高考物理选修3-5知识点归纳
物理选修3-5知识点整理
选修3-5一、动量守恒的研究1、冲量:物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。
2、动量:物体的质量与速度的乘积;矢量;状态量;单位是kg ·m/s;1kg ·m/s=1 N·s。
p=mv;3、动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
4、动量守恒定律成立的条件:(1)系统不受外力或者所受外力的矢量和为零;内力远大于外力;(2)如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5、动量定理:系统所受合外力的冲量等于动量的变化;I=mv末-mv初。
6、反冲:在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7、碰撞:物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8、弹性碰撞:如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
9、非弹性碰撞:碰撞过程中需要计算损失的动能的碰撞;若两物体碰撞后黏合在一起,这种10、碰撞损失的动能最多,叫做完全非弹性碰撞。
【书P9页例题便利贴】二、原子结构1.电子的发现与汤姆孙模型(1)1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
①说明原子可以再分②元电荷电量e = 1.6×10-19 C③阴极射线的质量是氢离子质量的1/1800(2)密里根油滴实验:验证所有电子都是元电荷的整数倍(3)微观世界三大发现:X射线、放射性、电子①X射线:伦琴在阴极射线实验中发现在距离放电管较远的荧光屏上出现荧光②放射性:说明原子核具有复杂结构贝克勒尔铀盐能自发辐射出一种使底片感光的射线居里夫妇沥青铀矿渣和钡盐中提取出放射性更强的钋和镭(4)汤姆孙原子模型:葡萄干面包模型(枣糕模型)原子带正电的部分应充斥整个原子,很小很轻的电子镶嵌在球体的某些固定位置2、勒纳德:电子穿过金属箔实验,显示高速电子很容易穿过金属中的原子,表明原子不像是正电荷均匀分布的实心球体3、卢瑟福粒子散射实验和原子核结构模型(1)粒子散射实验①装置:②现象:a. 绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
高中物理选修3-5知识点整理
高中物理选修3-5知识点梳理一、动量 动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P = mv 。
单位是s m kg .动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
高中物理高考选修3-5知识点整理汇总
高中物理高考选修3-5知识点整理汇总一、动量;动量守恒定律1、动量可以从两个侧面对动量进行定义或解释①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P=mv。
单位是。
动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。
最新高中物理选修3-5知识点总结
第一章动量1.动量:物体的质量与速度的乘积;p mv ;矢量;状态量;单位是kg ·m/s ;1kg ·m/s=1 N ·s 。
2.冲量:物体所受外力和外力作用时间的乘积;IFt ;矢量;过程量;单位是N ·s 。
3.动量定理:系统所受合外力的冲量等于动量的变化;pFt 。
4.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
11221122m v m v m v m v 5.碰撞:物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
6.弹性碰撞:如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
7.反冲:在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
第二章波粒二象性1.热辐射:一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
2.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。
3.黑体辐射:黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。
