初二数学二元一次方程组专题
中考数学总复习《二元一次方程组》专项提升练习(附答案)
中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。
定义2:把两个方程合在一起,就组成了方程组。
定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。
定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列方程(组)。
根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。
根据方程(组)的类型采用相应的解法。
第5步:答。
专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。
初二数学上学期第七章二元一次方程组知识点加试题
第七章:二元一次方程组考点1: 方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程. 2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组. 3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解. 4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法. 5.整体思想解方程组.(1)整体代入.如解方程组3(1) 5 5(1)3(5) x y y x -=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的3(x+5)看作一个整体代入③中,可简化计算过程,求得y .然后求出方程组的解.(2)整体加减,如1+3y 19 313x+y 11 3x ⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x 、y 的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x -y=3④,可使③、④组成简单的方程组求得x ,y . 二、经典考题剖析:【考题1-1】(2004、汉中)若x+y+4则 3x+2y =_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y =3×2+2×(-6)= -6 【考题1-2】(2004、北碚,5分) 解方程组:x-y=42x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解. 三、针对性训练:( 20分钟) (答案:242 ) 1、对方程组4x+7y=-19 4x-5y=17 ⎧⎨⎩①②,用加减法消去x ,得到的方程为( )A 、2y=-2 =-36 C. 12y=-2 =-36 2.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是( ) A .11x=x=2x=73 C. D.19y=8y=3y=3x=3 B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩ 3.若x=-2y=1⎧⎨⎩ 是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b ) (a -b )的值为( )A. -353B. 353 C. -164.解方程组:⑴2x+5y=53x+2y=53x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵ 5.已知方程组ax+5y=15 4x-by=-2 ⎧⎨⎩①②由于甲看错了方程①中的a 得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b ,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a 、b 为计算,求原方程组的解x 与y 的差.6.若a+b4b 与3a+b 是同类二次根式,求a 、b 的值.7.已知关于x ,y 的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k 的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X 的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用 一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性. 二、经典考题剖析: 【考题2-1】(2004、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品( )A .赚50%B .赔50%C .赔25%D .不赔不赚【考题2-2】(2004、南山区正题3分)如图1-7-1,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )A .9015x y x y +=⎧⎨=-⎩ B .90215x y x y +=⎧⎨=-⎩ C .90152x y x y+=⎧⎨=-⎩ D .290215x x y =⎧⎨=-⎩【考题2-3】(2004、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。
二元一次方程组计算题100道含过程
二元一次方程组计算题100道含过程
1. 题目
解下列二元一次方程组:
1.2x + y = 6 3x - y = 4
2.-x + y = 5 2x + 3y = 8
…
2. 解答
问题1
1.将第一个方程变形为:2x = 6 - y,然后列出方程组为: 2x = 6 - y 3x - y = 4
2.将第一个方程中的2x代入第二个方程,得出:(6 - y) + 3x - y = 4,化简后为: -2y + 3x = -2
3.将上述方程整理为标准形式:3x - 2y = -2
4.解方程组: 2x + y = 6 3x - 2y = -2
可以通过消元法或代入法进行解答。
…
问题2
1.将第一个方程变形为:-x = 5 - y,然后列出方程组为: -x = 5 - y 2x + 3y = 8
2.将第一个方程中的-x代入第二个方程,得出:(5 - y) + 2x + 3y = 8,化简后为: 2x + 2y = 3
