pSos酵母表达载体说明
pPIC9k-His酵母表达载体说明
其他酵母表达载体:
p416GFD p53blue pACT2-AD pAD-GAL4-2.1 pADH2 pAUR123 pBridge pCL1 pDEST32 pDisplay pDR195 pESC-His pESC-Leu pESC-TRP pESC-URA pFA6a-FGP(S65T)-kanMX6 pFLD pFLD/CAT pFLDα pGADT7-T pGAG424 pGAPZA pGAPZB pGAPZαB pGAPZαC pGBKT7 pGBKT7-53 pGBKT7-Lam pHIC-PI pHIL-D2 pHIL-S1 pHis2 pHisSi-1 pPIC9 pPIC9K pPIC9k-His pPICZA pPICZB pPICZC pPICZαA pPICZαB pPICZαC pPICZαD pPICZαFC pPICZαGB pPink-HC pPink-LC pPinkα-HC pRS316 pRS403 pRS405 pRS406 pRS414 pRS415 pRS416 pRS41H pRS426 pRS426gal pSEP1 pSEP2 pSEP3 pSos pSos-MAFB pUG66 pYC2/CT pYC2/NTA
载体名称
pPIC9k-‐His
Invitrogen pPIC9k-‐His 酵母表达载体 -‐-‐ -‐-‐ 多克隆位点,限制性内切酶 -‐-‐ -‐-‐ -‐-‐ -‐-‐ Ampicillin -‐-‐ -‐-‐ -‐-‐ -‐-‐ -‐-‐ -‐-‐
pMETA pMETB pMETC pMETαA pMETαB pMETαC pMyr pPIC3.5 pPIC3.5K pPIC6B pPIC6C pPIC6αA pPIC6αB pPIC6αC pYX212 SUMOprotease Ycp22lac-EGFP
chapter 04 表达载体
该细胞株是目前应用最广泛的哺乳动物基因表达受体细胞 之一,已有多种外源基因如人组织型纤溶酶原激活剂(tPA)、 干扰素β、干扰素γ 、凝血因子Ⅷ等在CHO细胞中得到表达。
COS细胞
它来源于非洲绿猴肾细胞系,能组成性表达SV40的大T 抗原。
COS细胞的特点: ①细胞来源丰富;
②细胞易于培养和转染;
启动子和增强子
长为100~200bp,位于转录起始位点上游,一般由核心启动 子和上游启动子两部分组成。
目前构建的哺乳动物基因表达载体的启动子,主要来源于病 毒,如SV40早期和晚期转录启动子、腺病毒晚期启动子等。
病毒载体的增强子位于转录起始位点的上游,它可大幅 度提高启动子的转录水平。多数增强子具有宿主特异性。
常用的加poly(A)信号来自SV40,它是一段长为237bp的 BamH I-Bcl I限制酶酶切片段,它同时含有早期转录和晚期 转录单位的切割信号与加poly(A)信号。
剪接信号
mRNA剪接所必需的最短序列位于内含子5 ′和3 ′边界上。 在构建真核表达载体时都组入一个SV40的内含子,利用该内含 子及其剪接信号构建的载体,表达外源基因的水平比普通的载 体要高。 GT-AG法则
鼠骨髓瘤细胞的特点:
①细胞易于培养和转染,可在无血清培 养基中进行高密度悬浮培养; ②能进行分泌表达,且表达量高; ③能对蛋白质进行糖基化修饰。
提高哺乳动物基因表达系统表达效率的策略
(1)设法提高外源基因的表达水平和产量
方法包括:
①载体启动子的强度和宿主范围,是外源基因高表达 的关键因素之一,选择强启动子可获得高效表达。
酵母表达(1)
酵母表达引言酵母是一类单细胞真核生物,被广泛应用于生物学研究中。
酵母表达系统是指利用酵母细胞表达外源基因的技术,被广泛应用于蛋白质的高效表达和产量大规模生产。
本文将介绍酵母表达系统的原理、优势和应用。
原理酵母表达系统的核心原理是将外源基因导入酵母细胞,并通过酵母细胞的转录、翻译和修饰机制,使外源基因在酵母细胞中得到表达和功能发挥。
通常情况下,酵母表达系统主要采用酵母菌属的酿酒酵母(Saccharomyces cerevisiae)或毕赤酵母(Pichia pastoris)作为宿主细胞。
1.酵母转录机制:酵母细胞的基因表达主要通过RNA聚合酶Ⅱ进行转录,产生mRNA分子。
2.酵母翻译机制:酵母细胞通过核糖体进行翻译,将mRNA翻译成蛋白质。
3.酵母修饰机制:酵母细胞具有多种修饰酶,可以对蛋白质进行翻译后修饰,如糖基化、磷酸化等。
优势相比其他常用的表达系统,酵母表达系统具有一系列的优势:1.高效表达能力:酵母表达系统能够实现高水平的外源基因表达,产量可达到克级。
2.翻译后修饰:酵母细胞具有多种修饰酶,可以对蛋白质进行翻译后修饰,使蛋白质得到正确的糖基化等修饰。
3.生长条件简单:酵母菌生长条件相对简单,可以在常规培养基中进行培养,对培养条件的要求相对较低。
4.可溶性蛋白质表达:酵母细胞具有较强的蛋白质折叠和修饰能力,能够高效地表达可溶性蛋白质。
应用酵母表达系统广泛应用于以下领域:1.蛋白质研究:酵母表达系统可用于大规模蛋白质表达和纯化,为蛋白质的结构、功能和相互作用研究提供了高效的工具。
2.药物筛选:酵母表达系统可用于药物靶点鉴定和药物分子筛选,加速药物研发过程。
3.疫苗研究:酵母表达系统可用于疫苗候选抗原的高效表达和产量大规模生产。
4.代谢工程:酵母表达系统可用于代谢工程领域,利用酵母细胞对外源代谢产物的高效合成能力,实现产生复杂化合物的目标。
5.生物制药:酵母表达系统已经被广泛应用于生物制药领域,用于生产重组蛋白和抗体等生物药物。
酵母表达载体pPICZ手册
pPICZ A, B, and CPichia expression vectors for selection onZeocin™ and purification of recombinant proteins Catalog no. V190-20Rev. Date: 7 July 2010Manual part no. 25-0148MAN00000034User ManualiiTable of ContentsKit Contents and Storage (iv)Accessory Products (v)Introduction (1)Overview (1)Methods (3)Cloning into pPICZ A, B, and C (3)Pichia Transformation (9)Expression in Pichia (13)Purification (15)Appendix (17)Recipes (17)Zeocin™ (19)Map and Features of pPICZ A, B, and C (21)Lithium Chloride Transformation Method (23)Construction of In Vitro Multimers (24)Technical Support (32)Purchaser Notification (33)References (34)iiiKit Contents and StorageContents The following components are included with Catalog no. V190–20. Note that thepPICZ expression vectors are supplied in suspension.Component QuantityCompositionpPICZ A Expression Vector 20 μg 40 μl of 0.5 μg/μl vector in10 mM Tris–HCl, 1 mM EDTA,pH 8.0pPICZ B Expression Vector 20 μg 40 μl of 0.5 μg/μl vector in10 mM Tris–HCl, 1 mM EDTA,pH 8.0pPICZ C Expression Vector 20 μg 40 μl of 0.5 μg/μl vector in10 mM Tris–HCl, 1 mM EDTA,pH 8.0GS115/pPICZ/lacZ Positive1 stab --Control strainShipping/Storage The components included with Catalog no. V190–20 are shipped on wet ice.Upon receipt, store as directed below.For long-term storage of your positive control stab strain, we recommendpreparing a glycerol stock immediately upon receipt and storing at –80°C.Component ShippingStorage pPICZ A Expression Vector Wet ice Store at –20°CpPICZ B Expression Vector Wet ice Store at –20°CpPICZ C Expression Vector Wet ice Store at –20°CGS115/pPICZ/lacZ positive control strain Wet ice Store at 4°CivAccessory ProductsAdditional ProductsThe products listed in this section are intended for use with the pPICZ vectors.For more information, visit our web site at or contactTechnical Support (page 32).Product QuantityCatalogno. X-33 Pichia strain 1 stab C180-00GS115 Pichia strain 1 stab C181-00KM71H Pichia strain 1 stab C182-00SMD1168H Pichia strain 1 stab C184-00pPICZα A, B, and C 20 μg each V195-20pPIC6α A,B, and C 20 μg each V215-20pPIC6 A, B, and C 20 μg each V210-20pPIC6 Starter Kit 1 kit K210-01Original Pichia Expression Kit 1 kit K1710-01EasySelect™Pichia Expression Kit 1 kit K1740-01Pichia EasyComp™ Transformation Kit 1 kit K1730-01Pichia Protocols 1 book G100-01PureLink™ Gel Extraction Kit 50 preps250 prepsK2100–12K2100–25S.N.A.P ™ Gel Purification Kit 25 preps K1999–25PureLink™ Quick Plasmid Miniprep Kit 50 preps250 prepsK2100–10K2100–11PureLink™ HiPure Plasmid Midiprep Kit 25 preps50 prepsK2100–04K2100–13One Shot® TOP10 (chemically competent E. coli) 10 reactions20 reactionsC4040–10C4040–03One Shot® TOP10 Electrocompetent E. Coli 10 reactions20 reactionsC4040-50C4040-52TOP10 Electrocomp™ Kits 20 reactions C664–55Positope™ Control Protein 5 μg R900-50CIAP (Calf Intestinal Alkaline Phosphatase) 1,000 units 18009–019T4 DNA Ligase 100 units500 units15224–01715224–025Zeocin™ 1g5 gR250-01R250-05β-Gal Assay Kit 1 kit K1455-01β-Gal Staining Kit 1 kit K1465-01E-Gel® Agarose Gels E-Gel® Agarose Gels are bufferless, pre-cast agarose gels designed for fast, convenient electrophoresis of DNA samples. E-Gel® agarose gels are available in different agarose percentage and well format for your convenience.For more details on these products, visit our web site at or contact Technical Support (page 32).Continued on next pagevAccessory Products, ContinuedZeocin™Zeocin™ may be obtained from Invitrogen (see above). For your convenience, the drug is prepared in autoclaved, deionized water and available in 1.25 ml aliquotsat a concentration of 100 mg/ml. The stability of Zeocin™ is guaranteed for sixmonths if stored at –20°C.Detection of Fusion Protein A number of antibodies are available from Invitrogen to detect expression ofyour fusion protein from the pPICZ vector. Horseradish peroxidase (HRP)-conjugated antibodies allow one-step detection in Western blots usingcolorimetric or chemiluminescent detection methods. The amount of antibodysupplied is sufficient for 25 Western Blots.Antibody Epitope Catalogno.Anti-myc R950–25 Anti-myc-HRPDetects the 10 amino acid epitopederived from c-myc (Evans et al., 1985):EQKLISEEDLR951–25Anti-His(C-term) R930–25Anti-His(C-term)-HRPDetects the C-terminal polyhistidine(6xHis) tag (requires the free carboxylgroup for detection) (Lindner et al., 1997):HHHHHH-COOHR931–25Purification of Fusion Protein The polyhistidine (6xHis) tag allows purification of the recombinant fusionprotein using metal-chelating resins such as ProBond™. Ordering information forProBond™ resin is provided below.Product QuantityCatalogno. ProBond™ Purification System 6 purifications K850–01ProBond ™ Purification System with Anti-myc-HRP Antibody1 Kit K852–01ProBond ™ Purification System with Anti-His(C-term)-HRP Antibody1 Kit K853–01ProBond™ Nickel-Chelating Resin 50 ml150 mlR801–01R801–15Purification Columns 50 each R640–50viIntroductionOverviewIntroduction pPICZ A, B, and C are 3.3 kb expression vectors used to express recombinantproteins in Pichia pastoris. Recombinant proteins are expressed as fusions to aC-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis) tag.The vector allows high-level, methanol inducible expression of the gene ofinterest in Pichia, and can be used in any Pichia strain including X33, GS115,SMD1168H, and KM71H. pPICZ contains the following elements:•5′ fragment containing the AOX1 promoter for tightly regulated, methanol-induced expression of the gene of interest (Ellis et al., 1985; Koutz et al., 1989;Tschopp et al., 1987a)•Zeocin™ resistance gene for selection in both E. coli and Pichia (Baron et al.,1992; Drocourt et al., 1990)•C-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis)tag for detection and purification of a recombinant fusion protein (if desired)•Three reading frames to facilitate in-frame cloning with the C-terminalpeptideReference Sources The pPICZ A, B, and C expression vectors may be used with the Original Pichia Expression Kit, and are included in the EasySelect™Pichia Expression Kit (see page v for ordering information). Additional general information about recombinant protein expression in Pichia pastoris is provided in the manuals for the Original Pichia Expression Kit and the EasySelect™Pichia Expression Kit. For more information about the Original Pichia Expression Kit, the EasySelect™Pichia Expression Kit, or their manuals, visit our web site at or contact Technical Support (page 32).More detailed information and protocols dealing with Pichia pastoris may also be found in the following general reference:Higgins, D. R., and Cregg, J. M. (1998) Pichia Protocols. In Methods in Molecular Biology, Vol. 103. (J. M. Walker, ed. Humana Press, Totowa, NJ) (see page v for ordering information).Recommended Pichia Host Strain We recommend using the X-33 Pichia strain as the host for expression of recombinant proteins from pPICZ. Other Pichia strains including GS115, KM71H, and SMD1168H are suitable. The X-33 Pichia strain and other strains are available from Invitrogen (see page v for ordering information). The X-33 Pichia strain has the following genotype and phenotype:Genotype: Wild-typePhenotype: Mut+1Overview, ContinuedExperimental Overview The following table describes the basic steps needed to clone and express your gene of interest in pPICZ.Step Action1 Propagate pPICZ A, B, and C by transformation into a rec A, end A1E. coli strain such as TOP10, DH5 , or JM109.2 Develop a cloning strategy and ligate your gene into one of the pPICZvectors in frame with the C-terminal tag.3 TransformintoE. coli and select transformants on Low Salt LB platescontaining 25 μg/ml Zeocin™.4 Analyze 10–20 transformants by restriction mapping or sequencing toconfirm in-frame fusion of your gene with the C-terminal tag.5 Purify and linearize the recombinant plasmid for transformation intoPichia pastoris.6 TransformyourPichia strain and plate onto YPDS plates containing the appropriate concentration of Zeocin™.7 Select for Zeocin™-resistant transformants.8 Optimize expression of your gene.9 Purify your fusion protein on metal-chelating resin (i.e. ProBond™).Continued on next page2MethodsCloning into pPICZ A, B, and CIntroduction The pPICZ vector is supplied with the multiple cloning site in three readingframes (A, B, and C) to facilitate cloning your gene of interest in frame with theC-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis) tag.Use the diagrams provided on pages 5–7 to help you design a strategy to cloneyour gene of interest in frame with the C-terminal peptide. Generalconsiderations for cloning and transformation are discussed in this section.General Molecular Biology Techniques For assistance with E. coli transformations, restriction enzyme analysis, DNA biochemistry, and plasmid preparation, refer to Molecular Cloning: A Laboratory Manual (Sambrook et al., 1989) or Current Protocols in Molecular Biology (Ausubel et al., 1994).E. coli Strain Many E. coli strains are suitable for the propagation of the pPICZ vectorsincluding TOP10, JM109, and DH5 . We recommend that you propagate thepPICZ vectors in E. coli strains that are recombination deficient (rec A) andendonuclease A deficient (end A).For your convenience, TOP10 E. coli are available as chemically competent orelectrocompetent cells from Invitrogen (page v).Transformation Method You may use any method of choice for transformation. Chemical transformation is the most convenient for many researchers. Electroporation is the most efficient and the method of choice for large plasmids.Maintenance of Plasmids The pPICZ vectors contain the Zeocin™ resistance (Sh ble) gene to allow selection of the plasmid using Zeocin™. To propagate and maintain the pPICZ plasmids, we recommend using the following procedure:e 10 ng of your vector to transform a rec A, end A E. coli strain like TOP10,DH5 , JM109, or equivalent (see above).2.Select transformants on Low Salt LB plates containing 25 μg/ml Zeocin™ (seepage 17 for a recipe).3.Prepare a glycerol stock from each transformant containing plasmid forlong-term storage (see page 8).Continued on next page3Cloning into pPICZ A, B, and C, ContinuedGeneral Considerations The following are some general points to consider when using pPICZ to express your gene of interest in Pichia:•The codon usage in Pichia is believed to be similar to Saccharomyces cerevisiae.