安徽省定远重点中学2017-2018学年高二上学期期末考试数学(文)试题Word版含答案

合集下载

2017-2018学年安徽省滁州市定远县西片三校联考高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市定远县西片三校联考高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市定远县西片三校联考高二(上)期末数学试卷(文科)一、选择题1.(5分)已知l表示空间一条直线,α、β表示空间两个不重合的平面,有以下三个语句:①l⊥α;②l∥β;③α⊥β.以其中任意两个作为条件,另外一个作为结论,可以得到三个命题,其中正确命题的个数是()A.0B.1C.2D.32.(5分)一个体积为12的正三棱柱的三视图,如图所示,则此正三棱柱的侧视图面积为()A.12B.8C.8D.63.(5分)已知三棱锥的正视图与俯视图如图,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为()A.B.C.D.4.(5分)正四棱锥所有棱长均为2,则侧棱和底面所成的角是()A.30°B.45°C.60°D.90°5.(5分)已知二面角α﹣AB﹣β的平面角是锐角,C是平面α内一点(它不在棱AB上),点D是点C在面β上的射影,点E是棱AB上满足∠CEB为锐角的任一点,那么()A.∠CEB>∠DEBB.∠CEB=∠DEBC.∠CEB<∠DEBD.∠CEB与∠DEB的大小关系不能确定6.(5分)若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交7.(5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.24+12πB.28+12πC.20+12πD.20+8π8.(5分)如图,正三棱柱ABC﹣A1B1C1的主视图(又称正视图)是边长为4的正方形,则此正三棱柱的侧视图(又称左视图)的面积为()A.16B.C.D.9.(5分)如图所示为一个简单几何体的三视图,则其对应的几何体是()A.B.C.D.10.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.11.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.2B.4C.6D.1212.(5分)等腰直角三角形ABC中,AB=BC=1,M为AC中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C﹣BM﹣A的大小为()A.30°B.60°C.90°D.120°二、填空题13.(5分)如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=.14.(5分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.15.(5分)要做一个无盖型容器,将长为15cm,宽为8cm的长方形铁皮先在四角分别截去一个相同的小正方形后再进行焊接,当该容器容积最大时高为cm.16.(5分)如图是正方体的平面展开图,则在这个正方体中,以下四个判断中,正确的序号是.①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.三、解答题17.(10分)如图,三棱柱ABC﹣A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(I)求证:平面AA1B1B⊥平面BB1C1C;(II)求二面角B﹣AC﹣A1的余弦值.18.(12分)如图,AB是⊙O的直径,点P是⊙O圆周上异于A,B的一点,AD⊥⊙O所在的平面P AB,四边形ABCD是边长为2的正方形,连结P A,PB,PC,PD.(1)求证:平面PBC⊥平面P AD;(2)若P A=1,求四棱锥P﹣ABCD的体积.19.(12分)如图,在底面是直角梯形的四棱锥S﹣ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=.(Ⅰ)求四棱锥S﹣ABCD的体积;(Ⅱ)求面SCD与面SBA所成的二面角的正切值.20.(12分)如图,平面SAB为圆锥的轴截面,O为底面圆的圆心,M为母线SB的中点,N为底面圆周上的一点,AB=4,SO=6.(1)求该圆锥的侧面积;(2)若直线SO与MN所成的角为30°,求MN的长.21.(12分)如图,三棱锥P﹣ABC中,平面P AC⊥平面ABC,AB⊥BC,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥平面PBC.(1)证明:EF∥BC(2)证明:AB⊥平面PEF(3)若四棱锥P﹣DFBC的体积为7,求线段BC的长.22.(12分)如图,在几何体ABCDE中,AB⊥平面BCE,且△BCE是正三角形,四边形ABCD为正方形,G是线段BE的中点,AB=2,(Ⅰ)若F是线段CD上的中点,求证:GF∥平面ADE(Ⅱ)若F是线段CD上的动点,求三棱锥F﹣ABE的体积.2017-2018学年安徽省滁州市定远县西片三校联考高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题1.【解答】解:由①l⊥α;②l∥β;③α⊥β,可得三个命题:①②⇒③,①③⇒②,②③⇒①.由l⊥α,l∥β,过l的平面γ与β交于m,由线面平行的性质定理可得l∥m,即有m⊥α,由m⊂β,可得α⊥β,①②⇒③正确;由l⊥α,α⊥β,可得l⊂β或l∥β,①③⇒②错误;由l∥β,α⊥β,可得l⊂α或l∥α或l与α相交,②③⇒①错误.故选:B.2.【解答】解:根据几何体的三视图,得;该几何体是正三棱柱,且底面正三角形一边上的高为2,∴底面三角形的边长为=4,∴三棱柱的体积为V三棱柱=×4×2h=12,三棱柱的高为h=3;∴侧视图的面积为S侧视图=2×3=6.故选:D.3.【解答】解:由俯视图可知三棱锥的底面是个边长为2的正三角形,由正视图可知三棱锥的一条侧棱垂直于底面,且其长度为2故其侧视图为直角边长为2和的直角三角形,故选:B.4.【解答】解:如图,四棱锥P﹣ABCD中,过P作PO⊥平面ABCD于O,连接AO,则AO是AP在底面ABCD上的射影,∴∠P AO即为所求线面角,∵AO=,P A=2,∴cos∠P AO==,∵0°≤∠P AO≤180°∴∠P AO=45°,即所求线面角为45°.故选:B.5.【解答】解:过C向AB做垂线交AB于F,连接DF,因为CD⊥AB又CF⊥AB,所以AB⊥面CDF,所以CF垂直于AB在直角三角形CDF中,CF为斜边DF为直角边,所以CF>DF易知tan∠CEF=tan∠DEB=由CF>DF知,∠CEB>∠DEB故选:A.6.【解答】解:由a、b是异面直线,直线c∥a知c与b的位置关系是异面或相交,故选:D.7.【解答】解:由三视图可知:该几何体是由上下两部分组成,上面是一个半径为2的半球,下面是一个长方体,其长宽高分别为2,2,3.∴该几何体的表面积=2π×22+π×22+4×2×3=24+12π.故选:B.8.【解答】解:由题意可知:左视图的高与主视图的高一样为4,左视图的宽度与俯视图的宽度一样都是底面正三角形的高2.因此左视图的面积=4×2=8.故选:D.9.【解答】解:对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意故选:A.10.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.11.【解答】解:由几何体的三视图得该向何体是如图所示的三棱柱ABC﹣A1B1C1,其中,AA1⊥平面ABC,四边形AA1C1C是边长为2的正方形,AB⊥AC,AB=3,∴该几何体的体积:V=S△ABC×AA1===6.故选:C.12.【解答】解:在等腰直角三角形ABC中,∵AB=BC=1,M为AC中点,∴AM=CM=BM=,AM⊥BM,CM⊥BM,所以沿BM把它折成二面角后,∠AMC就是二面角的平面角.在△AMC中,∵AM=CM=,AC=1,由余弦定理,知cos∠AMC==0,∴∠AMC=90°.故选:C.二、填空题13.【解答】解:∵平面ABCD∥平面A1B1C1D1,MN⊂平面A1B1C1D1∴MN∥平面ABCD,又PQ=面PMN∩平面ABCD,∴MN∥PQ.∵M、N分别是A1B1、B1C1的中点∴MN∥A1C1∥AC,∴PQ∥AC,又AP=,ABCD﹣A1B1C1D1是棱长为a的正方体,∴CQ=,从而DP=DQ=,∴PQ===a.故答案为:a14.【解答】解:如图所示,取B1C1的中点F,连接EF,ED1,∴CC1∥EF,又EF⊂平面D1EF,CC1⊄平面D1EF,∴CC1∥平面D1EF.∴直线C1C上任一点到平面D1EF的距离是两条异面直线D1E与CC1的距离.过点C1作C1M⊥D1F,∵平面D1EF⊥平面A1B1C1D1.∴C1M⊥平面D1EF.过点M作MP∥EF交D1E于点P,则MP∥C1C.取C1N=MP,连接PN,则四边形MPNC1是矩形.可得NP⊥平面D1EF,在Rt△D1C1F中,C1M•D1F=D1C1•C1F,得=.∴点P到直线CC1的距离的最小值为.故答案为15.【解答】解:设容器的高为x,(0<x<4),则当该容器容积V=(15﹣2x)(8﹣2x)x=4x3﹣46x2+120x,V′=12x2﹣92x+120,由V′=0,得x=或x=6(舍),∵x∈(0,)时,V′>0;x∈(,4)时,V′<0.∴当x=cm时,该容器容积最大.故答案为:.16.【解答】解:展开图复原的正方体如图,不难看出:①BM与ED平行;错误的,是异面直线;②CN与BE是异面直线,错误;是平行线;③CN与BM成60°;正确;④DM与BM是异面直线.正确.判断正确的答案为③④故答案为:③④三、解答题17.【解答】证明:(Ⅰ)由侧面AA1B1B为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,∴AB⊥平面BB1C1C,又AB⊂平面AA1B1B,∴平面AA1B1B⊥BB1C1C.(Ⅱ)由题意,CB=CB1,设O是BB1的中点,连接CO,则CO⊥BB1.由(Ⅰ)知,CO⊥平面AB1B1A.建立如图所示的坐标系O﹣xyz.其中O是BB1的中点,Ox∥AB,OB1为y轴,OC为z轴.不妨设AB=2,则A(2,﹣1,0),B(0,﹣1,0),C(0,0,),A1(2,1,0).=(﹣2,0,0),=(﹣2,1,),.设=(x1,y1,z1)为面ABC的法向量,则•=0,•=0,即取z1=﹣1,得=(0,,﹣1).设=(x2,y2,z2)为面ACA1的法向量,则•=0,•=0,即取x2=,得=(,0,2).所以cos〈n1,n2>==﹣.因此二面角B﹣AC﹣A1的余弦值为﹣.18.【解答】(1)证明:∵AD⊥⊙O所在的平面P AB,PB⊂⊙O所在的平面P AB,∴AD⊥PB,∵P A⊥PB,P A∩AD=A,∴PB⊥平面P AD,∵PB⊂平面PBC,∴平面PBC⊥平面P AD;(2)解:在平面P AB内过P作PE⊥AB于E,∵AD⊥⊙O所在的平面P AB,PE⊂⊙O所在的平面P AB,∴AD⊥PE,∵AD∩AB=A,∴PE⊥平面ABCD,直角△P AB中,AB=2,P A=1,∴PB=,∴PE==,∴四棱锥P﹣ABCD的体积V==.19.【解答】解:(Ⅰ)直角梯形ABCD的面积是M底面==(2分)∴四棱锥S﹣ABCD的体积是;(4分)(Ⅱ)延长BA、CD相交于点E,连接SE,则SE是所求二面角的棱(6分)∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB∵SA⊥面ABCD,得面SEB⊥面EBC,EB是交线.又BC⊥EB,∴BC⊥面SEB,故SB是SC在面SEB上的射影,∴CS⊥SE,所以∠BSC是所求二面角的平面角(10分)∵SB=∴tan∠BSC=即所求二面角的正切值为.(12分)20.【解答】解:(1)由题意知,SO⊥平面ABN,在RT△SOB中,OB=AB=2,SO=6,∴BS==,∴该圆锥的侧面积S=π•OB•BS=;(2)取OB的中点C,连接MC、NC,∵M为母线SB的中点,∴MC为△SOB的中位线,∴MC∥SO,MC=SO=3,∵SO⊥平面ABN,∴MC⊥平面ABN,∵NC⊂平面ABN,∴MC⊥NC,∵直线SO与MN所成的角为30°,∴∠NMC=30°,在RT△MCN中,,∴MN===.21.【解答】证明:(1)∵EF∥平面PBC,BC⊂平面PBC,∴EF与BC不相交,∵E在线段AC上,点F在线段AB上,∴EF⊂平面ABC,又BC⊂平面ABC,∴EF∥BC.(2)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,PE⊂平面P AC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为AB⊥BC,EF∥BC,故AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,所以AB⊥平面PEF.解:(3)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB•BC=x,由EF∥BC知==,得△AFE∽△ABC,故=()2=,即S△AFE=S△ABC,由AD=AE,S△AFD=S△AFE==,从而四边形DFBC的面积为:S DFBC=S△ABC﹣S AFD=×=x.由(2)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,故体积V P﹣DFBC=S DFBC•PE=x=7,故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.22.【解答】(Ⅰ)证明:法一、取AE的中点H,连接HG,DH,∵G是线段BE的中点,∴HG∥AB,且HG=,∵四边形ABCD为正方形,F是线段CD上的中点,∴DF∥AB,且DF=,∴HG∥DF且HG=DF,∴四边形DFGH是平行四边形,得GF∥DH,∵GF⊄平面ADE,DH⊂平面ADE,∴GF∥平面ADE;解法二、取CE的中点H,连接FH,GH,∵G是线段BE的中点,∴GH∥BC,∵四边形ABCD为正方形,∴BC∥AD,则GH∥AD,∵GH⊄平面ADE,AD⊂平面ADE,∴GH∥平面ADE,又∵F是线段CD上的中点,∴HF∥DE,∵HF⊄平面ADE,DE⊂平面ADE,∴HG∥平面ADE,∵GH∩/HF=H,∴平面FHG∥平面ADE,∵FG⊂平面FHG,∴GF∥平面ADE;(Ⅱ)解:∵四边形ABCD为正方形,∴AB∥CD,∵CD⊄平面ABE,AB⊂平面ABE,∴CD∥平面ABE,∴点F到平面ABE的距离=点C到平面ABE的距离,∴V F﹣ABE=V C﹣ABE=V A﹣BCE=.。