3.将上述方程整理为标准形式:2x + 2y = 3
4.解方程组: -x + y = 5 2x + 2y = 3
可以通过消元法或代入法进行解答。
…
以此类推,解答剩下的97道题目。
结论
通过解答以上100道二元一次方程组计算题,我们可以得到每道题的解。
在解答过程中,使用了消元法和代入法两种常见的解方程的方法。
这些题目的目的是帮助我们熟悉解二元一次方程组的过程,并加深对方程组解法的理解。
注意:以上解答过程仅以两种常见的解法作为示例,实际解答时可以根据问题的具体情况选择合适的解法。
八年级数学精选二元一次方程组练习题100道
二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2;(B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎨==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
初二数学(二元一次方程组专题复习)
二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【典型例题】1.在下列方程中,不是二元一次方程的有()A.x+y=3 B.xy=3 C.x-y=3 D.x=3-y次方程.A.1个B.2个C.3个D.4个3.若关于x,y的方程x m+1+y n-2=0是二元一次方程,则m+n的和为()A.0 B.1 C.2 D.3【变式练习】1.下列各式中,属于二元一次方程的是()A.x2-25=0 B.x=2y C.y-6=0 D.x+y+z=02.下列四个方程中,是二元一次方程的是()A.xy=3 B.2x-y2=9 C.132x y=+D.3x-2y=03.若x a-2+3y b+3=15是关于x,y的二元一次方程,则a+b的值为()A.1 B.-1 C.2 D.-2 【提高练习】1.下列式子中,属于二元一次方程的是()A.2x+3=x-5 B.x+y<2 C.3x-1=2-5y D.xy≠1 2.已知:mx-3y=2x+6是关于x、y的二元一次方程,则m的值为()A.m≠0B.m≠3C.m≠-2 D.m≠23.已知x2m-1+3y4-2n=-7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.【典型例题】1.若是关于x、y的二元一次方程ax-3y=1的解,则a的值为()A.-5 B.-1 C.2 D.72.方程x+2y=5的正整数解有()A.一组B.二组C.三组D.四组3.已知方程5x-2y=1,当x与y相等时,x与y的值分别是()A.x=13,y=13B.x=-1,y=-1 C.x=1,y=1 D.x=2,y=2【变式练习】1.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解2.若是方程2x-3y+a=1的解,则a的值是()A.1 B.12C.2 D.03.已知是二元一次方程2x-y=14的解,则k的值是()A.2 B.-2 C.3 D.-34、方程2x+y=9在正整数范围内的解有()A、1个B、2个C、3个D、4个【提高练习】1.方程x +y =6的非负整数解有( ) A .6个B .7个C .8个D .无数个2.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 【典型例题】1、下列方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x2.下列方程组中,是二元一次方程组的是( )A 、B 、C 、D 、3.若方程组是二元一次方程组,则a 的值为_______.4.关于x 、y 的方程组的解是,则|m -n |的值是( )A .5B .3C .2D .15.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______.【变式练习】1.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2.下列方程组中,不是二元一次方程组的是( )A 、B 、C 、D 、3.已知是二元一次方程组的解,则2m -n 的算术平方根为( ) A .±2B .2 C .2D .44.若方程组2x y b x by a +=⎧⎨-=⎩的解是1x y =⎧⎨=⎩,那么│a -b │=_____.【提高练习】1.方程2x +3y =11和下列方程构成的方程组的解是 的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =62.已知│2x -y -3│+(2x +y +11)2=0,则( ) A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩3、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】若1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______.【变式练习】1、以x 、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解相同,试求a 、b 的值.2、若把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与⎩⎨⎧=-=+184393by ax y x 的解相同,试求a 、b 的值.【例四】已知二元一次方程3x +4y =6,当x 、y 互为相反数时,x =_____,y =______;当x 、y 相等时,x =______,y = _______ . 【例五】已知2x 2m -3n -7-3y m +3n +6=8是关于x ,y 的二元一次方程,求n 2m【变式练习】1、若2a y +5b 3x 与-4a 2x b 2-4y是同类项,则a =______,b =_______.2、如果(5a -7b +3)2+53+-b a =0,求a 与b 的值.【扩展】代入法在一些特殊方程中的巧妙应用⎩⎨⎧-=+-=+1)(258y x x y x【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用__________________法解比较方便.