山东省2016年高三数学寒假作业5含答案

合集下载

[VIP专享]高三数学寒假作业(完整答案)

[VIP专享]高三数学寒假作业(完整答案)
6.已知数列{an}中 a1=1,a2=2,当整数 n>1 时,Sn+1+Sn-1=2(Sn+S1)都成立,则 S15 等于( )
答案 A
于是,该数列是周期为 6 的数列,a2 013=a3=a1=3.
a2
解析 由已知得 an+1=an-1,an+3=an+1= an ×an+1=an,故 an+6=an+3=an,
答案 C
D.729
C.243
B.81
A.27
则 a6=( )
4.已知等比数列{an}的前 n 项和为 Sn,若 S2n=4(a1+a3+a5+…+a2n-1),a1a2a3=27,
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM

山东省潍坊市2016届高三数学下学期模拟训练试题(五)理

山东省潍坊市2016届高三数学下学期模拟训练试题(五)理

2016年高考模拟训练试题理科数学(五)本试卷共6页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题共50分)注意事项:1.答卷前,考生务必用0.5毫米规格黑色签字笔将自己的某某、某某号、考试科目填写在规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米规格黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后写上新的答案,不得使用涂改液、胶带纸、修正带和其他笔.4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

一、选择题:本大题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.设复数()1=2z bi b R z =+∈且,则复数z 的虚部为 A.3B.3± C.1±D.3i ±2.已知集合{}21log ,1,,12xA y y x xB y y x A B ⎧⎫⎪⎪⎛⎫==>==>⋂=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A.102⎛⎫ ⎪⎝⎭, B.()01,C.112⎛⎫ ⎪⎝⎭,D.∅ 3.定义22⨯矩阵()12341423a a a a a a a a =-.若()()()sin 3cos 1x f x x ππ⎛⎫-⎪= ⎪+⎝⎭,则()f x 的图象向右平移3π个单位得到的函数解析式为 A.22sin 3y x π⎛⎫=-⎪⎝⎭B.2sin 3y x π⎛⎫=+ ⎪⎝⎭C.2cos y x =D.2sin y x =4.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为A.37πB.35πC.33πD.31π5.在平面直角坐标系中,若220,20,x x y x y ≤⎧⎪+-≥⎨⎪-+≥⎩则()221x y ++的最小值是A.5B.322C.3D.56.点A 是抛物线()21:20C y px p =>与双曲线()22222:10,0x y C a b a b-=>>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p ,则双曲线2C 的离心率等于 A.2B.3C.5D.67.如图所示,由函数()sin f x x =与函数()cos g x x =在区间30,2π⎡⎤⎢⎥⎣⎦上的图象所围成的封闭图形的面积为 A.321-B.422-C.2D.228.如图,直角梯形ABCD 中,90,45A B ∠=∠=,底边AB=5,高AD=3,点E 由B 沿折线BC 向点D 移动,EM ⊥AB 于M ,EN AD ⊥与N ,设BM x =,矩形AMEN 的面积为y ,那么y 与x 的函数关系的图像大致是9.已知函数()32123f x x ax bx c =+++有两个极值点1212,112x x x x -<<<<,且,则直线()130bx a y --+=的斜率的取值X 围是A.22,53⎛⎫-⎪⎝⎭B.23,52⎛⎫-⎪⎝⎭ C.21,52⎛⎫-⎪⎝⎭D.22,,53⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭10.已知函数()21,0,log ,0,kx x f x x x +≤⎧=⎨>⎩下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的4个判断正确的是 ①当0k >时,有3个零点 ②当0k >时,有2个零点 ③当0k >时,有4个零点 ④当0k >时,有1个零点 A.①④ B.②③ C.①② D.③④第II 卷(非选择题,共100分)二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上.11. 已知实数[]2,30x ∈,执行如图所示的程序框图,则输出的x 不小于103的概率是_________.12.公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的.设男子身高X 服从正态分布()2170,7N (单位:cm ),参考以下概率()0.6826,P X μσμσ-<≤+=()22P X μσμσ-<≤+0.9544=,()33P X μσμσ-<≤+=0.9974,则车门的高度(单位:cm )至少应设计为________. 13.若()()()()92901292111x m a a x a x a x ++=+++++⋅⋅⋅++,且(0a )()229281393a a a a a ++⋅⋅⋅+-++⋅⋅⋅+=,则实数m 的值是________.14.在ABC ∆中,E 为AC上一点,且4,AC AE P BE =为上一点,(AP mAB nAC m =+>)00n >,,则11m n+取最小值时,向量(),a m n =的模为_________. 15.已知命题:①设随机变量()~0,1N ξ,若()2P p ξ≥=,则()122P p ξ-<<0=-; ②命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”; ③在ABC ∆,A B >的充要条件是sin sin A B <;④若不等式3221x x m ++-≥+恒成立,则m 的取值X 围是(),2-∞;⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则实数a 的取值X 围是1,3⎡⎫+∞⎪⎢⎣⎭.以上命题中正确的是_______(填写出所有正确命题的序号).三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分) 设函数()4cos sin cos 216f x x x x πωωω⎛⎫=+-+ ⎪⎝⎭,其中02ω<<. (I )若4x π=是函数()f x 的一条对称轴,求函数周期T ; (II )若函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上为增函数,求ω的最大值.右图为某校语言类专业N 名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员为21人.(I )求该专业毕业总人数N 和90~95分数段内的人数n ;(II )现欲将90~95分数段内的6名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为35,求n 名毕业生中男、女各几人(男、女人数均至少两人). (III )在(II )的结论下,设随机变量ξ表示n 名毕业生中分配往乙学校的三名学生中男生的人数,求ξ的分布列和数学期望()E ξ.18. (本小题满分12分)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,,//,222,2AB AD AB CD AB AD CD PE BE ⊥====.(I )求证平面EAC ⊥平面PBC ; (II )若二面角P AC E --的余弦值为6,求直线PA 与平面EAC 所成角的正弦值.19. (本小题满分12分)已知数列{}n a 满足()12111,2,232,n n n a a a a a n n N *+-===+≥∈且.(I )设()1n n n b a a n N*+=+∈,求证{}nb 是等比数列;(II )①求数列{}n a 的通项公式; ②求证:对于任意n N *∈都有12212111174n n a a a a -++⋅⋅⋅++<成立.已知椭圆2222:1x y C a b +=与双曲线()2211441x y υυυ+=<<--有公共焦点,过椭圆C 的右顶点B 任意作直线l ,设直线l 交抛物线22y x =于P ,Q 两点,且OP OQ ⊥.(I )求椭圆C 的方程;(II )在椭圆C 上是否存在点(),R m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点M ,N ,且OMN ∆的面积最大?若存在,求出点R 的坐标及对应OMN ∆的面积;若不存在,请说明理由.21. (本小题满分14分) 设函数()ln 1af x x x =+-(a 为常数). (I )若曲线()y f x =在点()()2,2f 处的切线与x 轴平行,某某数a 的值; (II )若函数()(),f x e +∞在内有极值,某某数a 的取值X 围;(III )在(II )的条件,若()()120,1,1,x x ∈∈+∞,求证:()()2112.f x f x e e->+-。

山东省2016年高三数学寒假作业9 含答案

山东省2016年高三数学寒假作业9 含答案

【KS5U 】新课标2016年高三数学寒假作业9一、选择题.1。

“a=﹣l ”是“直线(a ﹣1)x ﹣y ﹣l=0与直线2x ﹣ay+l=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2。

若向量m= (-1,4)与n=(2,t)的夹角为钝角,则函数f(t)=t 2—2t+1的值域是 ( )A .()1,8181,4⎛⎫+∞ ⎪⎝⎭B .1,4⎛⎫+∞ ⎪⎝⎭C. [0,81) (81,+∞)D. [0,+∞)3.已知{}n b 是正项等比数列,且2122log log b b ++…22015log 2015b +=,则32013b b •的值是A 、2B 、4C 、6D 、84.若12cos 13x =,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-5125。

已知,则=( )A .2B .4C .D .8 6.已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .7 7.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为( )A.4B.8C.12D.248.如图,若执行该程序,输出结果为48,则输入k值为()A.4 B.5 C.6 D.79。

过双曲线﹣=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若|FE|=|EP|,则双曲线离心率为( )A.B.C.D.10.已知双曲线(a>0,b>0)的一条渐近线方程是x﹣y=0,它的一个焦点在抛物线y2=﹣4x的准线上,则双曲线的方程为()A.4x2﹣12y2=1 B.4x2﹣y2=1 C.12x2﹣4y2=1 D.x2﹣4y2=1二.填空题.11。

已知等差数列{a n}中,a2=2,a4=8,若a bn=3n﹣1,则b2015= .12.已知θ∈(0,π),且sin(θ﹣)=,则tan2θ=.13.若向量,满足||=||=|+|=1,则•的值为.14.设变量x,y满足约束条件,则z=x﹣3y的最小值.三、解答题。