安徽省定远重点中学高二上学期第三次月考语文试题

安徽省定远重点中学高二上学期第三次月考语文试题

安徽定远重点中学2017-2018学年上学期第三次月考高二语文试题第I卷(选择题70分)一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成文后各题。

1877年,德国地理学家李希霍芬在他《中国》一书中使用“丝绸之路”这个词语。

自此,这条联通中国与世界的大道以这样一个美丽的名字,镌刻进历史的书卷中。

早期的丝绸之路主要是为方便沿途各国互通有无,到汉唐时达到鼎盛,无数商贾携带香料、药物等来到中国,又将中国的丝绸、瓷器、茶叶等远销海外。

在唐朝中期以前,陆上丝绸之路是中国对外贸易的首选,郑和下西洋后,海上丝绸之路逐渐兴起。

数千年来,商人、教徒、外交家和学术考察者等在这条“流淌着牛奶与蜂蜜”的道路上来来往往,通商、旅行、互动,在推动物质交流丰富性的同时,带来了文化交流的多样性。

佛教、伊斯兰教、基督教及西方的天文、历法、医药陆续传入中国,中国的四大发明、养蚕技术也从这里开始走向世界。

不论是出使西域的张骞、投笔从戎的班超、西天取经的玄奘,还是七下西洋的郑和,他们的故事与丝路密不可分。

而陕西历史博物馆珍藏的“鎏金铜蚕”,在印度尼西亚发现的千年沉船“黑石号”等出土文物,则是这段历史最好的见证者。

以至于瑞典著名探险家斯文·赫定这样感慨道:“世界上历史悠久、地域广阔、自成体系、影响深远的文化体系只有四个—一中国、印度、希腊、伊斯兰,此外再没有第五个。

而这四个文化体系汇流的地方只有一个,那就是中国自敦煌至喀什的环塔克拉玛干古代文明区,此外再没有第二个。

”作为多种文化的混合体,丝路文化依托于文化交流的实际过程,产生了一系列文化交融的丰硕成果。

首先,它本身就是文人墨客进行艺术创作的重要题材。

不论是“大漠孤烟直,长河落日圆”的感慨,还是木卡姆乐曲的悠扬,都让人们对丝路文化有了更直观的认识。

几千年来,那些行走于丝路上的各色人等及其所经历的悲欢离合,都通过不同民族和地域的各种艺术形式记录下来。

安徽省滁州市20172018学年高二上学期期末考试数学文试题含

安徽省滁州市20172018学年高二上学期期末考试数学文试题含

百度文库 - 好好学习,天天向上滁州市 2017-2018 学年第一学期高二期末考试 数 学 试 卷(文科) (试题卷)第Ⅰ卷(选择题 共 60 分) 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一 项是符合题目要求的.1. 若函数,则 的导数()A.B.C.D.【答案】C【解析】由导数昀运算法则可得.故选 C. 2. 高二(2)班男生 36 人,女生 18 人,现用分层抽样方法从中抽出 人,若抽出的男生人 数为 12,则 等于( ) A. 16 B. 18 C. 20 D. 22 【答案】B 【解析】因为高二(2)班男生 人,女生 人,现用分层抽样方法从中抽出 人,所以,故选 B.3. 双曲线的焦点到渐近线的距离为( )A.B.【答案】CC. 2 D. 3【解析】由双曲线方程,可得,所以渐近线方程为,焦点坐标为 ,由点到直线距离公式可得焦点到渐近线的距离为-- 1 -百度文库 - 好好学习,天天向上,故选 C.4. 下列函数是偶函数的是( )A.B.C.D.【答案】C 【解析】,即不是奇函数,又不是偶函数, 不合题意,,是奇函数,不合题意,,,是偶函数, 合题意,,即不是奇函数,又不是偶函数, 不合题意,故选 C.5. 若正方形 概率为( )的边长为 1,则在正方形内任取一点,该点到点 的距离小于 1 的A.B.C.D.【答案】A 【解析】在正方形内任取一点,该点到点 的距离小于 的点,在以点 为圆心以 为半径的四分之一圆内,面积为 ,所以在正方形内任取一点,该点到点 的距离小于的点的概率为 ,故选 A.【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.6. “函数是偶函数”是“ ”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】C-- 2 -百度文库 - 好好学习,天天向上【解析】,当“函数函数”时“”,反过来当“”时函数为偶函数,故“函数是偶函数”是“”的充分必要条件.故选 C.7. 曲线在点处的切线方程为( )是偶A.B.C.D.【答案】B【解析】曲线在点处的切线方程为,即.故选 B. 【点睛】本题考查导数的运用,求切线的方程,考查导数的几何意义,正确求导和运用点 斜式方程是解题的关键. 8. 执行如图所示的程序框图,则输出的结果为( )A. 2 B. 3 【答案】DC. 4D. 5【解析】执行程序框图,,输出,故选 D. 【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题 时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支 结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的 问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输-- 3 -百度文库 - 好好学习,天天向上出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9. 设命题,;命题 :若 ,则方程表示焦点在 轴上的椭圆.那么,下列命题为真命题的是( )A.B.C.D.【答案】B【解析】不存在 使为假, 为真,又时,方程表示焦点在 轴上的椭圆, 为真, 为假,为真,故选 B.10. 若 为抛物线上一点, 是抛物线的焦点,点 的坐标 ,则当 最小时,直线 的方程为( )A.B.【答案】DC.D.【解析】设 ,则时 最小,此时 故选 D. 11. 在,又 ,故直线 的方程为 . 中,角 , , 的对边分别为, ,,且,则()A.B.C.D.【答案】A 【解析】因为,所以由正弦定理得 ,即,由正弦定理可得化为,故选 A.12. 已知函数 是定义在 上的偶函数,当 的解集为( )时,-- 4 -,若,则不等式百度文库 - 好好学习,天天向上A.B.C.D.【答案】C【解析】设则是增函数,由题 是定义在 上的偶函数,故区间上是增函数,而即,当 时,不等式 0 等价于,由函数 在区间上是 上的奇函数,则函数 在得当 时,不等式 0 等价于,由,得,故所求的解集为.故选 C.第Ⅱ卷(非选择题 共 90 分)二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.13. 已知向量,,若 ,则__________.【答案】【解析】,故答案为 .14. 已知一个算法的程序框图如图所示,当输入的与时,则输出的两个 值的和为________.-- 5 -百度文库 - 好好学习,天天向上【答案】【解析】 时,, 时,,,输出的两个 值的和为 ,故答案为 .15. 在长方体中,,,点 , 分别为 , 的中点,点 在棱 上,若 平面 ,则四棱锥的外接球的体积为__________.【答案】【解析】当 是 中点时,连接 交 于点 ,则 是 的中点,又因为 别为 的中点,所以,从而根据线面平行的判定定理可得 平面 ,所以四棱锥的外接球就是以为棱的正方体的外接球,设外接球的半径为 ,则外接球直径等于正方体对角线长,所以,故答案为 .16. 已知双曲线()的左顶点为 ,右焦点为 ,过左顶点且斜率为 1 的直线与双曲线 的右支交于点 ,若 【答案】2的面积为 ,则双曲线 的离心率为__________.即即答案为 2.三、解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤.17. 甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位: ) ,甲:25.44,25.43, 25.41,25.39,25.38乙:25.41,25.42, 25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.-- 6 -百度文库 - 好好学习,天天向上【答案】见解析 【解析】试题分析:分别利用平均值公式算出甲乙两人生产的零件的平均值,再利用方差 公式算出甲乙两人生产的零件的方差,发现甲、乙平均数相同,乙的方差较小,∴乙生产 的零件比甲的质量高.试题解析:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.18. 已知抛物线,过点的直线与抛物线相交于 , 两点,若,求直线的方程.【答案】或.【解析】试题分析:设直线的方程为,与抛物线方程联立得到,由韦达定理,以及弦长公式得到关于 的方程,即可求得直线的方程. 试题解析:设直线的方程为:代入方程整理为:,故有,,.故有.整理为,解得.故直线的方程为:或.19. 某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁,岁年龄段人数中,“时尚族”人数分别占本组人数的 、 .(1)求岁与岁年龄段“时尚族”的人数;(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取 6 人参加网络-- 7 -百度文库 - 好好学习,天天向上时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。

安徽省定远重点中学2018_2019学年高二数学上学期期末考试试题文

安徽省定远重点中学2018_2019学年高二数学上学期期末考试试题文

2018-2019学年度上学期期末考试高二数学(文科)试题本试卷满分150分,考试时间120分钟。

请在答题卷上作答。

第I卷选择题(共60分)一、选择题(本大题共12题,每题5分,满分60分,每小题只有一个正确答案)1.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是( )A. 4 B. 2 C. 1 D.-32.已知a,b∈R,命题“若a+b=1,则a2+b2≥”的否命题是( )A.若a2+b2<,则a+b≠1B.若a+b=1,则a2+b2<C.若a+b≠1,则a2+b2<D.若a2+b2≥,则a+b=13.设f(x)存在导函数,且满足=-1,则曲线y=f(x)上点(1,f(1))处的切线斜率为( )A. 2 B.-1 C. 1 D.-24.已知条件p:x<-3或x>1,条件q:x>a,且p是q的充分不必要条件,则a的取值范围是( )A.a≥-1 B.a≤1 C.a≥1 D.a≤-35.已知p:∃x0∈R,mx+2≤0.q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是( )A. [1,+∞) B. (-∞,-1] C. (-∞,-2] D. [-1,1]6.已知双曲线my2-x2=1(m∈R)与椭圆+x2=1有相同的焦点,则该双曲线的渐近线方程为( )A.y=±x B.y=±x C.y=±x D.y=±3x7.已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A ,B两点.若△AF1B的周长为4,则C的方程为( )A.+=1 B.+y2=1 C.+=1 D.+=18.已知抛物线y2=x,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO的面积之和的最小值是( )A. 2 B. 3 C. D.9.已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图所示,则f(x)的图象可能是( )10.过曲线y=上一点P的切线的斜率为-4,则点P的坐标为( )A. B.或C. D.11.如图,椭圆的中心在坐标原点,焦点在x轴上,A1,A2,B1,B2为椭圆顶点,F2为右焦点,延长B1F2与A2B2交于点P,若∠B1PB2为钝角,则该椭圆离心率的取值范围是( )A.B.C.D.12.函数f(x)=x+ln x在(0,6)上是( )A.单调增函数B.单调减函数C.在上是减函数,在上是增函数D.在上是增函数,在上是减函数第II卷非选择题(共90分)二、填空题(共4小题,每小题5分,共20分)13.若曲线y=x ln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是________.14.已知函数f(x)=x4+ax2-bx,且f′(0)=-13,f′(-1)=-27,则a+b等于________.15.设双曲线-=1的右顶点为A,右焦点为F,过点F且与双曲线的一条渐近线平行的直线与另一条渐近线交于点B,则△AFB的面积为________.16.点P在椭圆x2+=1上,点Q在直线y=x+4上,若|PQ|的最小值为,则m=________.三、解答题(共6小题,共70分)17. (10分)已知命题p:函数f(x)=x2-2mx+4在[2,+∞)上单调递增,命题q:关于x的不等式mx2+4(m-2)x+4>0的解集为R.若p∨q为真命题,p∧q为假命题,求m的取值范围.18.(12分)已知椭圆+=1(a>b>0)上的点P到左,右两焦点F1,F2的距离之和为2,离心率为.(1)求椭圆的标准方程;(2)过右焦点F2的直线l交椭圆于A,B两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.19. (12分)双曲线的方程是-y2=1.(1)直线l的倾斜角为,被双曲线截得的弦长为,求直线l的方程;(2)过点P(3,1)作直线l′,使其被双曲线截得的弦恰被P点平分,求直线l′的方程.20. (12分)斜率为k的直线l经过抛物线y=x2的焦点F,且与抛物线相交于A,B两点,若线段|AB|的长为8.(1)求抛物线的焦点F的坐标和准线方程;(2)求直线的斜率k.21. (12分)设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.22.(12分)设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a为实数).(1)当x∈(0,1]时,求f(x)的解析式;(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;(3)是否存在a,使得x∈(0,1]时,f(x)有最大值1?高二数学(文科)试题答案1.C2.C3.B4.C5.A6.A7.A8.B9.D10.B11.C12.A13.(e,e)14.1815.16.317.若命题p为真,因为函数的对称轴为x=m,则m≤2.若命题q为真,当m=0时原不等式为-8x+4>0,显然不成立.当m≠0时,则有⇒1<m<4.因为p∨q为真,p∧q为假,所以命题p,q一真一假.故或解得m≤1或2<m<4.18.解(1)由题意知,|PF1|+|PF2|=2a=2,所以a=.又因为e==,所以c=×=1,所以b2=a2-c2=2-1=1,所以椭圆的标准方程为+y2=1.(2)已知F2(1,0),直线斜率显然存在,设直线的方程为y=k(x-1),A(x1,y1),B(x2,y2),联立直线与椭圆的方程得化简得(1+2k2)x2-4k2x+2k2-2=0,所以x1+x2=,y1+y2=k(x1+x2)-2k=.所以AB的中点坐标为(,).①当k≠0时,AB的中垂线方程为y-=-(x-),因为|MA|=|MB|,所以点M在AB的中垂线上,将点M的坐标代入直线方程得,+=,即2k2-7k+=0,解得k=或k=;②当k=0时,AB的中垂线方程为x=0,满足题意.所以斜率k的取值为0,或.19.解(1)设直线l的方程为y=x+m,代入双曲线方程,得3x2+8mx+4(m2+1)=0,Δ=(8m)2-4×3×4(m2+1)=16(m2-3)>0,∴m2>3.设直线l与双曲线交于A(x1,y1)、B(x2,y2)两点,则x1+x2=-m,x1x2=.由弦长公式|AB|=|x1-x2|,得,∴=,即m=±5,满足m2>3,∴直线l的方程为y=x±5.(2)设直线l′与双曲线交于A′(x3,y3)、B′(x4,y4)两点,点P(3,1)为A′B′的中点,则x3+x4=6,y3+y4=2.由=4,=4,两式相减得(x3+x4)(x3-x4)-4(y3+y4)(y3-y4)=0,∴=,∴l′的方程为y-1=(x-3),即3x-4y-5=0.把此方程代入双曲线方程,整理得5y2-10y+=0,满足Δ>0,即所求直线l′的方程为3x-4y-5=0.20.解(1)化y=x2为标准方程x2=4y,由此,可知抛物线的焦点F的坐标为(0,1),准线方程为y=-1.(2)设A(x1,y1),B(x2,y2),由抛物线的定义知|AF|=y1+1,|BF|=y2+1,于是|AB|=y1+y2+2,又|AB|=8,所以y1+y2=6,由(1)得,抛物线的焦点为(0,1),所以直线l的方程为y=kx+1,所以kx1+1+kx2+1=6,k(x1+x2)=4,由直线l的方程与抛物线方程得kx+1=,即x2-4kx-4=0,Δ=16k2+16>0,所以x1+x2=4k,代入k(x1+x2)=4,得k2=1,k=±1.21.(1)由7x-4y-12=0得y=x-3.当x=2时,y=,∴f(2)=,①又f′(x)=a+,∴f′(2)=,②由①,②得解之得.故f(x)=x-.(2)证明设P(x0,y0)为曲线上任一点,由y′=1+知曲线在点P(x0,y0)处的切线方程为y-y0=(1+)(x-x0),即y-(x0-)=(1+)(x-x0).令x=0得y=-,从而得切线与直线x=0的交点坐标为(0,-).令y=x得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为|-||2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.22.(1)f(x)=-x3+ax.(2)f(x)在(0,1]上单调递增,证明见解析.(3)存在a=,使f(x)在(0,1]上有最大值1 【解析】(1)设x∈(0,1],则-x∈[-1,0).∵f(x)为偶函数,∴f(x)=f(-x)=-x3+ax,即x∈(0,1]时,f(x)=-x3+ax.(2)f(x)在(0,1]上单调递增,证明如下:f′(x)=-3x2+a,x∈(0,1],∴-3x2∈[-3,0).又a>3,∴a-3x2>0,即f′(x)>0.∴f(x)在(0,1]上单调递增.(3)当a>3时,f(x)在(0,1]上单调递增,∴f(x)max=f(1)=a-1=1.∴a=2与a>3矛盾.当0≤a≤3时,令f′(x)=a-3x2=0,得x=或x=-(舍去).x∈时,f′(x)>0,∴f(x)在上单调递增.x∈时,f′(x)<0,∴f(x)在上单调递减.又函数f(x)在x=处连续,∴f(x)max=f=-3+a=1.解得a=,当a<0时,f′(x)=a-3x2<0,∴f(x)在(0,1]上单调递减,f(x)在(0,1]上无最大值.综上,存在a=,使f(x)在(0,1]上有最大值1.。