【变式练习】【例六】已知方程mx +ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、若2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+a y x ay x 4的解是二元一次方程3x -5y -28=a 的一个解,那么a 的值是_________.3、若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x my x 的解x 与y 的差是7,求m 的值.4、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值.【例七】已知⎩⎨⎧=+=+8272y x y x ,那么x -y 的值是___________.【变式练习】1、已知⎩⎨⎧=+=+8272y x y x ,则y x yx +-=_________. 2、已知⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x =__________.⎪⎪⎩⎪⎪⎨⎧=+=-+4231432y x y yx 观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) (4)【知识点三:一次函数与二元一次方程(组)的综合应用】1.若直线y =2x+n 与y =mx -1相交于点(1,-2),则( ). A .m =12,n =-52 B .m =12,n =-1 C .m =-1,n =-52 D .m =-3,n =-322.直线y =12x -6与直线y =-231x -1132的交点坐标是( ).A .(-8,-10)B .(0,-6)C .(10,-1)D .以上答案均不对 3.在y =kx +b 中,当x =1时y =2;当x =2时y =4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B . 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D . 02k b =⎧⎨=⎩4.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( ) A .4 B .-4 C .2 D .-2⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x y x5.已知4353xy⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x yxy+=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x和y=2x+1的交点是________.6.一次函数y=3x+7的图像与y轴的交点在二元一次方程-2x+by=18上,则b=_________.7.已知关系x,y的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.8.已知方程组230,2360y xy x-+=⎧⎨+-=⎩的解为4,31,xy⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P的坐标是______.9.若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.10.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?________,这说明方程组2,3,x yx y-=-⎧⎨-=⎩_______.11.如图所示,求两直线的解析式及图像的交点坐标.12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗?【知识点四:二元一次方程组应用题】【一、百分数问题】1.某市现有42万人口,计划一年后城镇人口增加%,农村人口增加工厂%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元?4.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。
初二数学_[二元一次方程组专题复习]
二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 【典型例题】1.在下列方程中,不是二元一次方程的有( )A .x +y =3B .xy =3C .x -y =3D .x =3-y2.下列方程中,①2x -xy =1;②1102x y-=;③x 2-x =1;④3x -5y =6有( )二元一次方程. A .1个B .2个C .3个D .4个3.若关于x ,y 的方程xm +1+yn -2=0是二元一次方程,则m +n 的和为( )A .0B .1C .2D .3【变式练习】1.下列各式中,属于二元一次方程的是( )A .x 2-25=0B .x =2yC .y -6=0D .x +y +z =02.下列四个方程中,是二元一次方程的是( ) A .xy =3 B .2x -y 2=9 C .132x y=+D .3x -2y =03.若x a-2+3y b +3=15是关于x ,y 的二元一次方程,则a +b 的值为( )A .1B .-1C .2D .-2【提高练习】1.下列式子中,属于二元一次方程的是( )A .2x +3=x -5B .x +y <2C .3x -1=2-5yD .xy ≠12.已知:mx -3y =2x +6是关于x 、y 的二元一次方程,则m 的值为( )A .m ≠0B .m ≠3C .m ≠-2D .m ≠2 3.已知x 2m -1+3y 4-2n=-7是关于x ,y 的二元一次方程,则m 、n 的值是( )A .B .C .D .二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集. 【典型例题】1.若 是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为( )A .-5B .-1C .2D .72.方程x +2y =5的正整数解有( ) A .一组B .二组C .三组D .四组3.已知方程5x -2y =1,当x 与y 相等时,x 与y 的值分别是( )A .x =13,y =13B .x =-1,y =-1C .x =1,y =1D .x =2,y =2【变式练习】1.二元一次方程5a -11b =21( )A .有且只有一解B .有无数解C .无解D .有且只有两解2.若 是方程2x -3y +a =1的解,则a 的值是( )A .1B .12C .2D .0 3.