•Many Saccharomyces genes have proven to be functional in Pichia.•The premature termination of transcripts because of "AT rich regions" has been observed in Pichia and other eukaryotic systems (Henikoff & Cohen, 1984; Irniger et al., 1991; Scorer et al., 1993; Zaret & Sherman, 1984). If you have problems expressing your gene, check for premature termination by northern analysis and check your sequence for AT rich regions. It may be necessary to change the sequence in order to express your gene (Scorer et al., 1993).•The native 5´ end of the AOX1 mRNA is noted in the diagram for each multiple cloning site. This information is needed to calculate the size of the expressed mRNA of the gene of interest if you need to analyze mRNA for any reason.Cloning Considerations For proper initiation of translation, your insert should contain an initiation ATG codon as part of a yeast consensus sequence (Romanos et al., 1992). An example of a yeast consensus sequence is provided below. The ATG initiation codon is shown underlined.(G/A)NNATG GTo express your gene as a recombinant fusion protein, you must clone your gene in frame with the C-terminal peptide containing the c-myc epitope and the polyhistidine tag. The vector is supplied in three reading frames to facilitate cloning. Refer to the diagrams on pages 5–7 to develop a cloning strategy.If you wish to express your protein without the C-terminal peptide, be sure to include a stop codon.Construction of Multimeric Plasmids pPICZ A, B, and C contain unique Bgl II and Bam H I sites to allow construction of plasmids containing multiple copies of your gene. For information on how to construct multimers, refer to pages 24–31.Continued on next page4Multiple CloningSite of pPICZ A Below is the multiple cloning site for pPICZ A. Restriction sites are labeled to indicate the cleavage site. The boxed nucleotides indicate the variable region.The multiple cloning site has been confirmed by sequencing and functionaltesting.You can download the complete sequence of pPICZ A from our web site at or by contacting Technical Support (see page 32).For a map and a description of the features of pPICZ, refer to the Appendix(pages 21–22). AAT AGC GCC GTC GAC CAT CAT CAT CAT CAT CAT TGTTCCTCAG TTCAAGTTGG GCACTTACGA GAAGACCGGT CTTGCTAGAT TCTAATCAAG AGGATGTCAG AATGCCATTT GCCTGAGAGA TGCAGGCTTC ATTTTTGATA CTTTTTTATTTGTAACCTAT ATAGTATAGG ATTTTTTTTG TCATTTTGTT 1218Asn Ser Ala Val Asp His His His His His His ***3´ AOX1 priming site TGA GTTTTAGCCT TAGACATGAC AACCTTTTTT TTTATCATCA TTATTAGCTT ACTTTCATAA TTGCGACTGG TTCCAATTGA CAAGCTTTTG ATTTTAACGA CTTTTAACGA CAACTTGAGA AGATCAAAAA ACAACTAATT ATTCGAAACG AGGAATTCAC GTGGCCCAGC CGGCCGTCTC GGATCGGTAC CTCGAGCCGC GGCGGCCGCC AGCTT GGGCCC GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG 811Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 5´ AOX1 priming sitemyc epitope3´polyadenylation sitePolyhistidine tag5´ end of AOX1 mRNA Sfu I Eco R I Pml I Sfi I Bsm B I Asp 718 I Kpn I Xho ISac II Not I Apa I 104210981158871931991Continued on next pageMultiple CloningSite of pPICZ B Below is the multiple cloning site for pPICZ B. Restriction sites are labeled to indicate the cleavage site. The boxed nucleotides indicate the variable region.The multiple cloning site has been confirmed by sequencing and functionaltesting.You can download the complete sequence of pPICZ B from our web site at or by contacting Technical Support (see page 32).For a map and a description of the features of pPICZ, refer to the Appendix(pages 21–22). AAT AGC GCC GTC GAC CAT CAT CAT CAT CAT CAT TGA GTTTGTAGCC TTAGACATGA CTGTTCCTCA GTTCAAGTTG GGCACTTACG AGAAGACCGG TCTTGCTAGA TTCTAATCAA GAGGATGTCA GAATGCCATT TGCCTGAGAG ATGCAGGCTT CATTTTTGAT ACTTTTTTAT TTGTAACCTA TATAGTATAG GATTTTTTTT GTCATTTTGT TTC 1216Asn Ser Ala Val Asp His His His His His His ***3´ AOX1 priming site TGA GTTTGTAGCC TTAGACATGA AACCTTTTTT TTTATCATCA TTATTAGCTT ACTTTCATAA TTGCGACTGG TTCCAATTGA CAAGCTTTTG ATTTTAACGA CTTTTAACGA CAACTTGAGA AGATCAAAAA ACAACTAATTATTCGAAACG AGGAATTCAC GTGGCCCAGC CGGCCGTCTC GGATCGGTAC CTCGAGCCGC GGCGGCCGCC AGCTT TCTA GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG 811Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 5´ AOX1 priming sitemyc epitope3´ polyadenylation site Polyhistidine tag5´ end of AOX1 mRNA Sfu I Eco R I Pml I Sfi I Bsm B I Asp 718 I Kpn I Xho ISac II Not I Xba I 104010961156871931991Continued on next pageMultiple CloningSite of pPICZ C Below is the multiple cloning site for pPICZ C. Restriction sites are labeled to indicate the cleavage site. The boxed nucleotides indicate the variable region.The multiple cloning site has been confirmed by sequencing and functionaltesting.You can download the complete sequence of pPICZ C from our web site at or by contacting Technical Support (see page 32).For a map and a description of the features of pPICZ, refer to the Appendix(pages 21–22). AAT AGC GCC GTC GAC CAT CAT CAT CAT CAT CAT TGA GTTTGTAGCC TTAGACATGA CTGTTCCTCA GTTCAAGTTG GGCACTTACG AGAAGACCGG TCTTGCTAGA TTCTAATCAA GAGGATGTCA GAATGCCATT TGCCTGAGAG ATGCAGGCTT CATTTTTGAT ACTTTTTTAT TTGTAACCTA TATAGTATAG GATTTTTTTT GTCATTTTGT TTC 1217Asn Ser Ala Val Asp His His His His His His ***3´ AOX1 priming siteTGA GTTTGTAGCC TTAGACATGA AACCTTTTTT TTTATCATCA TTATTAGCTT ACTTTCATAA TTGCGACTGG TTCCAATTGA CAAGCTTTTG ATTTTAACGA CTTTTAACGA CAACTTGAGA