初三数学下学期第一章直角三角形的边角关系试题

合集下载

中考数学直角三角形的边角关系(大题培优 易错 难题)含答案

中考数学直角三角形的边角关系(大题培优 易错 难题)含答案

中考数学直角三角形的边角关系(大题培优易错难题)含答案一、直角三角形的边角关系1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形4.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②123【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF , ∴∠DFQ=∠ADF , ∴△DEF 是等腰三角形;(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF ,∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB ,由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示, ∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°,∴tan ∠3【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.5.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)【答案】2.5m.【解析】试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.试题解析:解:设DF=,在Rt△DFC中,∠CDF=,∴CF=tan·DF=,又∵CB=4,∴BF=4-,∵AB=6,DE=1,BM= DF=,∴AN=5-,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,EN=4-,AN=5-,tan==0.60,解得=2.5,答:DM和BC的水平距离BM为2.5米.考点:解直角三角形.6.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O 于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.7.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S关于t的函数关系式为:.(3)分两种情况:①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s的时候,△CPD为等腰三角形;②当DC=PC时,DC=PC=12cm∴NC=6cm∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s时,△CPD为等腰三角形.综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.8.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt△AFG中,tan∠AFG3,∴FG =tan 3AG AFG =∠,在Rt △ACG 中,tan ∠ACG =AGCG, ∴CG =tan AGACG ∠=3AG .又∵CG ﹣FG =24m ,即3AG ﹣3=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .9.如图,在△ABC 中,∠A=90°,∠ABC=30°,AC=3,动点D 从点A 出发,在AB 边上以每秒1个单位的速度向点B 运动,连结CD ,作点A 关于直线CD 的对称点E ,设点D 运动时间为t (s ).(1)若△BDE 是以BE 为底的等腰三角形,求t 的值; (2)若△BDE 为直角三角形,求t 的值; (3)当S △BCE ≤92时,所有满足条件的t 的取值范围 (所有数据请保留准确值,参考数据:tan15°=23 【答案】(133;(23秒或3秒;(3)6﹣3 【解析】 【分析】(1)如图1,先由勾股定理求得AB 的长,根据点A 、E 关于直线CD 的对称,得CD 垂直平分AE ,根据线段垂直平分线的性质得:AD=DE ,所以AD=DE=BD ,由3,可得t 的值;(2)分两种情况:①当∠DEB=90°时,如图2,连接AE,根据t的值;②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,②当△BCE在BC的上方时,分别计算当高为3时对应的t的值即可得结论.【详解】解:(1)如图1,连接AE,由题意得:AD=t,∵∠CAB=90°,∠CBA=30°,∴BC=2AC=6,∴∵点A、E关于直线CD的对称,∴CD垂直平分AE,∴AD=DE,∵△BDE是以BE为底的等腰三角形,∴DE=BD,∴AD=BD,∴t=AD=;2(2)△BDE为直角三角形时,分两种情况:①当∠DEB=90°时,如图2,连接AE,∵CD垂直平分AE,∴AD=DE=t,∵∠B=30°,∴BD=2DE=2t,∴∴②当∠EDB=90°时,如图3,连接CE,∵CD垂直平分AE,∴CE=CA=3,∵∠CAD=∠EDB=90°,∴AC∥ED,∴∠CAG=∠GED,∵AG=EG,∠CGA=∠EGD,∴△AGC≌△EGD,∴AC=DE,∵AC∥ED,∴四边形CAED是平行四边形,∴AD=CE=3,即t=3;综上所述,△BDE为直角三角形时,t的值为3秒或3秒;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,此时S△BCE=12AE•BH=12×3×3=92,易得△ACG≌△HBG,∴CG=BG,∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,∴∠ACD=∠DCE=15°,tan∠ACD=tan15°=t3=2﹣3,∴t=6﹣33,由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,此时S△BCE=12CE•DE=12×3×3=92,此时t=3,综上所述,当S△BCE≤92时,t的取值范围是6﹣33≤t≤3.【点睛】本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.10.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,52).连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP的表达式为:y56=-x,当x=﹣2时,y53=,即:点M坐标为(﹣2,5 3),|PM﹣OM|的最大值为:2222555(32)()2()233-++--+=61.(3)存在.∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=DC 2+MD 2,即:(6﹣a )2=22+a 2,解得:a 83=,则:MC 103=,过点D 作x 轴的垂线交x 轴于点N ,交EC 于点H .在Rt △DMC 中,12DH •MC 12=MD •DC ,即:DH 10833⨯=⨯2,则:DH 85=,HC 65==,即:点D 的坐标为(61855-,); 设:△ACD 沿着直线AC 平移了m 个单位,则:点A ′坐标(﹣6D ′坐标为(61855,-++),而点E 坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =222)+=24m +,2'ED =22248((55+=21285m +.若△A ′ED ′为直角三角形,分三种情况讨论:①当2''A D +2'A E=2'ED 时,36+24m -=21285m +,解得:m ,此时D ′(61855,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+21285m +=24m +,解得:m =D ′(61855,-)为(-6,2);③当2'A E +2'ED =2''A D 时,24m +21285m +=36,解得:m =或m,此时D ′(61855,-+)为(-6,2)或(35-,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.11.如图,AB 为⊙O 的直径,P 是BA 延长线上一点,CG 是⊙O 的弦∠PCA =∠ABC ,CG ⊥AB ,垂足为D (1)求证:PC 是⊙O 的切线; (2)求证:PA ADPC CD=;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.12.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.。

