2009年首都师范大学高等代数考研真题
2009年考研数学三真题及答案解析
2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 函数()3sin x x f x xπ-=的可去间断点的个数为 ( )(A) 1.(B) 2. (C) 3.(D) 无穷多个.(2) 当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则 ( )(A) 11,6a b ==-. (B) 11,6a b ==. (C) 11,6a b =-=-. (D) 11,6a b =-=.(3) 使不等式1sin ln x tdt x t>⎰成立的x 的范围是 ( ) (A) (0,1).(B) (1,)2π. (C) (,)2ππ. (D) (,)π+∞.(4) 设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为 ( )(A) (B)(C) (D)(5) 设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为 ( ) (A) **32O B A O ⎛⎫⎪⎝⎭. (B) **23O B AO ⎛⎫⎪⎝⎭. (C) **32O A BO ⎛⎫⎪⎝⎭.(D) **23OA BO ⎛⎫⎪⎝⎭. (6) 设,A P 均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭.若1231223(,,),(,,)P Q ααααααα==+,则TQ AQ 为 ( )(A) 210110002⎛⎫⎪ ⎪ ⎪⎝⎭.(B) 110120002⎛⎫⎪⎪ ⎪⎝⎭.(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭.(D) 100020002⎛⎫ ⎪⎪ ⎪⎝⎭.(7) 设事件A 与事件B 互不相容,则 ( )(A) ()0P AB =.(B) ()()()P AB P A P B =. (C) ()1()P A P B =-.(D) ()1P A B = .(8) 设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====.记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为 ( )(A) 0. (B) 1. (C) 2. (D) 3.二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9) cos 0x x →= .(10) 设()y x z x e =+,则(1,0)zx ∂=∂ _______ .(11) 幂级数21(1)n n nn e x n ∞=--∑的收敛半径为 ______. (12) 设某产品的需求函数为()Q Q p =,其对价格p 的弹性0.2p ε=,则当需求量为10000件时,价格增加1元会使产品收益增加 _______ 元.(13) 设(1,1,1)T α=,(1,0,)T k β=.若矩阵T αβ相似于300000000⎛⎫⎪⎪ ⎪⎝⎭,则k = ____ .(14) 设12,,,m X X X 为来自二项分布总体(,)B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差,记统计量2T X S =-,则ET = _____.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分10 分)计算不定积分ln 1dx ⎛+ ⎝⎰ (0)x >. (17)(本题满分10 分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-.(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(19)(本题满分10 分)设曲线()y f x =,其中()f x 是可导函数,且()0f x >.已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的t π倍,求该曲线方程. (20)(本题满分11 分)设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ; (Ⅱ)对(Ⅰ)中的任意向量23,ξξ,证明:123,,ξξξ线性无关. (21)(本题满分11 分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. (22)(本题满分11 分)设二维随机变量(,)X Y 的概率密度为,0,(,)0,x e y x f x y -⎧<<=⎨⎩其他. (I) 求条件概率密度()Y X f y x ; (II) 求条件概率{}11P X Y ≤≤.(23)(本题满分11分)袋中有1个红球,2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求{}10P X Z ==;(Ⅱ)求二维随机变量(),X Y 的概率分布.2009年全国硕士研究生入学统一考试数学三试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)【答案】(C)【解析】由于()3sin x x f x xπ-=,则当x 取任何整数时,()f x 均无意义,故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±.320032113211131lim lim ,sin cos 132lim lim ,sin cos 132lim lim .sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即1,2,30,1x =±. (2) 【答案】(A)【解析】()sin f x x ax =-与()()2ln 1g x x bx =-是0x →时的等价无穷小,则2200232000330()sin sin limlim lim ()ln(1)()sin 1cos sin lim lim lim 36sin lim 1,66x x x x x x x f x x ax x axg x x bx x bx x ax a ax a axbx bx bxa ax ab axb →→→→→→→--=-⋅---=---⎛⎫=-=-= ⎪⎝⎭等洛洛 即36a b =-,故排除B,C.另外,201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →,故1,a =排除D. 所以本题选A.(3) 【答案】(A)【解析】原问题可转化为求1sin ()ln 0xtf x dt x t=->⎰成立时x 的取值范围. 11111sin sin 1()ln sin 11sin 0.xx x x x tt f x dt x dt dt t tt t t dt dt t t =-=---==>⎰⎰⎰⎰⎰由()0,1t ∈时,1sin 0tt->,知当()0,1x ∈时,()0f x >.故应选(A). (4) 【答案】(D)【解析】此题为定积分的应用知识考核,由()y f x =的图形可以看出,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出下面几个方面的特征:① []1,0x ∈-时,()0F x ≤为线性函数,单调递增; ② []0,1x ∈时,()0F x ≤,且单调递减; ③ []1,2x ∈时,()F x 单调递增; ④ []2,3x ∈时,()F x 为常函数; ⑤ ()F x 为连续函数. 