山东省2016年高二数学寒假作业5Word版含答案

山东省2016年高二数学寒假作业5Word版含答案

【KS5U 】新课标2016年高二数学寒假作业5一、选择题.1.已知命题p 1:存在x 0∈R ,使得x 02+x 0+1<0成立;p 2:对任意的x ∈[1,2],x 2﹣1≥0.以下命题为真命题的是( ) A .¬p 1∧¬p 2B .p 1∨¬p 2C .¬p 1∧p 2D .p 1∧p 22.下列命题中正确的是( )A .若a >b ,c <d ,则a ﹣c <b ﹣dB .若a >b >0,c <d <0则ac <bdC .若a >b >0,c <0,则><D .若a >b >0,则a ﹣a>b ﹣b3.若变量x ,y 满足约束条件,则目标函数z=2x+y 的最小值是( )A .6B .3C .D .14.已知a >0,b >0满足a+b=1,则的最小值为( )A .12B .16C .20D .255.等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=( ) A .15 B .30 C .31 D .646.已知等比数列{a n }的公比为正数,且a 3•a 9=2a 52,a 2=1,则a 1=( ) A .B .C .D .27.等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于( ) A .66 B .99 C .144 D .2978.数列的前n 项和为( )A .B .C .D .9.已知椭圆的焦点F 1(﹣1,0),F 2(1,0),P 是椭圆上一点,且|F 1F 2|是|PF 1|,|PF 2|等差中项,则椭圆的方程是( )A .+=1 B .+=1 C .+=1 D .+=110.数列{}n a 满足143n n a a -=+,10a =,则此数列的第5项是( )A .15B .255C .20D .8 二.填空题.11.若双曲线E 的标准方程是,则双曲线E 的渐进线的方程是 .12.椭圆x 2+4y 2=1的离心率为.13.已知平面直角坐标系中有两个顶点A (﹣2,0),B (2,0),若动点P 满足|PA|+|PB|=6,则动点P 的轨迹方程为.14.已知数列{a n }的通项公式为a n =19﹣2n (n ∈N *),则S n 最大时,n= . 三、解答题.15.设数列{a n }的各项均为正数,它的前n 项的和为S n ,点(a n ,S n )在函数y=x 2+x+的图象上;数列{b n }满足b 1=a 1,b n+1(a n+1﹣a n )=b n .其中n ∈N *. (Ⅰ)求数列{a n }和{b n }的通项公式; (Ⅱ)设c n =,求证:数列{c n }的前n 项的和T n >(n ∈N *).16.已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1.(Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF ;(Ⅲ)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为V F-ABCD ,V F-CBE ,求V F-ABCD ∶V F-CBE 的值. 17.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,连接椭圆四个顶点形成的四边形面积为(I )求椭圆C 的标准方程;(II)过点A(1,0)的直线与椭圆C 交于点M, N,设P 为椭圆上一点,且OP t ON OM =+(t ≠0),O 354<-时,求t 的取值范围。

山东春季高考数学真题 含答案

山东春季高考数学真题 含答案

山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合A ={}1,3,B ={}2,3,则A B U 等于( )A. ∅B. {}1,2,3C. {}1,2D. {}3【答案】B 【解析】因为A ={}1,3,B ={}2,3,所以A B U {}1,2,3=. 2.已知集合A ,B ,则“A B ⊆”是“A B =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】A B A B=⇒⊆Q,又A B A B A B⊆⇒=或Ø,∴“A B⊆”是“A B=”的必要不充分条件.3.不等式23x+>的解集是()A. ()(),51,-∞-+∞U B. ()5,1-C. ()(),15,-∞-+∞U D.()1,5-【答案】A【解析】23123235x xxx x+>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为()(),51,-∞-+∞U.4.若奇函数()y f x=在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是()第4题图GD21GD22GD23GD24GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A. ()224--= B. 33122a a -=C. ()021-=- D. 4141a a-⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确.6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143.2 C 【答案】 B 【解析】 3a Q 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ).31 C【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种.8.下列说法正确的是( ) A.函数()2y x a b =++的图像经过点(a ,b )B.函数x y a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数a y x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数x y a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量OBuuu r的坐标是( )第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A 【解析】Q A (1,-2),C (3,1),()()1231OA OB ∴=-=u u u r u u u r,,,,又OA CB =u u u r u u u r , ()4,1OB OC CB OC OA ∴=+=+=-u u u r u u u r u u u r u u u r u u u r.10.过点P (1,2)与圆225x y +=相切的直线方程是( )A. 230x y -+=B. 250x y -+=C. 250x y +-=D.250x y +=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P 在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),5即圆心到直线230x y -+=的距离55d =≠圆心到直线250x y -+=的距离55d '==则只有B 符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是( )A.天然气B.核能C.水利发电D.再生能源表 我国各种能源消费的百分率【答案】D 【解析】 根据表1可知,从2011年到2014年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.16.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A. 34,55⎛⎫- ⎪⎝⎭B. 43,55⎛⎫- ⎪⎝⎭C. 34,55⎛⎫- ⎪⎝⎭D. 43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( )GD27GD28GD29GD30【答案】D 【解析】 当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n=+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160【答案】B 【解析】 ()2nx -Q 的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T xx -=-=-,则其系数为160-.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B. 121C. 114D. 27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=. 16.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是( ) GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,2y =,D 选项中,当2,4x y π==. 17.在ABC △中,若2AB BC CA ===u u u r u u u r u u u r,则AB BC ⋅u u u r u u u r 等于( )A. 23-B. 23C.-2【答案】C 【解析】因为2AB BC CA ===u u u r u u u r u u u r,所以ABC △是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC ⋅=⋅⋅︒=-u u u r u u u r u u u r u u u r.18.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是( )第18题图 GD35.4 C【答案】B 【解析】 由图可知,目标函数z x y =+在点(2,2)处取得最大值,即max 224z =+=.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是( ) A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则m C.若,,l m l αα∥∥则∥m D.若,,l m l αα⊥⊥∥则m【解析】A,B,C 选项,直线l 与m 相交、平行、异面都有可能;D 选项,∵,m α∥,∴存在一个平面β,使得αβ∥,且m β∈,∵,l α⊥∴l β⊥,l m ⊥.20.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120FM F M ⋅=u u u u r u u u u r,那么点M 到x 轴的距离是( )2D. 1【答案】B 【解析】 椭圆22126x y +=,即2a b c ====,设点M 的坐标为00()x y ,,又120F M F M ⋅=u u u u r u u u u rQ ,∴点M 又在以原点为圆心,半径为2的圆上,圆方程为224x y +=,即2204x y +=①,又2200126x y +=②,联立①②得0y =M 到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21.已知tan 3α=,则sin cos sin cos αααα+-的值是 .【答案】2【解析】分式上下同除以cos α得sin cos tan 1cos sin cos tan 1cos αααααααα++=--,把tan 3α=代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于 . 【答案】3π【解析】设正方体的边长为x ,2661x x =⇒=,则边长为1,243S r =π=π球. 23.如果抛物线28y x =上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是 .【答案】5【解析】因为抛物线28y x =上的点M 到y 轴的距离是3,所以点M 的横坐标为3,再将3x =代入得到y =±(3,M ±,又因为28y x =,准线22px =-=-,则点M 到该抛物线焦点F 的距离是5. 24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出 名.【答案】33【解析】恰好选到二年级学生的概率是,恰好选到一年级学生的概率是,则选到三年级学生的概率是,那么需要从三年级抽取100×=33人. 25.设命题p ;函数()()215f x x a x =+-+在(],1-∞上是减函数;命题q :()2,lg 230x x ax ∀∈++>R .若p q ∨⌝是真命题,p q ∧⌝是假命题,则实数a 的取值范围是 .【答案】(-或()-∞+∞U ,【解析】 Q p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<<,则1a -<<pq 同为假时,a 或a ≤数a 的取值范围为(1-或()-∞+∞U ,. 三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)?【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求: (1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上,又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥,根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DA AM A =I ,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △2x ,所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱所以2233D AMBV x hx h V -π==π圆柱.29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面内),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则22222010103m AB AP BP -=-=,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ AB ABQ AQB =∠∠,即21031032102m sin 45sin 603AQ AQ =⇒==︒︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠2220(102)220102cos1054002003=+-⨯⨯︒=+,10(13)103PQ =+=+P ,Q 两点之间的距离为10103+.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2. (1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-r是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN△面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b-=,()()122,02,0F F -Q ,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a -=-=准方程为2213y x -=,离心率221c e a ===,渐近线方程为33b y a =±== (2)Q 向量()2,1n =-r是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,5d ∴==,则1130225PMN S MN d =⨯=⨯⨯=△。

高三理科数学寒假作业答案.doc

高三理科数学寒假作业答案.doc

2016高三理科数学寒假作业答案寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

寒假作业特指寒假内教师给学生布置的作业,由于时间较长,因此通常量较大。

小学由四门到五门组成中学由七门到八门组成。

下面是由yjbsy我整理的XX高三理科数学寒假作业答案,欢迎大家阅读。

2016山东春季高考数学真题(含答案)

2016山东春季高考数学真题(含答案)

