________12.( 2015?广安)假如点 M ( 3, x)在第一象限,则 x 的取值范围是 ________ .13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A( 0,4),点 B 是 x 轴正半轴上的整点,记△ AOB 内部(不包含界限)的整点个数为m.如当点 B 的横坐标为 4 时, m=3;那么当点的横坐标为 4n( n 为正整数)时, m= ________ .(用含 n 的代数式表示)三、解答题(共 4 题;共 42 分)14.在平面直角坐标系中,点 A 在 y 轴正半轴上,点 B 与点 C 都在 x轴上,且点 B在点 C的左边,知足BC=OA.若﹣ 3a m﹣1b2与 a n b2n﹣2是同类项且 OA=m, OB=n,求出 m 和 n 的值以及点 C的坐标.15.某水库的景区表示图以下图(网格中每个小正方形的边长为1).若景点 A 的坐标为( 3 ,3),请在图中画出相应的平面直角坐标系,并写出景点B、 C、 D 的坐标.16.在平面直角坐标系中,已知 A(0, 0)、 B( 4, 0),点 C 在 y 轴上,且△ ABC的面积是 12.求点 C 的坐标.17.在雷达探测地区,能够成立平面直角坐标系表示地点.在某次行动中,当我两架飞机在A(- 1, 2)与B( 3, 2)地点时,可疑飞机在(-1,- 3)地点,你能找到这个直角坐标系的横、纵坐标的地点吗?把它们表示出来并确立可疑飞机的地点,谈谈你的做法.2答案一、单项选择题1-7.ACDDDBB二、填空题8.3街1号9.(﹣ 2, 2)10.(﹣ 3, 0)11.7排 4号12.x> 013.6n﹣ 3三、解答题14.解:∵﹣3a m﹣1b2与 a n b2n﹣2是同类项,∴,m = 3解得:{,∵OA=m=3, OB=n=2,∴B( 2,0)或(﹣ 2, 0),∵点 B 在点 C 的左边, BC=OA,∴C( 5,0)或( 1, 0)15.解:以下图:B(﹣ 2,﹣ 2), C( 0, 4), D( 6,5).16.解:∵ A( 0,0)、 B( 4, 0),∴AB=4,且 AB 在 x 轴上,设点 C 坐标是( 0, y),则依据题意得,112AB× AC=12,即2× 4× |y|=12,解得 y=±6.3∴点 C 坐标是:( 0, 6)或( 0, -6)17.解:能.以以下图,先把 AB 四平分,而后过凑近 A 点的分点 M 作 AB 的垂线即为 y 轴,以 AM 为单位长度沿 y 轴向下 2 个单位即为 O 点,过点 O 作 x 轴垂直于 y 轴,而后描出敌机地点为点 N.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019年度部编版七年级下册数学单元测试卷
第七章平面直角坐标系
满分:100分;考试时间:120分钟
学校:__________
一、选择题
1.如图,一个质点在第一象限及x轴、y轴上运动,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒移动一个单位,那么第35秒时,质点所在位置的坐标是()
A.(4.0)B.(5.0)C.(0.5)D.(5.5)
答案:B
解析:B
2.已知△ABC在平面直角坐标系中的位置如图所(图中小方格的边长均代表1个单位),将△ABC向右平移2个单位,则平移后的点B的坐标是()
A.(-l,1)B.(1,-l)C.(1,-2)D.(0,2)
答案:B
解析:B
3.将△ABC的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是()
A.关于x轴对称
B.关于y轴对称
C .原图形向x 轴负方向平移1个单位
D .原图形向y 轴负方向平移1个单位
答案:A
解析:A
4.若点P (m ,2)与点Q (3,n )关于y 轴对称,则m 、n 的值分别为( )
A . -3,2
B . 3,-2
C .-3,-2
D .3,2
答案:A
解析:A
5.在平面直角坐标系中,点P (2,1)向左平移3个单位得到的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 答案:B
解析:B
6.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )
A .()4,3-
B .()3,4--
C .()3,4-
D .()3,4-
答案:C
解析:C
7.已知点P (1,2)与点Q (x ,y )在同一条平行于x 轴的直线上,且Q 点到y 轴的距离等于2,那么点Q 的坐标是( )
A .(2,2)
B .(-2,2)
C .(-2,2)和(2,2)
D .(-2,-2)和(2,-2) 1.确定平面上一个点的位置,一般需要的数据个数为( )
A .无法确定
B .l 个
C .2个
D .3个
答案:C
解析:C C
8.若点P (x ,y )的坐标满足x y=0,则点P 的位置在( )
A .原点
B .x 轴上
C .y 轴上
D .x 轴上或y 轴上 答案:D
解析:D
9.右图是方格纸上画出的小旗图案,如果用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( )
A .(0,3)
B .(2,3)
C .(3,2)
D .(3,0)
答案:C
解析:C
二、填空题
10.a 是数据l ,2,3,4,5的中位数,b 是数据2,3,3,4的方差,则点P (a ,b )关于x 轴的对称点的坐标为 .