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若函数f(x)=x+cos x,则f(x)的导数f'(x)=()A.1﹣cos x B.1+cos x C.1﹣sin x D.1+sin x2.(5分)高二(2)班男生36人,女生18人,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n等于()A.16B.18C.20D.223.(5分)双曲线的焦点到渐近线的距离为()A.B.3C.2D.4.(5分)下列函数是偶函数的是()A.y=x+cos x B.y=x+sin2x C.y=x2+cos x D.y=x2+sin2x 5.(5分)若正方形ABCD的边长为1,则在正方形ABCD内任取一点,该点到点A的距离小于1的概率为()A.B.C.D.6.(5分)“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)曲线f(x)=(x+1)e x在点(0,f(0))处的切线方程为()A.y=x+1B.y=2x+1C.y=x+1D.y=x+1 8.(5分)执行如图所示的程序框图,则输出的结果为()A.2B.3C.4D.59.(5分)设命题p:∃x∈R,x2﹣x+2=0;命题q:若m>1,则方程+=1表示焦点在x轴上的椭圆.那么,下列命题为真命题的是()A.p∨(¬q)B.(¬p)∨(¬q)C.p∧q D.p∧(¬q)10.(5分)若P为抛物线C:y2=4x上一点,F是抛物线的焦点,点A的坐标(3,0),则当|P A|最小时,直线PF的方程为()A.x﹣2y﹣3=0B.x﹣2y﹣1=0C.x=3D.x=111.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(3﹣cos A)=3a cos C+a cos B,则sin A=()A.B.C.D.12.(5分)已知函数f(x)是定义在R上的偶函数,当x>0时,xf'(x)>f(x),若f(2)=0,则不等式>0的解集为()A.{x|﹣2<x<0或0<x<2}B.{x|x<﹣2或x>2}C.{x|﹣2<x<0或x>2}D.{x|x<﹣2或0<x<2}二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(﹣1,3),=(3,t),若⊥,则|2+|=.14.(5分)已知一个算法的程序框图如图所示,当输入的x=﹣1与x=1时,则输出的两个y值的和为.15.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,点E,F分别为CD,DD1的中点,点G在棱AA1上,若CG∥平面AEF,则四棱锥G﹣ABCD的外接球的体积为.16.(5分)已知双曲线C:﹣(a>0,b>0)的左顶点为M,右焦点为F,过左顶点且斜率为1的直线l与双曲线C的右支交于点N,若△MNF的面积为b2,则双曲线C的离心率为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(10分)甲乙两人同时生产内径为25.41 mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出5件(单位:mm),甲:25.44,25.43,25.41,25.39,25.38乙:25.41,25.42,25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18.(12分)已知抛物线C:y2=2x,过点P(1,0)的直线l与抛物线相交于A,B两点,若|AB|=2,求直线l的方程.19.(12分)某高校进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(30,35]岁,[35,40)岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[30,35)岁与[35,40)岁年龄段“时尚族”的人数;(2)从[30,45)岁和[45,50)岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[30,45)岁内的概率.20.(12分)已知S n为等差数列{a n}的前n项和,已知S2=2,S3=﹣6.(1)求数列{a n}的通项公式和前项和S n;(2)是否存在n,使S n,S n+2+2n,S n+3成等差数列,若存在,求出n,若不存在,说明理由.21.(12分)已知椭圆C:+=1(a>b>0)的离心率e=,且过点(,).(1)求椭圆C的方程;(2)设过点P(1,1)的直线与椭圆C交于A,B两点,当P是AB中点时,求直线AB 方程.22.(12分)已知函数f(x)=x2﹣2x+alnx(a∈R).(1)当a=﹣4时,求函数f(x)的单调区间;(2)若函数f(x)有两个极值点x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求实数m的取值范围.2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:f′(x)=1﹣sin x,故选:C.2.【解答】解:性别比为2:1,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n==18,故选:B.3.【解答】解:双曲线的焦点坐标为(4,0)或(﹣4,0),渐近线方程为y=±x,则焦点到渐近线的距离d==2,故选:C.4.【解答】解:根据题意,依次分析选项:对于A,f(x)=x+cos x,f(﹣x)=(﹣x)+cos(﹣x)=﹣x+cos x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;对于B,f(x)=x+sin2x,f(﹣x)=(﹣x)+sin(﹣2x)=﹣(x+sin2x)=﹣f(x),f(x)为奇函数,不符合题意;对于C,f(x)=x2+cos x,f(﹣x)=(﹣x)2+cos(﹣x)=x2+cos x=f(x),则f(x)是偶函数,符合题意;对于D,f(x)=x2+sin2x,f(﹣x)=(﹣x)2+sin(﹣2x)=x2﹣sin2x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;故选:C.5.【解答】解:如图:满足动点P到定点A的距离|P A|<1的平面区域如图中阴影所示:则正方形的面积S正方形=1,阴影部分的面积S=,故动点P到定点A的距离|P A|<1的概率P=,故选:A.6.【解答】解:∵“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,f(x)=(x+2a)(x﹣a+1)=x2+(a+1)x﹣2a2+2a,∴a+1=0,解得a=﹣1,即“函数f(x)=(x+2a)(x﹣a+1)是偶函数”⇒“a=﹣1”;当a=﹣1时,f(x)=(x+2a)(x﹣a+1)=(x﹣2)(x+2)=x2﹣4是偶函数,即“a=﹣1”⇒“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,∴“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的充分必要条件.故选:C.7.【解答】解:∵f(x)=e x(x+1),∴f′(x)=e x(x+1)+e x=e x(x+2),∴f′(0)=e0•(0+2)=2,又f(0)=1,∴曲线曲线y=f(x)在点(0,f(0))处的切线方程为:y﹣1=2(x﹣0),即2x﹣y+1=0;故选:B.8.【解答】解:第一次进行循环,S=20,i=2,不满足退出循环的条件;第二次进行循环,S=10,i=3,不满足退出循环的条件;第三次进行循环,S=,i=4,不满足退出循环的条件;第四次进行循环,S=,i=5,满足退出循环的条件;故输出的i值为5,故选:D.9.【解答】解:由x2﹣x+2=0,∵△=12﹣8=﹣7<0,即此方程无解,即命题p:∃x∈R,x2﹣x+2=0;为假命题,即¬p为真命题,当m>1时,2m﹣1>m>0,即方程+=1表示焦点在x轴上的椭圆.即命题q为真命题,¬q为假命题,即(¬p)∨(¬q)为真命题,故选:B.10.【解答】解:设P(x,y),抛物线C:y2=4x,F是抛物线的焦点(1,0),点A的坐标(3,0),|P A|===,当x=1时,|P A|最小,此时P(1,±2),所以直线PF的方程为:x=1.故选:D.11.【解答】解:∵b(3﹣cos A)=3a cos C+a cos B,∴由正弦定理可得:3sin B=3sin A cos C+sin A cos B+sin B cos A,可得:3sin B=3sin A cos C+sin C,∴由正弦定理可得:3b=3a cos C+c,∴3b=3a•+c,可得:3b2+3c2﹣3a2=2bc,∴cos A==,∴sin A=.故选:A.12.【解答】解:∵f(x)是定义在R上的偶函数,当x>0时,>0,∴为增函数,f(x)为偶函数,为奇函数,∴在(﹣∞,0)上为增函数,∵f(﹣2)=f(2)=0,若x>0,=0,所以x>2;若x<0,=0,在(﹣∞,0)上为增函数,可得﹣2<x<0,综上得,不等式>0的解集是(﹣2,0)∪(2,+∞)故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵向量=(﹣1,3),=(3,t),⊥,∴=﹣3+3t=0,解得t=1,∴=(3,1),2=(1,7),|2+|==5.故答案为:.14.【解答】解:由程序框图知:算法的功能是求y=的值,输入的x=﹣1时,y=,输入的x=1时,y=1,则输出的两个y值的和为.故答案为:.15.【解答】解:如图,取AB中点H,连接CH,HG,则CH∥AE,CH∥平面AEF,又CG∥平面AEF,∴平面CGH∥平面AEF,可得EF∥GH,则G为AA1的中点,∴AG=1,则四棱锥G﹣ABCD的外接球的直径为以AB,AD,AH为棱的长方体的对角线,长为,半径为,则四棱锥G﹣ABCD的外接球的体积为.故答案为:.16.【解答】解:双曲线C:﹣(a>0,b>0)的左顶点为M(﹣a,0),右焦点为F (c,0),过左顶点且斜率为1的直线l:y=x+a,直线l与双曲线C的右支交于点N,,可得:(b2﹣a2)y2﹣2ab2y=0,解得N的纵坐标为:﹣.又因为△MNF的面积为b2,所以:﹣=,﹣4ac=3a2﹣3(c2﹣a2)所以3e2﹣2e﹣8=0,e>1解得e=2,故答案为:2.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.【解答】解:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.18.【解答】解:设直线l的方程为:my=x﹣1,整为:x=my+1,代入方程y2=2x整理为:y2﹣2my﹣2=0,故有y1+y2=2m,y1y2=﹣2,.故有.整理为m4+3m2﹣4=0,解得m=±1.故直线l的方程为:x+y﹣1=0或x﹣y﹣1=0.19.【解答】解:(1)[30,35)岁年龄段“时尚族”的人数为1000×0.06×5×80%=240.[35,40)岁年龄段“时尚族”的人数为1000×0.04×5×60%=120.(2)由(1)知[30,35)岁中抽4人,记为a、b、c、d,[35,40)岁中抽2人,记为x、y,则领队两人是:ab、ac、ad、ax、ay、bc、bd、bx、by、cd、cx、cy、dx、dy、xy共l5种可能,其中两人都在[30,35)岁内的有6种,所以领队的两人年龄都在[30,45)岁内的概率为P=.20.【解答】解:(1)设等差数列{a n}的公差为d,∵S2=2,S3=﹣6.∴2a1+d=2,3a1+3d=﹣6,联立解得a1=4,d=﹣6.∴a n=4﹣6(n﹣1)=10﹣6n.S n==7n﹣3n2.(2)假设存在n,使S n,S n+2+2n,S n+3成等差数列,则2(S n+2+2n)=S n+S n+3,∴2[7(n+2)﹣3(n+2)2+2n]=7n﹣3n2+7(n+3)﹣3(n+3)2,化为:n=5.因此存在n=5,使S n,S n+2+2n,S n+3成等差数列.21.【解答】解:(1)设椭圆的焦距为2c,则∴∴椭圆C的方程为:.(2)设A(x1,y1),B(x2,y2).则,,∴又x1+x2=y1+y2=2,∴.∴直线AB方程为.3x+4y﹣7=0.22.【解答】解:(1)a=﹣4时,f(x)=x2﹣2x﹣4lnx,定义域为(0,+∞),.∴0<x<2时:f'(x)<0,x>2时,f'(x)>0,∴f(x)的单调增区间为[2,+∞),单调减区间为[0,2](2)函数f(x)在(0,+∞)上有两个极值点,.由f'(x)=0.得2x2﹣2x+a=0,当△=4﹣8a>0,时,x1+x2=1,,,则x1>0,∴a>0.由,可得,,,令,则,因为.,,又2lnx<0.所以h'(x)<0,即时,h(x)单调递减,所以,即,故实数m的取值范围是.。