省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合A ={}1,3,B ={}2,3,则A B等于( )A.∅B.{}1,2,3C.{}1,2D.{}3【答案】B 【解析】因为A ={}1,3,B ={}2,3,所以A B {}1,2,3=.2.已知集合A ,B ,则“A B ⊆”是“A B =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】 B 【解析】A B A B =⇒⊆,又A B A B A B ⊆⇒=或,∴“A B ⊆”是“A B =”的必要不充分条件. 3.不等式23x +>的解集是( ) A.()(),51,-∞-+∞ B.()5,1-C.()(),15,-∞-+∞ D.()1,5-【答案】A 【解析】23123235x x x x x +>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为 ()(),51,-∞-+∞.4.若奇函数()y f x =在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是( )第4题图GD21GD22GD23GD24 GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A.()224--= B.33122a a -=C.()21-=- D.4141a a -⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确. 6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143B.2C.4D.8 【答案】 B 【解析】3a 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ) A.60 B.31 C.30 D.10【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种. 8.下列说确的是( ) A.函数()2y x a b =++的图像经过点(a ,b )B.函数xy a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数a y x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数x y a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量OB 的坐标是( )第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A 【解析】A (1,-2),C (3,1),()()1231OA OB ∴=-=,,,,又OA CB =,()4,1OB OC CB OC OA ∴=+=+=-.10.过点P (1,2)与圆225x y +=相切的直线方程是( )A.230x y -+=B.250x y -+=C.250x y +-=D.250x y +=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P 在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),半径为5,即圆心到直线230x y -+=的距离55d =≠,圆心到直线250x y -+=的距离55d '==,则只有B 符合. 11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是( )A.天然气B.核能C.水利发电D.再生能源表 我国各种能源消费的百分率原油(%) 天然气(%) 原煤(%) 核能(%) 水利发电(%) 再生能源(%) 2011年 17.7 4.5 70.4 0.7 6.0 0.7 2014年17.55.666.01.08.11.8【答案】D 【解析】 根据表1可知,从2011年到2014年,天然气:100%24.4%4.5⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.1 6.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源. 12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A.34,55⎛⎫- ⎪⎝⎭ B.43,55⎛⎫- ⎪⎝⎭ C.34,55⎛⎫- ⎪⎝⎭ D.43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( ) GD27GD28GD29GD30【答案】D 【解析】 当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n =+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160D.560【答案】B 【解析】()2nx -的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T x x -=-=-,则其系数为160-.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B.121 C.114 D.27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=. 16.函数sin 24y x π⎛⎫=+⎪⎝⎭在一个周期的图像可能是( ) GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,22y =,D 选项中,当2,42x yπ==.17.在ABC△中,若2AB BC CA===,则AB BC⋅等于()A.23- B.23 C.-2 D.2【答案】C【解析】因为2AB BC CA===,所以ABC△是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC⋅=⋅⋅︒=-.18.如图所示,若,x y满足约束条件210220xxx yx y⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y=+的最大值是()第18题图 GD35A.7B.4C.3D.1【答案】B【解析】由图可知,目标函数z x y=+在点(2,2)处取得最大值,即max224z=+=.19.已知α表示平面,,,l m n表示直线,下列结论正确的是()A.若,,l n m n⊥⊥则l m∥ B.若,,l n m n l⊥⊥⊥则mC.若,,l m lαα∥∥则∥m D.若,,l m lαα⊥⊥∥则m16.D【解析】A,B,C选项,直线l与m相交、平行、异面都有可能;D选项,∵,mα∥,∴存在一个平面β,使得αβ∥,且mβ∈,∵,lα⊥∴lβ⊥,l m⊥.20.已知椭圆22126x y+=的焦点分别是12,F F,点M在椭圆上,如果12FM F M⋅=,那么点M到x轴的距离是()2D.1【答案】B【解析】椭圆22126x y+=,即2a b c==,设点M的坐标为00()x y,,又12FM F M⋅=,∴点M又在以原点为圆心,半径为2的圆上,圆方程为224x y+=,即22004x y+=①,又2200126x y+=②,联立①②得y=点M到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知tan3α=,则sin cossin cosαααα+-的值是 .【答案】2【解析】分式上下同除以cosα得sin costan1cossin cos tan1cosαααααααα++=--,把tan3α=代入得原式=2.22.若表面积为6的正方体接于球,则该球的表面积等于 .【答案】3π【解析】设正方体的边长为x,2661x x=⇒=,则边长为1,所以正方体上243S r=π=π球.23.如果抛物线28y x=上的点M到y轴的距离是3,那么点M到该抛物线焦点F的距离是 . 【答案】5【解析】因为抛物线28y x=上的点M到y轴的距离是3,所以点M的横坐标为3,再将3x=代入得到y=±,所以点(3,M±,又因为28y x=,准线22px=-=-,则点M到该抛物线焦点F的距离是5.【答案】33【解析】恰好选到二年级学生的概率是0.32,恰好选到一年级学生的概率是0.35,则选到三年级学生的概率是1-0.35-0.32=0.33,那么需要从三年级抽取100×0.33=33人.25.设命题p;函数()()215f x x a x=+-+在(],1-∞上是减函数;命题q:()2,lg230x x ax∀∈++>R.若p q∨⌝是真命题,p q∧⌝是假命题,则实数a的取值围是 .【答案】(-或()2⎡-∞+∞⎣,【解析】p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<<,则1a -<<同理,当pq同为假时,a 或a ≤a 的取值围为(-或()2⎡-∞-+∞⎣,,.三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)? 【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求: (1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上, 又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥, 根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DAAM A =,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △是等腰直角三角形,所以两个直角边长为2x , 所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱 所以2233D AMBV x hx h V -π==π圆柱. 29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则22222010103m AB AP BP =--,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ ABABQ AQB=∠∠,即21031032102m sin 453AQ AQ ⨯=⇒==︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠2220(102)220102cos1054002003=+-⨯⨯⨯︒=+,10(13)10103PQ =+=+,P ,Q 两点之间的距离为10103+米.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2.(1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN △面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b -=,()()122,02,0F F -,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a -=-,则该双曲线的标准方程为2213y x -=,离心率221c e a ===,渐近线方程为33b y a =±==± (2)向量()2,1n =-是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩.11 / 11 216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,d ∴==,则1130225PMN S MN d =⨯=⨯⨯=△。

【原创】高三数学寒假作业Word版含答案

【原创】高三数学寒假作业Word版含答案

【KS5U 】新课标2016年高三数学寒假作业5一、选择题.1.设集合{}{}R x x x x Q P ∈<--==,02,4,3,2,12,则P Q =I ( )A .{1,2}B .{3,4}C .{1}D .{-2,-1,0,1,2} 2.下列函数与x y =有相同图象的一个函数是( ) A 2x y =B xx y 2=C )10(log ≠>=a a ay xa 且D x a a y log =3.下列函数在R 上单调递增的是 ( ) A. ||y x =B. lg y x =C. 21xy =D. 2xy =4.下列函数中,值域是(0,+∞)的是( ) A. xy -=131)(B. 12-=xyC. xy -=215D. x y 21-=5.函数)1,0(log ≠>=a a xy a 的反函数的图象过)22,21(点,则a 的值为( )A.2B.21C.2或21D.36.函数f(x)=a x 与g(x)=ax-a 的图象有可能是下图中的( )7.三个数6.05,56.0,5log 6.0的大小顺序是 ( )A .6.06.0555log 6.0<<B .5log 56.06.06.05<<C .6.056.056.05log <<D .56.06.06.055log <<8.已知753()2f x ax bx cx =-++,且(5)17,f -= 则(5)f 的值为 ( ) A .13-B .19-C .13D .199.三棱锥S ABC -及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB 的长为( )A.211B. 42C. 38D. 16310.已知点(,)P x y 在直线23x y +=上移动,当24xy+取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .6 B .32C .12D .3 二.填空题.11.如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则此几何体的体积为_________.12.已知正四棱锥V ABCD -,底面面积为216m ,一条侧棱长为211m ,则它的侧面积为 .13.(5分)点A (1,﹣2)关于直线x+y ﹣3=0对称的点坐标为 . 14.已知直线12:210,:(21)10l x ay l a x ay +-=---=与平行,则a 的值是_______.三、解答题.15.已知函数()()()lg 2lg 2f x x x =++-. (1)求函数()f x 的定义域;(2)若不等式()f x m >有解,求实数m 的取值范围.16.(本题满分14分)已知)0,5(-P ,点Q 是圆36)5(22=+-y x 上的点,M 是线段PQ 的中点.(Ⅰ)求点M 的轨迹C 的方程.(Ⅱ)过点P 的直线l 和轨迹C 有两个交点B A 、(B A 、不重合),①若4=AB ,,求直线l 的方程.②求⋅的值.17. 如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2.图1 图2(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;【KS5U】新课标2016年高三数学寒假作业5参考答案1.C2.D3.D4.A5.B6.D7.C8.A9.B10.A11.7212.213.(5,2)考点:点到直线的距离公式;直线的一般式方程与直线的垂直关系.专题:直线与圆.分析: 设点A (1,﹣2)关于直线x+y ﹣3=0对称的点坐标为B (a ,b ),则,由此能求出结果.解答: 解:设点A (1,﹣2)关于直线x+y ﹣3=0对称的点坐标为B (a ,b ),则,解得a=5,b=2,∴点A (1,﹣2)关于直线x+y ﹣3=0对称的点坐标为B (5,2). 故答案为:(5,2).点评: 本题考查满足条件的点的坐标的求法,是基础题,解题时要认真审题,注意对称问题的合理运用.14.0或1415.解:(1)x 须满足2020x x +>⎧⎨->⎩, ∴22x -<<,∴所求函数的定义域为(2,2)- 3分说明:如果直接由2()lg(4)f x x =-,240x ->得到定义域(2,2)-,不得分。