已知 是二元一次方程2x -y =14的解,则k 的值是( )A .2B .-2C .3D .-34、方程2x +y =9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个【提高练习】1.方程x +y =6的非负整数解有( ) A .6个B .7个C .8个D .无数个2.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.【典型例题】1、下列方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x2.下列方程组中,是二元一次方程组的是( )A 、B 、C 、D 、3.若方程组是二元一次方程组,则a 的值为_______.4.关于x 、y 的方程组的解是,则|m -n |的值是( )A .5B .3C .2D .15.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______.【变式练习】1.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y xx y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2.下列方程组中,不是二元一次方程组的是( )A 、B 、C 、D 、3.已知是二元一次方程组的解,则2m -n 的算术平方根为( ) A .±2B .2C .2D .44.若方程组2x y b x by a +=⎧⎨-=⎩的解是1x y =⎧⎨=⎩,那么│a -b │=_____.【提高练习】1.方程2x +3y =11和下列方程构成的方程组的解是 的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =62.已知│2x -y -3│+(2x +y +11)2=0,则( ) A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩3、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】若1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______. 【变式练习】1、以x 、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解相同,试求a 、b 的值.2、若把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与⎩⎨⎧=-=+184393by ax y x 的解相同,试求a 、b 的值. 【例四】已知二元一次方程3x +4y =6,当x 、y 互为相反数时,x =_____,y =______;当x 、y 相等时,x =______,y = _______ . 【例五】已知2x 2m-3n -7-3y m +3n +6=8是关于x ,y 的二元一次方程,求n 2m【变式练习】1、若2a y +5b 3x 与-4a 2x b 2-4y是同类项,则a =______,b =_______.2、如果(5a -7b +3)2+53+-b a =0,求a 与b 的值. 【扩展】代入法在一些特殊方程中的巧妙应用⎩⎨⎧-=+-=+1)(258y x x y x【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.⎪⎪⎩⎪⎪⎨⎧=+=-+4231432y x y yx 这两个方程组用__________________法解比较方便.【变式练习】【例六】已知方程mx +ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、若2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+a y x ay x 4的解是二元一次方程3x -5y -28=a 的一个解,那么a 的值是_________.3、若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x my x 的解x 与y 的差是7,求m 的值.4、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值.【例七】已知⎩⎨⎧=+=+8272y x y x ,那么x -y 的值是___________.【变式练习】1、已知⎩⎨⎧=+=+8272y x y x ,则y x y x +-=_________. 2、已知⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x=__________.观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) (4)【知识点三:一次函数与二元一次方程(组)的综合应用】1.若直线y =2x+n 与y =mx -1相交于点(1,-2),则( ). A .m =12,n =-52 B .m =12,n =-1 C .m =-1,n =-52 D .m =-3,n =-32 2.直线y =12x -6与直线y =-231x -1132的交点坐标是( ).A .(-8,-10)B .(0,-6)C .(10,-1)D .以上答案均不对 3.在y =kx +b 中,当x =1时y =2;当x =2时y =4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B .20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D . 02k b =⎧⎨=⎩ 4.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( ) A .4 B .-4 C .2 D .-25.已知4353x y ⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x y xy +=⎧⎪⎨-=⎪⎩的解,那么一次函数y =3-x 和y =2x +1的交点是________. 6.一次函数y =3x +7的图像与y 轴的交点在二元一次方程-2x +by =18上,则b =_________.7.已知关系x ,y 的二元一次方程3ax +2by =0和5ax -3by =19化成的两个一次函数的图像的交点坐标为(1,-1),则a =_______,b =________.8.