结合这些特点,可见正确选项为(D). (5) 【答案】(B) 【解析】分块矩阵O A B O ⎛⎫⎪⎝⎭的行列式221236O A A B B O⨯=-=⨯=(),即分块矩阵可逆,且1116112366.1132O A O A O A O B B O B O B O A O O B O B B O B A O A O A O A *---******⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭故答案为(B).(6)【答案】(A)【解析】1223123100100(,,)(,,)110110001001Q P ααααααα⎛⎫⎛⎫ ⎪ ⎪=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,100100110110001001110100100210010010110110.001002001002TT Q AQ P A P ⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥⎢⎥⎪ ⎪=⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪== ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(7) 【答案】(D)【解析】因为,A B 互不相容,所以()0P AB =.(A)()()1()P AB P A B P A B ==- ,因为()P A B 不一定等于1,所以(A)不正确; (B)当(),()P A P B 不为0时,()B 不成立,故排除; (C)只有当,A B 互为对立事件的时候才成立,故排除; (D)()()1()1P A B P AB P AB ==-= ,故()D 正确. (8) 【答案】(B) 【解析】(){}{0}{0}{1}{1}11{0}{1}2211{00}{1},22Z F z P XY z P XY z Y P Y P XY z Y P Y P XY z Y P XY z Y P X z Y P X z Y =≤=≤==+≤===≤=+≤==⋅≤=+≤=由于,X Y 相互独立,所以11(){0}{}22Z F z P X z P X z =⋅≤+≤. (1) 当0z <时,1()()2Z F z z =Φ;(2) 当0z ≥时,11()()22Z F z z =+Φ,因此,0z =为间断点,故选(B).二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上. (9) 【答案】32e 【解析】cos cos 10x x x x -→→= 200221(1cos )32lim lim 233x x e x e x e x x→→⋅-===.(10) 【答案】12ln 2+【解析】解法1:由于()xy z x e=+,故()(),01xz x x =+,()ln(1)ln(1)01ln(1)1x x x x x y z x x e e x xx ++=∂'⎡⎤'⎡⎤⎡⎤=+==++⎣⎦⎢⎥⎣⎦∂+⎣⎦,代入1x =,得ln 2(1,0)1ln 22ln 212z e x ∂⎛⎫=+=+ ⎪∂⎝⎭.解法2:由于ln()()()ln()yx x e y xy x y y e x e z x x e x e x x x x e +⎡⎤∂⎡⎤∂+∂⎡⎤⎣⎦⎣⎦===+⋅++⎢⎥∂∂∂+⎣⎦, 故000(1,0)1(1)ln(1)2ln 211z e e x e ∂⎡⎤=+⋅++=+⎢⎥∂+⎣⎦. (11) 【答案】1e -【解析】由题意知,()210nn n e a n --=>,()()()()1121211221lim lim 1111lim ,111n n n nn n n nn n n n n e a n a n e e e n e n e e +++→∞→∞++→∞--=⋅+--⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦=⋅=⎡⎤+⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦所以,该幂级数的收敛半径为1e -. (12) 【答案】8000【解析】所求即为()Qp Q p Q ''=+. 因为0.2p Q pQε'=-=,所以0.2Q p Q '=-,所以()0.20.8Qp Q Q Q '=-+=. 将10000Q =代入有()8000Qp '=. (13) 【答案】2【解析】T αβ相似于300000000⎛⎫ ⎪ ⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到Tαβ的特征值为3,0,0.而Tαβ为矩阵T αβ的对角元素之和,1300k ∴+=++,2k ∴=.(14) 【答案】2np【解析】222()(1)ET E X S EX ES np np p np =-=-=--=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)【解析】 2(,)2(2)x f x y x y '=+,2(,)2ln 1y f x y x y y '=++.令(,)0,(,)0,x y f x y f x y ⎧'=⎪⎨'=⎪⎩解得唯一驻点1(0,)e .由于212(0,)1(0,)21(0,)11(0,)2(2)2(2),1(0,)40,11(0,)(2),xxexye yy eA f y e eB f xy eC f x e e y ''==+=+''===''==+= 所以 2212(2)0,B AC e e-=-+<且0A >. 从而1(0,)f e 是(,)f x y 的极小值,极小值为11(0,)f e e=-.(16)(本题满分10 分) 【解析】解法1t =,则21,1x t =-()()2221ln 1ln 11ln 111111dx t d t t dt t t t ⎛⎛⎫+=+ ⎪ -⎝⎭⎝+=-⋅--+⎰⎰⎰而()()()()()()2211112411111111ln 1ln 1,4421dt dt t t t t t t t C t ⎡⎤=--⎢⎥-+-++⎢⎥⎣⎦=--++++⎰⎰所以()()2ln1111ln1ln141211ln1ln41ln1ln211ln1ln.22t tdx Ct t tx Cx Cx x C ⎛+++=+-+--+⎝⎛=++⎝⎛=++⎝⎛=+++-⎝⎰解法21ln1ln11dx x x dx-'⎛⎛⎛=-⎝⎝⎝⎰⎰1ln112x dx⎛⎛⎫=+--⎪⎪⎝⎭⎰11ln122x x⎛=++-⎝⎰(2ln lnuduu C C=++=+分部即)11ln1ln1ln22dx x x C ⎛⎛+=++-+⎝⎝⎰1ln1ln211ln1ln.22x Cx x C⎛=++⎝⎛=++⎝(17)(本题满分10 分)【解析】解法1如右图所示,区域D的极坐标表示为302(sin cos),44rππθθθ≤≤+≤≤.132(sin cos )442(sin cos )33404334433443444()(cos sin )1(cos sin )38(cos sin )(sin cos )38(sin cos )(sin cos )3818(sin cos ).343Dr r x y dxdy d r r rdrr d d d θθππθθππππππππθθθθθθθθθθθθθθθθθ+=+=-=-⎡⎤=-⋅⎢⎥⎢⎥⎣⎦=-+=++=⨯+=-⎰⎰⎰⎰⎰⎰⎰解法2 将区域D 分成12,D D两部分(如右图),其中(){}(){}12,110,,12.D x y y x D x y x y x =-≤≤+-≤=≤≤+≤≤由二重积分的性质知()()()12DD D x y dxdy xy dxdy x y dxdy-=-+-⎰⎰⎰⎰⎰⎰,而()1111)D x y dxdyx y dy-=-⎰⎰⎰⎰103122,33x=-=-=-⎰()221020230)122(21242,23xD x y dxdy dx x y dyx dx -=-⎡=---⎣⎡⎤=-+=-⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰ 所以()()()1228233DD D x y dxdy x y dxdy x y dxdy -=-+-=--=-⎰⎰⎰⎰⎰⎰. (18)(本题满分11 分) 【解析】(Ⅰ)取()()()()()f b f a F x f x x a b a-=---,由题意知()F x 在[],a b 上连续,在(),a b 内可导,且()()()()()(),()()()()()().f b f a F a f a a a f a b af b f a F b f b b a f a b a -=--=--=--=-根据罗尔定理,存在(),a b ξ∈,使得()()()()0f b f a F f b aξξ-''=-=-,即()()()()f b f a f b a ξ'-=-.