AGATCAAAAA ACAACTAATT ATTCGAAACG AGGAATTCAC GTGGCCCAGC CGGCCGTCTC GGATCGGTAC CTCGAGCCGC GGCGGCCGCC AGCTT ACGTA GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG 811Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 5´ AOX1 priming sitemyc epitope3´ polyadenylation site Polyhistidine tag5´ end of AOX1 mRNA Sfu I Eco R I Pml I Sfi I Bsm B I Asp 718 I Kpn I Xho I Sac II Not I Sna B I 104110971157871931991Continued on next pageE. coli Transformation Transform your ligation mixtures into a competent rec A, end A E. coli strain(e.g. TOP10, DH5, JM109) and select on Low Salt LB agar plates containing25 μg/ml Zeocin™ (see below). Note that there is no blue/white screening for the presence of insert with pPICZ A, B, or C. Once you have obtained Zeocin™-resistant colonies, pick 10 transformants and screen for the presence and orientation of your insert.Important To facilitate selection of Zeocin™-resistant E. coli, the salt concentration of the medium must remain low (<90 mM) and the pH must be 7.5. Prepare Low Salt LB broth and plates using the recipe in the Appendix, page 17.Failure to lower the salt content of your LB medium will result in non-selection due to inhibition of the drug.C We recommend that you sequence your construct to confirm that your gene is in the correct orientation for expression and cloned in frame with the C-terminal peptide (if desired). Refer to the diagrams on pages 5–7 for the sequences and location of the priming sites.Preparing a Glycerol Stock Once you have identified the correct clone, be sure to purify the colony and make a glycerol stock for long-term storage. It is also a good idea to keep a DNA stock of your plasmid at –20°C.1.Streak the original colony out on an Low Salt LB plate containing 25 μg/mlZeocin™. Incubate the plate at 37°C overnight.2.Isolate a single colony and inoculate into 1–2 ml of Low Salt LB containing25 μg/ml Zeocin™.3.Grow the culture to mid-log phase (OD600 = 0.5–0.7).4.Mix 0.85 ml of culture with 0.15 ml of sterile glycerol and transfer to acryovial.5.Store at –80°C.Plasmid Preparation Once you have cloned and sequenced your insert, generate enough plasmid DNA to transform Pichia (5–10 μg of each plasmid per transformation). We recommend isolating plasmid DNA using the PureLink™ Quick Plasmid Miniprep Kit or the PureLink™ HiPure Plasmid Midiprep Kit (page v), or CsCl gradient centrifugation.Once you have purified plasmid DNA, proceed to Pichia Transformation, next page.Pichia TransformationIntroduction You should now have your gene cloned into one of the pPICZ vectors. Yourconstruct should be correctly fused to the C-terminal peptide (if desired). Thissection provides general guidelines to prepare plasmid DNA, transform yourPichia strain, and select for Zeocin™-resistant clones.Zeocin™ Selection We generally use 100 μg/ml Zeocin™ to select for transformants when using the X-33 Pichia strain. If you are transforming your pPICZ construct into anotherPichia strain, note that selection conditions may vary. We recommendperforming a dose response curve to determine the appropriate concentration ofZeocin™ to use for selection of transformants in your strain.Method of Transformation We do not recommend spheroplasting for transformation of Pichia with plasmids containing the Zeocin™ resistance marker. Spheroplasting involves removal of the cell wall to allow DNA to enter the cell. Cells must first regenerate the cell wall before they are able to express the Zeocin™ resistance gene. For this reason, plating spheroplasts directly onto selective medium containing Zeocin™ does not yield any transformants.We recommend electroporation for transformation of Pichia with pPICZ A, B, or C. Electroporation yields 103 to 104 transformants per μg of linearized DNA and does not destroy the cell wall of Pichia. If you do not have access to an electroporation device, use the LiCl protocol on page 23 or the Pichia EasyComp™Transformation Kit available from Invitrogen (see below).PichiaEasyComp™Transformation Kit If you wish to perform chemical transformation of your Pichia strain with pPICZ A, B, or C, the Pichia EasyComp™ Transformation Kit is available from Invitrogen (see page v for ordering information). The Pichia EasyComp™ Transformation Kit provides reagents to prepare 6 preparations of competent cells. Each preparation will yield enough competent cells for 20 transformations. Competent cells may be used immediately or frozen and stored for future use. For more information, visit our web site at or contact Technical Support (page 32).Important Since pPICZ does not contain the HIS4 gene, integration can only occur at the AOX1 locus. Vector linearized within the 5´ AOX1 region will integrate by gene insertion into the host 5´ AOX1 region. Therefore, the Pichia host that you use will determine whether the recombinant strain is able to metabolize methanol (Mut+) or not (Mut S). To generate a Mut+ recombinant strain, you must use a Pichia host that contains the native AOX1 gene (e.g. X-33, GS115, SMD1168H). If you wish to generate a Mut S recombinant strain, then use a Pichia host that has a disrupted AOX1 gene (i.e. KM71H).Continued on next pageHis4 Host Strains Host strains containing the his4 allele (e.g. GS115) and transformed with thepPICZ vectors require histidine when grown in minimal media. Add histidine toa final concentration of 0.004% to ensure growth of your transformants.The pPICZ vectors do not contain a yeast origin of replication. Transformantscan only be isolated if recombination occurs between the plasmid and the Pichiagenome.Materials Needed You will need the following items:Note: Inclusion of sorbitol in YPD plates stabilizes electroporated cells as they appear tobe somewhat osmotically sensitive.