已知方程组230,2360y x y x -+=⎧⎨+-=⎩的解为4,31,x y ⎧=⎪⎨⎪=⎩则一次函数y =3x -3与y =-32x +3的交点P 的坐标是______.9.若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,求a 的值.10.(1)在同一直角坐标系中作出一次函数y =x +2,y =x -3的图像. (2)两者的图像有何关系?(3)你能找出一组数适合方程x -y =2,x -y =3吗?________,这说明方程组2,3,x y x y -=-⎧⎨-=⎩_______.11.如图所示,求两直线的解析式及图像的交点坐标.⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x yx12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗?【知识点四:二元一次方程组应用题】【一、百分数问题】1.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少? 3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元?4.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。
完整版初中数学专项练习《二元一次方程组》100道解答题包含答案
初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。
4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。
专题07 二元一次方程组(归纳与讲解)(原卷版)
专题07 二元一次方程组【专题目录】技巧1:二元一次方程组的五种特殊解法技巧2:二元一次方程组中六种类型数学思想的应用 技巧3:二元一次方程(组)的解的五种常见应用 【题型】一、二元一次方程组的有关概念 【题型】二、用代入法解二元一次方程组 【题型】三、用加减法解二元一次方程组 【题型】四、用整体消元法解二元一次方程组 【题型】五、同解方程组 【题型】六、列二元一次方程组 【考纲要求】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
【考点总结】一、二元一次方程组(1)概念:具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.【注意】1.解二元一次方程组的步骤(1)代入消元法① 变:将其一个方程化为y=ax+b或者为x=ay+b的形式① 代:将y=ax+b或者为x=ay+b代入另一个方程① 解:解消元后的一元一次方程① 求:将求得的未知数值代入y=ax+b或x=ay+b,求另一个未知数的值① 答:写出答案(2)加减消元法① 化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式,① 加减:将变形后的方程组通过加减消去一个未知数① 解:解消元后的一元一次方程① 求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值2.解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法;(2)当方程组中某一个方程的常数项为0时,选用代入消元法;(3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法(4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法 【技巧归纳】技巧1:二元一次方程组的五种特殊解法 【类型】一、引入参数法解二元一次方程组 1.用代入法解方程组: ⎩⎪⎨⎪⎧x 5+y 6=0,①3(x -y )-4(3y +x )=85.①【类型】二、特殊消元法解二元一次方程组 题型1:方程组中两未知数系数之差的绝对值相等2.解方程组:⎩⎪⎨⎪⎧2 015x +2 016y =2 017,①2 016x +2 017y =2 018.①题型2:方程组中两未知数系数之和的绝对值相等3.解方程组:⎩⎪⎨⎪⎧13x +14y =40,①14x +13y =41.②【类型】三、利用换元法解二元一次方程组 4.解方程组⎩⎪⎨⎪⎧3(x +y )+4(x -y )=20,x +y 4-x -y 2=0.【类型】四、同解交换法解二元一次方程组5.已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax -by =4,3x -y =5与方程组⎩⎪⎨⎪⎧ax +by =16,4x -7y =1的解相同,求(a -b)2 018的值. 【类型】五、运用主元法解二元一次方程组6.已知⎩⎪⎨⎪⎧4x -3y -3z =0,x -3y -z =0(x ,y ,z 均不为0),求xy +2yzx 2+y 2-z 2的值.技巧2:二元一次方程组中六种类型数学思想的应用 【类型】一、整体思想 1.先阅读,然后解方程组.解方程组⎩⎪⎨⎪⎧x -y -1=0,①4(x -y )-y =5②时,由①,得x -y =1,③然后再将③代入②,得4×1-y =5,解得y =-1,从而进一步求得x =0.所以方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.这种方法被称为“整体代入法”.请用这样的方法解下面的方程组:⎩⎪⎨⎪⎧2x -3y -2=0,2x -3y +57+2y =9. 2.若x +2y +3z =10,4x +3y +2z =15,求x +y +z 的值. 【类型】二、化繁为简思想3.阅读下面解方程组的方法,然后解决问题:解方程组⎩⎪⎨⎪⎧19x +18y =17,①17x +16y =15②时,我们如果直接考虑消元,会很繁琐,而采用下面的解法则是轻而易举的.解:①-②,得2x +2y =2,所以x +y =1.③ ③×16,得16x +16y =16,④②-④,得x =-1,将x =-1代入③,得y =2.所以原方程组的解是⎩⎪⎨⎪⎧x =-1,y =2.请用上述方法解方程组⎩⎪⎨⎪⎧2 018x +2 017y =2 016,2 016x +2 015y =2 014.【类型】三、方程思想4.已知(5x -2y -3)2+|2x -3y +1|=0,求x +y 的值. 5.