4.黑体辐射规律:一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
5.能量子:普朗克认为振动着的带电粒子的能量只能是某一最小能量的整数倍,这个不可再分的最小能量值叫做能量子;并且=h,是电磁波的频率,h 为普朗克常量,h=6.631034J ·s ;光子的能量为h。
6.光电效应:照射到金属表面的光使金属中的电子从表面逸出的现象;逸出的电子称为光电子;电子脱离某种金属所做功的最小值叫逸出功;光电子的最大初动能k hE W ;每种金属都有发生光电效应的极限频率和相应的红线波长;光电子的最大初动能随入射光频率的增大而增大。
7.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象。
高中物理选修3-5知识点总结
物理选修3-5知识点总结一、动量守恒定律1、动量守恒定律的条件:1、不受力2、所受外力的矢量和为零3、外力的作用远小于系统内物体间的相互作用力(如碰撞、爆炸、反冲、核反应)2、动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v 1/+m 2v 2/(规定正方向),△p 1=—△p 2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒,;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒,;动能守恒,;特例1:A、B 两物体发生弹性碰撞,设碰前A 初速度为v0,B 静止,则碰后速度0v m m m m v B A B A A +-=,vB=02v m m m B A A +.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A 的速度等于碰前B 的速度,碰后B 的速度等于碰前A 的速度)(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
5、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv =MV (注意:几何关系)6、冲量:F 合t=△p (1、F 为合力2、动量变化注意规定正方向3、易错如物体与墙壁碰撞以等大速度返回,动量变化。
)二、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε=h ν。
h 为普朗克常数(6.63×10-34J.S)2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体,黑体辐射只与温度有关,一般热辐射还与材料和表面状况有关。
高中物理选修3-5知识点整理
高中物理选修3-5知识点梳理一、动量 动量守恒定律1.动量:表达式p = mv 。
单位是s m kg ⋅.动量是矢量,其方向就是瞬时速度的方向。
2.动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
其数学表达式为11221122m v m v m v m v ''+=+二、弹性碰撞和非弹性碰撞碰撞:相互运动的物体相遇,在极短的时间内,通过相互作用,运动状态发生显著变化的过程叫碰撞。
(1)完全弹性碰撞:在弹性力的作用下,系统内只发生机械能的转移,无机械能的损失,称完全弹性碰撞。
(2)非弹性碰撞:非弹性碰撞:在非弹性力的作用下,部分机械能转化为物体的内能,机械能有了损失,称非弹性碰撞。
(3)完全非弹性碰撞:在完全非弹性力的作用下,机械能损失最大(转化为内能等),称完全非弹性碰撞。
碰撞物体粘合在一起,具有相同的速度。
三、黑体和黑体辐射 1.热辐射现象任何..物体在任何..温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
2.黑体是指在任何温度下,全部吸收任何波长的辐射的物体。
3.实验规律:(1)随着温度的升高,黑体的辐射强度都有增加; (2)随着温度的升高,辐射强度的极大值向波长较短方向移动。
四、光电效应1.光电效应的实验规律:①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。
②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。
③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。
④ 金属受到光照,光电子的发射一般不超过10-9秒。
2.光子说⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量νεh =.⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。