•5–10 μg pure pPICZ containing your insert•YPD Medium•50 ml conical polypropylene tubes• 1 liter cold (4°C) sterile water (place on ice the day of the experiment)•25 ml cold (4°C) sterile 1 M sorbitol (place on ice the day of the experiment)•30°C incubator•Electroporation device and 0.2 cm cuvettes•YPDS plates containing the appropriate concentration of Zeocin™ (seepage 18 for recipe)Linearizing YourpPICZ ConstructTo promote integration, we recommend that you linearize your pPICZ constructwithin the 5′ AOX1 region. The table below lists unique sites that may be used tolinearize pPICZ prior to transformation. Other restriction sites are possible.Note that for the enzymes listed below, the cleavage site is the same for versionsA, B, and C of pPICZ. Be sure that your insert does not contain the restriction siteyou wish to use to linearize your vector.Enzyme Restriction Site (bp) SupplierSac I 209 ManyPme I 414 New England BiolabsBst X I 707 ManyRestriction Digest 1.Digest ~5–10 μg of plasmid DNA with one of the enzymes listed above.2.Check a small aliquot of your digest by agarose gel electrophoresis forcomplete linearization.3.If the vector is completely linearized, heat inactivate or add EDTA to stopthe reaction, phenol/chloroform extract once, and ethanol precipitate using1/10 volume 3 M sodium acetate and 2.5 volumes of 100% ethanol.4.Centrifuge the solution to pellet the DNA, wash the pellet with 80% ethanol,air-dry, and resuspend in 10 μl sterile, deionized water. Use immediately orstore at –20°C.Continued on next pagePreparation of Pichia for Electroporation Follow the procedure below to prepare your Pichia pastoris strain for electroporation.1. Grow 5 ml of your Pichia pastoris strain in YPD in a 50 ml conical tube at30°C overnight.2. Inoculate 500 ml of fresh medium in a 2 liter flask with 0.1–0.5 ml of theovernight culture. Grow overnight again to an OD600 = 1.3–1.5.3. Centrifuge the cells at 1500 × g for 5 minutes at 4°C. Resuspend the pelletwith 500 ml of ice-cold (0–4°C), sterile water.4. Centrifuge the cells as in Step 3, then resuspend the pellet with 250 ml ofice-cold (0–4°C), sterile water.5. Centrifuge the cells as in Step 3, then resuspend the pellet in 20 ml of ice-cold (0–4°C) 1 M sorbitol.6. Centrifuge the cells as in Step 3, then resuspend the pellet in 1 ml of ice-cold(0–4°C) 1 M sorbitol for a final volume of approximately 1.5 ml. Keep the cells on ice and use that day. Do not store cells.Transformation by Electroporation 1.Mix 80 μl of the cells from Step 6 (above) with 5–10 μg of linearized pPICZDNA (in 5–10 μl sterile water) and transfer them to an ice-cold (0–4°C)0.2 cm electroporation cuvette.2.Incubate the cuvette with the cells on ice for 5 minutes.3.Pulse the cells according to the parameters for yeast (Saccharomycescerevisiae) as suggested by the manufacturer of the specific electroporation device being used.4.Immediately add 1 ml of ice-cold 1 M sorbitol to the cuvette. Transfer thecuvette contents to a sterile 15 ml tube.5.Let the tube incubate at 30°C without shaking for 1 to 2 hours.6.Spread 50-200 μl each on separate, labeled YPDS plates containing theappropriate concentration of Zeocin™.7.Incubate plates for 2–3 days at 30°C until colonies form.8.Pick 10–20 colonies and purify (streak for single colonies) on fresh YPD orYPDS plates containing the appropriate concentration of Zeocin™.Continued on next pageGenerally, several hundred Zeocin™-resistant colonies are generated using theprotocol on the previous page. If more colonies are needed, the protocol may bemodified as described below. Note that you will need ~20, 150 mm plates withYPDS agar containing the appropriate concentration of Zeocin™.1. Set up two transformations per construct and follow Steps 1 through 5 ofthe Transformation by Electroporation protocol, page 11.2. After 1 hour in 1 M sorbitol at 30°C (Step 5, previous page), add 1 ml YPDmedium to each tube.3. Shake (~200 rpm) the cultures at 30°C.4. After 1 hour, take one of the tubes and plate out all of the cells by spreading200 μl on 150 mm plates containing the appropriate concentration ofZeocin™.5. Optional: Continue incubating the other culture for three more hours (for atotal of four hours) and then plate out all of the cells by spreading 200 μl on150 mm plates containing the appropriate concentration of Zeocin™.6. Incubate plates for 2–4 days at 30°C until colonies form.Mut Phenotype If you used a Pichia strain containing a native AOX1 gene (e.g. X-33, GS115,SMD1168H) as the host for your pPICZ construct, your Zeocin™-resistanttransformants will be Mut+. If you used a strain containing a deletion in theAOX1 gene (e.g. KM71H), your transformants will be Mut S.If you wish to verify the Mut phenotype of your Zeocin™-resistant transformants,you may refer to the general guidelines provided in the EasySelect™PichiaExpression Kit manual or the Original Pichia Expression Kit manual or topublished reference sources (Higgins & Cregg, 1998).You are now ready to test your transformants for expression of your gene ofinterest. See Expression in Pichia, next page.。
酿酒酵母表面展示表达系统及应用
凝集素展示表达系统
凝集素展示表达系统
凝集素展示表达系统
絮凝素展示表达系统
絮凝素Flo1p 是一种新兴的展示系统,它是酿酒酵母细 胞表面类似凝集素的细胞壁蛋白。 • 目前,已经形成了两种类型的絮凝素展示系统 : • 一是GPI 系统 ;根据目的蛋白的特性和实验目的确定截去 Flo1p 肽段的长度,然后,目的蛋白的C 端融合到锚定序列 上。 • 二是利用Flo1p 的絮凝结构域的黏附能力创建一个表面展 示系统。
• 其中分别由AGα1、AGa1/AGa2和Flo1表达异源蛋白的 凝集素和絮凝素酵母细胞展示表达系统应用较多。
凝集素展示表达系统
α凝集素和a凝集素是酵母细胞壁上的两种甘露糖 蛋白,它们在酿酒酵母的交配型α(MATα )和 交配型a(MATa)单倍体细胞之间介导细胞 与细胞的性粘附,使细胞融合形成双倍体 。
二、两种系统
•
酿酒酵母细胞壁主要由外层的甘露糖蛋白和内层的葡
聚糖骨架组成,两者通过共价健相连。外层甘露糖蛋白有
两种类型:
• 一种是通过非共价健与酵母细胞壁松散相连并能被SDS 提取出来的低分子量蛋白;
• 一种是必须被葡聚糖酶酶解细胞壁的β-1,3-和β-1,6葡聚糖层后才能被SDS抽提的高分子量蛋白,包括凝集 素、絮凝素、Sed1p、Cwp1p、 Cwp 2p和Tip1p、Tir1p 、Srp1p等。后者的结构中大多都含有GPI锚定区域
主要内容
1
概念2两种系统来自3 应用4优缺点
一、概念
酿酒酵母表面展示表达系统: 一种固定化表达异源蛋白质的真核展示系统,
即把异源靶蛋白基因序列与特定的载体基因序列融 合后导入酵母细胞,利用酿酒酵母细胞内蛋白转运 到膜表面的机制(糖基磷脂酰肌醇,GPI锚定), 使靶蛋白表达并定位于酵母细胞表面,之后用葡聚 糖酶抽提细胞壁目的蛋白。
酵母表达体系构建
酵母表达体系构建酵母表达体系是一种常用的基因表达系统,可以用于生产重组蛋白质、疫苗、抗体等生物制品。
构建酵母表达体系需要选择合适的酵母菌种、载体、目的基因以及必要的宿主细胞,并通过基因克隆、转化、筛选等一系列步骤实现。
本文将详细介绍酵母表达体系的构建过程。
一、选择酵母菌种和载体1.酵母菌种选择:根据需要表达的蛋白质的种类和性质,选择适合的酵母菌种。
常用的酵母菌种有Saccharomyces cerevisiae(酿酒酵母)、Pichia pastoris(毕赤酵母)等。
2.载体选择:载体是携带目的基因进入宿主细胞的必要元件,常用的载体包括质粒、整合型载体和噬菌体载体等。
在构建酵母表达体系时,应根据目的基因的性质和表达量要求选择合适的载体。
二、目的基因的克隆和鉴定1.基因克隆:将目的基因插入到载体中,形成重组DNA分子。
可以通过PCR、基因文库等方法获取目的基因,也可以从基因组或cDNA文库中筛选出目的基因。
2.转化宿主细胞:将重组DNA分子导入到宿主细胞中,常用的方法包括电穿孔法、转化法等。