若3x 2m+5n +9+4y 4m-2n -7=2是二元一次方程,求(n +1)m+2 018的值.【类型】四、换元思想6.解方程组⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2.【类型】五、数形结合思想7.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒共需多少元?【类型】六、分类组合思想8.若方程组⎩⎪⎨⎪⎧4x -y =5,ax +by =-1与⎩⎪⎨⎪⎧3x +y =9,3ax -4by =18有公共解,求a ,b 的值.技巧3:二元一次方程(组)的解的五种常见应用 【类型】一、已知方程(组)的解求字母的值1.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =2,y =1,则|m -n|的值为( ) A .1 B .3 C .5 D .22.已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-4,y =2是关于x ,y 的二元一次方程2ax -by =2的两组解,求a ,b 的值.【类型】二、已知二元一次方程组与二元一次方程同解求字母的值3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m ,x -y =9m 的解也是方程3x +2y =17的解,求m 的值.【类型】三、已知二元一次方程组的解满足某一关系求字母的值4.已知m ,n 互为相反数,关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =60,3x -y =8的解也互为相反数,求m ,n 的值.【类型】四、已知两个二元一次方程组共解求字母的值5.关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,ax -by =-4与⎩⎪⎨⎪⎧3x -5y =16,bx +ay =-8有相同的解,求(2a +b)2 018的值.【类型】五、已知二元一次方程组的误解求字母的值6.在解方程组⎩⎪⎨⎪⎧2ax +y =5,2x -by =13时,由于粗心,甲看错了方程组中的a ,得解为⎩⎪⎨⎪⎧x =72,y =-2;乙看错了方程组中的b ,得解为⎩⎪⎨⎪⎧x =3,y =-7.(1)甲把a 错看成了什么?乙把b 错看成了什么? (2)求出原方程组的正解. 【题型讲解】【题型】一、二元一次方程组的有关概念例1、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( )A .3B .3,-3CD【题型】二、用代入法解二元一次方程组例2、二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩【题型】三、用加减法解二元一次方程组例3、由方程组+=43x my m⎧⎨-=⎩可得出x与y之间的关系是().A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7【题型】四、用整体消元法解二元一次方程组例4、若方程组237351m nm n-=⎧⎨+=⎩的解是21mn=⎧⎨=-⎩,则方程组()()()()2132731521x yx y⎧+--=⎪⎨++-=⎪⎩的解是()A.11xy=⎧⎨=⎩B.11xy=⎧⎨=-⎩C.31xy=⎧⎨=⎩D.33xy=⎧⎨=-⎩【题型】五、同解方程组例5、已知关于x①y的方程组2342x yax by-=⎧⎨+=⎩,与3564x ybx ay-=⎧⎨+=-⎩,有相同的解,则a①b的值为① ①A.21ab=-⎧⎨=⎩B.12ab=⎧⎨=-⎩C.12ab=⎧⎨=⎩D.12ab=-⎧⎨=-⎩【题型】六、列二元一次方程组例6、《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩二元一次方程组(达标训练)一、单选题1.(2022·广东·深圳外国语学校模拟预测)“绿水青山就是金山银山”,某地准备购买一些松树和柏树绿化荒山,已知购买2棵松树和3棵柏树需要120元,购买2棵松树比1棵柏树多20元,设每棵松树x 元,每棵柏树y 元,则列出的方程组正确的是( )A .23120220x y x y +=⎧⎨-=⎩B .23120220x y x y +=⎧⎨+=⎩C .23120220x y y x +=⎧⎨-=⎩D .32120220x y x y +=⎧⎨+=⎩2.(2022·天津河北·一模)方程组282x y x y+=⎧⎨=⎩的解是( )A .21x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .24x y =⎧⎨=⎩3.(2022·天津红桥·三模)方程组21230x y y x +=-⎧⎨+=⎩的解是( ).A .11x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .23x y =⎧⎨=-⎩4.(2022·上海杨浦·二模)下列方程中,二元一次方程的是( ) A .1xy =B .210x -=C .1x y -=D .11x y+= 5.(2022·山东威海·一模)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则2a b-的值是( ) A .2- B .2C .3D .3-二、填空题6.(2022·湖南娄底·二模)我国明代数学读本《算法统宗》一书中有这样道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果一托为5尺,那么索长与竿子长之和为______尺.7.(2022·江苏无锡·二模)已知方程组26221x y x y +=⎧⎨+=⎩,则x y +的值为______.三、解答题8.(2022·广东·广州市第一二三中学模拟预测)阅读材料:善于思考的小军在解方程组()1045x y x y y --=⎧⎪⎨--=⎪⎩①②时,采用了一种“整体代入”的解法: 解:由①得x ﹣y =1①将①代入①得:4×1﹣y =5,即y =﹣1把y=﹣1代入①得x=0,①方程组的解为1 xy=⎧⎨=-⎩请你模仿小军的“整体代入”法解方程组,解方程232235297x yx yy-=⎧⎪-+⎨+=⎪⎩.二元一次方程组(提升测评)一、单选题1.(2022·广东·江门市新会东方红中学模拟预测)若最简二次根式3a则a、b的值分别是()A.2和1B.1和2C.2和2D.1和12.