物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版
物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P = mv。
单位是skg .动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以m动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
高中物理选修3-5单元知识要点整理
高中物理选修3-5单元知识要点整理一、单位和量纲- 量的定义:描述物理量的性质或特征的概念。
- 单位的定义:为描述量大小的标准或规范。
二、力学1. 牛顿运动定律- 第一定律:惯性定律,物体在没有外力作用下保持匀速直线运动或静止。
- 第二定律:物体受到的合力与物体的加速度成正比,与物体的质量成反比。
- 第三定律:任何两个物体之间都存在相互作用力,且大小相等、方向相反。
2. 动量守恒定律- 系统的总动量在没有外力作用下保持不变。
3. 动能和功- 动能:物体由于运动而具有的能量。
- 功:力对物体做的功,即力在物体上产生的能量转化或传递。
4. 弹性碰撞- 完全弹性碰撞:碰撞前后动量和动能都守恒。
- 部分弹性碰撞:碰撞前后动量守恒,但动能不守恒。
三、热学1. 温度和热量- 温度:物体冷热程度的度量。
- 热量:能量传递的方式,高温物体向低温物体传递的能量。
2. 热力学第一定律- 内能:物体分子间相互作用力所造成的能量。
- 热力学第一定律:物体内能的增量等于热量减去对外做功的量。
四、光学1. 光线的反射与折射- 光线的反射:光线从一种介质射入另一种介质时,发生方向改变。
- 光线的折射:光线从一种介质射入另一种介质时,发生方向和速度的改变。
2. 透镜和成像- 凸透镜:能够将光线汇聚到一点的透镜。
- 凹透镜:使光线发散的透镜。
- 成像原理:通过透镜的折射和反射,光线汇聚或发散,形成实物的像。
五、电磁感应1. 法拉第电磁感应定律- 当磁通量通过电路变化时,电路中会产生感应电动势。
2. 感应电流和发电机- 感应电流:由磁感线与导体运动相对的时候产生的电流。
- 发电机:利用磁场与导体相互作用产生感应电流的装置。
以上是高中物理选修3-5单元的知识要点整理,希望能帮助您复习和理解相关知识。
高中物理选修3-5知识点总结
高中物理选修3-5知识点总结高二(3233)班选修3-5总结一、动量定理的理解与应用1.容易混淆的几个物理量的区别动量和冲量是两个容易混淆的物理量,它们的内容、名称、大小、矢量性、方向、瞬时性、相对性与绝对性联系等方面都有所不同。
动量是物体的运动状态,冲量是力对物体作用的效果,动量与速度同向,冲量与力同向。
动量变化量和动量变化率也与动量有所不同,需要注意它们之间的联系。
2.动量定理的应用动量定理可以应用于求解变力的冲量、XXX作用下曲线运动中物体动量的变化以及解释各种现象。
在处理连续流体问题时,也可以应用动量定理列式求解。
3.应用动量定理解题的步骤应用动量定理解题的步骤包括选取研究对象、确定物理过程及其始末状态、分析受力情况、规定正方向、列方程式和求解结果等。
在解题过程中,需要注意统一单位。
4.动量守恒定律与机械能守恒定律的比较动量守恒定律与机械能守恒定律都是物理学中重要的守恒定律。
它们的守恒条件、表达式、标矢性、理解和注意事项等方面都有所不同。
动量守恒定律适用于系统动量守恒的情况,而机械能守恒定律适用于机械能守恒的情况。
在应用这两个定律时,需要根据具体情况选择合适的定律。
动量守恒定律是物理学中的重要定律之一。
如果一个系统不受外力或所受合外力为零,那么系统的总动量将保持不变。
这可以用矢量式p1+p2=p1′+p2′来描述。
如果外力总冲量为零,系统总动量不变。
在选择正方向时,应该注意机械能守恒定律的规定。
机械能守恒定律指出,只有重力和弹力做功时,能量才会从动能转化为势能。
在标量式中,E k1+E p1=E k2+E p2.可以有重力和弹力以外的力作用,但必须是不做功的力。
选取零势能面时,可以考虑黑体辐射和能量子。
热辐射是一种与物体温度相关的辐射电磁波。
黑体是一种物体,它能够完全吸收入射的各种波长的电磁波而不发生反射。
黑体辐射的实验规律表明,一般材料的物体辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关。
高中物理选修3-5知识点整理
高中物理選修3-5知識點梳理一、動量 動量守恆定律 1、動量:可以從兩個側面對動量進行定義或解釋:①物體的品質跟其速度的乘積,叫做物體的動量。
②動量是物體機械運動的一種量度。
動量的運算式P = mv 。
單位是s m kg .動量是向量,其方向就是瞬時速度的方向。