(Ⅱ)对于任意的(0,)t δ∈,函数()f x 在[]0,t 上连续,在()0,t 内可导,由右导数定义及拉格朗日中值定理()()000()0()0lim lim lim ()0t t t f t f f tf f t tξξ++++→→→-'''===-,其中()0,t ξ∈. 由于()0lim t f t A +→'=,且当0t +→时,0ξ+→,所以0lim ()t f A ξ+→'=,故(0)f +'存在,且(0)f A +'=.(19)(本题满分10 分) 【解析】解法1 由题意知211()()t tf x dx t f x dx ππ=⎰⎰,两边对t 求导得21()()()tf t f x dx tf t =+⎰,代入1t =得 (1)1f =或(1)0f = (舍去). 再求导得 2()()2()()f t f t f t tf t ''=+,记()f t y =,则112dt t dy y+=, 因此, 111222()()dydyy y t eedy C y C --⎰⎰=+=+⎰132222()33y y C y -=+=+.代入1,1t y ==得13C =,从而23t y =+故所求曲线方程为23x y =+解法2 同解法1,得2()()2()(),(1)1f t f t f t tf t f ''=+=.整理得22dy ydt y t=-. 令y u t =,则 dy du u t dt dt=+, 原方程变成 23221du u u t dt u -=-, 分离变量得211(32)u du dt u u t-=-,即 114332dtdu u u t -⎛⎫+=⎪-⎝⎭, 积分得 21ln (32)ln 3u u Ct --=, 即 1233(32)u u Ct ---=.代入1,1t u ==,得1C =,所以231(32)u u t -=. 代入y u t =化简得2(32)1y t y -=,即23t y =.故所求曲线方程为23x y =(20)(本题满分11 分)【解析】(Ⅰ)对矩阵1()A ξ 施以初等行变换()11110221111111111012204220000A ξ⎛⎫-- ⎪---⎛⎫ ⎪⎪⎪=-→ ⎪ ⎪ ⎪--- ⎪⎝⎭ ⎪ ⎪⎝⎭可求得 2122122k kk ξ⎛⎫-+ ⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭,其中k 为任意常数.又2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,对矩阵21()A ξ 施以初等行变换()211110220122201000044020000A ξ⎛⎫-⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭,可求得 312a a b ξ⎛⎫-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,其中,a b 为任意常数.(Ⅱ)解法1 由(Ⅰ)知12311122211,,102222ka ka kbξξξ--+--=-=-≠-, 所以123,,ξξξ线性无关.解法2 由题设可得10A ξ=.设存在数123,,k k k ,使得1122330k k k ξξξ++=, ①等式两端左乘A ,得22330k A k A ξξ+=,即21330k k A ξξ+=, ②等式两端再左乘A ,得2330k A ξ=,即310k ξ=.由于10ξ≠,于是30k =,代入②式,得210k ξ=,故20k =.将230k k ==代入①式,可得10k =,从而1,ξ23,ξξ线性无关.(21)(本题满分11 分) 【解析】(Ⅰ)二次型f 的矩阵101111a A a a ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭.由于01||01()((1))((2))111aE A aa a a a λλλλλλλ---=-=--+----+, 所以A 的特征值为123,1,2a a a λλλ==+=-.(Ⅱ)解法1 由于f 的规范形为2212y y +,所以A 合同于100010000⎛⎫ ⎪ ⎪ ⎪⎝⎭,其秩为2,故 1230A λλλ==,于是0a =或1a =-或2a =.当0a =时,1230,1,2λλλ===-,此时f 的规范形为2212y y -,不合题意. 当1a =-时,1231,0,3λλλ=-==-,此时f 的规范形为2212y y --,不合题意. 当2a =时,1232,3,0λλλ===,此时f 的规范形为2212y y +. 综上可知,2a =.解法2 由于f 的规范形为2212y y +,所以A 的特征值有2个为正数,1个为零. 又21a a a -<<+,所以2a =.(22)(本题满分11 分)【解析】(I)X 的概率密度0,0,,0,()(,)0,0.0,0xx x X e dy x xe x f x f x y dy x x --+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰当0x >时,Y 的条件概率密度|1,0,(,)(|)()0,Y X X y x f x y f y x x f x ⎧<<⎪== ⎨⎪⎩其他.(II)Y 的概率密度,0,()(,)0,0.y Y e y f y f x y dx y -+∞-∞⎧>==⎨≤⎩⎰{}{}{}111111,11|11(,)2.11xx y P X Y P X Y P Y dx e dyf x y dxdye e e e dy--∞-∞--≤≤≤≤=≤-===--⎰⎰⎰⎰⎰(23)(本题满分11分)【解析】(Ⅰ) 12211{1,0}463(10)1{0}9()2C P X Z P X Z P Z ⋅========. (Ⅱ)由题意知X 与Y 的所有可能取值均为0,1,2.()()()()()()()()()1111332311116666111223111166661122116611221166110,0,1,0,461112,0,0,1,36311,1,2,10,910,2,91,20,2,20,C C C C P X Y P X Y C C C C C C C P X Y P X Y C C C C C C P X Y P X Y C C C C P X Y C C P X Y P X Y ⋅⋅========⋅⋅⋅⋅========⋅⋅⋅=======⋅⋅====⋅======故(,)X Y 的概率分布为。
2009考研数学(二)真题及参考答案