(2022·福建·平潭翰英中学一模)已知12xy=⎧⎨=⎩是二元一次方程组{mx−ny=8nx+my=1的解,则43m n+的立方根为()A.±1BC.±D.1-3.(2022··二模)我们知道二元一次方程组233345x yx y-=⎧⎨-=⎩的解是31xy=⎧⎨=⎩.现给出另一个二元一次方程组2(21)3(31)33(21)4(31)5x yx y+--=⎧⎨+--=⎩,它的解是()A.123xy=-⎧⎪⎨=⎪⎩B.123xy=-⎧⎪⎨=-⎪⎩C.123xy=⎧⎪⎨=⎪⎩D.123xy=⎧⎪⎨=-⎪⎩4.(2022·福建宁德·二模)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x辆车,y人,根据题意,列方程组是()A.2932y xy x=+⎧⎨=-⎩B.293(2)y xy x=+⎧⎨=-⎩C.2932y xy x=-⎧⎨=-⎩D.()2932y xy x=-⎧⎨=-⎩5.(2022·广东·揭阳市实验中学模拟预测)如果关于x,y的方程组436626x yx my-=⎧⎨+=⎩的解是整数,那么整数m的值为()A .4,4-,5-,13B .4,4-,5-,13-C .4,4-,5,13D .4-,5,5-,13二、填空题6.(2022·江苏南通·二模)我国古代数学名著《孙子算经》中记载了一道题,原文:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?注释:(娟)纺织品的统称;(人得)每人分得;(匹)量词,用于纺织品等,(盈):剩下.若设贼有x 人,库绢有y 匹,则可列方程组为______.三、解答题7.(2022·广东·华南师大附中三模)解下列方程组: (1)1223334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩;(2)6234()5()2x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩; (3)0.10.3 1.3123x y x y+=⎧⎪⎨-=⎪⎩; (4)23433x y x y ⎧=⎪⎨⎪-=⎩. 8.(2022·浙江温州·二模)为促进学生体育活动,学校计划采购一批球类器材,当每班购进5个排球和6个篮球时花费360元;购进10个排球和2个篮球时花费270元. (1)求排球和篮球的单价.(2)为扩充器材室储备,现还需购买120个排球和篮球,其中排球的数量不少于篮球数量的23,如何购买总费用最少.(3)经调查,为满足不同学生的需要,学校准备新增购进进价为每个60元的足球,篮球和排球的仍按需购进,进价不变,排球是篮球的4倍,共花费9000元,则学校至少可以购进多少个球类器材?。
—二元一次方程组篇(解析版)--中考数学必考考点总结+题型专训
知识回顾微专题二元一次方程组--中考数学必考考点总结+题型专训考点一:二元一次方程组之相关概念:1.二元一次方程的定义:含有两个未知数,且含有未知数的项的次数是1的整式方程叫做二元一次方程。
2.二元一次方程组的定义:把两个二元一次方程组合在一起,就组成一个二元一次方程组。
3.二元一次方程的解:使二元一次方程左右两边成立的两个未知数的值叫做二元一次方程的一组解。
对于给定其中一个未知数的值总能求出另一个未知数的值。
所以二元一次方程的解成对出现,且无数对。
4.二元一次方程组的解:二元一次方程组中两个方程的公共解。
叫做二元一次方程组的解。
1.(2022•雅安)已知⎩⎨⎧==21y x 是方程ax +by =3的解,则代数式2a +4b ﹣5的值为.【分析】把x 与y 的值代入方程计算得到a +2b 的值,原式变形后代入计算即可求出值.【解答】解:把代入ax +by =3得:a +2b =3,则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1.故答案为:1.2.(2021•凉山州)已知⎩⎨⎧==31y x 是方程ax +y =2的解,则a 的值为.【分析】把方程的解代入方程,得到关于a 的一元一次方程,解方程即可.【解答】解:把代入到方程中得:a +3=2,∴a =﹣1,故答案为:﹣1.3.(2021•金华)已知⎩⎨⎧==my x 2是方程3x +2y =10的一个解,则m 的值是.【分析】把二元一次方程的解代入到方程中,得到关于m 的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m =10,∴m =2,故答案为:2.4.(2021•浙江)已知二元一次方程x +3y =14,请写出该方程的一组整数解.【分析】把y 看作已知数求出x ,确定出整数解即可.【解答】解:x +3y =14,x =14﹣3y ,当y =1时,x =11,则方程的一组整数解为.故答案为:(答案不唯一).5.(2021•台湾)若二元一次联立方程式⎩⎨⎧=-=1064x y yx 的解为x =a ,y =b ,则a +b 之值为何?()A .﹣15B .﹣3C .5D .25【分析】运用加减消元法求出方程组的解,即可得到a ,b 的值,再求a +b 即可.【解答】解:,①+②得:6y =4y +10,∴y =5,把y =5代入①得:x =20,∴a +b =x +y =20+5=25,故选:D .6.(2021•无锡)若x ,y 满足方程组⎩⎨⎧=-=-24732y x y x ,则x +y =.知识回顾【分析】把方程组的两个方程的左右两边分别相减,求出x +y 的值即可.【解答】解:,①﹣②,可得:(2x ﹣3y )﹣(x ﹣4y )=7﹣2,∴x +y =5.故答案为:5.7.(2021•遵义)已知x ,y 满足的方程组是⎩⎨⎧=+=+73222y x y x ,则x +y 的值为.【分析】将方程组中的两个方程直接相减即可求解.【解答】解:,②﹣①得,x +y =5,故答案为5.8.(2021•枣庄)已知x ,y 满足方程组⎩⎨⎧=+-=+32134y x y x ,则x +y 的值为.【分析】用加减消元法解二元一次方程组,然后求解.【解答】解:方法一:,①﹣②,得:2x +2y =﹣4,∴x +y =﹣2,故答案为:﹣2.方法二:,②×2,得:4x +2y =6③,①﹣③,得:y =﹣7,把y =﹣7代入②,得2x ﹣7=3,解得:x =5,∴方程组的解为,∴x +y =﹣2,故答案为:﹣2.考点二:二元一次方程组之解二元一次方程组:微专题1.解二元一次方程组的思想:消元思想:将方程组中的未知数由多化少,逐一解决的思想。
二元一次方程组(题型篇)-初中数学题型大全
A.3B. C. D.