山东春季高考数学真题含答案

山东春季高考数学真题含答案

山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合A ={}1,3,B ={}2,3,则A B U 等于( )A. ∅B. {}1,2,3C. {}1,2D. {}3【答案】B 【解析】因为A ={}1,3,B ={}2,3,所以A B U {}1,2,3=. 2.已知集合A ,B ,则“A B ⊆”是“A B =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】A B A B=⇒⊆Q,又A B A B A B⊆⇒=或Ø,∴“A B⊆”是“A B=”的必要不充分条件.3.不等式23x+>的解集是()A. ()(),51,-∞-+∞U B. ()5,1-C. ()(),15,-∞-+∞U D.()1,5-【答案】A【解析】23123235x xxx x+>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为()(),51,-∞-+∞U.4.若奇函数()y f x=在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是()第4题图GD21GD22GD23GD24GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A. ()224--= B. 33122a a -=C. ()021-=- D. 4141a a-⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确.6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143.2 C 【答案】 B 【解析】 3a Q 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ).31 C【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种.8.下列说法正确的是( ) A.函数()2y x a b =++的图像经过点(a ,b )B.函数x y a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数a y x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数x y a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量OBuuu r的坐标是( )第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A 【解析】Q A (1,-2),C (3,1),()()1231OA OB ∴=-=u u u r u u u r,,,,又OA CB =u u u r u u u r , ()4,1OB OC CB OC OA ∴=+=+=-u u u r u u u r u u u r u u u r u u u r.10.过点P (1,2)与圆225x y +=相切的直线方程是( )A. 230x y -+=B. 250x y -+=C. 250x y +-=D.250x y +=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P 在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),5即圆心到直线230x y -+=的距离55d =≠圆心到直线250x y -+=的距离55d '==则只有B 符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是( )A.天然气B.核能C.水利发电D.再生能源表 我国各种能源消费的百分率【答案】D 【解析】 根据表1可知,从2011年到2014年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.16.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A. 34,55⎛⎫- ⎪⎝⎭B. 43,55⎛⎫- ⎪⎝⎭C. 34,55⎛⎫- ⎪⎝⎭D. 43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( )GD27GD28GD29GD30【答案】D 【解析】 当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n=+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160【答案】B 【解析】 ()2nx -Q 的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T xx -=-=-,则其系数为160-.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B. 121C. 114D. 27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=. 16.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是( ) GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,2y =,D 选项中,当2,4x y π==. 17.在ABC △中,若2AB BC CA ===u u u r u u u r u u u r,则AB BC ⋅u u u r u u u r 等于( )A. 23-B. 23C.-2【答案】C 【解析】因为2AB BC CA ===u u u r u u u r u u u r,所以ABC △是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC ⋅=⋅⋅︒=-u u u r u u u r u u u r u u u r.18.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是( )第18题图 GD35.4 C【答案】B 【解析】 由图可知,目标函数z x y =+在点(2,2)处取得最大值,即max 224z =+=.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是( ) A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则m C.若,,l m l αα∥∥则∥m D.若,,l m l αα⊥⊥∥则m【解析】A,B,C 选项,直线l 与m 相交、平行、异面都有可能;D 选项,∵,m α∥,∴存在一个平面β,使得αβ∥,且m β∈,∵,l α⊥∴l β⊥,l m ⊥.20.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120FM F M ⋅=u u u u r u u u u r,那么点M 到x 轴的距离是( )2D. 1【答案】B 【解析】 椭圆22126x y +=,即2a b c ====,设点M 的坐标为00()x y ,,又120F M F M ⋅=u u u u r u u u u rQ ,∴点M 又在以原点为圆心,半径为2的圆上,圆方程为224x y +=,即2204x y +=①,又2200126x y +=②,联立①②得0y =M 到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21.已知tan 3α=,则sin cos sin cos αααα+-的值是 .【答案】2【解析】分式上下同除以cos α得sin cos tan 1cos sin cos tan 1cos αααααααα++=--,把tan 3α=代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于 . 【答案】3π【解析】设正方体的边长为x ,2661x x =⇒=,则边长为1,243S r =π=π球. 23.如果抛物线28y x =上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是 .【答案】5【解析】因为抛物线28y x =上的点M 到y 轴的距离是3,所以点M 的横坐标为3,再将3x =代入得到y =±(3,M ±,又因为28y x =,准线22px =-=-,则点M 到该抛物线焦点F 的距离是5. 24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出 名.【答案】33【解析】恰好选到二年级学生的概率是,恰好选到一年级学生的概率是,则选到三年级学生的概率是,那么需要从三年级抽取100×=33人. 25.设命题p ;函数()()215f x x a x =+-+在(],1-∞上是减函数;命题q :()2,lg 230x x ax ∀∈++>R .若p q ∨⌝是真命题,p q ∧⌝是假命题,则实数a 的取值范围是 .【答案】(-或()-∞+∞U ,【解析】 Q p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<<,则1a -<<pq 同为假时,a 或a ≤数a 的取值范围为(1-或()-∞+∞U ,. 三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)?【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求: (1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上,又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥,根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DA AM A =I ,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △2x ,所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱所以2233D AMBV x hx h V -π==π圆柱.29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面内),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则22222010103m AB AP BP -=-=,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ AB ABQ AQB =∠∠,即21031032102m sin 45sin 603AQ AQ =⇒==︒︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠2220(102)220102cos1054002003=+-⨯⨯︒=+,10(13)103PQ =+=+P ,Q 两点之间的距离为10103+.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2. (1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-r是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN△面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b-=,()()122,02,0F F -Q ,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a -=-=准方程为2213y x -=,离心率221c e a ===,渐近线方程为33b y a =±== (2)Q 向量()2,1n =-r是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,5d ∴==,则1130225PMN S MN d =⨯=⨯⨯=△。

高三数学寒假作业本答案

高三数学寒假作业本答案

2021届高三数学寒假作业本答案查字典数学网整理了2021届高三数学寒假作业本答案,希望为你我都带来好运,祝大家新年快乐,万事如意!一、选择题,每小题只有一项是正确的。

1.已知集合,则( RA)B = ( )A. B. C. D.2.R上的奇函数满足,当时,,则A. B. C. D.3.如果对于正数有,那么 ( )A.1B.10C.D.4.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列,则q=()A. 1或﹣B. 1C. ﹣D. ﹣25.已知2弧度的圆心角所对的弦长为2,那么,这个圆心角所对的弧长是 ()A.2B.sin 2C.2sin 1D.2sin 16.将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. y=sin(2x﹣ )B. y=sin(2x﹣ )C. y=sin( x﹣ )D. y=sin( x﹣ )7.如图,菱形的边长为, , 为的中点,若为菱形内任意一点(含边界),则的最大值为A. B. C. D.98.设是正数,且,则A. B.C. D.9.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的最大值为( )A. B. C. D.二、填空题10.若某程序框图如图所示,则该程序运行后输出的值是.11.已知,为平面,m,n为直线,下列命题:①若m∥n,n∥,则m∥ ②若m,m,则∥③若=n,m∥,m∥,则m∥n; ④若,m,n,则mn.其中是真命题的有▲ .(填写所有正确命题的序号)12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=2A,cosA= ,b=5,则△ABC的面积为.13.(5分)(2021陕西)设f(x)= 若f(f(1))=1,则a= .三、计算题14.(本题满分14分)本大题共有2小题,第1小题7分,第2小题7分。

2016山东春季高考数学真题(含答案)

2016山东春季高考数学真题(含答案)

山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合A={}1,3,B={}2,3,则A B等于()A. ∅B. {}1,2,3C. {}1,2D. {}3【答案】B【解析】因为A={}1,3,B={}2,3,所以A B{}1,2,3=.2.已知集合A,B,则“A B⊆”是“A B=”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】A B A B=⇒⊆,又A B A B A B⊆⇒=或Ø,∴“A B⊆”是“A B=”的必要不充分条件.3.不等式23x +>的解集是( )A. ()(),51,-∞-+∞ B. ()5,1- C. ()(),15,-∞-+∞ D.()1,5-【答案】A 【解析】23123235x x x x x +>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为()(),51,-∞-+∞.4.若奇函数()y f x=在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是()第4题图GD21GD22GD23GD24GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( ) A. ()224--= B.33122a a -=C. ()021-=-D.4141a a-⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a -=,C 中()021-=,故D 选项正确.6.已知数列{}na 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A. 143B.2C.4D.8【答案】 B 【解析】3a 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( )A.60B.31C.30D.10 【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C18=种,②两名女生一名男生1243C C12=种,所以一共有181230+=种.8.下列说法正确的是( )A.函数()2y x a b=++的图像经过点(a,b)B.函数x y a=(a>0且a≠1)的图像经过点(1,0)C.函数log a y x=(a>0且a≠1)的图像经过点(0,1)D.函数a y x=(∈Rα)的图像经过点(1,1)【答案】D【解析】A中,函数()2y x a b=++的图像经过点(-a,b);B中,函数x y a=(a>0且a≠1)的图像经过点(0,1);C中,函数log a y x=(a>0且a≠1)的图像经过点(1,0);D中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A(1,-2),C(3,1),则向量OB的坐标是()第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A【解析】A(1,-2),C,(3,1),()()∴=-=,,,,又OA CB =BO1231A O()4,1OB OC CB OC OA ∴=+=+=-.10.过点P (1,2)与圆225x y +=相切的直线方程是( ) A.230x y -+= B.250x y -+= C.250x y +-=D.20x y +=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),半径为,即圆心到直线230x y -+=的距离d =≠250x y -+=的距离d '==则只有B符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是()A.天然气 B.核能 C.水利发电 D.再生能源表我国各种能源消费的百分率【答案】D 【解析】 根据表1可知,从2011年到2014年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.1 6.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A.34,55⎛⎫- ⎪⎝⎭B. 43,55⎛⎫- ⎪⎝⎭C.34,55⎛⎫- ⎪⎝⎭D.43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长10=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A. 13.关于x ,y 的方程y mx n=+和221x y m n+=在同一坐标系中的图象大致是( )GD27GD28GD29GD30【答案】D 【解析】 当221x y m n+=的图象为椭圆时,00m n >>,,则y mx n=+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n=+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n=+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160D.560【答案】B 【解析】 ()2nx -的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T xx -=-=-,则其系数为160-.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A. 421B. 121C. 114D. 27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=.16.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是( )GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,y =,D选项中,当,42x y π==.17.在ABC△中,若2AB BC CA ===,则AB BC⋅等于() A.-B. C.-2 D.2【答案】C 【解析】因为2AB BC CA ===,所以ABC△是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC ⋅=⋅⋅︒=-.18.如图所示,若,x y满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y=+的最大值是( )第18题图GD35A.7B.4C.3D.1 【答案】B 【解析】 由图可知,目标函数z x y=+在点(2,2)处取得最大值,即max 224z =+=.19.已知α表示平面,,,l m n表示直线,下列结论正确的是( ) A.若,,l n m n ⊥⊥则l m∥ B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m16.D 【解析】A,B,C 选项,直线l 与m 相交、平行、异面都有可能;D 选项,∵,m α∥,∴存在一个平面β,使得αβ∥,且m β∈,∵,l α⊥∴l β⊥,l m⊥.20.已知椭圆22126x y +=的焦点分别是12,F F ,点M在椭圆上,如果120FM F M ⋅=,那么点M到x轴的距离是( )A.B.C.D. 1【答案】B 【解析】 椭圆22126x y +=,即2a b c ====,设点M的坐标为00()x y ,,又120F M F M ⋅=,∴点M又在以原点为圆心,半径为2的圆上,圆方程为224x y +=,即22004x y +=①,又2200126x y +=②,联立①②得0y =M到x轴卷二(非选择题,共60分) 二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21.已知tan 3α=,则s i n c o s s i n c o s αααα+-的值是 .【答案】2【解析】分式上下同除以cos α得sin cos tan 1cos sin cos tan 1cos αααααααα++=--,把tan 3α=代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于 . 【答案】3π【解析】设正方体的边长为x,2661x x =⇒=,则边长为1,所以正方体上下两个面的斜线长为,则圆的直243S r =π=π球.23.如果抛物线28y x=上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是 .【答案】5【解析】因为抛物线28y x=上的点M 到y 轴的距离是3,所以点M的横坐标为3,再将3x =代入得到y =±,所以点(3,M ±,又因为28y x=,准线22px =-=-,则点M到该抛物线焦点F的距离是5.24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出名.【答案】33【解析】恰好选到二年级学生的概率是0.32,恰好选到一年级学生的概率是0.35,则选到三年级学生的概率是1-0.35-0.32=0.33,那么需要从三年级抽取100×0.33=33人. 25.设命题p ;函数()()215f x x a x =+-+在(],1-∞上是减函数; 命题q :()2,lg 230x x ax ∀∈++>R .若p q∨⌝是真命题,p q∧⌝是假命题,则实数a 的取值范围是 .【答案】(-或()2⎡-∞+∞⎣,【解析】p q∨⌝是真命题,p q∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<<,则1a -<<;同理,当pq同为假时,aa ≤综上所述得,实数a的取值范围为(-或()2⎡-∞+∞⎣,,.三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)?【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}na 的前n项和223n S n =-.求:(1)第二项2a ;(2)通项公式na .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-.28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M是下底面圆周上不与点,A B重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若A M B∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.第28题图【解】(1)∵M是下底面圆周上不与点,∴,,A M B在一个平面上,,A B重合的点又∵四边形ABCD是圆柱的轴截面,∴边平面AMB,DA BM⊥,AB过圆心,DA⊥根据定理以直径为斜边的三角形为直角三角形,所以AM BM⊥,∵,DA AM⊂平面DAM,且DA AM A =,∴BM⊥平面DAM,又∵BM⊂平面DMB,∴平面DMB⊥平面DAM.(2)设底面圆的半径为x,圆柱的高为h,又∵AMB△是等腰直角三角形,所以两个,所以221)2ABMS x ==△,所以2133D AMBAMB x h V S h -=⋅=△,2V S h x h=⋅=π圆柱所以2233D AMBV x hx h V -π==π圆柱.29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面内),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图 【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则AB ==,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ△中,由正弦定理得,sin sin AQ ABABQ AQB=∠∠,即sin 45AQ AQ =⇒==︒,在APQ△中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP=+-⋅∠2220220cos105400=+-⨯⨯︒=+,10(110PQ ==+,P ,Q两点之间的距离为10+.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2.(1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN△面积的最小值.GD39 第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b-=,()()122,02,0F F -,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即b ===则该双曲线的标准方程为2213y x -=,离心率221c e a ===,渐近线方程为b y a =±==(2)向量()2,1n =-是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩ 216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,5d ∴==,则1130225PMN S MN d =⨯=⨯⨯=△。