因為速度是相對的,所以動量也是相對的。
2、動量守恆定律:當系統不受外力作用或所受合外力為零,則系統的總動量守恆。
動量守恆定律根據實際情況有多種運算式,一般常用等號左右分別表示系統作用前後的總動量。
運用動量守恆定律要注意以下幾個問題: ①動量守恆定律一般是針對物體系的,對單個物體談動量守恆沒有意義。
②對於某些特定的問題, 例如碰撞、爆炸等,系統在一個非常短的時間內,系統內部各物體相互作用力,遠比它們所受到外界作用力大,就可以把這些物體看作一個所受合外力為零的系統處理, 在這一短暫時間內遵循動量守恆定律。
③計算動量時要涉及速度,這時一個物體系內各物體的速度必須是相對於同一慣性參照系的,一般取地面為參照物。
④動量是向量,因此“系統總動量”是指系統中所有物體動量的向量和,而不是代數和。
⑤動量守恆定律也可以應用於分動量守恆的情況。
有時雖然系統所受合外力不等於零,但只要在某一方面上的合外力分量為零,那麼在這個方向上系統總動量的分量是守恆的。
⑥動量守恆定律有廣泛的應用範圍。
只要系統不受外力或所受的合外力為零,那麼系統內部各物體的相互作用,不論是萬有引力、彈力、摩擦力,還是電力、磁力,動量守恆定律都適用。
系統內部各物體相互作用時,不論具有相同或相反的運動方向;在相互作用時不論是否直接接觸;在相互作用後不論是粘在一起,還是分裂成碎塊,動量守恆定律也都適用。
3、動量與動能、動量守恆定律與機械能守恆定律的比較。
動量與動能的比較: ①動量是向量, 動能是標量。
②動量是用來描述機械運動互相轉移的物理量而動能往往用來描述機械運動與其他運動(比如熱、光、電等)相互轉化的物理量。
高中物理选修3-5知识点总结
高中物理选修3-5知识点总结
1、能量守恒定律:能量守恒是指能量在转化和传递过程中,总量保持不变。
能量守恒定律是自然界中最基本的定律之一,也是高中物理中的一个重要知识点。
2、动力学:动力学是研究物体运动状态变化的原因和规律的科学。
在高中
物理选修3-5中,主要包括牛顿运动定律、动量定理、动量守恒定律、机械能守恒定律等知识点。
3、振动与波:振动与波是自然界中常见的现象,也是高中物理选修3-5中的重要知识点。
主要包括简谐振动、机械波、电磁波等知识点。
4、光学:光学是研究光的现象和性质的科学。
在高中物理选修3-5中,主要包括光的折射、反射、干涉、衍射等知识点。
5、量子物理:量子物理是研究微观领域内原子、分子等物质的运动和变化
的科学。
在高中物理选修3-5中,主要包括量子力学的基本概念和原理,如波粒二象性、不确定性原理等。
高中物理选修3-5知识点归纳
高中物理选修3-5知识点归纳第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。
2.动量物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg ·m/s;1kg ·m/s=1 N·s。
3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
4.动量守恒定律成立的条件系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5.动量定理系统所受合外力的冲量等于动量的变化;I=mv末-mv初。
6.反冲在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
9.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。
3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。
4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量ε的整数倍,这个不可再分的最小能量值ε叫做能量子;并且ε=hν,ν是电磁波的频率,h为普朗克常量,h=6.63⨯1034-J·s;光子的能量为hν。
6.光电效应照射到金属表面的光使金属中的电子从表面逸出的现象;逸出的电子称为光电子;电子脱离某种金属所做功的最小值叫逸出功;光电子的最大初动能E k =h ν-W ;每种金属都有发生光电效应的极限频率和相应的红线波长;光电子的最大初动能随入射光频率的增大而增大。
物理选修3-5知识点总结(详细)
m1·OP=m1·OM+m2·ON