2009年研究生入学统一考试数学二试题与解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为1 ()f x -2 0 2 3x-1O则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = .(11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2x y x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式. (21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|12(1('))y y ρ==+,而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )1 ()f x -2 0 2 3x-1O()A .()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B⨯=-=⨯=()即分块矩阵可逆 111100066000100B BA A AB B BBAA A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002BB AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dy dx= 所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = .【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k=-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0【解析】令sin sin cos x x xn I e nxdx e nx n e nxdx ---==-+⎰⎰2sin cos x xn e nx nenx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1y e x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e -=+ 对''1y y xy y e ++=再次求导可得''''''22()0y y y xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e -==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2x y x =在区间(]01,上的最小值为 . 【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e =.又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21ey e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫ ⎪⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而T βα是一个常数,是矩阵T αβ的对角元素之和,则T 2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim limsin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x→-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. 【解析】 令1x t x+=得22212,1(1)tdtx dx t t -= =-- 22211ln(1)ln(1)1ln(1)11111x dx t d x t t dt t t t ++=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以221ln(1)111ln(1)ln 1412(1)111ln(1)ln(1)2211111ln(1)ln(1)222x t t dx C x t t t x xx x x C x x x x x x x x x x C x ++++=+-+--++=++++-++++=+++++-++⎰ (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2zx y∂∂∂.【解析】123123zf f yf x zf f xf y∂'''=++∂∂'''=-+∂1231232111213212223331323331122331323()()1(1)1(1)[1(1)]()()z z dz dx dy x yf f yf dx f f xf dyzf f f x f f f x f y f f f x x yf f f xyf x y f x y f ∂∂∴=+∂∂''''''=+++-+∂'''''''''''''''''''=⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. 【解析】解微分方程20xy y '''-+=得其通解212122,y C x C x C C =++其中,为任意常数又因为()y y x =通过原点时与直线1x =及0y =围成平面区域的面积为2,于是可得10C =1112232220002()(2)()133C C y x dx x C x dx x x ==+=+=+⎰⎰从而23C =于是,所求非负函数223(0)y x x x =+ ≥又由223y x x =+ 可得,在第一象限曲线()y f x =表示为1131)3x y =+-(于是D 围绕y 轴旋转所得旋转体的体积为15V V π=-,其中552210051(131)9(23213)93918V x dy y dyy y dy ππππ==⋅+-=+-+=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰ 3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.【解析】由题意,当0x π-<<时,'xy y =-,即ydy xdx =-,得22y x c =-+, 又()22y ππ-=代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+ 令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为22,0cos sin ,0x x y x x x x ππππ⎧⎪-- -<<=⎨-+-≤<⎪⎩或22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'()(0)x f x f fx ξ-=-……()* 又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫ ⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫⎪⎛⎫ ⎪⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)222210k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. 【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。
2009年考研数学试题详解及评分参考
=
lim
n®0
an2
|
bn
|=
0
,
2009 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2009 年数学试题详解及评分参考
¥
å 于是根据正项级数比较判别法的极限形式,知 an2bn2 收敛,因此应选 (C) .
n=1
注:取 an = bn = (-1)n
1 n
,可排除(A)和(D);取 an
F ¢(x) = 0 ,即 F (x) 恒为常数. 再结合 F (x) 的连续性,即知选项(D)是正确的.