山东省2016年高三数学寒假作业10 含答案

山东省2016年高三数学寒假作业10 含答案

【KS5U】新课标2016年高三数学寒假作业10一、选择题.1.已知命题p:∀x∈R,sinx≤1,则¬p为()A.∃x∈R,sinx≥1B.∀x∈R,sinx≥1 C.∃x∈R,sinx>1D.∀x∈R,sinx>12.已知函数)(x f是R上的增函数,(0,2)-A,(3,2)B是其图象上的两点,那么x+f的解集是()(|)12|<A.(1,4) B.(-1,2)C.),(+∞-)1-∞)1,,2[(+∞,4[-∞ D.)3.若{a n}为等差数列,S n是其前n项和,且,则tana6的值为()A.B.C.D.4.log2sin+log2sin+log2sinπ=()A.﹣3 B.﹣1 C.1 D.35.已知向量=(2,2),=(4,1),点P在x轴上,则•取最小值时P点坐标是( )A.(﹣3,0) B.(1,0)C.(2,0) D.(3,0)6。

若实数经,x,y满足,则z=y﹣x的最小值为( ) A.0 B.1 C.2 D.37。

某几何体的三视图如图,则该几何体的表面积为()A .3+3B .8+3C .6+6D .8+68.(5分)执行如图所示的程序框图,则输出S 的值等于( )A .B .C .D .9.(5分)已知O 为坐标原点,A 、B 为曲线y=上的两个不同点,若•=6,则直线AB 与圆x 2+y 2=的位置关系是( )A . 相交B . 相离C . 相交或相切D . 相切或相离10.双曲线221x y m -=的离心率3e =2y mx =的交点为顶点的三角形的面积为A .42B .122C .82D .162二.填空题.11。

在数列{}n a 中,已知111,(1)cos(1)n n n a a a n π+=+-=+,记n S 为数列{}na 的前n 项和,则2015S = 。

12。

已知ABC ∆中,设三个内角C B A ,,所对的边长分别为c b a ,,,且6,3,1π===A b a ,则c = .13.点M(x ,y)是不等式组表示的平面区域Ω内的一动点,使z =y -2x 的值取得最小的点为A(x 0,y 0),则(O 为坐标原点)的取值范围是________.14.(5分)设变量x,y 满足,则z=|x ﹣3y|的最大值为 .三、解答题.15。