安徽省定远重点中学2017-2018学年高二上学期期末考试数学(文)试题

安徽省定远重点中学2017-2018学年高二上学期期末考试数学(文)试题

安徽省定远重点中学2017-2018学年高二上学期期末考试数学(文)试题一、单选题(★) 1 . 若正棱锥底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥(★★★) 2 . 已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有()(1)MN⊥AB;(2)若N为中点,则MN与AD所成角为60°;(3)平面CDM⊥平面ABN;(4)不存在点N,使得过MN的平面与AC垂直.A.1B.2C.3D.4(★) 3 . a,b,c表示三条不重合的直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若b M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确命题的个数有A.0个B.1个C.2个D.3个(★★) 4 . 已知矩形.将沿矩形的对角线所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线与直线垂直B.存在某个位置,使得直线与直线垂直C.存在某个位置,使得直线与直线垂直D.对任意位置,三对直线“与”,“与”,“与”均不垂直(★) 5 . 若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的母线与轴所成的角为( )A.30°B.45°C.60°D.90°(★) 6 . 设是两条不同的直线,是两个不同的平面,则下列四个命题中错误的为( )A.若,则B.若,则C.若,则D.若,则(★★★) 7 . 一个几何体的三视图如图所示,则该几何体的体积是()A.8B.10 C.12D.14(★★★) 8 . 已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为()A.B.C.D.(★) 9 . 设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“ ”是“ ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(★) 10 . 如图,在正三棱柱ABC-A 1B 1C 1中,AB=2.若二面角C-AB-C 1的大小为60°,则异面直线A 1B 1和BC 1所成角的余弦值为()A.B.C.D.(★★★) 11 . 某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为()A.4B.C.D.8(★★★) 12 . 如图,直三棱柱的六个顶点都在半径为1的半球面上,AB=AC,侧面是半球底面圆的内接正方形,则侧面的面积为()A.2B.1C.D.二、填空题(★★★) 13 . 已知球的表面积为,用一个平面截球,使截面圆的半径为, 则截面与球心的距离是.(★★★) 14 . 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为__.(★★★) 15 . 如图正方体 ABCD- A 1 B 1 C 1 D 1中,与 AD 1异面且与 AD 1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.(★★★★★) 16 . 四棱锥中,底面是边长为的正方形,侧面是以为斜边的等腰直角三角形,若,则四棱锥的体积取值范围为_____.三、解答题(★★★) 17 . 如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC= AB=1,点M在线段EC上.(Ⅰ)证明:平面BDM⊥平面ADEF;(Ⅱ)判断点M的位置,使得三棱锥B﹣CDM的体积为.(★) 18 . 如图,在正方体ABCD﹣A 1B 1C 1D 1的棱长为a,若E为棱AB的中点,①求四棱锥B 1﹣BCDE的体积②求证:面B 1DC⊥面B 1DE.(★★★) 19 . 如图,在底面是矩形的四棱锥P-ABCD中,平面ABCD,PA=AB,E是PD的中点.(1)求证:平面EAC;(2)求证:平面平面PAD.(★★★★) 20 . 已知三棱柱中,平面⊥平面,⊥,.(1)求证:⊥平面;(2)求平面与平面所成二面角的余弦值.(★★★) 21 . 如图,在直三棱柱中,是的中点.(1)证明:平面;(2)若,求证:.(★★★★★) 22 . 如图,在四棱锥中,,∥,,,,.(1)求证:平面平面;(2)若,三棱锥与的体积分别为,求的值.。

安徽省定远县高二数学上学期期中试题 文(无答案)

安徽省定远县高二数学上学期期中试题 文(无答案)

安徽定远重点中学2017-2018学年第一学期期中考试高二数学(文科)试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将第I 卷(选择题)答案用2B 铅笔正确填写在答题卡上;请将第II 卷(非选择题)答案黑色中性笔正确填写在答案纸上。

第I 卷(选择题60分)一、选择题(本题共12个小题,每小题5分,共60分)1.已知点(a ,2a -1)既在直线y =3x -6的上方,又在y 轴的右侧,则a 的取值范围是() A .(2,+∞) B .(5,+∞)C .(0,2)D .(0,5)2.两个二进制数101(2)与110(2)的和用十进制数表示为( )A.12B.11C.10D.93.下列不等式一定成立的是( )A .lg ⎝ ⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z)C .x 2+1≥2|x |(x ∈R)D.1x 2+1>1(x ∈R)4.下列程序运行后输出的结果是( )A.12,5B.12,21C.12,3D.21,125.已知a >0,b >0,且2a +b =4,则1ab 的最小值为( )A.14 B .4 C.12 D .26.下列函数中,最小值为2的函数是( )A .y =x 2+2+1x 2+2B .y =x 2+1xC .y =x (22-x )(0<x <22)D .y =x 2+2x 2+17.执行如图所示的程序框图,输出的x 值为( )A.4B.5C.6D.78.用秦九韶算法计算多项式f(x)=12+35x-8x 2+79x 3+6x 4+5x 5+3x 6当x=-4时,v 4的值为( )A.167B.220C.-57D.8459.在下列各数中,最大的数是( )A.85(9)B.210(5)C.68(8)D.11 111(2)10.阅读程序框图,若输入m=4,n=6,则输出a ,i 分别是( )A.a=12,i=3B.a=12,i=4C.a=8,i=3D.a=8,i=411.已知向量a =(x ,-1),b =(y -1,1),x ,y ∈R +,若a ∥b ,则t =x +1x +y +1y的最小值是( )A .4B .5C .6D .812.设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>第II 卷(选择题90分)二、填空题(每小题5分,共20分)13.用辗转相除法求204与85的最大公约数时,需要做除法的次数是________..14. 不等式|x |+|y |≤1所表示的平面区域的面积为________.15.已知0<x <1,则f (x )=2+log 2x +的最大值是________. 16.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.三、解答题(共6小题,共70分)17. (10分) (1)用篱笆围一个面积为100 m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36 m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?18. (12分)用更相减损术求80和36的最大公约数.19.(12分)根据如图所示的流程图回答问题:(1)该流程图解决的是什么问题?(2)当输入的x 值为0和4时,输出的值相等,问当输入的x 值为3时,输出的值为多少?(3)在(2)的条件下,要想使输出的值最大,输入的x 值应为多大?(4)在(2)的条件下,要想使输入的值和输出的值相等,输入的值应该是多大?20. (12分)设不等式组⎩⎪⎨⎪⎧x -y +8≥0,x +y ≥0,x ≤4表示的平面区域是Q .(1)求Q 的面积S ;(2)若点M (t ,1)在平面区域Q 内,求整数t 的取值的集合.21.(12分)已知a ,b ,c 都是正实数,且满足log 9(9a +b )=log 3ab ,求使4a +b ≥c 恒成立的c 的取值范围.22. (12分)某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费各年为第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年递增,问这种生产设备最多使用多少年报废最合算(即使用多少年的年平均费用最少)?。

安徽省定远重点中学高二上学期期末考试数学(文)---精校解析Word版

安徽省定远重点中学高二上学期期末考试数学(文)---精校解析Word版

高二年级上学期期末考试试题数学(文科)一、选择题(每小题只有一个正确答案)1.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是( )A. 4B. 2C. 1D. -3【答案】C【解析】【分析】根据根的判别式求出a的范围,在选项中选出符合条件的值即可.【详解】方程无实根,所以,解得:,所以只有1符合;故选C.【点睛】本题考查命题真假的应用以及一元二次方程根的判别式,根据题意列式,即可得出结果.2.已知a,b∈R,命题“若a+b=1,则a2+b2≥”的否命题是( )A. 若a2+b2<,则a+b≠1B. 若a+b=1,则a2+b2<C. 若a+b≠1,则a2+b2<D. 若a2+b2≥,则a+b=1【答案】C【解析】【分析】命题的否定改写:改为,改为,即可。

【详解】命题的否定改写:改为,改为,故该命题的否命题为若a+b≠1,则a2+b2<,故选C。

【点睛】本道题考查了命题的否命题改写,抓住改为,改为,即可,难度中等。

3.设f(x)存在导函数,且满足=-1,则曲线y=f(x)上点(1,f(1))处的切线斜率为( )A. 2B. -1C. 1D. -2【答案】B【解析】【分析】本道题关键在于看出=,即可。

【详解】式子=,故在该点的切线斜率为-1,故选B。

【点睛】本道题考查了切线斜率计算公式,难度中等。

4.已知条件p:x<-3或x>1,条件q:x>a,且p是q的充分不必要条件,则a的取值范围是( )A. a≥-1B. a≤1C. a≥1D. a≤-3【答案】C【解析】【分析】关键将p是q的充分不必要条件进行转化,计算a的范围,即可。

【详解】结合是的充分不必要条件,得出q可以推出p,但是p无法推出q,故可知,故选B。

【点睛】本道题考查了充分条件,必要条件的判定,关键在于将p是q的充分不必要条件进行转化,计算a的范围,即可,难度中等。

5.已知p:x0∈R,.q:x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是( )A. [1,+∞)B. (-∞,-1]C. (-∞,-2]D. [-1,1]【答案】A【解析】【分析】结合题意,可知,p,q都为假命题,可知其否定为真命题,结合二次函数性质,计算m的范围,即可。