【注意事项】 1. “水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.测定两球速度的方法,是以它们做平抛运动的水平位移代表相应的速度. 3.斜槽末端必须水平,检验方法是将小球放在平轨道上任何位置,看其能否都保 持静止状态. 4.入射球的质量应大于被碰球的质量. 5.入射球每次都必须从斜槽上同一位置由静止开始滚下.方法是在斜槽上的适当 高度处固定一档板,小球靠着档板后放手释放小球. 6.实验过程中,实验桌、斜槽、记录的白纸的位置要始终保持不变. 7.m1·OP=m1·OM+m2·ON 式中相同的量取相同的单位即可. 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是 两球球心不在同一水平面上,给实验带来误差.每次静止释放入射小球的释放点 越高,两球相碰时作用力就越大,动量守恒的误差就越小.应进行多次碰撞,落 点取平均位置来确定,以减小偶然误差. 下列一些原因可能使实验产生误差: 1.若两球不能正碰,则误差较大;
第 - 5 - 页 共 17 页
2012 届高考备考物理二轮复习资料(选修 3-5 知识点梳理)
谷城一中高三物理组
⑶完全非弹性碰撞:在完全非弹性力的作用下,机械能损失最大(转化为内能等) , 称完全非弹性碰撞。碰撞物体粘合在一起,具有相同的速度。
四、普朗克量子假说 一、量子论
黑体和黑体辐射
Ⅰ
1.创立标志:1900 年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布 定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元 即“能量子”或称“量子” ,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905 年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913 年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一 种量子化的原子结构模型,丰富了量子论。 ③到 1925 年左右,量子力学最终建立。 二、黑体和黑体辐射 1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐 射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。
高中物理选修3-5知识点总结
高中物理选修3-5知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。
2.动量物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg ·m/s;1kg ·m/s=1 N·s。
3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
4.动量守恒定律成立的条件系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5.动量定理系统所受合外力的冲量等于动量的变化;I=mv末-mv初。
6.反冲在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
9.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。
3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。
4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量ε的整数倍,这个不可再分的最小能量值ε叫做能量子;并且ε=hν,ν是电磁波的频率,h为普朗克常量,h=6.63⨯1034-J·s;光子的能量为hν。
高中物理选修3-5知识点整理
高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P=mv。
单位是kg m s.动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题,例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理,在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是)电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相 同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是 粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等 相互转化的物理量。
高中物理选修3-5知识点整理44601
高中物理选修3-5知识点整理44601第三章牛顿第二定律和行星运动1.牛顿第二定律:当一个物体受到外力时,物体会受到力的矢量积累,并根据F=ma两个方程条件来确定力和物体的运动状态。