山东省2016年高三数学寒假作业3含答案

山东省2016年高三数学寒假作业3含答案

【KS5U】新课标2016年高三数学寒假作业3一、选择题.1.已知p、q是简单命题,则“p∧q是真命题”是“¬p是假命题”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.下列四个函数中,既是偶函数又在(0,+∞)上为增函数的是()A.y=x2﹣2x B.y=x3C.y=ln D.y=|x|+13.设等比数列{a n}的公比q=,前n项和为S n,则=()A.5 B.7 C.8 D.154.函数f(x)=sin(ωx+)(ω>0)相邻两个对称中心的距离为,以下哪个区间是函数f(x)的单调减区间()A.[﹣,0] B.[0,] C.[,] D.[,]5.已知||=2,||=3,|+|=,则|﹣|等于()A. B. C. D.6.已知点(1,﹣2)和在直线l:ax﹣y﹣1=0(a≠0)的两侧,则直线l倾斜角的取值范围是()A.B.C.D.7.一个空间几何体的三视图如图,其中正视图是边长为2的正三角形,俯视图是边长分别为1,2的矩形,则该几何体的侧面积为()A. +4 B. +6 C.2+4 D.2+68.执行如图所示的程序框图若输出的n=9,则输入的整数p的最小值是()A.50 B.77 C.78 D.3069.曲线y=lnx﹣2x在点(1,﹣2)处的切线与坐标轴所围成的三角形的面积是()A.B.C.1 D.210.已知双曲线的渐近线方程为y=±x,焦点坐标为(﹣,0),(,0),则双曲线方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1二.填空题.11.写出命题“存在x∈R,x2﹣2x﹣3>0”的否定是.12.已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递增;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.上述命题中所有正确命题的序号为.13.已知等差数列{a n}满足a1+a5+a9=24,则log2(2a6﹣a7)=.14.函数的图象如图所示,则ω=,φ=.三、解答题.15.(13分)已知数列{a n}的首项a1=a,其中a∈N*,,集合A={x|x=a n,n=1,2,3,…}.(I)若a=4,写出集合A中的所有的元素;(II)若a≤2014,且数列{a n}中恰好存在连续的7项构成等比数列,求a的所有可能取值构成的集合;(III)求证:1∈A.16.(14分)商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?17.(13分)数列{a n}(n∈N*)中,a1=a,a n+1是函数的极小值点.(Ⅰ)当a=0时,求通项a n;(Ⅱ)是否存在a,使数列{a n}是等比数列?若存在,求a的取值范围;若不存在,请说明理由.【KS5U】新课标2016年高三数学寒假作业3参考答案1.A【考点】命题的否定;复合命题的真假;必要条件、充分条件与充要条件的判断.【专题】规律型.【分析】由p∧q为真命题,知p和q或者同时都是真命题,由¬p是假命题,知p是真命题.由此可知“p∧q是真命题”是“¬p是假命题”的充分不必要条件.【解答】解:∵p∧q为真命题,∴p和q或者同时都是真命题,由¬p是假命题,知p是真命题.∴“p∧q是真命题”推出“¬p是假命题”,反之不能推出.则“p∧q是真命题”是“¬p是假命题”的充分而不必要条件.故选A.【点评】本题考查复合命题的真假判断,解题时要认真审题,仔细求解.2.D【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】逐一分析四个函数的奇偶性,单调性,判断是否满足既是偶函数又在(0,+∞)上为增函数,可得答案.【解答】解:函数y=x2﹣2x为非奇非偶函数;函数y=x3为奇函数;函数y=ln的定义域为(﹣1,1),函数y=|x|+1既是偶函数又在(0,+∞)上为增函数,故选:D【点评】本题考查的知识点是函数的单调性,函数的奇偶性,熟练掌握各种基本初等函数的图象和性质是解答的关键.3.B【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】利用等比数列的通项公式与前n项和公式即可得出.【解答】解:S3==,a3==,∴=7.故选:B.【点评】本题考查了等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.4.C【考点】正弦函数的对称性.【专题】三角函数的图像与性质.【分析】由周期求得ω,再根据正弦函数的减区间求得函数f(x)的单调减区间.【解答】解:根据f(x)=sin(ωx+)(ω>0)相邻两个对称中心的距离为,可得==,∴ω=2,f(x)=sin(2x+).令2kπ+≤2x+≤2kπ+,求得kπ+≤x≤kπ+,k∈Z,故选:C.【点评】本题主要考查正弦函数的图象和性质,正弦函数的减区间,属于基础题.5.D【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】|+|2═22+2,整体求解2=6,运用|﹣|2=22,得出|﹣| 【解答】解:∵|=2,||=3,|+|=,∴2=6,∵|﹣|2=22=4+9﹣6=7,∴|﹣|=,故选:D.【点评】本题考查了平面向量的运算,关键是运用好向量的平方和向量模的平方的关系,属于容易题.6.C【考点】直线的斜率.【专题】直线与圆.【分析】因为点(1,﹣2)和在直线l:ax﹣y﹣1=0(a≠0)的两侧,那么把这两个点代入ax﹣y﹣1,它们的符号相反,乘积小于0,求出a的范围,设直线l倾斜角为θ,则a=tanθ,再根据正切函数的图象和性质即可求出范围.【解答】解:因为点(1,﹣2)和在直线l:ax﹣y﹣1=0(a≠0)的两侧,所以,(a+2﹣1)(a﹣1)<0,即:(a+1)(a﹣)<0,解得﹣1<a<,设直线l倾斜角为θ,∴a=tanθ,∴﹣1<tanθ<,∴0<θ<,或<θ<π,故选:C.【点评】本题考查二元一次不等式组与平面区域问题,点与直线的位置关系,是中档题.7.A【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由已知中的三视力可得该几何体是一个四棱锥,计算出各个侧面的面积,相加可得答案.【解答】解:由已知中的三视力可得该几何体是一个四棱锥,其直观图如下图所示:则△SAD是边长为2的正三角形,其面积为:,∵AB⊥平面SAD,可得:△SAB是两直角边长为1和2的直角三角形,故△SAB的面积为1,同理,△SCD的面积也为1,又由△SAD的高SO=,OE=AB=1,可得SE=2,故△SBC是底边长2,高为2的等腰三角形,故△SBC的面积为2,综上所述,几何体的侧面积为+4,故选:A【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.8.C【考点】程序框图.【专题】算法和程序框图.【分析】模拟程序框图的运行过程,即可得出输入的P的最小值.【解答】解:模拟程序框图的运行过程,如下;n=1,S=0,输入P,S=0+2=2,n=2,S≤P,S=2+22=6,n=3,S≤P,S=﹣6+23=2,n=4,S≤P,S=2+24=18,n=5,S≤P,S=﹣18+25=14,n=6,S≤P,S=14+26=78,n=7,S≤P,S=﹣78+27=50,n=8,S≤P,S=50+28=306,n=9,S>P,终止循环,输出n=9;所以P的最小值为78.故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题目.9.A【考点】利用导数研究曲线上某点切线方程.【专题】计算题;导数的概念及应用.【分析】根据求导公式求出函数的导数,把x=1代入求出切线的斜率,代入点斜式方程并化简,分别令x=0和y=0求出切线与坐标轴的交点坐标,再代入面积公式求解.【解答】解:由题意得y′=﹣2,则在点M(1,﹣2)处的切线斜率k=﹣1,故切线方程为:y+2=﹣(x﹣1),即y=﹣x﹣1,令x=0得,y=﹣1;令y=0得,x=﹣1,∴切线与坐标轴围成三角形的面积S==,故选A.【点评】试题主要考查导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.10.C【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设双曲线的方程是,即.又焦点坐标为(﹣,0),(,0),故λ+2λ=6,由此可知λ=2,代入可得答案.【解答】解:∵双曲线的渐近线方程为y=±x,∴设双曲线的方程是,即.又焦点坐标为(﹣,0),(,0),故λ+2λ=6,∴λ=2,∴双曲线方程为﹣=1.故选:C.【点评】本题考查双曲线的性质和应用,正确设出方程是关键.11.“任意x∈R,x2﹣2x﹣3≤0”【考点】命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题.,即可得到结论.【解答】解:∵命题是特称命题,∴命题的否定是“任意x∈R,x2﹣2x﹣3≤0”,故答案为:“任意x∈R,x2﹣2x﹣3≤0”【点评】本题主要考查含有量词的命题的否定,根据特称命题的否定是全称命题,全称命题的否定是特称命题是解决本题的关键.12.①②④【考点】命题的真假判断与应用;函数单调性的判断与证明;函数奇偶性的性质.【专题】计算题.【分析】根据f(x)是定义在R上的偶函数,及在f(x+4)=f(x)+f(2),中令x=﹣2可得f(﹣2)=f(2)=0,从而有f(x+4)=f(x),故得函数f(x)是周期为4的周期函数,再结合y=f(x)单调递减、奇偶性画出函数f(x)的简图,最后利用从图中可以得出正确的结论.【解答】解:∵f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),可得f(﹣2)=f(2),在f(x+4)=f(x)+f(2),中令x=﹣2得f(2)=f(﹣2)+f(2),∴f(﹣2)=f(2)=0,∴f(x+4)=f(x),∴函数f(x)是周期为4的周期函数,又当x∈[0,2]时,y=f(x)单调递减,结合函数的奇偶性画出函数f(x)的简图,如图所示.从图中可以得出:②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递减;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.故答案为:①②④.【点评】本题考查函数奇偶性的性质,函数奇偶性的判断,考查学生的综合分析与转化能力,属于难题.13.3【考点】等差数列的通项公式.【专题】等差数列与等比数列.【分析】由等差数列的性质结合已知条件求得2a6﹣a7=a5=8,由此利用对数性质能求出log2(2a6﹣a7)的值.【解答】解:∵等差数列{a n}满足a1+a5+a9=24,∴a5=8,∴2a6﹣a7=2(a1+5d)﹣(a1+6d)=a1+4d=a5=8,∴log2(2a6﹣a7)=log28=3.故答案为:3.【点评】本题考查对数值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.;.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由图象可得==2﹣0.5,可得ω,把点(2,﹣2)代入解析式可得φ值【解答】解:由图象可得==2﹣0.5,解得ω=,故,把点(2,﹣2)代入可得﹣2=,解得+φ=2kπ﹣,k∈Z,即φ=2kπ﹣,又,故当k=1时,φ=故答案为:;【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,属中档题.15.【考点】数列递推式;等比关系的确定.【专题】等差数列与等比数列.【分析】(Ⅰ)由a1=a=4,利用递推关系依次求出a2,a3,a5,a6,a7,发现a6以后的值与前6项中的值重复出现,由此可知集合A中共有6个元素;(Ⅱ)设出数列中的一项为a k,若a k是3的倍数,则有;若a k是被3除余1,由递推关系得到;若a k被3除余2,由递推关系得到.说明构成的连续7项成等比数列的公比为,结合数列递推式得到a k符合的形式,再保证满足a k≤2014即能求出答案;(Ⅲ)分a k被3除余1,a k被3除余2,a k被3除余0三种情况讨论,借助于给出的递推式得到数列{a n}中必存在某一项a m≤3,然后分别由a m=1,a m=2,a m=3进行推证,最终证得1∈A.【解答】(I)解:∵a1=a=4,∴a2=a1+1=5,a3=a2+1=6,,a5=a4+1=3,,a7=a6+1=2,…∴集合A的所有元素为:4,5,6,2,3,1;(II)解:不妨设数列中的一项为a k,如果a k是3的倍数,则;如果a k是被3除余1,则由递推关系可得a k+2=a k+2,∴a k+2是3的倍数,∴;如果a k被3除余2,则由递推关系可得a k+1=a k+1,∴a k+1是3的倍数,∴.∴该7项等比数列的公比为.又∵,∴这7项中前6项一定都是3的倍数,而第7项一定不是3的倍数(否则构成等比数列的连续项数会多于7项),设第7项为p,则p是被3除余1或余2的正整数,则可推得.∵36<2014<37,∴或.由递推关系式可知,在该数列的前k﹣1项中,满足小于2014的各项只有:a k﹣1=36﹣1,或2×36﹣1,a k﹣2=36﹣2,或2×36﹣2,∴首项a的所有可能取值的集合为:{36,2×36,36﹣1,2×36﹣1,36﹣2,2×36﹣2}.(III)证明:若a k被3除余1,则由已知可得a k+1=a k+1,;若a k被3除余2,则由已知可得a k+1=a k+1,,;若a k被3除余0,则由已知可得,;∴,∴∴对于数列{a n}中的任意一项a k,“若a k>3,则a k>a k+3”.∵,∴a k﹣a k+3≥1.∴数列{a n}中必存在某一项a m≤3(否则会与上述结论矛盾)若a m=1,结论得证.若a m=3,则a m+1=1;若a m=2,则a m+1=3,a m+2=1,∴1∈A.【点评】本题考查了数列的递推式,考查由递推公式推导数列的通项公式,其中渗透了周期数列这一知识点,考查了学生的抽象思维能力,属中高档题.16.【考点】函数模型的选择与应用;一元二次不等式的应用.【专题】应用题.【分析】(1)先设购买人数为n人,羊毛衫的标价为每件x元,利润为y元,列出函数y的解析式,最后利用二次函数的最值即可求得商场要获取最大利润,羊毛衫的标价应定为每件多少元即可;(2)由题意得出关于x的方程式,解得x值,从而即可解决商场要获取最大利润的75%,每件标价为多少元.【解答】解:(1)设购买人数为n人,羊毛衫的标价为每件x元,利润为y元,则x∈(100,300]n=kx+b(k<0),∵0=300k+b,即b=﹣300k,∴n=k(x﹣300)y=(x﹣100)k(x﹣300)=k(x﹣200)2﹣10000k(x∈(100,300])∵k<0,∴x=200时,y max=﹣10000k,即商场要获取最大利润,羊毛衫的标价应定为每件200元.(2)解:由题意得,k(x﹣100)(x﹣300)=﹣10000k•75%x2﹣400x+37500=0解得x=250或x=150所以,商场要获取最大利润的75%,每件标价为250元或150元(16分)【点评】本小题主要考查函数模型的选择与应用、二次函数的性质及函数的最值,考查运算求解能力与转化思想.属于基础题.17.【考点】数列与函数的综合.【专题】综合题;压轴题.【分析】(I)当a=0时,a1=0,则3a1<12.由f'n(x)=x2﹣(3a n+n2)x+3n2a n=(x﹣3a n)(x﹣n2)=0,得x1=3a n,x2=n2.由函数的单调性知f n(x)在x=n2取得极小值.所以a2=12=1.因为3a2=3<22,则,a3=22=4,因为3a3=12>33,则a4=3a3=3×4,又因为3a4=36>42,则a5=3a4=32×4,由此猜测:当n≥3时,a n=4×3n﹣3.然后用数学归纳法证明:当n≥3时,3a n>n2.(Ⅱ)存在a,使数列{a n}是等比数列.事实上,若对任意的n,都有3a n>n2,则a n+1=3a n.要使3a n >n2,只需对一切n∈N*都成立.当x≥2时,y'<0,从而函数在这[2,+∞)上单调递减,故当n≥2时,数列{b n}单调递减,即数列{b n}中最大项为.于是当a>时,必有.由此能导出存在a,使数列{a n}是等比数列,且a的取值范围为.【解答】解:(I)当a=0时,a1=0,则3a1<12.由题设知f'n(x)=x2﹣(3a n+n2)x+3n2a n=(x﹣3a n)(x﹣n2).令f'n(x)=0,得x1=3a n,x2=n2.若3a n<n2,则当x<3a n时,f'n(x)>0,f n(x)单调递增;当3a n<x<n2时,f'n(x)<0,f n(x)单调递减;当x>n2时,f'n(x)>0,f n(x)单调递增.故f n(x)在x=n2取得极小值.所以a2=12=1因为3a2=3<22,则,a3=22=4因为3a3=12>32,则a4=3a3=3×4,又因为3a4=36>42,则a5=3a4=32×4,由此猜测:当n≥3时,a n=4×3n﹣3.下面先用数学归纳法证明:当n≥3时,3a n>n2.事实上,当n=3时,由前面的讨论知结论成立.假设当n=k(k≥3)时,3a k>k2成立,则由(2)知,a k+1=3a k>k2,从而3a k+1﹣(k+1)2>3k2﹣(k+1)2=2k(k﹣2)+2k﹣1>0,所以3a k+1>(k+1)2.故当n≥3时,3a n>n2成立.于是,当n≥3时,a n+1=3a n,而a3=4,因此a n=4×3n﹣3.综上所述,当a=0时,a1=0,a2=1,a n=4×3n﹣3(n≥3).(Ⅱ)存在a,使数列{a n}是等比数列.事实上,若对任意的n,都有3a n>n2,则a n+1=3a n.即数列{a n}是首项为a,公比为3的等比数列,且a n=a•3n﹣3.而要使3a n>n2,即a•3n>n2对一切n∈N*都成立,只需对一切n∈N*都成立.记,则,.令,则.因此,当x≥2时,y'<0,从而函数在这[2,+∞)上单调递减,故当n≥2时,数列{b n}单调递减,即数列{b n}中最大项为.于是当a>时,必有.这说明,当时,数列a n是等比数列.当a=时,可得,而3a2=4=22,由(3)知,f2(x)无极值,不合题意,当时,可得a1=a,a2=3a,a3=4,a4=12,…,数列{a n}不是等比数列.当时,3a=1=12,由(3)知,f1(x)无极值,不合题意.当时,可得a1=a,a2=1,a3=4,a4=12,数列{a n}不是等比数列.综上所述,存在a,使数列{a n}是等比数列,且a的取值范围为.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.。