安徽省2017-2018学年高二上学期学业水平考试数学试卷(提高卷) Word版含解析

安徽省2017-2018学年高二上学期学业水平考试数学试卷(提高卷) Word版含解析

安徽省2017-2018学年高二上学期学业水平考试数学试卷(提高卷)一、选择题:本大题共18小题,每小题3分,共54分1.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A. 3 B.﹣2 C. 2 D.不存在2.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A. x﹣2y+7=0 B. 2x+y﹣1=0 C. x﹣2y﹣5=0 D. 2x+y﹣5=03.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直4.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A. 4x+2y=5 B. 4x﹣2y=5 C. x+2y=5 D. x﹣2y=55.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A. B. C. D.6.已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面 B.一定是相交 C.不可能平行 D.不可能垂直7.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④8.圆(x﹣1)2+y2=1与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9.两圆相交于点A(1,3)、B(m,﹣1),两圆的圆心均在直线x﹣y+c=0上,则m+c的值为()A.﹣1 B. 2 C. 3 D. 010.在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么() A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外11.若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是() A. MN∥β B. MN与β相交或MN⊊βC. MN∥β或MN⊊β D. MN∥β或MN与β相交或MN⊊β12.已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC() A.垂直 B.平行C.相交 D.位置关系不确定13.各棱长均为a的三棱锥的表面积为()A. B. C. D.14.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台15.经过两点(3,9)、(﹣1,1)的直线在x轴上的截距为()A. B. C. D. 216.已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为() A.(﹣3,0,0) B.(0,﹣3,0) C.(0,0,﹣3) D.(0,0,3)17.圆心为C(6,5),且过点B(3,6)的圆的方程为()A.(x﹣6)2+(y﹣5)2=10 B.(x﹣6)2+(y+5)2=10 C.(x﹣5)2+(y﹣6)2=10 D.(x﹣5)2+(y+6)2=1018.圆:x2+y2﹣2x﹣2y+1=0上的点到直线x﹣y=2的距离最小值是()A. 2 B. C. D.二.填空题:本大题共4小题,每小题4分,共16分19.若A(1,﹣2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为.20.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC= .21.过点(1,2)且在两坐标轴上的截距相等的直线的方程.22.圆心在直线2x﹣y﹣7=0上的圆C与y轴交于两点A(0,﹣4)、B(0,﹣2),则圆C的方程为.三.解答题本大题共3小题,每小题10分,共30分23.已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x﹣3y+16=0,CA:2x+y﹣2=0,求AC边上的高所在的直线方程.24.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC;(2)AF⊥平面EDB.25.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.安徽省2017-2018学年高二上学期学业水平(提高卷)数学试卷参考答案与试题解析一、选择题:本大题共18小题,每小题3分,共54分1.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A. 3 B.﹣2 C. 2 D.不存在考点:斜率的计算公式.专题:计算题.分析:把直线上两点的坐标代入斜率公式进行运算,求出结果.解答:解:由直线的斜率公式得直线AB的斜率为k==﹣2,故选 B.点评:本题考查直线的斜率公式的应用.2.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A. x﹣2y+7=0 B. 2x+y﹣1=0 C. x﹣2y﹣5=0 D. 2x+y﹣5=0考点:直线的一般式方程;两条直线平行的判定.专题:计算题.分析:由题意可先设所求的直线方程为x﹣2y+c=0再由直线过点(﹣1,3),代入可求c的值,进而可求直线的方程解答:解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.点评:本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.3.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直考点:平面的基本性质及推论.专题:证明题.分析:根据证明平行四边形的条件判断A,由线面垂直的性质定理和定义判断B和C,利用实际例子判断D.解答:解:A、一组对边平行且相等就决定了是平行四边形,故A不符合题意;B、由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B不符合题意;C、由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C不符合题意;D、由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D符合题意.故选D.点评:本题考查了平面几何和立体几何中的定理和定义,只要抓住定理中的关键条件进行判断,可借助于符合条件的几何体进行说明,考查了空间想象能力和对定理的运用能力.4.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A. 4x+2y=5 B. 4x﹣2y=5 C. x+2y=5 D. x﹣2y=5考点:直线的点斜式方程;两条直线垂直与倾斜角、斜率的关系;中点坐标公式.专题:计算题.分析:先求出中点的坐标,再求出垂直平分线的斜率,点斜式写出线段AB的垂直平分线的方程,再化为一般式.解答:解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率 k==2,∴线段AB的垂直平分线的方程是 y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.点评:本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.5.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A. B. C. D.考点:确定直线位置的几何要素.专题:数形结合.分析:本题是一个选择题,按照选择题的解法来做题,由y=x+a得斜率为1排除B、D,由y=ax与y=x+a 中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,得到结果.解答:解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选C.点评:本题考查确定直线为主的几何要素,考查斜率和截距对于一条直线的影响,是一个基础题,这种题目也可以出现在直线与圆锥曲线之间的图形的确定.6.已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面 B.一定是相交 C.不可能平行 D.不可能垂直考点:空间中直线与直线之间的位置关系.专题:证明题.分析:由平行公理,若c∥b,因为c∥a,所以a∥b,与a、b是两条异面直线矛盾.异面和相交均有可能.解答:解:a、b是两条异面直线,c∥a,那么c与b异面和相交均有可能,但不会平行.因为若c∥b,因为c∥a,由平行公理得a∥b,与a、b是两条异面直线矛盾.故选C点评:本题考查空间的两条直线的位置关系的判断、平行公理等知识,考查逻辑推理能力.7.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④考点:空间中直线与平面之间的位置关系;命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:证明题;压轴题;空间位置关系与距离.分析:根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.解答:解:对于①,因为n∥α,所以经过n作平面β,使β∩α=l,可得n∥l,又因为m⊥α,l⊂α,所以m⊥l,结合n∥l得m⊥n.由此可得①是真命题;对于②,因为α∥β且β∥γ,所以α∥γ,结合m⊥α,可得m⊥γ,故②是真命题;对于③,设直线m、n是位于正方体上底面所在平面内的相交直线,而平面α是正方体下底面所在的平面,则有m∥α且n∥α成立,但不能推出m∥n,故③不正确;对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故④不正确.综上所述,其中正确命题的序号是①和②故选:A点评:本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.8.圆(x﹣1)2+y2=1与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心考点:直线与圆的位置关系.专题:计算题.分析:要判断圆与直线的位置关系,方法是利用点到直线的距离公式求出圆心到此直线的距离d,和圆的半径r比较大小,即可得到此圆与直线的位置关系.解答:解:由圆的方程得到圆心坐标为(1,0),半径r=1,所以(1,0)到直线y=x的距离d==<1=r,则圆与直线的位置关系为相交.故选A点评:考查学生灵活运用点到直线的距离公式化简求值,掌握直线与圆位置关系的判别方法.9.两圆相交于点A(1,3)、B(m,﹣1),两圆的圆心均在直线x﹣y+c=0上,则m+c的值为() A.﹣1 B. 2 C. 3 D. 0考点:圆与圆的位置关系及其判定.专题:综合题.分析:根据题意可知,x﹣y+c=0是线段AB的垂直平分线,由垂直得到斜率乘积为﹣1,而直线x﹣y+c=0的斜率为1,所以得到过A和B的直线斜率为1,利用A和B的坐标表示出直线AB的斜率等于1,列出关于m的方程,求出方程的解即可得到m的值,然后利用中点公式和m的值求出线段AB的中点坐标,把中点坐标代入x﹣y+c=0中即可求出c的值,利用m和c的值求出m+c的值即可.解答:解:由题意可知:直线x﹣y+c=0是线段AB的垂直平分线,又直线x﹣y+c=0 的斜率为1,则=﹣1①,且﹣+c=0②,由①解得m=5,把m=5代入②解得c=﹣2,则m+c=5﹣2=3.故选C点评:此题考查学生掌握两圆相交时两圆心所在的直线是公共弦的垂直平分线,掌握两直线垂直时斜率所满足的关系,灵活运用中点坐标公式化简求值,是一道综合题.10.在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么() A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外考点:平面的基本性质及推论.专题:计算题.分析:由EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,知P在两面的交线上,由AC是两平面的交线,知点P必在直线AC上.解答:解:∵EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,∴P在两面的交线上,∵AC是两平面的交线,所以点P必在直线AC上.故选A.点评:本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答.11.若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是() A. MN∥βB. MN与β相交或MN⊊βC. MN∥β或MN⊊β D. MN∥β或MN与β相交或MN⊊β考点:直线与平面平行的判定.专题:空间位置关系与距离.分析:由中位线性质得MN∥BC,由此得到平面β过直线MN或MN∥β.解答:解:∵MN是△ABC的中位线,∴MN∥BC,∵平面β过直线BC,∴若平面β过直线MN,符合要求;若平面β不过直线MN,由线线平行的判定定理MN∥β.故选:C.点评:本题考查直线与平面的位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.12.已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC() A.垂直 B.平行C.相交 D.位置关系不确定考点:空间中直线与直线之间的位置关系.专题:证明题.分析:过点A做AO⊥面BCD,垂足为O,由条件结合三垂线定理得O为△BCD的垂心,所以DO⊥BC,从而AD⊥BC.解答:解:过点A做AO⊥面BCD,垂足为O,因为AB⊥CD,由三垂线定理可知BO⊥CD,同理:DO⊥BC,所以O为△BCD的垂心,所以CO⊥BD,所以BD⊥AC.故选A点评:本题考查两条直线位置关系的判定、三垂线定理和逆定理的应用,考查空间想象能力.13.各棱长均为a的三棱锥的表面积为()A. B. C. D.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:计算题.分析:判断三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.解答:解:由题意可知三棱锥是正四面体,各个三角形的边长为a,三棱锥的表面积就是四个全等三角形的面积,即:4×=故选D.点评:本题考查棱锥的侧面积表面积,考查空间想象能力,计算能力,是基础题.14.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台考点:简单空间图形的三视图.分析:三视图复原,判断4个几何体的形状特征,然后确定选项.解答:解:如图(1)三视图复原的几何体是放倒的三棱柱;(2)三视图复原的几何体是四棱锥;(3)三视图复原的几何体是圆锥;(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选C.点评:本题考查简单几何体的三视图,考查视图能力,是基础题.15.经过两点(3,9)、(﹣1,1)的直线在x轴上的截距为()A. B. C. D. 2考点:直线的截距式方程;直线的两点式方程.专题:计算题.分析:先由两点式求方程,再令y=0,我们就可以求出经过两点(3,9)、(﹣1,1)的直线在x轴上的截距解答:解:由两点式可得:即2x﹣y+3=0令y=0,可得x=∴经过两点(3,9)、(﹣1,1)的直线在x轴上的截距为故选A.点评:直线在x轴上的截距,就是直线与x轴交点的横坐标,它不同于距离,可以是正数、负数与0.16.已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为() A.(﹣3,0,0) B.(0,﹣3,0) C.(0,0,﹣3) D.(0,0,3)考点:两点间的距离公式.专题:计算题.分析:点M(0,0,z),利用A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,建立方程,即可求出M点坐标解答:解:设点M(0,0,z),则∵A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,∴∴z=﹣3∴M点坐标为(0,0,﹣3)故选C.点评:本题考查空间两点间的距离,正确运用空间两点间的距离公式是解题的关键.17.圆心为C(6,5),且过点B(3,6)的圆的方程为()A.(x﹣6)2+(y﹣5)2=10 B.(x﹣6)2+(y+5)2=10 C.(x﹣5)2+(y﹣6)2=10 D.(x﹣5)2+(y+6)2=10考点:圆的标准方程.专题:计算题.分析:要求圆的方程,因为已知圆心坐标,只需求出半径即可,所以利用两点间的距离公式求出|BC|的长度即为圆的半径,然后根据圆心和半径写出圆的标准方程即可.解答:解:因为|BC|==,所以圆的半径r=,又圆心C(6,5),则圆C的标准方程为(x﹣6)2+(y﹣5)2=10.故选A.点评:此题考查学生灵活运用两点间的距离公式化简求值,会根据圆心坐标和半径写出圆的标准方程,是一道综合题.18.圆:x2+y2﹣2x﹣2y+1=0上的点到直线x﹣y=2的距离最小值是()A. 2 B. C. D.考点:直线与圆的位置关系.专题:计算题.分析:把圆的方程化为标准方程,找出圆心坐标和圆的半径r,再利用点到直线的距离公式求出圆心到已知直线的距离d,用d﹣r即可求出所求的距离最小值.解答:解:把圆的方程化为标准方程得:(x﹣1)2+(y﹣1)2=1,∴圆心坐标为(1,1),半径r=1,∴圆心到直线x﹣y=2的距离d==,则圆上的点到已知直线距离最小值为d﹣r=﹣1.故选C点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,其中根据题意得出圆心到已知直线的距离减去圆的半径为所求距离的最小值是解本题的关键.二.填空题:本大题共4小题,每小题4分,共16分19.若A(1,﹣ 2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为(0,0,3).考点:点、线、面间的距离计算.专题:计算题;转化思想.分析:由点P在z轴上且到A、B两点的距离相等,可设出点P(0,0,z),由两点间的距离公式建立方程求解即可得到点M的坐标.解答:解:设P(0,0,z),由|PA|=|PB|,得1+4+(z﹣1)2=4+4+(z﹣2)2,解得z=3,故点P的坐标为(0,0,3),故答案为:(0,0,3).点评:本题考点是点线面间的距离计算,考查用两点间距离公式建立方程求参数,两点间距离公式是一个重要的把代数与几何接合起来的结合点,通过它进行数形转化.20.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC= .考点:直线与平面垂直的性质.专题:计算题;作图题.分析:由题意画出图形,利用勾股定理求出PC的长.解答:解:根据题意画出图形,因为ABCD是正方形,PA垂直底面ABCD,所以PA⊥AC,AC=PC=故答案为:点评:本题考查直线与平面垂直的性质,考查计算能力,是基础题.21.过点(1,2)且在两坐标轴上的截距相等的直线的方程2x﹣y=0或x+y﹣3=0 .考点:直线的两点式方程.专题:计算题;分类讨论.分析:分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.解答:解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,2)代入所设的方程得:a=3,则所求直线的方程为x+y=3即x+y﹣3=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,2)代入所求的方程得:k=2,则所求直线的方程为y=2x即2x﹣y=0.综上,所求直线的方程为:2x﹣y=0或x+y﹣3=0.故答案为:2x﹣y=0或x+y﹣3=0点评:此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,是一道综合题.22.圆心在直线2x﹣y﹣7=0上的圆C与y轴交于两点A(0,﹣4)、B(0,﹣2),则圆C的方程为(x﹣2)2+(y+3)2=5 .考点:圆的标准方程.专题:计算题.分析:由垂径定理确定圆心所在的直线,再由条件求出圆心的坐标,根据圆的定义求出半径即可.解答:解:∵圆C与y轴交于A(0,﹣4),B(0,﹣2),∴由垂径定理得圆心在y=﹣3这条直线上.又∵已知圆心在直线2x﹣y﹣7=0上,∴联立,解得x=2,∴圆心C为(2,﹣3),∴半径r=|AC|==.∴所求圆C的方程为(x﹣2)2+(y+3)2=5.故答案为(x﹣2)2+(y+3)2=5.点评:本题考查了如何求圆的方程,主要用了几何法来求,关键确定圆心的位置;还可用待定系数法.三.解答题本大题共3小题,每小题10分,共30分23.已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x﹣3y+16=0,CA:2x+y﹣2=0,求AC边上的高所在的直线方程.考点:直线的一般式方程与直线的垂直关系;两条直线的交点坐标.专题:计算题.分析:先解方程组解出B的坐标,再由高线BD和CA垂直,斜率之积等于﹣1,求出高线的斜率,点斜式写高线的方程,并化为一般式.解答:解:由得B(﹣4,0),设AC边上的高为BD,由BD⊥CA,可知 BD的斜率等于=,用点斜式写出AC边上的高所在的直线方程为 y﹣0=(x+4 ),即 x﹣2y+4=0.点评:本题考查求两直线的交点坐标的方法,用点斜式求直线的方程.24.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC;(2)AF⊥平面EDB.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:综合题.分析:(1)要证FD∥平面ABC,可以通过证明FD∥MC实现.而后者可以通过证明CD∥FM,CD=FM,证明四边形FMCD是平行四边形而得出.(2)要证AF⊥平面EDB,可以通过证明AF⊥EB,AF⊥FD实现.AF⊥EB易证,而AF⊥FD可通过CM⊥面EAB,结合CM∥FD证出.解答:证明(1)∵F分别是BE的中点,取BA的中点M,∴FM∥EA,FM=EA=a∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=a=FM∴四边形FMCD是平行四边形,∴FD∥MC,FD⊄平面ABC,MC⊂平面ABC∴FD∥平面ABC.(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又 EA垂直于平面ABC∴CM⊥AE,又 AE∩AB=A,所以CM⊥面EAB,∵AF⊂面EAB∴CM⊥AF,又CM∥FD,从而FD⊥AF,因F是BE的中点,EA=AB所以AF⊥EB.EB,FD是平面EDB内两条相交直线,所以AF⊥平面EDB.点评:本题考查空间直线和平面的位置关系,考查空间想象能力、转化、论证能力.25.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.考点:直线和圆的方程的应用;直线的一般式方程.专题:计算题;综合题.分析:(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;(3)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长.解答:解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y﹣2=(x﹣2),即x+2y﹣6=0.(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y﹣2=x﹣2,即x﹣y=0.圆心到直线l的距离为,圆的半径为3,弦AB的长为.点评:本题是基础题,考查直线与圆的位置关系,计算直线的斜率,点到直线的距离;直线与圆的特殊位置关系的应用是本题的关键.。