2.动量守恒定律:当在系统无内力的情况下,动量的矢量和为零,即总动量守恒。
3.摩擦力:摩擦力是一个与物体运动方向相反的力,影响物体的运动状态,在相同的作用力情况下,摩擦力越大,物体的运动越慢,反之亦然。
4.行星运动:即根据牛顿第一定律和牛顿第三定律,太阳、地球等天体受到彼此引力的作用,按照规律运动的现象。
第四章动能和势能1.动能:指物体末质可以形成动能的能量Ε = ½mv²,即物体有运动性时可形成动能。
2.势能:指物体处于特定的位置时,可形成势能的能量,当物体处于地心引力平衡状态时,可形成势能,公式为Ep = mgh。
3.动量定理:当物体发生变形运动时,其动能会随着物体的运动而发生变化,其变化公式为ΔE= FΔt,称为动量定理。
4.能量守恒定律:当物体处于系统无内力的情况下,总能量守恒。
从这里可以看出,动能和势能变化彼此等价互换,即ΔE = ΔEp 。
第五章赝势的运动1.重力势:当物体受到力的作用,便会洽生重力势,它与物体的位置和运动方向相关,用V表示,V=-Gm/r。
2.能势:当物体处于特定的变形状态下,能势表示物体的位置和体积发生变化的能量,用U表示,U=f·Δs。
3.弹力势:作用与物体的体积、间距和密度有关,当物体处于弹性状态时,即有形成弹力势,用U表示,U=·f·Δs·Δv。
4.重力场:由重力势能和其他分布式力场所组成的概念,它描述物体处于任意位置和速度下,受到力的矢量积累。
它可以用于描述行星形成中对物体运动、定向和路径的影响。
高中物理 选修3-5知识点
原子物理(3—5)(一)动量物体的动量 P=mv ,矢量① 动量守恒'+'=+22112211v m v m v m v m ,使用时需选择正方向② 条件:(Ⅰ)系统F 合=0;(Ⅱ)F 内>> F 外;(Ⅲ)系统某方向上F 合=0 ③ 实例:碰撞、爆炸、反冲等 ④ 动量与动能 mpE k 22=,k mE p 2=练习1:静止的Li 63核俘获一个速度s m v /107.741⨯=的中子而发生核反应,生成一个新核和速度大小为s m v /100.242⨯=、方向与反应前中子速度方向相同的氦核He 42,上述核反应方程为 ,另一个新核的速度大小为 m/s 。
练习2:(教科书P 51)两个氘核聚变时产生一个中子和一个氦核(氦的同位素),已知氘核的质量m H =2.0141u ,氦核的质量为m He =3.0160u ,中子的质量为m n =1.0087u ,(以上质量均指静质量)(1)写出核反应方程(2)计算反应释放出的核能(3)如果反应前两个氘核的动能均为0.35Mev ,它们正面对碰发生聚变,且反应释放的核能全部转化为动能,计算反应生成的氦核和中子的动能。
(二)原子结构1.原子模型2.氢原子光谱(1)光谱种类① 发射光谱:物质发光直接产生的光谱。
(例如炽热的固体、液体及高温高压气体发光产生连续光谱....;稀薄气体发光产生线状谱...,不同元素的线状谱线不同,又称特征谱线) ② 吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。
(2)氢原子的光谱是线状的(这些亮线称为原子的特征谱线),即辐射波长是分立的。
3.玻尔的原子能级结构① 卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾(“核式结构模型”无法解释a 、原子的稳定性;b 、原子光谱的分立特征)1913年玻尔(丹麦)在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波粒二象性知识要点梳理知识点一——黑体与黑体辐射要点诠释:1、热辐射固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。
对热辐射的初步认识:任何物体任何温度均存在热辐射。
辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。
对于一般材料的物体,温度越高,热辐射的波长越短、强度越强。
物体在室温时热辐射的主要成分是波长较长的电磁波,不能引起人的视觉。
当温度升高时,热辐射中较短波长的成分越来越强。
例如投在炉中的铁块由于不断加热,铁块依次呈现暗红、赤红、橘红等颜色,直至成为黄白色。
热辐射强度还与材料的种类、表面状况有关。
热辐射的过程中将热能转化为电磁能。
2、黑体与黑体辐射能够完全吸收入射的各种波长的电磁波而不发生反射的物体称为绝对黑体,简称黑体。
不透明的材料制成带小孔的的空腔,可近似看作黑体。
如果在一个空腔壁上开一个很小的孔,如图所示,那么射入小孔的电磁波在空腔内表面发生多次反射和吸收,最终不能从空腔射出,这个小孔就成为了一个绝对黑体。
对上图中的空腔加热,空腔内的温度升高,小孔就成了不同温度下的导体,从小孔向外的辐射就是黑体辐射。