2016年高考数学(理)冲刺卷 05(山东卷)(答案及评分标准)

2016年高考数学(理)冲刺卷 05(山东卷)(答案及评分标准)

第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【命题意图】本题考查复数的除法运算和复数的概念,意在考查学生的基本计算能力. 【答案】C 【试题解析】 ∵i 21(2)i2i 5a a a +-++=-,∴212a a -=+,3a =,故选C. 2. 【命题意图】本题考查指数函数、对数函数的性质、一元二次不等式的解法和集合的交集运算,意在考查学生的基本计算能力和逻辑思维能力. 【答案】A【试题解析】由题意{|03}A x x =≤≤,2{|2}{|12}B x x x x x x =->=<->或,所以{|23}A B x x =<≤ .故选A .3.【命题意图】本题考查等比数列的通项公式、数列的求和、对数运算等知识,意在考查学生的基本运算能力. 【答案】C 【试题解析】4.【命题意图】本题考查程序框图的应用,意在考查学生的逻辑思维能力. 【答案】C【解析】∵609.72016ln ≈,∴8e 2016>∴ 8i =时,符合2016a ≥,∴ 输出的结果8i =,故选C.5.【命题意图】本题考查函数的奇偶性、周期性、对数计算等知识,意在考查学生的数形结合思想的应用及基本运算能力. 【答案】C【试题解析】因为(2)[(1)1][1(1)]()()f x f x f x f x f x +=++=-+=-=-,所以(4)[(2)2](2)()f x f x f x f x +=++=-+=,所以函数()f x 是以4为周期的周期函数,所以2(31)(481)(1)(1)log (11)1f f f f =⨯-=-=-=-+=-,故选C.6. 【命题意图】本题考查函数的零点、指数函数、对数函数的性质及充要条件的判定等知识,意在考查学生的逻辑思维能力和基本计算能力. 【答案】B【试题解析】若函数21xy m =+-有零点,则1m <;若函数log m y x =在0+∞(,)上为减函数,则01m <<.故选B.7. 【命题意图】本题考查新定义问题、三角恒等变换、三角函数的图象与性质等基础知识,意在考查学生的学习能力及基本运算能力. 【答案】C 【试题解析】由题中所给定义可知22()cos sin )cos 222f x x x x x x π=-+=2cos(2)3x π=+,根据三角函数的图象性质可知本题的正确选项应该为C.8.【命题意图】本题考查空间几何体的三视图、几何体的体积等知识,意在考查学生的空间想象能力、逻辑思维能力及基本运算能力. 【答案】C .9.【命题意图】本题考查线性规划问题,意在考查学生的数形结合思想的应用.【答案】B【试题解析】10.【命题意图】本题考查双曲线的标准方程、双曲线及抛物线的几何性质等知识,意在考查学生的数学逻辑思维能力、计算能力和解决问题的综合能力.【答案】B【试题解析】因为点到抛物线的焦点的距离为,故A到准线距离为p,所以A()双曲线渐近线为故,即e =,故选B.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11. 【命题意图】本题考查平面向量的数量积、平面向量的坐标运算,意在考查学生的基本运算能力. 【答案】21. 【试题解析】由定义,21,cos ||=>=<b a b . 答案为21.12.【命题意图】本题考查频率分布直方图、等差数列的性质,意在考查学生的数学应用意识及基本计算能力. 【答案】40.【试题解析】前3个小组的频率和为1-0.03750.012550.75+⨯=(), 所以第2小组的频率为10.75=0.253⨯;所以抽取的学生人数为10=400.25. 故答案为40.13.【命题意图】本题考查二项式定理、二项展开式的通项公式、二项式系数及基本不等式;意在考查学生的基本计算能力. 【答案】2 【试题解析】26()b ax x +展开后第k 项为k k k k k k k x b a C xb ax C 315171-61721-6)()(-----=,其中3x 项为4=k ,即第4项,系数为3320b a ,即1202033=⇒=ab b a ,2222=≥+ab b a ,当且仅当1==b a 时22a b +取得最小值2.14.【命题意图】本题考查双曲线的几何性质、直线与圆的位置关系等知识,意在考查学生的逻辑思维能力、数形结合思想的应用及基本运算能力.【答案】2【试题解析】15. 【命题意图】本题以分段函数为载体考查函数的单调性、最值、函数与方程等知识,意在考查学生的基本运算能力和逻辑思维能力.. 【答案】(1)1,(2)112a ≤<或2a ≥. 【解析】①1a =时,()()()211412 1.≥⎧-<⎪=⎨--⎪⎩x x f x x x x ‚‚‚,函数()f x 在(,1)-∞上为增函数,函数值大于1,在3[1,]2为减函数,在3[,)2+∞为增函数,当32x =时,()f x 取得最小值为1;(2)①若函数()2xg x a =-在1x <时与x 轴有一个交点,则0a >,并且当1x =时,(1)2g a =->0,则02a <<,函数()4()(2)h x x a x a =--与x 轴有一个交点,所以21且1a a ≥<⇒112a ≤<;三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)【命题意图】本题考查正弦定理和余弦定理的应用、函数方程思想的应用,意在考查学生分析问题、解决问题的能力和基本运算能力. 【答案】 (I )60B ∠=°;(II )2. 【解析】(Ⅰ)在△ABC 中,根据正弦定理,有sin sin AC DCADC DAC=∠∠.因为AC ,所以sin ADC DAC ∠=∠=. 又6060>+∠=∠+∠=∠B BAD B ADC所以120ADC ∠=°. ……………3分于是3030120180=--=∠C ,所以60B ∠=°. ……………6分(Ⅱ)设DC x =,则2BD x =,3BC x =,AC =.于是sin AC B BC ==,cos B =,.6x AB = ……………9分 在ABD ∆中,由余弦定理,得 2222cos AD AB BD AB BD B =+-⋅,即222264222x x x x =+-⨯= ,得2x =. 故.2=DC ……………12分 17.(本小题满分12分)【命题意图】本题考查利用n a 与n S 的关系求数列的通项、等差数列的通项公式及“裂项求和法”的应用等知识,意在考查学生的逻辑思维能力和较高的计算能力.【答案】(I )12+=n a n ,⎩⎨⎧≥+==)2(,12)1(,4n n n b n ;(II ))32(2016+-=n n T n .【解析】(2)n=1时,2011211==b b T , n ≥2时,)321121(21)32)(12(111+-+=++=+n n n n b b n n , 所以)32(201615101201)32151(21201)32112191717151(21201+-=+-+=+-+=+-+++-+-+=n n n n n n n T nn=1仍然适合上式, …………(10分) 综上,)32(201615101201+-=+-+=n n n n T n ………… (12分)18. (本小题满分12分)【命题意图】本题考查利概率的计算、离散型随机变量的分布列和数学期望等知识,意在考查学生的应用数学能力和准确的分类讨论能力和准确的计算能力.(II )ξ的所有可能值为1,2,3.又421322243244234431(1),273()(22)1414(2)((2))272733P C C C C C C P P ξξξ===+-======或 12123342434444(3)((3)).9933C C C C A P P ξξ======或……………8分 综上知,ξ有分布列……………10分114465123.2727927E ξ=⨯+⨯+⨯=……………12分19.(本小题满分12分【命题意图】本题考查空间中平行关系的转化、二面角以及空间向量在立体几何中的运用,意在考查学生的空间想象能力和严密的逻辑推理能力. 【答案】(1)证明见解析;(2)51. 【解析】(2)∵BC AB ⊥,⊥PA 面ABCD ,∴以B 为原点,以BA 为x 轴的正方向,为y 轴的正方向,作平行于的直线为z 轴的正方向,建立空间直角坐标系xyz B -.则)0,23,23(),2,0,1(),0,3,0(),0,0,0(D P C B ,……………………8分设面PBC 的法向量为),,(1111z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅0011n BP n ,∴⎩⎨⎧==+0302111y z x ,∴)1,0,2(1-=n , 设面DPC 的法向量为),,(2222z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅022n n ,∴⎪⎪⎩⎪⎪⎨⎧=+-=+--02323022321122222y x z y x ,∴)1,3,1(2=n ,……………………10分∴515512,cos 21=->=<n n ,故二面角B CP D --的余弦值为51 (12)分20.(本小题满分13分)【命题意图】本题考查椭圆的标准方程、直线和椭圆的位置关系等知识,意在考查学生的化归与转化思想的应用、运算求解能力. 【答案】(Ⅰ)(Ⅱ)当过P 点的直线斜率为时,△P 1F 2F面积取最大值【解析】(Ⅱ)设过P 的直线为8y k x =+()交椭圆E 于111222P x y P x y (,),(,),由,得22223464256480k x k x k +++=()﹣,21.(本小题满分14分)【命题意图】本题考查利用导数研究函数的单调性和最值以及不等式问题,意在考查学生逻辑推理能力和分析问题、解决问题的综合能力.【答案】(Ⅰ)函数()f x 的增区间是)1,0(,减区间是),1(+∞;(Ⅱ)2 ;(Ⅲ)证明见解析.【解析】试题分析:(I )求出()f x ',解不等式()()0,0f x f x ''><,即可得到函数()f x 的单调区间;(II )构造新函数1)1(21ln ]1)12[()()(22+-+-=-+--=x a ax x ax x a x f x g ,要使112)(2-+⎪⎭⎫ ⎝⎛-≤ax x a x f 恒成立,只要()g x 最大值小于或等于零即可,通过分类讨论判断出()g x 其单调性,找到最大值点求出最大值,令最大值小于或等于零,即可求得整数a 的最小值;(III )0)(2)()(21222121=++++x x x x x f x f 代入整理可得)ln()()(212121221x x x x x x x x ⋅-⋅=+++,换元设21x x t ⋅=,构造新函数t t t ln )(-=ϕ,利用导数研究其单调性,可知1)1()(=≥ϕϕt ,解不等式即得21521-≥+x x .(Ⅲ)由0)(2)()(21222121=++++x x x x x f x f ,即0ln ln 2122221211=++++++x x x x x x x x ,从而)ln()()(212121221x x x x x x x x ⋅-⋅=+++ 令21x x t ⋅=,则由t t t ln )(-=ϕ得,tt t 1)(-='ϕ,可知,)(t ϕ在区间)1,0(上单调递减,在区间),1(+∞上单调递增. 所以1)1()(=≥ϕϕt , 所以1)()(21221≥+++x x x x ,又021>+x x , 因此21521-≥+x x 成立……………………14分。