(4)
设有两个数列 {an } , {bn } ,
若
lim
n®¥
an
= 0 ,则
¥
¥
å å (A) 当 bn 收敛时, anbn 收敛.
n=1
n=1
¥
¥
å å (B) 当 bn 发散时, anbn 发散.
a)x
+
a3 6
x3
- o(x3)
,
g(x) = x2 ln(1- bx) = x2[(-bx) + o(x)] = -bx3 + o(x3) ,
因此有 lim x®0
(1 -
a)x
+
a3 6
x3
- o(x3)
-bx3 + o(x3 )
=
1 ,于是1-
a
=
0
,且
1 6
a3
=
-b
,即
a
=
1 ,b
=
-
1 6
= 6A-1
=
6
A* A
= 3A*, X4
=
考研数学一历年真题
1 2
−1 4
1 6
1
2
−1 2
1
2
(D) 1
4
1 4
−
1 4
−
1 6
1 6
1 6
(6) 设 A, B 均 为 2 阶 矩 阵 , A*,B* 分 别 为 A, B 的 伴 随 矩 阵 , 若
A
=
2,
B
=
3
,则分块矩阵
O B
A O
的伴随矩阵为
(A)
O 2 A*
3B*
O
(B)
I
=
xdydz
+
ydzdx
+
zdxdy
3
,其中
是曲面
( )
x2 + y2 + z2 2
2x2 + 2 y2 + z2 = 4 的外侧.
6
(20)(本题满分 11 分)
1 −1 −1
−1
设
A
=
−1
1
1
,
ξ1
=
1
0 −4 −2
−2
(1)求满足 Aξ2 = ξ1 的 ξ2 . A2ξ3 = ξ1的所有向量 ξ2 , ξ3 . (2)对(1)中的
(16)(本题满分 9 分)
设 an 为 曲 线 y = xn 与 y = xn+1 (n = 1, 2,.....) 所 围 成 区 域 的 面 积 , 记
S1 = an , S2 = a2n−1 ,求 S1 与 S2 的值.
n=1
n=1
(17)(本题满分 11 分)
椭球面 S1 是椭圆
x2 4
(22)(本题满分 11 分) 袋中有 1 个红色球,2 个黑色球与 3 个白球,现有回放地从袋中取
2009年全国硕士研究生入学统一考试数学二试题
2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**A B ,分别为A 、B的伴随矩阵。
2009年考研数学二真题答案解析
2009年全国硕士研究生入学统一考试 数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx -=的可去间断点的个数,则( ) ()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C【解析】()3sin x x f x x π-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--==故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax=-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=.【答案】 A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则 222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b ax a →==-=-⋅ 36a b ∴=- 故排除,B C 。
另外201cos lim3x a axbx →--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除D 。
北师大考研高等代数数学题
北师大考研高等代数数学题北师大考研高等代数数学题是一项非常具有挑战性的考试。
在这次考试中,学生们将面对各种复杂的高等代数问题,包括矩阵理论、线性空间、线性变换等等。
以下是一些可能出现在北师大考研高等代数数学题中的题目示例,供大家参考:设A为n阶方阵,证明:A的特征值的和等于A的迹。
解析:设A的特征值为λ1, λ2, …, λn。
由特征值的定义可知,对于任意特征值λi,必有满足方程(A-λiI)x=0的非零向量x存在。
将该方程两边同时乘以(A-λiI)的逆,则有(A-λiI)x = 0。
由于(A-λiI)的逆存在,故方程(A-λiI)x=0只有零解。
因此,矩阵A-λiI的零空间只包含零向量。
根据零空间的定义,我们可以得到(A-λiI)的零空间的维数为零。
由于维数为零的空间只包含零向量,所以(A-λiI)的零空间只包含零向量。
因此,(A-λiI)是满秩的,即(A-λiI)的行秩等于它的列秩,即r(A-λiI) = n。
根据秩-零化度定理,我们可以得到r(A-λiI) +n(A-λiI) = n,其中n(A-λiI)为(A-λiI)的零化度。
由于(A-λiI)的零化度为零,所以r(A-λiI) = n,即(A-λiI)是满秩的。
因此,A-λiI的行秩等于n,即A-λiI的行秩等于n。
由于矩阵的行秩等于列秩,所以A-λiI的列秩也等于n。
因此,矩阵A-λiI的秩为n,即A-λiI是满秩的。
综上所述,矩阵A-λiI的秩为n,即A-λiI是满秩的。
因此,A-λiI是可逆的,即A-λiI的行列式不为零。
因此,A的特征值λi满足det(A-λiI) = 0。
根据特征值的定义,我们可以得到det(A-λI) = (λ1-λ)(λ2-λ)…(λn-λ) = 0。
根据零点定理,我们可以得到λ1+λ2+…+λn的和等于方程det(A-λI) = 0的根的和,即λ1+λ2+…+λn等于A的迹。
设V为n维线性空间,T为V上的线性变换,证明:若存在正整数k,使得T^k = 0,则T的特征值为0。
2009考研数三 真题 答案及详解
1 1 0 (B) 1 2 0 . 0 0 2 1 0 0 (D) 0 2 0 . 0 0 2
(B) P ( AB ) P ( A) P ( B ) . (D) P ( A B ) 1 .
(7)设事件 A 与事件 B 互不相容,则
1 x )dx ( x 0) . x
2
(17) (本题满分 10 分) 计算二重积分
( x y)dxdy ,其中 D {( x, y ) ( x 1)
D
( y 1) 2 2, y x} .