解析:(3,12
-) 11.在平面直角坐标系中.点A(x-l ,2-x)在第四象限,则实数x 的取值范围是 . 解析:2x >
12.若点(a ,b )在第二象限,则点(a b -,ab )在第 象限.
解析:三
13.如果点M(1x -,1y -)是坐标原点,那么分式
223x y x y +-的值为 . 解析:-3
14.根据指令[s ,A]( s ≥0,0°<A<180°)机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现机器人在坐标原点,且面对x 轴正 方向.则给机器人下一个指令 ,使其能移动到点(-5,5).
解析:[°]
15.在平面直角坐标系中,点P(26x -,5x -)在第四象限,则x 的取值范围是 . 解析:35x <<
16.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标: .
解析:(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可.
17.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-l)、(-1,2)、(3,-1),则第四个顶点的坐标为 .
解析:(3,2)
18.如图,若图中A 、B 两点的的坐标分别为(-3,5)、(3,5),则C 在同一坐标系下的坐
标是.
解析:(-1,7)
19.在直角坐标系中,△ABC的三个顶点的位置如图所示.
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);
(2)直接写出A′,B′,C′三点的坐标.
解析:(1)图略;(2)A′(2,3),B′(3,1),C′(-1,-2)
20.已知A(1,n),B(b,-2).
(1)若A、B关于x轴对称,则a= ,b= ;
(2)若A、B关于y轴对称,则n= ,b= ;
(3)若线段AB上x轴,则a= ,b= .
解析:(1)2,1;(2)-2,-l;(3)≠-2,=1
21.在平面内,两条且的数轴,组成平面直角坐标系.其中水平的数轴称或,竖直的数轴称或,两坐标轴的交点称为平面直角坐标系的.
解析:互相垂直,有公共点,横轴,x轴,纵轴,y轴,原点
三、解答题
22.如图,图中标出了星海中学的位置.图中每个小正方形的边长均代表50 m,晓婷家、林威家、慧儿家的位置是:
晓婷家:出校门向东走l50m,再向北走200m.
林威家:出校门向西走200m,再向北走350m,最后向东走50m.
慧儿家:出校门向南走l00m.再向东走300m,最后向南走75m.
(1)请在图中标出晓婷家、林威家、慧儿家的位置;
(2)以晓婷家所在位置为原点,建立平面直角坐标系.并在图中标明星海中学、林威家、慧儿家的坐标.
解析:如图:
23.(1)在图①,②,③中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),写出图①,②,③中的顶点C的坐标,它们分别是,,;
(2)在图④中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
(3)通过对图①,②,③,④的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图④)时,四个顶点的横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为.(不必证明).
解析:(1)(5,2),(e+c,d),(c+e-a,d);(2)C(e+c-a,f+d-6);(3)m=c+e-a,n=d+f-
24.如图,在平面直角坐标系中,请接下列要求分别作出△ABC 变换后的图形(图中每个小正方形的边长为 1 个单位):
(1)向右平移8个单位;
(2)关于x轴对称.
解析:图略
25.如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,O),B(3,6),C(14,8),D(16,0),确定这个四边形的面积.
解析:94。