安徽省滁州市定远县育才学校高二数学上学期期末考试试题文

安徽省滁州市定远县育才学校高二数学上学期期末考试试题文

定远育才学校 2017-2018 学年第一学期期末考试高二数学(文科)试题考生注意:1. 本卷分第I 卷和第 II卷,满分150 分,考试时间120 分钟。

答题前,先将自己的姓名、准考据号填写在试题卷和答题卷上。

2.选择题的作答:每题选出答案后,用2B 铅笔把答题卷上对应题目的答案标题涂黑。

3.非选择题的作答 : 用署名笔挺接答在答题卷上对应的答题区内。

第 I 卷(选择题 60 分)一、选择题1.已知m, n表示两条不一样直线,表示平面.以下说法正确的选项是A.若m //, n // , 则m // n B.若m, n, ,则m nC.若m, m n, 则n //D.若m //, m n, ,则n2. 一空间几何体的三视图以下图, 该几何体的体积为85x 的值为12,则正视图中3()33x x44正视图侧视图俯视图图2A.5B.4C.3D.23.某几何体的三视图以下图,则该几何体的体积为()A.5B. 2C.5D. 3 324.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图以下图,则该几何体的表面积()A. 4 33B. 3 33C. 4 23D. 3 435. 一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为36 ,那么这个正三棱柱的底面边长是()A.3B.33C.63D.96. 以下图,正四棱锥P- ABCD的底面积为3,体积为,E为侧棱PC的中点,则PA与 BE 所成的角为A. B. C. D.7. a、b、c为三条不重合的直线,α、β、γ为三个不重合平面,现给出六个命题:①④a Pca Pbb Pca Pa PP;②;⑤a Pa Pb ;③a Pca P ;b P PcPca;⑥P aa c P aPPP此中正确的命题是()A. ①②③B.①④⑤C.①④D.①③④8. 某几何体的正视图、俯视图和侧视图中,某条棱的投影长分别为,则该条棱的长度为( )A. B. C. D.9.如图正方形A1BCD 折成直二面角 A BD C ,则二面角 A CD B 的余弦值为()A. 1B.3C.1D.2 332210. 某四周体的三视图以下图,该四周体四个面的面积中,最大的是().A. B. C. D.11. 过正方体ABCD A1B1C1 D1的极点A作直线l,使直线l分别与 AB, AD, AA1三条棱所成的角都相等,则这样的直线l 有()条A.1B.2C. 3D.412.在正方体ABCD A1B1C1 D1中, E 为 BC 的中点, F 为B1C1的中点,则异面直线AF 与C1E所成角的正切值为()A.5225D.5B. C.5323第 II卷(非选择题)二、填空题13.以下图,在正方体 ABCD- A1B1C1D1中, M、N分别是棱 AA1和 AB上的点,若∠ B1MN是直角,则∠ C1MN等于____.14.底面为正三角形的直三棱柱 ABC-A1B1C1的各棱长都为 1, M,N分别为 CC1, BB1的中点,则点N 到面 A1BM的距离为 __________ .15.已知水平搁置的△ABC是按“斜二测画法”获得以以下图所示的直观图,此中B'O' C'O' 1,A'O '3, 则原△ABC的面积为 _______ 216.已知直线l , m平面,且l⊥ a,m,给出以下四个命题:①若∥,则l⊥ m;②若l⊥ m,则∥;③若⊥,则l∥ m;④若l∥ m,则⊥此中正确的命题有_________三、解答题17. 以下图的立体图形中, A B A F , BE EF 2 .(Ⅰ)证明: A E BF ;(Ⅱ)若 BEF60o, A E2A B 2 ,求二面角A EF C 的余弦值.18. 如图,平面五边形ABCDE 中, AB ∥,AE 2,AEC60o, CD ED7 ,cos EDC 5CDE 沿 CE 折起,使点到的地点,且AP 3 ,获得四棱锥. 将7P ABCE .(1)求证:AP平面ABCE;(2)记平面PAB与平面PCE订交于直线l,求证:∥l .19. 在长方体ABCD A1 B1C1 D1中,AB 4 , AD 2 ,AA1 2 ,点E在棱AB上移动.(Ⅰ)当 AE 1 时,求证:直线D1E平面 A1DC1;的值.(Ⅱ)在(Ⅰ)的条件下,求 V C1A1DE: V C1A1D1D20.如图,在三棱锥 ABOC中,AO⊥平面 BOC ,OABOAC,6AB AC 2, BC 2 ,D, E分别为AB, OB的中点.(19)(I)求 O 到平面 ABC 的距离;(II)在线段 CB 上能否存在一点 F ,使得平面 DEF ∥平面 AOC ,若存在,试确立 F 的位置,并证明此点知足要求;若不存在,请说明原因.21.以以下图,三棱柱 ABC ABC 中,侧面AAC C底面ABC,1 11 1 1AA1AC AC 2, AB BC,且AB BC,O为AC中点.1(Ⅰ)证明:A1O平面ABC;(Ⅱ)求直线A1C 与平面 A1AB 所成角的正弦;(Ⅲ)在 BC1上能否存在一点 E ,使得 OE / / 平面A1AB,若不存在,说明原因;若存在,确立点 E 的地点.22. 如图,在直三棱柱ABC A1B1C1中,AC BC ,AC BC CC1,M 、N 分别是 A1 B、 B1C1的中点。

安徽省定远重点中学2017-2018学年高二上学期第三次月

安徽省定远重点中学2017-2018学年高二上学期第三次月

安徽定远重点中学2017-2018学年上学期第三次月考高二数学(文)试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将选择题答案用2B铅笔正确填写在答题卡上;请将非选择题答案黑色中性笔正确填写在答案纸上。

第I卷(选择题60分)一、选择题(共12小题,每小题5.0分,共60分)1.直线y=2x-3的斜率和在y轴上截距分别等于( )A. 2,3 B.-3,-3 C.-3,2 D. 2,-32.一只小狗在如图所示的方砖上走来走去,则最终停在阴影方砖上的概率为( )A. B. C. D. 53.为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:则这15户家庭的月用水量的众数与中位数分别为( )A. 9,6 B. 6,6 C. 5,6 D. 5,54.直线l1:ax-y+b=0,l2:bx-y+a=0(a≠0,b≠0,a≠b)在同一坐标系中的图形大致是( )5.1.5,1.5,1.6,1.6,1.7的中位数和平均数是( )A . 1.5,1.65B . 1.6,1.58C . 1.65,1.7D . 1.7,1.7 6.若图中直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 27.已知直线kx -y +1-3k =0,当k 变化时,所有的直线恒过定点( ) A . (1,3) B . (-1,-3) C . (3,1) D . (-3,-1) 8.下列说法中,正确的是( ) (1)数据4、6、6、7、9、4的众数是4;(2)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势; (3)平均数是频率分布直方图的“重心”;(4)频率分布直方图中各小长方形的面积等于相应各组的频数. A . (1)(2)(3) B . (2)(3) C . (2)(4) D . (1)(3)(4) 9.函数f(x)=x 2-x -2,x∈[-5,5],那么任取一点 x 0∈[-5,5],使f(x 0)≤0的概率是( ) A . 1 B . C . D .10.执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s 属于( )A . [-3,4]B . [-5,2]C . [-4,3]D . [-2,5] 11.阅读如图的程序框图,则输出的S 等于( ) A . 40 B . 38 C . 32 D . 2012.下列抽样试验中,最适宜用系统抽样法的是( ) A . 某市的4个区共有2 000名学生,且4个区的 学生人数之比为3∶2∶8∶2,从中抽取200人入样 B . 从某厂生产的2 000个电子元件中随机抽取5个入样 C . 从某厂生产的2 000个电子元件中随机抽取200个入样 D . 从某厂生产的20个电子元件中随机抽取5个入样第II 卷(选择题90分)二、填空题(共4小题,每小题5.0分,共20分)13.在总体中抽取了一个样本,为了便于统计,将样本中的每个数据乘以100后进行分析,得出新样本的平均数为3,则估计总体的平均数为________.14.某商品在5家商场的售价x(元)和销售量y(件)之间的一组数据如下表所示:由散点图可知,销售量y与价格x之间有较好的线性相关关系,且线性回归方程是=-3.2x+4a,则a=________.15.倾斜角为60°,与y轴的交点到坐标原点的距离为3的直线的斜截式方程是_________________.16.某人5次上班途中所花费的时间(单位:分钟)分别为x,y,7,8,9,若这组数据的平均数为8,方差为4,则|x-y|的值为________.三、解答题(共6小题,17题10分,其余每小题12.0分,共70分)17.直线l过点P(4,1),(1)若直线l过点Q(-1,6),求直线l的方程;(2)若直线l在y轴上的截距是在x轴上的截距的2倍,求直线l的方程.18.将200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.表1和表2分别是注射药物A和药物B后的实验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小.19.未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查了某校100名学生寒假中零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据形成了频数分布表和频数分布直方图.如下表和图所示:请结合图形完成下列问题:(1)补全频数分布表;(2)在频数分布直方图中,如果将矩形ABCD底边AB长度视为1,则这个矩形的面积是多少?这次调查的样本容量是多少?20.甲、乙两位学生参加某知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加知识竞赛,从统计学的角度考虑(即计算平均数、方差),你认为选派哪位学生参加合适?请说明理由.21.如图,在平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标:A(0,0),B(3,),C(4,0).(1)求边CD所在直线的方程;(2)证明平行四边形ABCD为矩形,并求其面积.22.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n≥m+2的概率.安徽定远重点中学2017-2018学年上学期第三次月考高二数学(文)试题答案解析1.【答案】D【解析】直线的斜率为2,且在y轴上截距为-3,故选D.2.【答案】C【解析】由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为=,故选C.3.【答案】C【解析】数据5出现的次数最多,为众数;数据6处在第8位,中间位置,所以这组数据的中位数是6.4.【答案】C【解析】将l1与l2的方程化为斜截式得:y=ax+b,y=bx+a,根据斜率和截距的符号可得选C.5.【答案】B【解析】1.5,1.5,1.6,1.6,1.7的中位数是1.6,平均数=(1.5+1.5+1.6+1.6+1.7)=1.58.6.【答案】D【解析】由题图可知,k1<0,k2>0,k3>0,且l2比l3的倾斜角大.∴k1<k3<k2.8.【答案】B【解析】数据4、6、6、7、9、4的众数是4和6,故(1)不正确;平均数、众数与中位数从不同的角度描述了一组数据的集中趋势,(2)正确;平均数是频率分布直方图的“重心”,故(3)正确,频率分布直方图中各小长方形的面积等于相应各组的频率而不是频数,故(4)不正确,综上可知(2)(3)正确.9.【答案】C【解析】将问题转化为与长度有关的几何概型求解,当x0∈[-1,2]时,f(x)≤0,则所求概率P==.10.【答案】A【解析】由程序框图得分段函数s=.所以当-1≤t<1时,s=3t∈[-3,3);当1≤t≤3时,s=4t-t2=-(t-2)2+4,所以此时3≤s≤4.综上,函数的值域为[-3,4],即输出的s属于[-3,4].11.【答案】B【解析】第一次循环,S=0+4×5=20,i=3;第二次循环,S=20+3×4=32,i=2;第三次循环,S=32+2×3=38,i=1,结束循环,输出S=38.12.【答案】C【解析】A总体有明显层次,不适宜用系统抽样法;B样本容量很小,适宜用随机数法;D总体容量很小,适宜用抽签法.13.【答案】0.03【解析】一组数据乘以100后得到的新的平均数3应是原平均数的100倍,∴原来样本平均数为0.03,因此估计总体平均数为0.03.14.【答案】10【解析】根据题意得,==10,==+6,因为回归直线过样本中心点(,),所以+6=-3.2×10+4a,解得a=10.15.y=根号三x+3 或 .y=根号三x-316.【答案】6【解析】由题意可得:x+y+7+8+9=40,x+y=16,(x-8)2+(y-8)2=18,设x=8+t,y=8-t,则2t2=18,解得t=±3,∴|x-y|=2|t|=6.17.【答案】(1)直线l的方程为=,化简,得x+y-5=0.(2)设直线l的方程为y-1=k(x-4),l在y轴上的截距为1-4k,在x轴上的截距为4-,故1-4k=2(4-),得k=或k=-2,直线l的方程为y=x或y=-2x+9,即x-4y=0或2x+y-9=0.【解析】18.【答案】解可以看出注射药物A后的疱疹面积的中位数在[65,70)之间,而注射药物B后的疱疹面积的中位数在[70,75)之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.【解析】19.【答案】解(1)②中应填50.5+50=100.5,①中的频数是10,③中的频数是25,又总的频率之和是1,所以④中应填1;故答案为:①10,②100.5,③25,④1;所以频数、频率表如下:(2)由分析知:矩形ABCD的面积为25,样本容量为100.【解析】20.【答案】解(1)作出茎叶图如图所示:(2)甲=(12+11+9+8+25+18+23+14)=15,乙=(22+25+10+5+13+10+20+15)=15,=[(12-15)2+(11-15)2+(9-15)2+(8-15)2+(25-15)2+(18-15)2+(23-15)2+(14-15)2]=,=[(22-15)2+(25-15)2+(10-15)2+(5-15)2+(13-15)2+(10-15)2+(20-15)2+(15-15)2]=,∵甲=乙,<,∴甲的成绩较稳定,∴派甲参赛比较合适.【解析】21.【答案】由于平行四边形ABCD的三个顶点坐标:A(0,0),B(3,),C(4,0).则kAB ==,kBC==-.(1)由于AB∥CD,则直线CD的方程为:y=(x-4),(2)由于kAB ==,kBC==-,则直线AB与BC的斜率之积为-1,即AB⊥BC,故平行四边形ABCD为矩形,又由AB==2,BC==2,则矩形ABCD的面积为4.【解析】22.【答案】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P==.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件有:(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=.。