【详解】
解:把 代入: ,
故选: .
变式
1.下列四组数中,是方程 的解的是( )
A. B. C. D.
【答案】A
【解析】
【详解】将A选项代入得4×0−(−10)=10,所以此选项正确;
将B选项代入得4×3.5−(−4)=18,所以此选项错误;
【详解】
两人的速度和为 (千米/时),
设甲的速度为 千米/时,乙的速度为 千米/时,
由题意可得 ,
解得 .
答:甲的速度为6千米/时,乙的速度为2千米/时.
变式4.3
8.从夏令营地到学校先下山后走平路,某人骑自行车以12千米/时速度下山,再以9千米/时速度通过平地,用了1小时,返回时以8千米/时通过平路,6千米/时速度上山回到原地,共用1小时15分钟,求营地到学校有多远?
故该方程组的解为 .
【点睛】此题考查的是解三元一次方程组,掌握利用加减消元法解三元一次方程组是解决此题的关键.
题型四:二元一次方程组的实际应用
二元一次方程组在实际应用过程中要重点把握等量关系的建立,找到题目中隐藏的两个变量,建立方程组,解方程即可.
常见的问题有:将错就错(错中求解);方案选择;行程问题;工程问题;数字问题;销售利润问题;古代问题等.
把 代入①,得 ,
解得: ,
所以原方程组的解是 .
【点睛】本题考查加减消元法解方程组,关键是要使方程组一未知数系数的绝对值相等,同号两式相减,异号两式相加.
③整体代入
例2.3先阅读,再解方程组.
解方程组 时,可由①得 ③,然后再将③代入②,
得 ,解得 ,从而进一步得 这种方法被称为“整体代入法”.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学二元一次方程组专题
一、选择题
1.小明解方程组x+y=■的解为x=5,由于不小心滴下了两滴墨水,刚好把两
个数■和★遮住了,则这个数■和★的值为()
A. B. C. D.
2.已知关于x,y的二元一次方程组的解为,则a-2b的值是
()
A. -2
B. 2
C. 3
D. -3
3.若方程组的解中x的值比y的值的相反数大1,则k为()
A. 3
B. -3
C. 2
D. -2
4.用加减消元法解二元一次方程组,由①-②可得的方程为()
A. 3x=5
B. -3x=9
C. -3x-6y=9
D. 3x-6y=5
5.已知a,b,c是△ABC的三边长,其中a,b是二元一次方程组的解,
那么c的值可能是下面四个数中的()
A. 2
B. 6
C. 10
D. 18
6.若方程组的解x、y满足0<x+y<1,则k的取值范围是()
A. 0<k<8
B. -1<k<0
C. -4<k<0
D. k>-4
二、填空题(本大题共8小题,共24.0分)
7.若+|2a-b+1|=0,则(b-a)2016=______.
8.若单项式-5x4y2m+n与2017x m-n y2是同类项,则m-7n的算术平方根是______ .
9.是否存在整数k,使方程组的解中,x大于1,y不大于1,则k的值为______.
10.已知方程(m2-1)x2+(m+2)x+(m+1)y=m+3,当m= ______ 时该方程是一元
一次方程;当m= ______ 时该方程是二元一次方程.
11.已知关于x,y的方程组的解满足x+y>0,则a的取值范围是______ .
12.如果二元一次方程组的解是二元一次方程2x-3y+12=0的一个解,那么
a的值是______ .
13.若二元一次方程组的解为x=a,y=b,则a+b= ______ .
14.方程组满足x>0,y<0,则a的取值范围是______ .
三、计算题(本大题共1小题,共6.0分)
15.已知x,y满足方程组,
(1)用x的代数式表示y;
(2)若不论x取何值,代数式(kx-y)(y+x)的值都为常数,求此时k的值以及该代数式的值.
四、解答题(本大题共5小题,共40.0分)
16.解方程组.
17.已知长方形的周长为320厘米,两条邻边分别为x厘米、y厘米,并且x2(x+y)-9y2
(x+y)=0,求长方形的面积.
18.已知a、b满足方程组
(1)求a,b的值;
(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.
19.已知2x-3y+z=0,3x-2y-6z=0,且xyz≠0,求的值.。