(18) (本题满分 11 分) (Ⅰ)证明拉格朗日中值定理,若函数 f ( x ) 在 a,
(B) a 1 , b
2
【解析】 f ( x) x sin ax, g ( x) x ln(1 bx) 为等价无穷小,则
lim
x 0
f ( x) x sin ax x sin ax 1 a cos ax a 2 sin ax lim 2 lim 2 洛 lim 洛 lim x 0 g ( x) x 0 x ln(1 bx) x 0 x ( bx) x 0 3bx 2 6bx
2
.
三、解答题:15~23 小题,共 94 分.请将解答写在答题纸指定的位置上.解答应写出文字说 明、证明过程或演算步骤. (15) (本题满分 9 分) 求二元函数 f ( x, y ) x
2
2 y y ln y 的极值.
2
(16) (本题满分 10 分) 计算不定积分 ln(1
a 3 6b
故排除(B)、(C).
lim
a 2 sin ax a3 1 x 0 6b 6 b ax a
考研数学一真题解析 2009
2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当时,与等价无穷小,则(A) (B)(C)(D) 【考点分析】:等价无穷小,洛必达法则,泰勒公式 【求解过程】:⏹ 方法一:利用洛必达法则和等价无穷小0x →时,ln(1)~bx bx --2320000()sin sin 1cos limlim lim lim 1()ln(1)3x x x x f x x ax x ax a axJ g x x bx bx bx→→→→---=====--- 1a ⇒=否则,J =∞⇒2220011cos 12lim lim 1336x x x x J bx bx b→→-====---16b ⇒=-。
选A ⏹ 方法二:利用泰勒公式或者三角函数的幂级数展开式 由三角函数的幂级数展开式:357111sin 3!5!7x x x x x =-+-+ 所以,3331sin ()(0)6ax ax a x o x x =-+→ 由泰勒公式:3331sin ()(0)6ax ax a x o x x =-+→332301(1)()sin 6lim 1ln(1)x a x x o x x ax J x bx bx →-++-⇒===-- 1a ⇒=,否则J =∞⇒116J b ==-16b ⇒=-。
选A(2)如图,正方形{(,)|1,1}x y x y ≤≤被其对角线划分为四个区域(1,2,3,4)k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)(B)(C)(D)0x →()sin f x x ax =-()()2ln 1g x x bx =-11,6a b ==-11,6a b ==11,6a b =-=-11,6a b =-=1I 2I 3I 4I【考点分析】:利用对称性化简二重积分,二重积分的估值 【求解过程】:1234111222331444(,)cos ,cos ,(,)0,0cos ,(,)0,cos ,(,)0,0cos ,(,)0,A D D D D f x y y x I y xdxdy D f x y I I y xdxdy D x f x y y I I y xdxdy D f x y I I y xdxdy D x f x y y I ==≥≥===≤≤==⎰⎰⎰⎰⎰⎰⎰⎰记在上则,关于轴对称,且关于为奇函数,则在上则,关于轴对称,且关于为奇函数,则所以选择。
2009年数学试题及解答
2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(1)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-等价无穷小,则() (A )11,6a b ==-(B )11,6a b ==(C )11,6a b =-=- (D )11,6a b =-=【解析与点评】考点:无穷小量比阶的概念与极限运算法则。
【答案】A2222sin sin 1cos sin limlimlimlimln(1)()36x x x x x ax x ax a x a ax x bx x bx bxbx→→→→---===----23sin lim166.x a ax ab baxa →==-=-36a b =-意味选项B ,C 错误。
再由21cos lim 3x a ax bx→-=-存在,故有1cos 0(0)a ax x -→→,故a=1,D 错误,所以选A 。
(2)如图,正方形{(,)|||1,||1}x y x y ≤≤被其对角线划分为四个区域,(1,2,3,4),cos KK K D D k I y xdxdy ==⎰⎰,则14max{}KK I≤≤=()【解析与点评】本题利用二重积分区域的对称性及被积函数的奇偶性。
24,D D 关于x 轴对称,而cos y x -即被积函数是关于y 的奇函数,所以2413;,I I D D =两区域关于y 轴对称,cos()cos y x y x -=即被积函数是关于x 的偶函数,由积分的保号性,13{(,)|,01}{(,)|,01}2cos 0,2cos 0x y y x x x y y x x I y xdxdy I y xdxdy ≥≤≤≤-≤≤=>=<⎰⎰⎰⎰,所以正确答案为A 。
(3)设函数()y f x =在区间[-1,3]上的图形为则函数0()()x F x f t dt =⎰为()【解析与点评】考点:函数与其变限积分函数的关系、函数与其导函数之间的关系,变限积 分函数的性质(两个基本定理),定积分的几何意义。
2009考研数一真题答案及详细解析
f(t)dt
I: > �f'.J<t)dt+ 八 t)dt�f (x) dx.'
又由定积分的几何意义知,『 g (x)dx>O,故 2<x<3 时 F(x)>O.故应选 D.
(4) C
解
I; 若令
an= bn=
(-l)n
嘉,则nl-im= a
n
=
O, n=
l
从收敛,却有
co
nI=;l a
n从
=
nI=;l — n1
1,1],
和函数为—
ln(l+x).
因为5 (x)=
= I;
(—l)n
X
n=
X
— ln(l+x),令
x= l,得
n= 2 n
S 2= n�= la 加一1 = S(1)= 1- ln 2.
(17) 解
(I)
椭球面 S1
的方程为X— 42
+
沪
+z 3
2 =
1.