安徽省滁州市高二上学期期末考试数学(文)试题Word版含答案

安徽省滁州市高二上学期期末考试数学(文)试题Word版含答案

滁州市2017-2018学年第一学期高二期末考试数 学 试 卷(文科)(试题卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若函数()cos =+f x x x ,则()f x 的导数()'=f x ( )2.高二(2)班男生36人,女生18 人,现用分层抽样方法从中抽出n 人,若抽出的男生人数为12,则n 等于( )A . 16B . 18C .20D .223. 双曲线221124x y -=的焦点到渐近线的距离为( )A . 2 D . 3 4. 下列函数是偶函数的是( )A .cos y x x =+B .sin 2y x x =+C .2+cos y x x =D .2sin 2y x x =+5. 若正方形ABCD 的边长为1,则在正方形ABCD 内任取一点,该点到点A 的距离小于1的概率为( ) A .4π B .6π C. 1π D .2π6.“函数()()()21=+-+f x x a x a 是偶函数”是“1=-a ”的( ) A .充分不必要条件 B .必要不充分条件 C. 充分必要条件 D .既不充分也不必要条件7. 曲线()()1=+xf x x e 在点()()00,f 处的切线方程为( )A . 1=+y xB .21=+y x C.112=+y x D .113=+y x 8. 执行如图所示的程序框图,则输出的结果为( ) A . 2 B .3 C. 4 D .59. 设命题:p x R ∃∈,220x x -+=;命题q :若1m >,则方程22121x y m m+=-表示焦点在x 轴上的椭圆.那么,下列命题为真命题的是( )A .()p q ∨⌝B . ()()p q ⌝∨⌝ C. p q ∧ D .()p q ∧⌝ 10.若P 为抛物线2:4=C y x 上一点,F 是抛物线的焦点,点A 的坐标()30,,则当PA 最小时,直线PF 的方程为( )A .230--=x yB .210--=x y C.3=x D .1=x 11.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()3cos 3cos cos b A a a B -=+,则sin A =( )A ..1312.已知函数()f x 是定义在R 上的偶函数,当0>x 时,()()'>xf x f x ,若()20=f ,则不等式()0>f x x的解集为( ) A . {}2002-<<<<或x x x B .{}22<->或x x x C. {}202-<<>或x x x D .{}202<-<<或x x x第Ⅱ卷(非选择题 共 90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量()1,3a =-,()3,b t =,若a b ⊥,则2a b += .14. 已知一个算法的程序框图如图所示,当输入的1x =-与1x = 时,则输出的两个y 值的和 为 .15. 在长方体1111ABCD A BC D -中,1==AB BC , 12=AA ,点E ,F 分别为CD ,1DD 的中点,点G 在棱1AA 上,若//CG 平面AEF ,则四棱锥-G ABCD 的外接球的体积为 .16.已知双曲线2222:-x y C a b(0,0>>a b )的左顶点为M ,右焦点为F ,过左顶点且斜率为1的直线l 与双曲线C 的右支交于点N ,若∆MNF 的面积为232b ,则双曲线C 的离心率为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 甲乙两人同时生产内径为25.41mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:m m ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18. 已知抛物线2:2=C y x ,过点()1,0P 的直线l 与抛物线相交于A ,B 两点,若=AB ,求直线l 的方程.19. 某高校进行社会实践,对[]2555,岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(]3035,岁,[)3540,岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[)3035,岁与[)3540,岁年龄段“时尚族”的人数; (2)从[)3045,岁和[)4550,岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[)3045,岁内的概率。

安徽省定远重点中学2017-2018学年高二1月月考数学(文)试卷

安徽省定远重点中学2017-2018学年高二1月月考数学(文)试卷

定远重点中学2017-2018学年第一学期1月考
高二数学(文科)试题
注意事项:
1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息
2.请将第I卷(选择题)答案用2B铅笔正确填写在答题卡上;请将第II卷(非选择题)答案黑色中性笔正确填写在答案纸上。

第I卷(选择题60分)
一、选择题(本大题共12个小题,每小题5分,共60分。

)
1.若直线l :mx+ny=4和圆O :x 2+y 2
=4没有交点,则过点(m ,n )的直线与椭圆22
194x y +=的交点个数为( )
A .0个
B .至多有一个
C .1个
D .2个
2.若直线()101ax by a b ++=>、过圆228210x y x y ++++=的圆心,则14a b +的最小值为( )
A .8
B .12
C .16
D .20
3.已知命题p :方程2210x ax --=有两个实数根;命题q :函数()4f x x x
=+的最小值为4.给出下列命题:
①p q ∧;②p q ∨;③p q ∧⌝;④p q ⌝∨⌝.
则其中真命题的个数为( )
A .1
B .2
C .3
D .4
4.已知,,a b c R ∈,命题“若3a b c ++=,则2223a b c ++≥”的否命题是( )
A .若3a b c ++≠,则2223a b c ++<
B .若3a b c ++=,则2223a b c ++<
C .若3a b c ++≠,则2223a b c ++≥
D .若2223a b c ++≥,则3a b c ++=。

安徽省定远重点中学17—18学年上学期高二期中考试数学(理)试题(无答案)

安徽省定远重点中学17—18学年上学期高二期中考试数学(理)试题(无答案)

安徽定远重点中学2017-2018学年第一学期期中考试高二数学(理科)试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将第I 卷(选择题)答案用2B 铅笔正确填写在答题卡上;请将第II 卷(非选择题)答案黑色中性笔正确填写在答案纸上。

第I 卷(选择题80分)一、选择题(每小题5分,共60分)1、如图,一几何体的三视图如下:则这个几何体是( ) A.圆柱 B.空心圆柱 C.圆 D.圆锥2、过圆锥的高的三等分点作平行于底面的截面,它们把 圆锥侧面分成的三部分的面积之比为( ) A.1:2:3 B.1:3:5 C.1:2:4 D.1:3:93、已知水平放置的ABC 的平面直观图A B C ''' 是边长为 a 的正三角形,那么ABC 的面积为( )B. 2aC.2D. 32a4、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( )A. 24πcm 2,12πcm 3B. 15πcm 2,12πcm 3C. 24πcm 2,36πcm 3D.以上都不正确5、一个球的外切正方体的表面积等于6 cm 2,则此球的体积为 ( )A.334cm π B.386cm πC. D.366cm π 6.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) (A )π)3612(16- (B )18π (C )36π (D )π)246(64- 7.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( ).ABD俯视图正 视 图侧视图A .3B .362 C .2 D .22 8.下列结论正确的是( ). A.平行于同一平面的两直线平行 B.直线l 与平面α不相交,则l ∥平面αC.,A B 是平面α外两点,,C D 是平面α内两点,若AC BD =,则AB ∥平面αD.同时与两条异面直线平行的平面有无数个9.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A. 1:2:3B.2:3:4C.3:2:4D.3:1:210、如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )A. 6+3B. 24+3D. 32 11. 如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为 BC 、BB 1的中点,则下列直线中与直线EF 相交的是( ) (A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1 (D)直线B 1C 112.下图是正方体的平面展开图,图4-4则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线A B 1正视图侧视图俯视图ABCP③CN 与BM 成60°角 ④DM 与BN 是异面直线 其中正确命题的序号是( ) A.①②③ B.②④ C.③④ D.②③④第II 卷(选择题70分)二、填空题(每小题5分,共20分)13、下图为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;14.三棱锥三条侧棱两两互相垂直,三个侧面积分别为 1.5cm 2、2 cm 2、及6 cm 2,则它的体积为 .15、已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为________16.在三棱锥ABC P -中,已知2PC PB PA ===, ︒=∠=∠=∠30CPA BPC BPA , 一绳子从A 点绕三棱锥侧面一圈回到点A 的距离中,绳子最短距离是 .三、解答题(共70分)17、(10分)有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?(h S S S S V )''(31++=台体)18. (12分)如图2-4,在正方体中,求下列异面直线所成的角. ⑴BA '和CC ' ⑵B D ''和C A '19. (12分)如图:一个圆锥的底面半径为2,高为6,在其中有一个半径为x 的内接圆柱。

安徽省定远重点中学2017-2018学年高二数学上学期第三次月考试题 理

安徽省定远重点中学2017-2018学年高二数学上学期第三次月考试题 理

安徽定远重点中学2017-2018学年上学期第三次月考高二数学(理)试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将选择题答案用2B铅笔正确填写在答题卡上;请将非选择题答案黑色中性笔正确填写在答案纸上。