3.阳性克隆筛选:通过菌落PCR或 southern 杂交等方法筛选出含有目的基因的阳性克隆。
4.序列分析:对阳性克隆进行序列分析,确保目的基因正确插入载体中,并且没有发生任何突变。
三、构建酵母表达体系1.质粒制备:从阳性克隆中提取重组质粒,并进行纯化和鉴定。
2.转化酵母细胞:将重组质粒转化到酵母细胞中,常用的方法包括电穿孔法、热激法等。
3.筛选阳性克隆:通过 southern 杂交等方法筛选出含有重组质粒的阳性克隆。
4.鉴定表达产物:对阳性克隆进行蛋白质表达水平检测,常用的方法包括 western 杂交、ELISA等。
同时对表达产物进行生物活性检测,以评估表达产物的质量和功能。
5.优化表达条件:通过对培养条件(如温度、pH值、营养物质浓度等)进行优化,提高目的基因的表达水平和产量。
6.生产与纯化:在优化条件下进行大规模培养和表达,并对表达产物进行纯化和加工,以满足实际应用需求。
酵母整合型表达载体整合原理和整合原件
酵母整合型表达载体整合原理和整合原件一、概述酵母整合型表达载体是一种用于基因工程研究中的重要工具,它能够整合外源基因并稳定地在酵母细胞中表达。
这一载体在生物技术领域具有广泛的应用,能够帮助科研人员进行基因表达调控、蛋白质功能研究等方面的工作。
本文将针对酵母整合型表达载体的整合原理和整合原件进行深入探讨,并结合个人观点对其进行分析。
二、整合原理酵母整合型表达载体的整合原理是指外源基因在酵母细胞染色体中的整合方式和机制。
一般来说,酵母整合型表达载体通过与酵母染色体的同源配对,使外源基因在染色体特定位点发生整合。
整合的过程需要依赖一系列的整合原件来进行调控和介导。
其中,整合原件主要包括酵母选择标记基因和整合酶等。
1. 酵母选择标记基因酵母选择标记基因是酵母整合型表达载体中的重要组成部分,它能够在酵母细胞中产生特定的表型,并在培养基中通过筛选来实现对整合事件的筛选。
常见的酵母选择标记基因包括TRP1、LEU2、HIS3等,它们分别对应酵母细胞的色氨酸、亮氨酸和组氨酸代谢通路,能够使突变体在对应的缺陷培养基上无法生长。
通过选择适当的酵母选择标记基因,可以在整合过程中实现对突变体的筛选,从而保证整合事件的稳定性和准确性。
2. 整合酶整合酶是酵母整合型表达载体中的另一个重要组成部分,它能够介导整合事件的进行,并在酵母细胞中调控外源基因的整合。
常见的整合酶包括酵母整合酶(INC)和整合介导蛋白(INP)等,它们能够与酵母染色体上的同源序列进行特异性结合,并介导外源基因的整合过程。
通过对整合酶的调控和改变,能够实现对整合事件的精准和高效地控制,从而满足不同研究需求的整合要求。
三、个人观点酵母整合型表达载体的整合原理和整合原件在基因工程研究中发挥着重要的作用,它们为科研人员提供了强大的工具和评台,能够帮助他们实现对外源基因的整合和驱动。
在未来的研究中,我认为可以进一步优化和改进整合原件的设计和构建,以提高整合事件的稳定性和效率,从而更好地满足不同研究领域对整合事件的需求。
酵母菌表面展示操作步骤之表面蛋白表达与分析
酵母菌表面展示操作步骤之表面蛋白表达与分析表面蛋白是酵母菌细胞外表面上的蛋白质,它们在细菌的抗原识别、信号转导、细菌附着等过程中发挥着重要的作用。
通过表达和分析酵母菌的表面蛋白,我们可以更深入地了解其功能和机制。
本文将介绍酵母菌表面蛋白表达与分析的操作步骤。
步骤一:构建表达载体1. 根据需要表达的表面蛋白,选择合适的表达载体。
常用的表达载体包括质粒和病毒载体。
2. 将目标表面蛋白基因克隆到表达载体中,通常使用限制酶切和连接酶切的方法将目标基因插入载体中。
3. 验证目标基因的插入是否正确,并经过测序确认。
步骤二:转染酵母菌1. 准备酵母菌细胞,常用的酵母菌品系包括Saccharomyces cerevisiae和Pichia pastoris等。
2. 制备合适的转化体系,包括转化缓冲液和载体DNA。
3. 将载体DNA转化到酵母菌细胞中,可以通过化学法、电转化法或冷冻疑似法等方法实现。
步骤三:筛选表达阳性克隆1. 在含有适量的选择性培养基的培养皿中孵育转化后的酵母菌细胞。
2. 进行抗生素筛选,将培养基中添加适量的抗生素,使只有表达载体的酵母菌菌株存活下来。
3. 进行表达阳性菌落筛选,通过酵母菌表面蛋白的可视化或功能性分析方法来筛选表达阳性的克隆。
步骤四:表面蛋白分析1. 提取酵母菌细胞表面蛋白,可以使用化学方法或生物物理方法进行。
2. 利用蛋白质检测技术,如SDS-PAGE、Western blot等,对提取的表面蛋白进行分析。
这些技术可以确定表面蛋白的表达水平和分子量。
3. 进一步对表达的表面蛋白进行功能性分析,例如通过免疫沉淀、活性检测等方法来研究其与其他分子的相互作用。
步骤五:结果分析与验证1. 对表面蛋白的结果进行统计和分析,比较不同菌株或处理条件的差异。
2. 可以利用其他分析方法,如质谱分析、细胞免疫化学等,对酵母菌表面蛋白进行进一步的验证和鉴定。
需要注意的是,在进行酵母菌表面蛋白表达与分析的过程中,需要严格遵守实验室的安全操作规程,如佩戴手套、实验台下方放置密闭的垃圾袋、正确处理和消毒实验废液等,以确保实验的顺利进行和操作者的安全。
酵母表达培养基介绍
毕赤酵母表达的培养基配制[5]2.1 LB(Luria-Bertani)培养基:Trypton l%Yeast Extract 0.5%NaCl l%PH 7.0制作平板时加入2%琼脂粉。
121℃高压灭菌20min。
可于室温保存。
用于培养pPICZαA原核宿主菌TOP10F’时可加入Zeocin 25ug / ml。
2.2 LLB(Low Salt LB)培养基:Trypton l%Yeast Extract 0.5%NaCl 0.5%PH 7.0制作平板时加入2%琼脂粉。
121℃高压灭菌20min。
可于室温保存数月。
用于培养pPICZαA 原核宿主菌TOP10F’时,加入Zeocin 25ug / ml,可以4℃条件下保存1~2周。
2.3 YPD (又称YEPD)Yeast Extract Peptone Dextrose Medium,(Yeast Extract Peptone Dextrose Medium,酵母浸出粉/胰蛋白胨/右旋葡萄糖培养基)Trypton 2%dextrose (glucose) 2%+agar 2%+Zeocin 100 μg/ml液体YPD培养基可常温保存;琼脂YPD平板在4℃可保存几个月。
加入Zeocin 100ug / ml,成为YPDZ培养基,可以4℃条件下保存1~2周。
2.4 YPDS + Zeocin 培养基(Yeast Extract Peptone Dextrose Medium):yeast extract 1%peptone 2%dextrose (glucose) 2%sorbitol (山梨醇)1 M+agar 2%+ Zeocin 100 μg/ml不管是液体YPDS培养基,还是YPDS + Zeocin 培养基,都必须存放4℃条件下,有效期1~2周。
2.5 MGYMinimal Glycerol Medium (最小甘油培养基)(34%YNB;1%甘油;4*10-5%生物素)。
酵母表达系统
酵母表达系统基因表达是分子生物学领域的重要内容之一,人们利用基因表达技术制备各种目的基因的重组蛋白质,在分析基因的表达与调控、基因的结构与功能、基因治疗以及生物制药等领域均取得了令人振奋的成果。
其中,酵母表达系统拥有转录后加工修饰功能,操作简便,成本低廉,适合于稳定表达有功能的外源蛋白质,而且可大规模发酵,是最理想的重组真核蛋白质生产制备用工具。
1、酵母表达系统的特点酵母是一种单细胞低等真核生物,培养条件普通,生长繁殖速度迅速,能够耐受较高的流体静压,用于表达基因工程产品时,可以大规模生产,有效降低了生产成本。
酵母表达外源基因具有一定的翻译后加工能力,收获的外源蛋白质具有一定程度上的折叠加工和糖基化修饰,性质较原核表达的蛋白质更加稳定,特别适合于表达真核生物基因和制备有功能的表达蛋白质。
某些酵母表达系统具有外分泌信号序列,能够将所表达的外源蛋白质分泌到细胞外,因此很容易纯化。
应用酵母表达系统生产外源基因的蛋白质产物时也有不足之处,如产物蛋白质的不均一、信号肽加工不完全、内部降解、多聚体形成等,造成表达蛋白质在结构上的不一致。
解决内部降解的方法有三:一是在培养基中加入富含氨基酸和多肽的蛋白胨或酪蛋白水解物,通过增加酶作用底物来缓解蛋白水解作用;二是将培养基的pH值调成酸性(酵母可在pH3.0~8.0的范围内生长),以抑制中性蛋白酶的活性;三是利用蛋白酶缺失酵母突变体进行外源基因的表达。
另外,还时常遇到表达产物的过度糖基化情况。
因此,表达系统应根据具体情况作适当的改进。
2、常用酵母表达系统(宿主-载体系统)(1)酿酒酵母(Saccharomyces cerevisiae)表达系统酿酒酵母难于高密度培养,分泌效率低,几乎不分泌分子量大于30 kD的外源蛋白质,也不能使所表达的外源蛋白质正确糖基化,而且表达蛋白质的C端往往被截短。
因此,一般不用酿酒酵母做重组蛋白质表达的宿主菌。
酿酒酵母本身含有质粒,其表达载体可以有自主复制型和整合型两种。
选择合适的表达载体构建酵母菌表面展示系统
选择合适的表达载体构建酵母菌表面展示系统酵母菌表面展示系统是一种重要的生物技术工具,它能够使酵母菌表面展示不同的蛋白质、多肽或者抗原,以达到特定的研究目的。
选择合适的表达载体对于构建有效的酵母菌表面展示系统至关重要。
在本回答中,我将介绍选择合适的表达载体的关键因素,并讨论几种常用的表达载体和它们的优缺点。
选择合适的表达载体应考虑以下几个因素:表达载体的来源和类型、可调控性、克隆容量和稳定性。
首先,根据研究需求,可以选择天然酵母表达载体如pYr和pYX,或可自行构建的表达载体如pPICZ。
其次,要考虑表达载体的可调控性,即是否能够实现基因表达的调控,例如通过响应外源诱导剂或温度来控制基因的表达。
此外,克隆容量是个重要因素,因为较大的载体通常能够携带较大的外源基因。
最后,稳定性是指表达载体在酵母细胞中是否容易产生丢失或不稳定,因此选择一个稳定的表达载体可以确保长期高效的基因表达。
在构建酵母菌表面展示系统中,以下是几种常用的表达载体及其优缺点:1. pYr表达载体:pYr是一种基于天然酵母表达载体,能够高效地在酵母菌表面展示外源蛋白。
它具有较高的表达水平和稳定性,并且可以通过改变培养条件控制基因的表达。
另外,pYr载体的克隆容量较大,可以携带较大的外源基因。
然而,pYr载体的缺点是可能存在背景表达和在酵母菌群体中存在多拷贝插入,这可能会导致表达系统的不稳定性。
2. pYX表达载体:pYX是另一种基于天然酵母表达载体,它可以实现高效的酵母菌表面展示。
与pYr相比,pYX载体的优点在于其表达水平更高、表达系统更稳定,并且不易发生多拷贝插入。
此外,pYX载体的克隆容量较大,可以携带较大的外源基因。
然而,pYX载体的缺点是其表达水平很高,可能会导致细胞毒性和表达产物的不稳定性。
3. pPICZ表达载体:pPICZ是一种自行构建的表达载体,通常用于构建酵母菌表面展示系统。
它具有较高的表达水平和表达稳定性,并且能够在酵母细胞中实现可调控的外源基因表达。
酵母表达系统步骤
酵母表达系统步骤毕赤酵母表达系统步骤(参考Invitrogen公司说明书):一、pPICZαA、B、C质粒以及DH5α菌株的保存1取0.5μl pPICZα A、B、C质粒,热击转化DH5α,在低盐LB (含有25μg/ml Zeocin)的平板上37℃培养过夜。
2挑取转化子,甘油保存。
二、载体构建1将目的基因构建到pPICZα载体上,转化DH5α,用Zeocin筛选转化子。
2提质粒酶切鉴定或PCR鉴定3载体测序测序可用α-Factor引物或5’AOX1引物,3’AOX1引物三、线性化DNA1提取足够量的质粒DNA(一次转化至少需要5-10μg质粒)2 酶切线性化10μg构建好的载体,同时酶切空载体做对照,根据载体选择线性化酶切位点(样品分管酶切),pPICZα载体在5’AOX1区域有三个酶切位点可选择:SacI、PmeI、BstXI3 取1-2μl酶切产物跑电泳,确定是否酶切完全;4 过柱纯化线性化质粒(用50μl EB洗脱);四、线性化DNA的去磷酸化处理线性化质粒43μlCIAP Buffer 5μlCIAP酶2μl四、总体积为50μl的样品37℃ 1h,过柱纯化,用30μl ddH2O 洗脱;五、感受态细胞的制备实验前准备:无抗性YPD平板一个、无抗生素液体YPD培养基,100μg/ml Zeocin YPD 平板和液体、50ml离心管两个、500ml预冷的无菌水、20ml 1M 山梨醇(灭菌预冷的),0.2cm预冷的电击杯;1YPD平板划线培养菌,30℃培养2-3d;250ml三角瓶中,加入5ml YPD,挑取酵母单菌落,30℃培养过夜;3吸取0.5ml菌液,加入至含有200ml新鲜YPD的1L三角瓶中,30℃,225rpm/min培养至OD值1.3-1.5;41500g,4℃离心5min收集菌体;540ml冰预冷的无菌水重悬沉淀;61500g,4℃,5min;730ml无菌水重悬;81500g,4℃,5min;910ml 1M 山梨醇重悬;101500g,4℃,5min;11加入1ml山梨醇,重悬冰上放置,直接做转化,或加入灭菌甘油每管80ul分装,冻存于-80℃(长时间保存会影响转化效率);六、电击转化15-10μg线性化DNA(20μl<)与80ul上述感受态细胞混合,转移至预冷的0.2cm电击杯中(点击条件:电压1.5kV;电容25μF;电阻200Ω,电击时间为4~10msec);2冰上放置5min3电击(按生产厂商提供的适合酵母用的参数)4迅速加入1ml预冷的1M 山梨醇,转移至1.5ml EP管中530℃静置培养1-2h(如果要增加存活率,获得更多的转化克隆,可在30℃静置培养1h后,加入1mlYPD培养基,30℃200rpm培养1h后取部分涂布与不同浓度抗生素的平板)6取50、100、200ul分别涂布于含有Zeocin的YPD平板,30℃培养2-10 d至有菌落出现;7如果要筛选多拷贝转化子,将转化克隆混合在一起,涂布在Zeocin 浓度为500、1000、2000μg/ml的YPD平板,培养2-3d。