研究黑体辐射的规律是了解一般物体热辐射性质的基础。
实验表明黑体辐射强度按波长的分布只与黑体的温度有关。
利用分光技术和热电偶等设备就能测出它所辐射的电磁波强度按波长的分布情况。
如下图画出了四种温度下黑体热辐射的强度与波长的关系:从中可以看出,随着温度的升高,一方面各种波长的辐射强度都有增加;另一方面,辐射强度的极大值向波长较短的方向移动。
对实验规律的解析:物体中存在着不停运动的带电微粒,每个带电微粒的振动都产生变化的电磁场,从而产生电磁辐射。
人们很自然地要依据热力学和电磁学的知识寻求黑体辐射的解释。
德国物理学家维恩在1896年、英国物理学家瑞利在1900年分别提出了辐射强度按波长分布的理论公式。
维恩公式在短波区与实验非常接近,在长波区则与实验偏离很大;瑞利公式在长波区与实验基本一致,但在短波区与实验严重不符。
而且当波长趋于零时,辐射竟变成无穷大,这显然是荒谬的。
由于波长很小的辐射处于紫外线波段,故而由理论得出的这种荒谬结果被认为是物理学理论的灾难,当时被称为紫外灾难。
为了得出同实验符合的黑体辐射公式,1900年底,德国物理学家普朗克提出了能量子的概念。
3、能量子辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。
但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。
相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε, 2ε, 3ε, ... nε. n为正整数,称为量子数。
对于频率为υ的谐振子最小能量为ε=hυ,其中υ是电磁波的频率,h是一个常量,后被称为普朗克常量,其值为h=6.626×10-34J·s。
注意:宏观世界中我们说的能量值是连续的,而普朗克的假设则认为微观粒子的能量是量子化的,或者说微观粒子的能量是分立的。
借助于能量子的假设,普朗克得出了黑体辐射的强度按波长分布的公式,如图所示,与实验符合令人击掌叫绝。
知识点二——光电效应要点诠释:1、光电效应现象在光(包括不可见光)的照射下从物体发射出电子的现象,叫光电效应。
光电效应中发射出来的电子叫光电子。
光电子定向移动形成的电流叫光电流。
研究光电效应规律的实验装置如图,阴极K和阳极A 是密封在真空玻璃管中的两个电极,K在受到光照时能够发射光电子。
电源加在K与A之间的电压大小可以调整,正负极也可以对调。
电源按图示极性连接时,阳极A吸收阴极K发出的光电子,在电路中形成了光电流。
利用这个图示的电路就可以研究光电流和照射光的强度、光的频率(颜色)等物理量之间的关系。
2、光电效应规律(1)存在着饱和光电流I s与入射光强度成正比。
a.在光照条件不变的情况下,随着所加电压的增加,光电流趋于一个饱和值b.入射光越强,饱和电流越大如果用一定频率和强度的单色光照射阴极K,改变加在A和K两极间的电压U,测量光电流I的变化,则可得如图所示的伏安特性曲线。
实验表明:光电流I随正向电压U的增大而增大,并逐渐趋于其饱和值I s;而且饱和电流I s的大小与入射光强度成正比。
这一实验结果可以解释为,控制入射光的强度、频率不变时,从阴极K射出的电子的数目和初速度相同,当增加电压时射到阳极A的电子的速度增大,根据I=nqvs可知电流增大,但速度增大不能无限地增大,最大速度是光速,所以电流存在饱和值。
当光电流达到饱和时,阴极K上所有逸出的光电子全部飞到了阳极A上,即:Is= ne,其中n 是单位时间内阴极K上逸出的光电子数。
控制电压和光的频率不变,增大入射光的强度,n增大,饱和电流越大。
因此光电效应的上述实验结果也可以表述为:单位时间内从金属表面逸出的光电子数目与入射光强度成正比。
(2)存在着遏止电压和截止频率a.当所加电压为零时,电流I并不为零只有施加反向电压,电流才有可能为零由上图可见,A和K两极间的电压为零时,光电流并不为零,只有当两极间加了反向电压U=-U C<0时,光电流I 才为零,U C称为遏止电压(或截止电压)。
实验表明:对于一定颜色(频率)的光,无论光的强弱如何,遏止电压都是一样的。
光的频率改变时,遏止电压也会改变。
这表明光电子的最大初动能与入射光的强度无关,随入射光频率的增加而增加。
b.当入射光的频率减小到某个值υ0时,即使不施加反向电压也没有光电流,表明已经没有光电子了当入射光的频率减小到某一数值υ0时,U C减小到零,既不施加反向电压也没有光电流,这表明已经没有光电子了。
若入射光频率再降低,则无论光的强度多大,都没有光电子产生,不发生光电效应。
这个由阴极金属材料性质决定的频率υ0,称为金属的截止频率(或极限频率)。
不同的金属极限频率不同,对于同一种金属,只有当入射光频率υ大于一定的极限频率υ0时,才会产生光电效应。