第I卷(选择题70分)一、选择题(共12小题,每小题5.0分,共70分)1.在x,y轴上的截距分别是-3,4的直线方程是( )A.=1 B.=1 C.=1 D.=12.直线3ax-y-1=0与直线(a-)x+y+1=0垂直,则a的值是( )A.-1或 B. 1或 C. -或-1 D. -或13.直线l1:ax+3y+1=0,l2:2x+(2a+1)y+1=0,若l1∥l2,则a的值为( )A. B. 2 C.或2 D.或-24.已知正方体ABCD-A1B1C1D1中,点P在线段A1B1上,点Q在线段B1C1上,且B1P=B1Q,给出下列结论:①A、C、P、Q四点共面;②直线PQ与AB1所成的角为60°;③PQ⊥CD1;④VP-ABCD=.其中正确结论的个数是( )A. 1 B. 2 C. 3 D. 45.在正方体ABCD-A1B1C1D1中,直线A1C1与平面AD1C1B所成的角为( )A.90° B.45° C.60° D.30°6.已知两定点A(-3,5),B(2,15),动点P在直线3x-4y+4=0上,则|PA|+|PB|的最小值为( )A. 5 B. C. 15 D. 5+107.在等腰三角形AOB中,AO=AB,点O(0,0),A(1,3),点B在x轴的正半轴上,则直线AB的点斜式方程为( )A.y-1=3(x-3) B.y-1=-3(x-3) C.y-3=3(x-1) D.y-3=-3(x-1)8.直线y=2x-3的斜率和在y轴上截距分别等于( )A. 2,3 B.-3,-3 C.-3,2 D. 2,-3下列命题中,错误的是( )A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一个平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面10.一个长方体被一个平面截去一部分后所剩几何体的三视图如图所示(单位:cm),则该几何体的体积为( )A. 120 cm3 B. 80 cm3 C. 100 cm3 D. 60 cm311.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积等于( )A. 20 B. 5 C. 4(+1) D. 412.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为64+80π,则r等于( )A. 1 B. 2 C. 4 D. 8第II卷(选择题80分)二、填空题(共4小题,每小题5.0分,共20分)13.直线3x-4y+5=0关于y轴的对称直线为________.14.斜三棱柱ABC-A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1,则A1B的长度为________.15.一直线过点A(-3,4),且在两轴上的截距之和为12,则此直线方程是________.16.若一个圆锥的侧面展开图是半圆,则这个圆锥的底面面积与侧面积的比是________.三、解答题(共6小题,17题10分,其余每小题12.0分,共70分)17.一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.18.直线l过点P(4,1),(1)若直线l过点Q(-1,6),求直线l的方程;(2)若直线l在y轴上的截距是在x轴上的截距的2倍,求直线l的方程.19. 如图,已知α∥β,点P是平面α、β外的一点(不在α与β之间),直线PB,PD分别与α,β相交于点A,B和C,D.(1)求证:AC∥BD;(2)已知PA=4,AB=5,PC=3,求PD的长.20.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.21.如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.求证:(1)AP∥平面BEF;(2)CD⊥平面PAC.22. 如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.安徽定远重点中学2017-2018学年上学期第三次月考高二数学理试题答案解析1.【答案】A【解析】由直线的截距式方程易得=1.2.【答案】D【解析】由3a(a-)+(-1)×1=0,得a=-或a=1.3.【答案】D【解析】直线l1:ax+3y+1=0的斜率为-,直线l1∥l2,所以l2:2x+(2a+1)y+1=0的斜率也为,所以=,且,解得a=或a=-2,均满足题意,故选D.4.【答案】B【解析】如图所示,①∵B1P=B1Q,∴PQ∥A1C1,∴A、C、P、Q四点共面,因此正确;②连接AC,CB1,可得△ACB1是等边三角形,又AC∥A1C1,∴直线PQ与AB1所成的角为60°;③由②PQ⊥CD1不正确;④VP-ABCD=,=××A1B1=××A1B1=V正方体.∴VP-ABCD≠.其中正确结论的个数为2.故选B.5.【答案】D【解析】如图所示,连接A1D,AD1交于点O,连接OC1,在正方体ABCD-A1B1C1D1中,∵AB⊥平面AD1,∴AB⊥A1D,又A1D⊥AD1,且AD1∩AB=A,∴A1D⊥平面AD1C1B,所以∠A1C1O即为所求角,在Rt△A1C1O中,sin∠A1C1O==.所以∠A1C1O=30°,即直线A1C1与平面AD1C1B所成的角为30°,故选D.6.【答案】A【解析】设点A(-3,5)关于直线3x-4y+4=0的对称点A′(m,n).则解得即A′(3,-3).连接A′B与直线相交于点P,则|PA|+|PB|的最小值为|A′B|==5.故选A.7.【答案】D【解析】因为AO=AB,所以直线AB的斜率与直线AO的斜率互为相反数,所以kAB=-kOA=-3,所以直线AB的点斜式方程为y-3=-3(x-1).故选D.8.【答案】D【解析】直线的斜率为2,且在y轴上截距为-3,故选D.10.【答案】C【解析】由三视图知该几何体是长方体截去了一个角所得,V=6×5×4-×6×5×4=100 cm3,故选C.11.【答案】D【解析】由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,其底面棱长为2,高h=2,故侧面的侧高为=,故该四棱锥侧面积S=4××2×=4,故选D.12.【答案】C【解析】由几何体的三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球和一个半圆柱,所以其表面积为S=×4πr2+πr2+2πr2+2r×2r+πr2=5πr2+4r2,又因为该几何体的表面积为64+80π,即5πr2+4r2=64+80π,解得r=4.13.【答案】3x+4y-5=0【解析】设点(x,y)为所求直线上任意点,则该点关于y轴的对称点为(-x,y),∴(-x,y)在直线3x-4y+5=0上,代入得-3x-4y+5=0,即3x+4y-5=0.14.【答案】【解析】取CC1的中点M,连接A1M与BM,∵在斜三棱柱ABC-A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,∴△A1CC1是等边三角形,四边形ACC1A1≌四边形CBB1C1,∴A1M⊥CC1,∴BM⊥CC1,∴A1M=BM=.又平面ACC1A1⊥平面BCC1B1,∴∠A1MB是二面角的平面角,∴∠A1MB=90°∴在直角三角形A1MB中,由勾股定理可算得A1B=.15.【答案】x+3y-9=0或4x-y+16=0【解析】设横截距为a,则纵截距为12-a,直线方程为=1,把A(-3,4)代入,得=1,解得a=-4或a=9.a=9时,直线方程为=1,整理可得x+3y-9=0.a=-4时,直线方程为=1,整理可得4x-y+16=0,综上所述,此直线方程是x+3y-9=0或4x-y+16=0.16.【答案】1∶2【解析】设该圆锥体的底面半径为r,母线长为l,根据题意得2πr=πl,所以l=2r,所以这个圆锥的底面面积与侧面积的比是πr2∶πl2=r2∶(2r)2=1∶2.故答案为1∶2.17.【答案】(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得O1A=2 cm,OB=5 cm.又由题意知腰长为12 cm,所以高AM=(cm).(2)如图所示,延长BA,OO1,CD,交于点S,设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得=,解得l=20(cm).即截得此圆台的圆锥的母线长为20 cm.【解析】18.【答案】(1)直线l的方程为=,化简,得x+y-5=0.(2)设直线l的方程为y-1=k(x-4),l在y轴上的截距为1-4k,在x轴上的截距为4-,故1-4k=2(4-),得k=或k=-2,直线l的方程为y=x或y=-2x+9,即x-4y=0或2x+y-9=0.19【解析】略20.【答案】(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8,因为EHGF是正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,其体积的比值即为两底面积的比值,所以其体积的比值为(也正确).【解析】21.【答案】(1)设AC∩BE=O,连接OF,EC,由已知可得AE∥BC,AE=AB=BC,所以四边形ABCE为菱形,因为O为AC的中点,F为PC的中点,所以AP∥OF,因为AP⊄平面BEF,OF⊂平面BEF,所以AP∥平面BEF.(2)由题知,ED∥BC,ED=BC,所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD.因为四边形ABCE为菱形,所以BE⊥AC,所以CD⊥AC.又AP∩AC=A,AP,AC⊂平面PAC,所以CD⊥平面PAC.22.略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定远重点中学2017-2018学年第一学期期末考试高二(文科)数学试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将第I卷(选择题)答案用2B铅笔正确填写在答题卡上;请将第II卷(非选择题)答案黑色中性笔正确填写在答案纸上。

第I卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。

)1.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥2.已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有()(1)MN⊥AB;(2)若N为中点,则MN与AD所成角为60°;(3)平面CDM⊥平面ABN;(4)不存在点N,使得过MN的平面与AC垂直.A.1B.2C.3D.43.a,b,c表示直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若b⊂M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确命题的个数有()A.0个B.1个C.2个D.3个4.已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC 与直线BD 垂直B.存在某个位置,使得直线AB 与直线CD 垂直C.存在某个位置,使得直线AD 与直线BC 垂直D.对任意位置,三对直线“AC 与BD”,“AB 与CD”,“AD 与BC”均不垂直 5.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的母线与轴所成的角为( )A.B. C. D.6. 设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题中错.误.的为:( ) A.若a b ⊥,,a b αα⊥⊄,则//b α B. 若//a α,a β⊥,则αβ⊥C.若a β⊥,αβ⊥,则//a αD.若a b ⊥,,a b αβ⊥⊥,则αβ⊥ 7.一个几何体的三视图如图所示,则该几何体的体积是( )A.8B.10C.12D.148.已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE,SD 所成的角的余弦值为( )A. B. C. D.9.设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.如图,在正三棱柱ABC-A1B1C1中,AB=2.若二面角C-AB-C1的大小为60°,则异面直线A1B1和BC1所成角的余弦值为()A. B. C. D.11.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为()A. 4B.C. 203D. 812. 如图,直三棱柱的六个顶点都在半径为1的半球面上,AB=AC,侧面是半球底面圆的内接正方形,则侧面的面积为()A.2B.1C.D.第II卷(非选择题90分)二、填空题13.已知球的表面积为64 ,用一个平面截球,使截面圆的半径为2, 则截面与球心的距离是.14.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为__.15.如图正方体ABCD-A1B1C1D1中,与AD1异面且与AD1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.16.四棱锥S ABCD -中,底面ABCD 是边长为2的正方形,侧面SAD 是以SD 为斜边的等腰直角三角形,若4SC ≤,则四棱锥S ABCD -的体积取值范围为_____.三、解答题17.如图,边长为的正方形ADEF 与梯形ABCD 所在的平面互相垂直,其中AB ∥CD ,AB ⊥BC ,DC=BC=AB=1,点M 在线段EC 上.(Ⅰ)证明:平面BDM ⊥平面ADEF ;(Ⅱ)判断点M 的位置,使得三棱锥B ﹣CDM 的体积为 .18.如图,在正方体ABCD ﹣A 1B 1C 1D 1的棱长为a ,若E 为棱AB 的中点, ①求四棱锥B 1﹣BCDE 的体积②求证:面B 1DC ⊥面B 1DE .19.如图,在底面是矩形的四棱锥ABCD P -中,PA ⊥平面ABCD ,AB PA =,E 是PD 的中点.(1)求证://PB 平面EAC ;(2)求证:平面PDC ⊥平面PAD .20.已知三棱柱111ABC A B C -中,平面1A AC ⊥平面ABC ,BC ⊥AC ,112AC BC A A AC ====.(1)求证:1AC ⊥平面1A BC ;(2)求平面1AA B 与平面1A BC 所成二面角的余弦值.21.如图,在直三棱柱111ABC A B C -中,D 是AB 的中点.(1)证明:1//BC 平面1ACD ;(2)若AC CB =,求证:1A D CD ⊥.22.如图,在四棱锥P ABCD -中, O AD ∈, AD ∥BC , AB AD ⊥,1AO AB BC ===, PO =, PC =.(1)求证:平面POC ⊥平面PAD ;(2)若CD ,三棱锥P ABD -与C PBD -的体积分别为12V V 、,求12V V 的值.定远重点中学2017-2018学年第一学期期末考试高二(文科)数学试题答案一、选择题1. D2. C3.B4. B5..A6.C7. C8. C9.A10. D11.D12.C二、填空题13.3214.60+15. 1条16.83⎤⎥⎣⎦三、解答题17.证明:(Ⅰ)∵DC=BC=1,DC⊥BC,∴BD=,∵AD=,AB=2,∴AD2+BD2=AB2,∴∠ADB=90°,∴AD⊥BD,∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,∴ED⊥平面ABCD,∴BD⊥ED,∵AD∩DE=D,∴BD⊥平面ADEF,∵BD⊂平面BDM,∴平面BDM⊥平面ADEF;(Ⅱ)解:如图,在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,∵ED⊥平面ABCD,∴MN⊥平面ABCD,∵V B﹣CDM=V M﹣CDB=,∴X X1X1XMN=,∴MN=,∴=,∴CM=CE,∴点M在线段CE的三等分点且靠近C处.18. .证明:①由正方形的性质可得B1B平面BEDC,∴四棱锥B1﹣BCDE的体积V=•S梯形BCDE•B1B=•(a+a)•a•a=;②取B1D的中点O,设BC1∩B1C=F,连接OF,∵O,F分别是B1D与B1C的中点,∴OF∥DC,且OF=DC,又∵E为AB中点,∴EB∥DC,且EB=DC,∴OF∥EB,OF=EB,即四边形OEBF是平行四边形,∴OE∥BF,∵DC⊥平面BCC1B1,BC1⊂平面BCC1B1,∴BC1⊥DC,∴OE⊥DC.又BC1⊥B1C,∴OE⊥B1C,又∵DC⊂平面B1DC,B1C⊂平面B1DC,DC∩B1C=C,∴OE⊥平面B1DC,又∵OE⊂平面B1DE,∴平面B1DC⊥面B1DE.19.(1)连结BD 交AC 于O ,连结EO ,则EO 是PBD ∆的中位线,所以//EO PB , 又PB ⊄平面EAC ,EO ⊆平面EAC ,∴//PB 平面EAC ;(2)ABCD PA 平面⊥ ,ABC CD 平面⊂ CD PA ⊥∴是矩形ABCD CD AD ⊥∴而A AD PA =⋂PAD CD 平面⊥∴ ,又PDC CD 平面⊂PDC PAD ∴⊥平面平面20.(1)由于平面1A AC ⊥平面ABC ,BC ⊥AC ,所以BC ⊥平面1A AC ,所以BC ⊥1AC , 而1AA AC =,所以四边形11A ACC 是菱形,因此1AC ⊥1AC ,所以1AC ⊥平面1A BC .(2)设11AC AC O = ,作OE ⊥1A B 于E ,连接AE , 由(1)知1AC ⊥平面1A BC ,即AO ⊥平面1A BC ,所以AO ⊥1A B ,又OE ⊥1A B 于E ,因此1A B ⊥AE ,所以AEO ∠为两平面所成锐二面角的平面角α,在1Rt A EO ∆中,11AO =,145OA E ∠=︒,故直角边OE =,又因为Rt AEO ∆中AO =Rt AEO ∆中斜边AE =,所以cos 7OE AE α==OA 1C 1B 1BC A E21.证明:(1)如图,连接1AC ,交1AC 于点O ,连结OD .据直三棱柱性质知四边形11ACC A 为平行四边形,所以O 为1AC 的中点.又因为D 是AB 的中点,所以1//BC OD .………………2分又因为1BC ⊄平面1ACD ,OD ⊂平面1ACD , 所以1//BC 平面1ACD .………………4分 (2)因为AC BC =,D 为AB 的中点,所以CD AB ⊥.………………5分据直三棱柱111ABC A B C -性质知1AA ⊥平面ABC ,又因为CD ⊂平面ABC ,所以1AA CD ⊥.又因为1AA AB A = ,1,AA AB ⊂平面11ABB A ,所以CD ⊥平面11ABB A ,………………11分又因为1AD ⊂平面11ABB A ,所以1CD AD ⊥,即1A D CD ⊥.………………12分22.(1)在四边形OABC 中,∵AO // BC , AO BC =, AB AD ⊥,∴四边形OABC 是正方形,得OC AD ⊥.在POC ∆中,∵222PO OC PC +=,∴OC PO ⊥,又PO AD O ⋂=, ∴OC ⊥平面PAD ,又OC ⊂平面POC ,∴平面POC ⊥平面PAD .(2)由(1)知,四边形OABC 为正方形,∴1OC AB ==, OC OD ⊥,∴1OD =,从而2AD =,设点P 到平面ABCD 的距离为h ,∵平行线BC 与AD 之间的距离为1, ∴1211132211132ABD ABD BCD BCD S h AD V S AD V S BC S h BC ∆∆∆∆⋅⋅=====⋅⋅.。

相关文档
最新文档