pPICZ A酵母表达载体说明
pPICZ A编号 载体名称北京华越洋生物VECT2440 pPICZ ApPICZA载体基本信息出品公司: Invitrogen载体名称: pPICZA, p PICZ A质粒类型: 毕赤酵母蛋白表达载体表达水平: 高拷贝启动子: AOX1克隆方法: 多克隆位点,限制性内切酶载体大小: 3329 b p5' 测序引物及序列: 5´ A OX1:5´-‐GACTGGTTCCAATTGACAAGC-‐3´ 3' 测序引物及序列: 3´ A OX1:5´-‐GCAAATGGCATTCTGACATCC-‐3´ 载体标签: C-‐Myc, C-‐His载体抗性: Zeocin 博来霉素筛选标记: HIS4备注: 插入基因是必需包含起始密码子ATG。
产品目录号: -‐-‐稳定性: 稳定 Stable组成型: 组成型 Constitutive病毒/非病毒: 非病毒pPICZA载体质粒图谱和多克隆位点信息pPICZA多克隆位点pPICZA载体简介pPICZ A,B和C是3.3 k b的毕赤酵母蛋白载体。
表达的重组蛋白是融合蛋白,含有一个C-‐端多肽,多太重含c-‐myc和C-‐His标签。
载体能够在毕赤酵母中利用甲醇诱导的高水平的表达目的蛋白,并且可以用在任何毕赤酵母中,包括X33,GS115菌株,SMD1168H,KM71H。
pPICZ系列载体包含以下元素:•5'片段含有AOX1启动子的严格调控,利用甲醇诱导表达任何感兴趣的基因(Ellis等,1985; Koutz等人,1989;tschopp等人,1987A)。
•Zeocin抗性基因在大肠杆菌和毕赤酵母都能用于筛选(Baron等人,1992; D rocourt等人,1990)。
所有质粒载体汇总
所有质粒载体汇总酿酒酵母表达载体pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6, pYCplac22-GFP,酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF,pY15TEF,pY16TEF, 酵母基因重组表达载体pUG6, pSH47,酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424, 酵母双杂交系统:酿酒酵母Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7;对照质粒pGBKT7-53,pGBKT7-lam,pGADT7-T,PCL1,酿酒酵母菌株INVSc1,YM4271, AH109,Y187,Y190,毕赤酵母表达载体pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZαA,pAO815,pPIC9k-His,pHIL-S1,pPink hc,配套毕赤酵母Pichiapink,毕赤酵母宿主X33,KM71,KM71H,GS115,原核表达载体pQE30,31,32,40,60,61,62,等原核表达载体,包括pET系列,pET-GST,pGEX系列(含GST标签),pMAL系列pMAL-c2x,-c4x,-c4e,-c5x,-p5x,pBAD,pBADHis,pBADmycHis系列,pQE系列,pTrc99a,pTrcHis系列,pBV220,221,222,pTXB系列,pLLP-ompA,pIN-III-ompA (分泌型表达系列),pQBI63(原核表达带荧光)pET3a, pET 3d, pET 11a, pET 12a, pET 14b, pET 15b, pET 16b, pET 17b, pET 19b, pET 20b, pET 21a,b,d, pET 22b, pET 23a, pET 23b, pET 24a,b, pET 25b, pET 26b, pET 27b, pET 28a,b, pET 29a, pET 30a, pET 31b, pET 32a, pET 35b, pET 38b, pET 39b, pET 40b, pET 41a,b pET 42a, pET 43.1a,b pET 44a, pET 49b pET302,303 pET His,pET Dsb,pET GST,pET Trx pQE2, pQE9 pQE30,31,32, pQE 40pQE70 pQE80L pQETirs system pRSET-A pRSET-B pRSET-C pGEX4T-1,-2,-3,5x-1,6p-1,6p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBAD HisA,B,C pPinPoint-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF(+), pTrc99A, pTwin1, pEZZ18 pkk232-8,pkk233-3,pACYC184,pBR322,pUC119pTYB1,pTYB2,pTYB4,pTYB11 pBlueScript SK (+),pBlueScript SK (-)pLLP ompA, pINIIIompA, pMBP-P ,pMBP-C, 大肠杆菌冷激质粒: pColdI pColdII pColdIII pColdTF 原核共表达质粒:pACYCduet-1,pETduet-1,pCDFduet-1,pRSFduet-1 Takara公司大肠杆菌分子伴侣: pG-KJE8 pGro7 pKJE7 pGTf2 pTf16 大肠杆菌宿主细胞: DH5a JM101 JM103JM105 JM107 JM109 JM110 Top10 Top10F BL21(DE3)HB101 ER2529 E2566 C2566 MG1655 XL-10gold XL blue M15 JF1125 K802 SG1117 BL21(AI)BL21(DE3)plysS TG1 TB1 DH5a(pir)Tuner(DE3)Bl21 codonplusRIPL Novablue (DE3)Rosetta Rosetta(DE3)Rosetta(DE3)plys Rosetta-gami(DE3)Rosetta-gamiB(DE3), Rosetta-gamiB(DE3)plysS Orgami (DE3)OrgamiB(DE3)HMS174(DE3)植物表达/RNAi载体农杆菌pBI121,pBI121-GFP,pBI101,pBI221,pSN1301,pUN1301,pRTL2 , pRTL2-GFP , pRTL2-CFP, pRTL2-RFP , pRTL2-YFP,pCAMBIA 1300, 1301, 1302,1303,1304,1305, 1381Z,1391Z,2300, 2301,3300,3301,pCAMBIA super1300,pCAMBIAsuper1300-GFP,pPZP212,pPZP2121,pPZP212-GFP,pGDG,RNAi载体pART27,pHANNIBAL,pKANNIBAL, pFGC5941,pTCK303, pTRV1,pTRV2,T-DNA插入载体(随机突变体库)pSKI015,pSKI074,真菌ATMT载体pBIG2RHPH2-GUS-GFP,pBHt1枯草芽孢杆菌表达载体pWB980,pHT43,pHP13,pHP43,pBE2,pMUTIN4,pUB110,pE194,pMA5,pMK3,pMK4,pHT304,pHY300PLK,pBest502,pDG1363,pSG1154,pAX01, pSAS144,pDL,pDG148-stu,pDG641,pAL12,pUCX05-bgaB,pHT01,配套菌株BS 168,WB600,WB800,WB700,WB800N,1012,FZB42,1A747,广宿主质粒pVLT33RNAi基因沉默干扰敲除载体pSilencer1.0,pSilencer 2.1-U6 hygro,pSilencer 3.1-H1 hygro,pSilencer 3.1-H1 neo,pSilencer 4.1-CMV neo, pSilencer 4.1-CMV puro pMIR-REPORT Luciferase RNAi载体(oligoengine)pSuper-puro RNAi逆转录病毒载体(clontech): RNAi-Ready pSIREN-Retro Q, RNAi-Ready pSIREN-RetroQ-ZsGreen(Luciferase shRNA Annealed Oligonucleotide)RNAi慢病毒载体(addgene): pLKO.1 哺乳动物表达载体pcDNA3.1+/-,pcDNA4/HisMax B,pSecTag2 A,pVAX1,pBudCE4.1,pTracer CMV2,pcDNA3.1(-)/myc-His A ,pcDNA6-Myc/His B,pCEP4, pIRES,pIRESneo,pIRES hyg3,pCMV-myc,pCMV-HA,pIRES-puro3,pIRES-neo3,pCAGGS哺乳动物双杂交系统pACT,pBIND,pACT-MyoD,pBIND-Id,pG5luc,pCMV-BD, pCMV-AD, pBD-p53, pFR-luc,Cytotrap Two-Hybrid System:pSos, pSos MAFB, pMyr蜕皮激素诱导系统pIND, pVgRxR,LacSwith II哺乳动物诱导表达系统:pOPRSVI ,pOPI3CAT,pCMVLacI,GeneSwitch System:pSwitch哺乳动物表面展示系统:pDisplay, 四环素调控系统(Invitrogen):pcDNA4/TO/Myc-His A,pcDNA4/TO/Myc-His B,pcDNA4/TO/Myc-His C,pcDNA4/TO/Myc-His/LacZ,pcDNA6/TR四环素调控系统(Clontech):pTet-On,pTet-Off,pTRE2,pRevTRE,pRevTet-On,pRevT et-off信号通路报告载体:pGAS-TA-Luc,pSTAT3-TA-Luc, pISRE-TA-Luc, pTA-Luc,pIκB-EGFP,pNFAT-TA-Luc,pCaspase3-sensor,pAP1(PMA)-Luc;pGL4.26[luc2P/minP/Hygro],pGL4.29[luc2P/CRE/Hygro],pGL 4.30[luc2P/NFA T-RE/Hygro],pGL4.75;p53-Luc,pAP-1-Luc,pNF-κB-Luc,pSRE-Luc,pFA2-Elk1,pFC-MEKK,pFR-luc,Gateway系统(invitrogen)pcDNA6.2-GWEmGFP-miR negative, pLenti 6/TR,pcDNA 6.2-GW EmGFP-miR,乳酸菌表达载体及各种乳酸菌乳酸杆菌菌株,pNZ8148,pLEISS,pMG36e,pBBR1MCS-5,pBBR1MCS-6,pRV610,pLEM415,pHY3 00PLK,分泌型乳酸菌表达载体pVE5523,pPG611.1,pPG612.1等和乳酸杆菌菌株宿主菌NZ9000,MG1363,Lactobacillus casei 1.539,Lactobacillus casei,acidophilus NCFM,1.2,Lactobacillus sakei 23K,L.plantarum,L.rhamnosusGG,B.coagulans,Bifidobacterium bifidum,Bifidobacterium infantis,Lactococcus lactis M17,1663,Lactobacillus reuterii 广宿主表达载体链球菌表达敲除载体假单胞菌表达载体pVLT33,pBBR1MCS-2,3,4,5,6, pJRD215,pJN105,pME6032,Cos 载体pLAFR3,pMP2444(GFP), pHY300PLK,pRT102,pRL1063a, 转座子载体pUT-miniTn5,pMGS100, pWHM10,pKC1139,pSET152,pOJ260,pPG611.1,pPG612.1,腺病毒载体/慢病毒,逆转录病毒表达载体及包装包膜质粒,腺病毒系统(Stratagene): pAdEasy-1,pShuttle-CMV,pShuttle,pAdTrack, pAdTrack-CMV, pShuttle-IRES-hrGFP-1、pShuttle-IRES-hrGFP-2、pShuttle-CMV-lacZ,pShuttle-CMV-EGFP-C,pXC1, pBHGE3, 配套大肠杆菌BJ5183,293,293T cellline 腺相关病毒系统(Stratagene):pAAV-MCS,pAAV-RC,pHelper,pAAV-LacZ,pAAV-IRES-hrGFP,pCMV-MCS,慢病毒载体:pLVX-DsRed-Monomer-N1,pLVX-IRES-ZsGreen1,pLVX-AcGFP1-N1,Lenti6/v 5-EDST-EGFP,pWPXL, FUGW,pLentilox 3.7,RNAi-Ready pSIREN-Retro Q,RNAi-Ready pSIREN-Retro Q-ZsGreen,pSUPER.Retro-GFP/Neo,pSUPER-Retro-Neo, pSUPER.Retro-puro,PLNCX PLNCX2 pMSCV-HYG pMSCV-neo pMSCV-puro pLEGFP-C1 pLOX-CW-CRE pLOX-GFP-IRES-TK pRetroX-IRES-DsRedExpress, pLVX-IRES-mCherry质粒载体。
酵母表达手册
酵母表达手册
酵母表达系统是一种常用于生产重组蛋白质的方法,其利用酵母细胞作为宿主来表达外源基因。