结论:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于极限频率时不能发生光电效应。
不同金属的极限频率不同。
(3)光电效应是瞬时发生的。
实验发现,只要入射光的频率υ>υ0,无论光多么微弱,从光照射阴极到光电子逸出,这段时间不超过10-9s。
光电效应的发生时间如此之短,通常称它是瞬时发生的。
3、波动理论解释光电效应规律的疑难但是按照波动理论,应得出如下结论:①光越强,光电子的初动能应该越大,所以遏制电压UC 应该和光的强弱有关,但事实是在入射光的频率相同的情况下,改变入射光的强度,遏制电压不变;②不管光的频率如何,只要光足够强,电子就可获得足够能量从而逸出表面,不应存在截止频率,但事实上存在截止频率,当入射光的频率小于截止频率时,无论入射光多么强,都不会看到光电效应;③如果光很弱,按照经典电磁理论估算,电子需要几分钟或者十几分钟的时间才能获得逸出表面所需要的能量,这些结论都与实验结果相矛盾。
众多的疑难呼唤着新的思想,新的观念,新的理论。
知识点三——爱因斯坦的光电效应方程要点诠释:1、新理论的诞生——光子说(1)背景普朗克在研究热辐射规律时发现,只有认为电磁波的发射和吸收是不连续的,而是一份一份地进行的,理论计算的结果才能和实验事实相符。
每一份能量叫做一个能量子,每个能量子的能量为ε=hυ。
受普朗克的启发,爱因斯坦认为:光在空间传播正向粒子那样运动,这个粒子后来被称为“光子”(2)内容空间传播的光不是连续的,是一份一份的,每一份叫一个光子,每个光子的能量为ε=hυ。
(3)爱因斯坦的光子与普朗克的能量子的异同相同点:都认为能量是不连续的,而是一份一份的,每一份能量为ε=hυ。
(能量量子化)不同点:普朗克认为能量子仍以波的形式传播;爱因斯坦认为光子在空间的传波向粒子一样。
注意:爱因斯坦的光子与牛顿的粒子有着本质的不同。
光子是只有能量而无静止质量的粒子,而牛顿的粒子是指实物粒子。
2、光子说对光电效应的解释①光是由一个个光子组成,被光子“打中”的电子,这个光子的能量就全部给这个电子,而没有被光子“打中”的电子,则一点能量也没有获得。
②得到能量的电子,动能立即增大,而不需要积累能量的过程。
③如果这个能量足够大,则电子就挣脱金属的束缚而射出来,即产生光电效应;如果这个能量不足以挣脱金属的束缚,则不能产生光电效应。
④频率一定时,光强越大,即光子的数目越多,获得能量的电子也越多,即光电子的数目与光强成正比。
3、爱因斯坦的光电效应方程(1)逸出功:使电子脱离某种金属所做功的最小值当光子照射到金属上时,它的能量可以被金属中的某个电子全部吸收,电子吸收光子的能量后,动能就增加了,如果电子的动能足够大,能够克服内部原子对它的引力,就可以离开金属表面逃逸出来,成为光电子,这就是光电效应。
电子吸收光子的能量后可能向各个方向运动,有的向金属内部运动,并不出来。
向金属表面运动的电子,经过的路程不同,途中损失的能量也不同,因此从表面出来时的初动能不同。
只有直接从金属表面出来的光电子才具有最大初动能。
这些光电子克服金属原子的引力所做的功叫做逸出功。
(2)光电效应方程根据能量守恒定律,光电子的最大初动能mv m2跟入射光子的能量hυ和逸出功W之间有如下关系:mv m2 = hυ- W这个方程叫爱因斯坦的光电效应方程。
对于一定的金属来说,逸出功W的值是一定的。
所以入射光子的频率υ越大,光电子的最大初动能也越大。
在入射光频率一定时,如果入射光比较强,即单位时间内入射的光子数目多,产生的光电子也多,所以光电流的饱和值也大。
4、光电效应的应用利用光电效应可以把光信号转变为电信号,动作迅速灵敏,因此利用光电效应制作的光电器件在工农业生产、科学技术和文化生活领域内得到了广泛的应用。
光电管就是应用最普遍的一种光电器件。
光电管的类型很多,如图所示为其中的一种。
玻璃泡里的空气已经抽出,有的管里充有少量的惰性气体。
管的内壁涂有逸出功小的金属作为阴极。
管内另有一阳极A。
当光照射到光电管的阴极K时,阴极发射电子,电路里就产生由a到b的电流。
知识点四——康普顿效应要点诠释:1、光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。
2、康普顿效应英国物理学家康普顿在研究石墨对X射线的色散时,发现在色散的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应。
能不能把光看成波而解释这个现象呢?不能,因为光是电磁波,入射光将引起物质内部带电微粒的受迫振动,振动着的带电微粒从入射光吸收能量,并向四周辐射。
这就是散射光。
散射光的频率应该等于入射光的频率,因而散射光的波长与入射光的波长应该相同,不应出现λ>λ0的散射光,综上所述,若将入射光看成是波的话,那么散射光的波长和入射光的波长相同,不会出现λ>λ0的散射光,即经典理论与实验事实出现了矛盾。