。 设切点为
(x
口 Yo),
则
X—+
4
— y
y2dxdyd乏 = 』之2dxdyd之,
{l
所以
w 上�+ ill f I I z'dxd:
。 。 。 上 2
六
(x' 二三) dxdydz� 3
亢 d0
sin钊'P'r'dr�±. 穴. 15
{l
03) 2
n 解 设入是P矿的非零特征值, 是属于入的特征向量,从而p矿T/=入1
由于入=/=-0, TJ =/=-0,故a可=l=-0.
2009年考研数学二试题与答案解析
2009年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 函数()3sin x x f x xπ-=的可去间断点的个数为()A 1 ()B 2 ()C 3 ()D 无穷多个 【答案】C【解析】由于()3sin x x f x xπ-=,则当x 取任何整数时,()f x 均无意义.故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±.320032113211131lim lim ,sin cos 132lim lim ,sin cos 132lim lim .sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±.(2) 当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则()A 11,6a b ==- ()B 11,6a b == ()C 11,6a b =-=- ()D 11,6a b =-= 【答案】A【解析】 22000()sin sin limlim lim ()ln(1)()x x x f x x ax x axg x x bx x bx →→→--==-⋅- 22002301cos sin lim lim 36sin lim 1,66x x x a ax a ax bx bxa ax ab b axa→→→---==-=-⋅洛洛 36a b ∴=-,故排除,B C .另外,201cos lim3x a axbx →--存在,蕴含了1cos 0a ax -→()0x →,故 1.a =排除D .所以本题选A .(3) 设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0()A 不是(),f x y 的连续点 ()B 不是(),f x y 的极值点()C 是(),f x y 的极大值点 ()D 是(),f x y 的极小值点 【答案】D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂. 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂,又在()0,0处,0,0z zx y∂∂==∂∂,210AC B -=>, 故()0,0为函数(,)z f x y =的一个极小值点. (4) 设函数(),f x y 连续,则()()222411,,yxy dx f x y dy dy f x y dx -+=⎰⎰⎰⎰()A ()2411,xdx f x y dy -⎰⎰ ()B ()241,xxdx f x y dy -⎰⎰()C ()2411,ydy f x y dx -⎰⎰()D ()221,ydy f x y dx ⎰⎰ 【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-,将其写成一块{}(,)12,14D x y y x y =≤≤≤≤-, 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C .(5) 若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则函数()f x 在区间()1,2内()A 有极值点,无零点 ()B 无极值点,有零点()C 有极值点,有零点()D 无极值点,无零点 【答案】B【解析】由题意可知,()f x 是一个凸函数,即()0f x ''<,且在点(1,1)处的曲率322||2(1())y y ρ''=='+,而(1)1f '=-,由此可得,(1)2f ''=-. 在[1,2] 上,()(1)10f x f ''≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)()1(1,2)f f f ξξ'-=<- , ∈ ,(拉格朗日中值定理)(2)0f ∴ <而(1)10f =>,由零点定理知,在[1,2] 上,()f x 有零点.故应选B .(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为()A ()B()C ()D【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征:①[]0,1x ∈时,()0F x ≤,且单调递减。
2009年考研数学一、二、三真题(含详解)
O
A
O
A O
A
1
O B1
B
O
B
O
B
O
6
A1
O
O
6
1 A
A
1 B
B
6
O
O
1 2
A
1 B 3 O
O 3A
6
6
(D) a 1,b 1 6
【解析】 f x x sin ax 与 g x x2 ln 1 bx 是 x 0 时的等价无穷小,则
lim
x0
f (x) g(x)
lim
x0
x sin ax x2 ln(1 bx)
lim
x0
x sin ax x2 (bx)
lim
x0
x
sin ax bx3
,且单调递减;
0
(定积分对应的图像位于 x 轴下方)
③ x 1, 2 时, F(x) x f (t)dt 0 单调递增; 0