山东省2016年高三数学寒假作业8 含答案

山东省2016年高三数学寒假作业8 含答案

【KS5U 】新课标2016年高三数学寒假作业8一、选择题。

1.设集合{|lg },{|1}A x y x B x x ===≤,则AB = A 。

(0,)+∞ B. [1,)+∞C 。

(0,1] D 。

(,1]-∞ 2。

已知0.1 1.32log 0.3,2,0.2a b c ===,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<3.与函数()2x f x =的图像关于直线y x =对称的曲线C 对应的函数为()g x ,则1()2g 的值为 A .2 B .1 C .12D .1- 4。

函数123()f x x x =-+-的定义域是( ) A. [)23, B.()3,+∞ C.[)()233,,+∞ D 。

()()233,,+∞5。

函数2lg(1)1y x =--的图像关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y x =对称6。

二次函数上单调递增在),1[22+∞-++=b ax x y ,则实数a 的取值范围是 ( ) A .)1[∞+ B .]1,(--∞ C .]1,(-∞ D .),1[+∞-7.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()()0f a f b a b->- 成立,则必有 ( )A .函数()f x 是先增加后减少B .函数()f x 是先减少后增加C .()f x 在R 上是增函数D .()f x 在R 上是减函数8。

函数的图象是下列图象中的( )9。

函数)0(21)(>++=x xx x f 的值域是 ( )A. ()1,∞- B 。

()+∞,1 C. ⎪⎭⎫ ⎝⎛1,21 D. ⎪⎭⎫ ⎝⎛21,0 10。

(5分)圆C 1:x 2+y 2+2x+8y ﹣8=0与圆C 2:x 2+y 2﹣4x+4y ﹣2=0的位置关系是()A . 相离B . 外切C . 内切D . 相交二.填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【KS5U 】新课标2016年高三数学寒假作业5
一、选择题.
1.设集合{}{}R x x x x Q P ∈<--==,02,4,3,2,12,则P Q =( )
A .{1,2}
B .{3,4}
C .{1}
D .{-2,-1,0,1,2}
2.下列函数与x y =有相同图象的一个函数是( ) A 2x y =
B x x y 2=
C )10(log ≠>=a a a y x a 且
D x a a y log = 3.下列函数在R 上单调递增的是 ( )
A. ||y x =
B. lg y x =
C. 21
x y = D. 2x
y = 4.下列函数中,值域是(0,+∞)的是( ) A. x y -=131)( B. 12-=x y C. x y -=21
5 D. x y 21-=
5.函数)1,0(log ≠>=a a x y a 的反函数的图象过)2
2,21(点,则a 的值为( ) A.2 B.21 C.2或21 D.3
6.函数f(x)=a x 与g(x)=ax-a 的图象有可能是下图中的( )
7.三个数6.05
,56.0,5log 6.0的大小顺序是 ( ) A .6.06.055
5log 6.0<< B .5log 56.06.06.05<< C .6.056.056.05log << D .56.06.06.055log <<
8.已知753()2f x ax bx cx =-++,且(5)17,f -= 则(5)f 的值为 ( )
A .13-
B .19-
C .13
D .19
9.三棱锥S ABC -及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB 的长为( )
A.
10.已知点(,)P x y 在直线23x y +=上移动,当24x y
+取得最小值时,过点(,)P x y 引圆22111()()242
x y -++=的切线,则此切线段的长度为( )
A B .32 C .12 D 二.填空题.
11.如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则此几何体的体积为_________.
12.已知正四棱锥V ABCD -,底面面积为216m ,一条侧棱长为,则它的侧面积
为 .
13.(5分)点A (1,﹣2)关于直线x+y ﹣3=0对称的点坐标为 .
14.已知直线12:210,:(21)10l x ay l a x ay +-=---=与平行,则a 的值是_______.
三、解答题.
15.已知函数()()()lg 2lg 2f x x x =++-.
(1)求函数()f x 的定义域;
(2)若不等式()f x m >有解,求实数m 的取值范围.
16.(本题满分14分)已知)0,5(-P ,点Q 是圆36)5(22=+-y x 上的点,M 是线段PQ 的中点. (Ⅰ)求点M 的轨迹C 的方程.
(Ⅱ)过点P 的直线l 和轨迹C 有两个交点B A 、(B A 、不重合),①若4=AB ,,求直线l 的方程.②求⋅的值.
17. 如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2.
图1 图2
(1)求证:DE ∥平面A 1CB ;
(2)求证:A 1F ⊥BE ;
【KS5U】新课标2016年高三数学寒假作业5
参考答案
1.C
2.D
3.D
4.A
5.B
6.D
7.C
8.A
9.B
10.A
11.72
12.2
13.(5,2)
考点:点到直线的距离公式;直线的一般式方程与直线的垂直关系.
专题:直线与圆.
分析:设点A(1,﹣2)关于直线x+y﹣3=0对称的点坐标为B(a,b),则,
由此能求出结果.
解答:解:设点A(1,﹣2)关于直线x+y﹣3=0对称的点坐标为B(a,b),
则,
解得a=5,b=2,
∴点A(1,﹣2)关于直线x+y﹣3=0对称的点坐标为B(5,2).
故答案为:(5,2).
点评:本题考查满足条件的点的坐标的求法,是基础题,解题时要认真审题,注意对称问题的合理运用.
14.0或1
4
15.解:(1)x 须满足2020x x +>⎧⎨->⎩
, ∴22x -<<, ∴所求函数的定义域为(2,2)- 3分
说明:如果直接由2()lg(4)f x x =-,240x ->得到定义域(2,2)-,不得分。

但不再影响后面的得分。

(2)∵不等式()f x m >有解,∴max ()m f x < 5分
令24t x =-,由于22x -<<,∴04t <≤
∴()f x 的最大值为lg 4.
∴实数m 的取值范围为lg 4m < 10分
说明:也可以结合()f x 的是偶函数和单调性,求得()f x 的最大值,参照给分。

16.(Ⅰ)设),(y x M ,则)0,5(-P 关于M 的对称点为)2,52(y x Q +,
∵点Q 是圆36)5(22=+-y x 上的点,
∴36)2()552(22=+-+y x ,即922=+y x ,
所以轨迹C 的方程是922=+y x .………………………………3分
(Ⅱ)① 设),(),,(2211y x B y x A ,由题意,直线l 的斜率存在,设为k ,则直线l 的方程是)5(+=x k y ,
由方程组⎩⎨⎧=++=9
)5(22y x x k y 得,092510)1(2222=-+++k x k x k , 由0)925)(1(4)102222>-+-=∆k k k (,得4343<<-
k ∴2
22122211925110k k x x k k x x +-=+-=+,,………………………………6分 ∵4=AB ,∴41212=-+x x k , ∴44)(1212212=-+⋅+x x x x k , ∴41)925(4)110(122222
2
=+--+-⋅+k k k k k ,
解得,2
1±=k ,∴直线l 的方程是)5(21+±=x y , 即直线l 的方程是052=++y x 或052=+-y x .………………………………10分
【另解】设坐标原点为O ,作AB OE ⊥,垂足为E . ∵4=AB ,∴2=AE ,
由(I )可知,3=OA ,∴5=OE . 又5=OP ,∴52=PE , ∴2
1tan ==∠PE OE
APO . ∴直线l 的斜率2
1±=k ,∴直线l 的方程是)5(21+±=x y , 即直线l 的方程是052=++y x 或052=+-y x .………………………………10分 ② 由①可得 515122
12++⋅++=⋅x k x k PB PA 25
)(5)1(21212++++=x x x x k 251501925)1(22
222++-+-+=k
k k k k 16=.………………………………13分
∴16==⋅.
所以,⋅的值是16.………………………………14分
注:第②小题,如果考生证PAD ∆∽PDB ∆,从而得出
PB PA PD ⋅=2(其中D 是直线l 和圆相切时的切点),证明完整,得满分,没有证明,直接用
PB PA PD ⋅=2者,最多得2分.
17. 解:(1)因为D ,E 分别为AC ,AB 的中点,
所以DE ∥BC . ---------------2分
又因为DE ⊄平面A 1CB ,所以DE ∥平面A 1CB . --------------- 4分
(2)由已知得AC ⊥BC 且DE ∥BC ,
所以DE ⊥AC . --------------- 5分
所以DE ⊥A 1D ,DE ⊥CD .
所以DE ⊥平面A 1DC . --------------- 7分
而A 1F ⊂平面A 1DC ,所以DE ⊥A 1F . --------------- 8分
又因为A1F⊥CD,
所以A1F⊥平面BCDE. --------------- 9分。

相关文档
最新文档