以下是酵母表达系统的基本步骤:
1. 基因克隆和转化:将目的基因克隆到酵母表达载体中,常用的载体有质粒和整合型载体。
转化方法包括电转化和化学转化。
2. 重组蛋白表达:将转化后的酵母细胞接种到发酵罐中进行培养,在适宜的温度、pH和营养条件下,目的基因在酵母细胞中表达出重组蛋白。
3. 蛋白质纯化:通过一系列的纯化技术,如离心、过滤、沉淀、亲和层析等,将重组蛋白从酵母细胞中分离出来并进行纯化。
4. 蛋白质后处理:根据需要,对纯化的重组蛋白进行进一步的后处理,如去盐、脱色、除菌等。
5. 蛋白质检测:通过SDS-PAGE、Western blot等方法检测重组蛋白的表达水平和纯度。
6. 蛋白质功能研究:对纯化的重组蛋白进行生物活性检测和功能研究,如酶活测定、免疫分析等。
在实际应用中,需要根据不同的需求选择不同的酵母表达系统,如酿酒酵母表达系统、毕赤酵母表达系统等。
同时,还需要对重组蛋白进行质量分析和稳定性研究,以确保其用于后续的实验或生产中具有可靠性和有效性。
毕赤酵母表达手册(详细)
毕赤酵母表达(pichia pastoris expression )实验手册2010-07-15 10:54:56| 分类:毕赤酵母| 标签:|字号大中小订阅一.毕赤酵母表达常用溶液及缓冲液的配制二.毕赤酵母表达的培养基配制三.主要试验环节的操作 3.1 酵母菌株的分离纯化 3.2 pPICZαA原核宿主菌TOP10F’的活化培养 3.3毕赤酵母表达的试验方法 3.4 毕赤酵母电转化方法 3.5 Pichia酵母表达直接PCR鉴定重组子的方法 3.6 毕赤酵母基因组提取方法 3.7 Mut+表型重组酵母的诱导表达实验关键词:酵母实验毕赤酵母表达 pichia pastoris expression 毕赤酵母酵母菌株大肠杆菌表达系统最突出的优点是工艺简单、产量高、周期短、生产成本低。
然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。
大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。
另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。
包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。
大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。
但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。
近年来,以酵母作为工程菌表达外源蛋白日益引起重视,原因是与大肠杆菌相比,酵母是低等真核生物,除了具有细胞生长快,易于培养,遗传操作简单等原核生物的特点外,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻译后加工、修饰的不足。
酵母表达系统
比较基因组学
通过比较不同物种之间的基因组 和转录组,分析生物进化的特征 和规律。
05 酵母表达系统的未来发展
提高表达产物的产量与质量
基因编辑技术
利用基因编辑技术,如CRISPR-Cas9,对酵母基因进行精确修饰, 以提高目标蛋白的表达量和纯度。
沉默子
沉默子是能够抑制基因表达的DNA序列,通过与转录因子结合来抑制基因的表达,在基因表达调控中具有重要作 用。
转录因子与基因表达调控
转录因子
转录因子是能够识别并结合DNA序列的蛋白质,通过与特定DNA序列的结合来调控基因的表达。
转录因子与基因表达调控
转录因子在基因表达调控中发挥关键作用,通过与启动子、增强子或沉默子等DNA序列的相互作用来 调节基因的表达。
蛋白质相互作用
通过酵母双杂交等技术研究蛋白质之间的相互作用,揭示基因调控 的分子机制。
基因突变分析
通过构建突变体分析基因突变对酵母生长、代谢等的影响,研究基因 的功能。
生物进化研究
物种进化
利用酵母表达系统研究物种之间 的进化关系,通过比较不同物种 之间基因表达的差异,揭示物种 进化的规律。
适应性进化
利用酵母表达系统生产食品添 加剂、酶制剂等,提高食品质 量和安全性。
农业领域
通过酵母表达系统改良农作物 ,提高抗逆性、产量和品质等
。
酵母表达系统的优缺点
优点
操作简便、周期短、成本低、可大规 模生产、安全性高。
缺点
表达水平相对较低、分泌蛋白的加工 和修饰能力有限、易受宿主菌遗传背 景的影响。
02 酵母表达系统的基本组成
对启动子、终止子等表达元件进行优化,提高其转 录和翻译效率,促进目标蛋白的表达。
验证酵母菌表面展示的目标基因表达及功能
验证酵母菌表面展示的目标基因表达及功能酵母菌表面展示系统是一种广泛应用的技术,用于在酵母菌表面展示外源蛋白或多肽,并研究其表达与功能。
该系统具有许多优点,如简单、可扩展性强、易于检测等,因此被广泛用于生物工程、药物筛选、疫苗研发等领域。
为了验证酵母菌表面展示的目标基因的表达和功能,我们可以采取以下步骤:1.构建酵母菌表面展示载体:首先,选择合适的表达载体,如pYD1或pCTCON,这些载体具有适用于酵母菌表面展示系统的序列。
然后,将目标基因的编码序列,通常是cDNA,克隆到其中。
确保使用适当的限制酶将其插入到载体中,并对其进行测序确认。
2.转化酵母菌:将构建的表达载体引入酵母菌细胞中。
通过酵母菌的自然转化或化学转化方法,使目标基因的表达载体进入酵母菌细胞。
确保使用正常的生长培养基和适当的选择性抗生素进行培养,以筛选出转基因酵母菌。
3.确认表达:使用适当的方法,如荧光显微镜观察或荧光素酶报告基因检测系统,来检测并确认目标基因在酵母菌表面的表达情况。
如果目标基因被成功表达,可以观察到荧光信号或荧光素酶活性。
4.功能鉴定:验证酵母菌表面展示的目标基因的功能可以采取多种策略。
一种常用的方法是使用适当的底物和检测方法来评估目标基因产物的酶活性。
例如,如果目标基因是编码酶的基因,可以使用适当的底物测定酵母表面展示的酶活性。
另外,可以通过在酵母菌表面展示的蛋白与特定配体之间的结合来评估其结合亲和性或互作关系。
5.其他功能鉴定:此外,还可以通过其它方法来验证目标基因在酵母菌表面展示的功能。
例如,如有可能,可以使用细胞凋亡检测试剂盒来评估目标基因在细胞凋亡中的作用。
如果目标基因是编码抗原的基因,则可以利用其在酵母菌表面展示的抗原性来诱导和检测免疫反应。
总结:通过酵母菌表面展示系统,我们可以验证目标基因在酵母菌表面的表达,并评估其功能。
通过构建适当的表达载体、转化酵母菌、确认表达和进行功能鉴定等步骤,我们可以确定目标基因是否在酵母菌表面成功展示,并评估其在相关生物过程中的作用。
使用基因工程技术优化酵母菌表达系统的实践指南
使用基因工程技术优化酵母菌表达系统的实践指南基因工程技术在生物科学和工业生产中扮演着至关重要的角色。
它们被广泛应用于优化微生物表达系统,特别是在酿酒、药物生产和酶工程领域。
酵母菌表达系统是其中一种最常用的表达系统之一,因为酵母菌具有较高的蛋白质表达能力、易于培养和规模化生产,并且可以处理各种复杂的蛋白质表达需求。
本文旨在提供一个使用基因工程技术优化酵母菌表达系统的实践指南,以帮助科学家充分发挥酵母菌表达系统的潜力。
1. 制定合适的表达载体选择合适的表达载体对于优化酵母菌表达系统至关重要。
常见的表达载体包括2μm质粒、单倍体质粒和基因组整合质粒。
对于高表达蛋白质的需求,建议选择2μm质粒或者多拷贝质粒来增加表达量。
同时,还可以根据表达蛋白质的生理和结构特性选择适当的启动子、信号肽等元件。
2. 优化表达宿主菌株正确选择适合的酵母菌株用于表达目标蛋白质也是非常重要的。
通常使用的酵母菌株包括酿酒酵母(Saccharomyces cerevisiae)和甜酒酵母(Pichia pastoris)。
酿酒酵母是最常用的表达宿主之一,因为它具有均衡的代谢特性、丰富的遗传工具和良好的可控性。
而甜酒酵母则适合表达复杂蛋白质,因为它可以进行都门筛选并实现高表达。
3. 优化启动子选择和调节启动子的选择对于蛋白质的高效表达至关重要。
常用的启动子包括PGK1启动子、ADH1启动子和GPD1启动子等。
不同的启动子在不同条件下表现出不同的效果。
在选择合适的启动子之后,还可以通过改变启动子的强度或者引入转录因子来进一步调节表达水平。
4. 优化信号肽和目标物定位信号肽可以帮助蛋白质正确定位和转运到所需的亚细胞器。
选择合适的信号肽对于表达复杂蛋白质非常重要。
例如,靶向蛋白质表达到内质网,可以选择KAR2信号肽。
通过优化信号肽的选择和序列,可以提高蛋白质表达量和纯度。
5. 优化培养条件和培养基培养条件和培养基的选择对于酵母菌表达系统至关重要。
pMyr酵母表达载体说明
pMyr编号 载体名称北京华越洋生物VECT2650 pMyr载体基本信息出品公司: Stratagene载体名称: pMyr质粒类型: 酵母双杂交系统载体高拷贝/低拷贝: -‐-‐启动子: GAL1克隆方法: 多克隆位点,限制性内切酶载体大小: 6.0kb5' 测序引物及序列: -‐-‐3' 测序引物及序列: -‐-‐载体标签: -‐-‐载体抗性: 氨苄青霉素(Ampicillian)筛选标记: -‐-‐备注: -‐-‐产品目录号: #217431稳定性: -‐-‐组成型: -‐-‐病毒/非病毒: -‐-‐载体质粒图谱和多克隆位点信息pMyr载体多克隆位点pMyr载体特征其他酵母表达载体:p416GFD pPIC9p53blue pPIC9KpACT2-AD pPIC9k-HispAD-GAL4-2.1 pPICZApADH2 pPICZBpAUR123 pPICZCpBridge pPICZαApCL1 pPICZαBpDEST32 pPICZαCpDisplay pPICZαDpDR195 pPICZαFCpESC-His pPICZαGBpESC-Leu pPink-HCpESC-TRP pPink-LCpESC-URA pPinkα-HCpFA6a-FGP(S65T)-kanMX6 pRS316pFLD pRS403pFLD/CAT pRS405pFLDαpRS406pGADT7-T pRS414pGAG424 pRS415pGAPZA pRS416 pGAPZB pRS41H pGAPZαB pRS426 pGAPZαC pRS426gal pGBKT7 pSEP1 pGBKT7-53 pSEP2 pGBKT7-Lam pSEP3pHIC-PI pSospHIL-D2 pSos-MAFB pHIL-S1 pUG66pHis2 pYC2/CT pHisSi-1 pYC2/NTA pMETA pYC2/NTB pMETB pYCP211 pMETC pYEPlac112 pMETαA pYEPlac195 pMETαB pYES2pMETαC pYES2-EGFP pMyr pYES2-kan pPIC3.5 pYES2-NTA pPIC3.5K pYES2-NTB pPIC6B pYES2-NTC pPIC6C pYES3/CT pPIC6αA pYES6/CT pPIC6αB pYES-DEST52 pPIC6αC pYIP211 pYX212 pYIP5 SUMOprotease pYRP7Ycp22lac-EGFP Ycplac33。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pGAPZαC pGBKT7 pGBKT7-53 pGBKT7-Lam pHIC-PI pHIL-D2 pHIL-S1 pHis2 pHisSi-1 pMETA pMETB pMETC pMETαA pMETαB pMETαC pMyr pPIC3.5 pPIC3.5K pPIC6B pPIC6C pPIC6αA pPIC6αB pPIC6αC pYX212 SUMOprotease Ycp22lac-EGFP
载体名称
pSos
Stratagene pSos 酵母双杂交系统载体 -‐-‐ ADH1 多克隆位点,限制性内切酶 11.3kb -‐-‐ -‐-‐ -‐-‐ 氨苄青霉素(Ampicillian) -‐-‐ -‐-‐ #217433 -‐-‐ -‐-‐ -‐-‐
pRS426gal pSEP1 pSEP2 pSEP3 pSos pSos-MAFB pUG66 pYC2/CT pYC2/NTA pYC2/NTB pYCP211 pYEPlac112 pYEPlac195 pYES2 pYES2-EGFP pYES2-kan pYES2-NTA pYES2-NTB pYES2-NTC pYES3/CT pYES6/CT pYES-DEST52 pYIP211 pYIP5 pYRP7 Ycplac33
pSos
编号
北京华越洋生物 VECT2920 载体基本信息 出品公司 : 载体名称 : 质粒类型 : 高拷贝 /低拷贝 : 启动子 : 克隆方法 : 载体大小 : 5' 测序引物及序列 : 3' 测序引物及序列 : 载体标签 : 载体抗性 : பைடு நூலகம் 筛选标记 : 备注 : 产品目录号 : 稳定性 : 组成型 : 病毒 /非病毒 : 载体质粒图谱和多克隆位点信息
pSos 多克隆位点
pSos 载体特征
其他酵母表达载体:
p416GFD p53blue pACT2-AD pAD-GAL4-2.1 pADH2 pAUR123 pBridge pCL1 pDEST32 pDisplay pDR195 pESC-His pESC-Leu pESC-TRP pESC-URA pFA6a-FGP(S65T)-kanMX6 pFLD pFLD/CAT pFLDα pGADT7-T pGAG424 pGAPZA pGAPZB pGAPZαB pPIC9 pPIC9K pPIC9k-His pPICZA pPICZB pPICZC pPICZαA pPICZαB pPICZαC pPICZαD pPICZαFC pPICZαGB pPink-HC pPink-LC pPinkα-HC pRS316 pRS403 pRS405 pRS406 pRS414 pRS415 pRS416 pRS41H pRS426