④ x 2,3 时, F '(x) f (x) 0 为常函数;
⑤ F (x) 为连续函数. 结合这些特点,可见正确选项为(D)
(4)
设有两个数列
an
,
bn
,若
lim
n
则 max 1k 4
Ik
(
)
D1
D2
D4
-1
D3
1
x
(A) I1
(B) I2 (C) I3 (D) I4
-1
【答案】(A)
【解析】本题利用二重积分区域的对称性及被积函数的奇偶性.令 f (x, y) y cos x ,
D2, D4 两区域关于 x 轴对称, f (x, y) y cos x f (x, y) ,即被积函数是关于 y 的奇函数, 所以 I2 I4 0 ;
2009年考研真题数二
数. 解方程 A 2ξ 3 = ξ 1 ,
2 0⎞ ⎛ 2 ⎜ ⎟ 2 A = ⎜ − 2 − 2 0⎟, ⎜ 4 ⎟ 4 0 ⎝ ⎠
1⎞ ⎛ 2 0 − 1⎞ ⎜ 1 1 0 − ⎟ ⎛ 2 2⎟ ⎟ ⎜ ⎜ ⎜ − 2 − 2 0 1 ⎟ → ⎜ 0 0 0 0 ⎟, ⎟ ⎜0 0 0 0 ⎟ ⎜ 4 4 0 2 − ⎠ ⎜ ⎝ ⎟ ⎝ ⎠
⎛ 1 − 1 − 1 − 1⎞ ⎟ ⎜ 1 1 ⎟ ⎜−1 1 ⎜ 0 − 4 − 2 − 2⎟ ⎠ ⎝ ⎛ 1 − 1 − 1 − 1⎞ ⎜ 1 1 ⎟ → ⎜0 1 ⎟ 2 2 ⎟ ⎜ 0 0 ⎠ ⎝0 0 1 1⎞ ⎛ − ⎟ ⎜1 0 − 2 2⎟ ⎜ . 1 1 ⎟ → ⎜0 1 ⎜ 2 2 ⎟ 0 ⎟ ⎜0 0 0 ⎜ ⎟ ⎝ ⎠ ⎛ 1⎞ ⎛ 1 ⎞ ⎜− ⎟ ⎜ ⎟ ⎜ 2⎟ ⎜ 2 ⎟ 1 ⎟ 1⎟ ⎜ ⎜ 故ξ 2 = + k 1 − ,其中 k1 为任意常 ⎜ 2 ⎟ ⎜ 2⎟ ⎜ 0 ⎟ ⎜ 1 ⎟ ⎜ ⎜ ⎟ ⎟ ⎠ ⎠ ⎝ ⎝
⎛ 0 3B∗ ⎞ ⎟ (B) ⎜ ⎟ ⎜ 3 A∗ 0 ⎠ ⎝ ⎛ 0 3 A∗ ⎞ ⎟ (D) ⎜ ⎟ ⎜ 3B∗ 0 ⎠ ⎝
2B∗ ⎞ ⎟ 0 ⎟ ⎠ 2 A∗ ⎞ ⎟ 0 ⎟ ⎠
【答案】 (B)
⎛0 【解析】由于分块矩阵 ⎜ ⎝B 0 B A 0
A⎞ ⎟ 的行列式 0⎠
= ( −1) 2×2 A B = 2 × 3 = 6 ,即分块
2
= (λ − a )((λ − a ) 2 + (λ − a ) − 2 ) = (λ − a )(λ − a − 1)(λ − a + 2)
所以二次型的矩阵 A 的特征值为 a − 2, a , a + 1.
高等代数考研真题第一章多项式
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
2009-2018年考研数学真题解析及复习思路(数学二)
是该方程的解,λy1 - μy2 是该方程对应的齐次方程的解,则( )
( A) λ
=
1 2
,μ
=
1 2
.
( B) λ
=-
1 2
,
μ
=-
1 2
.
( C) λ
=
2 3
,
μ
=
1 3
.
( D) λ
=
2 3
,
μห้องสมุดไป่ตู้
=
2 3
.
(3) 曲线 y = x2 与曲线 y = aln x(a ≠ 0) 相切,则 a = ( )
.
(13) 已知一个长方形的长 l 以 2 cm / s 的速率增加,宽 w 以 3 cm / s 的速率增加,则当 l = 12 cm,w =
5 cm 时,它的对角线增加的速率为
.
(14) 设 A,B 为 3 阶矩阵,且 A = 3, B = 2, A -1 + B = 2,则 A + B -1 =
=
1 6
.
( C) a
= - 1,b
=-
1 6
.
( D) a
= - 1,b
=
1 6
.
(3) 设函数 z = f(x, y) 的全微分为 dz = xdx + ydy,则点(0, 0)( )
(A) 不是 f(x, y) 的连续点.
(B) 不是 f(x, y) 的极值点.
(C) 是 f(x, y) 的极大值点.
(19) ( 本题满分 10 分)
∬ 计算二重积分 ( x - y) dxdy,其中 D = { ( x, y) ( x - 1)2 + ( y - 1)2 ≤ 2, y ≥ x} . D
(7)--08-09学年高等代数(I)试卷及参考答案
β, α1, α2, · · · , αj−1
‚5L«. Ê©(15 ©) k‚5•§|
x1 + a1x2 + a21x3
= a31
x1 + a2x2 + a22x3
= a32
x1 + a3x2 + a23x3
= a33
x1 + a4x2 + a24x3
= a34
(1) y² a1, a2, a3, a4üüØÓž, d•§|Ã); (2) a1 = a3 = k, a2 = a4 = −k, …η = (−1, 1, 1)T •d•§| Ü). 8. (10©) A´n Œ_Ý , α†βþ•n‘ •þ. y²
0013
©(10 ©) y² Xêõ‘ªf (x)†g(x)ƒ ¿©7‡^‡´f (t) = g(t), Ù¥t´Œ uf (x), g(x) ¤kXêýéŠ2 ,˜ ê. n©(15 ©) A´n • , y²•3š"Ý B, ¦ AB = O ¿©7‡^‡´|A| = 0. o©(10 ©) •þ|α1, α2, · · · , αm‚5Ã', •þ|β, α1, α2, · · · , αm‚5ƒ', Ù¥β = θ. y²•þ|β, α1, α2, · · · , αm¥k…=k˜‡•þαj(1 ≤ j ≤ m)ŒdÙc¡ •þ
2
四、由题给条件可知 β 可由 α1, ..., αm 唯一地线性表示, 不妨设
β = b1α1 + · · · + bmαm.
因 β ̸= 0, 故 b1, ..., bm 不全为零. 现在设 bj 是 b1, ..., bm 中的最后一个非零 数, 则