北师大新版数学九年级下册第1章 直角三角形的边角关系(练习题)

北师大新版数学九年级下册第1章 直角三角形的边角关系(练习题)

第1章直角三角形的边角关系(练习题)北师大新版数学九年级下册一.选择题1.如图中的每个小正方形的边长均相等,则sin∠BAC的值为()A.1B.C.D.2.如图,∠ACB=45°,∠PRQ=125°,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有()A.h1=h2B.h1<h2C.h1>h2D.以上都有可能3.如图,在△ABC中,∠A=120°,AB=4,AC=2,则sin B的值是()A.B.C.D.4.在高为60m的小山上,测得山底一建筑物顶端与底部的俯角分别是30°和60°,则这个建筑物的高度是()A.20m B.30m C.40m D.50m5.如图,山顶有一座电视塔BC,在地面上一点A处测得塔顶B的仰角α=60°,在塔底C 处测得A点俯角β=45°,已知塔高BC为60m,则山高CD等于()A.m B.m C.30m D.m 6.北京2022年冬奥会计划于2月4日开幕,2月20闭幕.如图,AB表示一条跳台滑雪赛道,在点A处测得起点B的仰角为40°,底端点C与顶端点B的距离为50米.则赛道AB 的长度为()A.50sin40°米B.50cos40°米C.米D.米7.在△ABC中,AB=4,BC=5,sin B=,则△ABC的面积等于()A.15B.C.6D.8.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于cos B 的是()A.B.C.D.9.如图,小东在教学楼距地面8米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.5米处,若国旗随国歌声冉冉升起,并在国歌播放46秒结束时到达旗杆顶端,则国旗匀速上升的速度为()米/秒.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.0.3B.0.2C.0.25D.0.3510.在如图所示的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,连接AB,AC,则sin∠BAC的值为()A.B.C.D.二.填空题11.如图,在Rt△ABD中,AB=6,tan∠ADB=,点C为斜边BD的中点,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF=.12.如果一个斜坡的坡度i=1:,那么该斜坡的坡角为度.13.2cos45°﹣(π+1)0=.14.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB=.15.某滑雪运动员沿着坡比为1:的斜坡向下滑行了100米,则运动员下降的垂直高度为米.三.解答题16.学好数学,就是为能更好解决生活中遇到的问题,如图所示,为了测量山的高度AC,在水平面E处测得山顶A的仰角为30°,AC⊥EC,自E沿着EC方向向前走100m,到达D处,又测得山顶A的仰角为45°,求山高.(结果保留根号)17.如图,在离铁塔20m的A处,用测倾仪测得塔顶的仰角为53°,测倾仪高AD为1.52m.求铁塔高BC(参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).18.如图,在高度为100米的小山上竖直建有一座铁塔,小明为测得铁塔的高度,先在山脚C处测得铁塔底部B的仰角为30°,后沿坡度i=1:2的山坡向上行走10米到达点D处,在点D处测得铁塔顶部A的仰角为30°,求铁塔AB的高度.19.如图,九年级数学兴趣小组要测量嵌在某大楼前面的电子屏高度CD.在该大楼正前方的A处测得电子屏CD顶端C的仰角为45°,底端D的仰角为30°.从A处沿水平地面向正前方走18米到达B处,测得顶端C的仰角为68.2°.求电子屏的高度CD.(结果保留整数)参考数据:sin68.2°≈0.93,≈1.41,cos68.2°≈0.37,≈1.73,tan68.2°≈2.5020.如图,小兵同学利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C 处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为120米,且AB垂直于桥面.(点A,B,C,M在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)。

北师大版九年级数学下册 第一章 直角三角形的边角关系 测试题 (含答案)

北师大版九年级数学下册 第一章  直角三角形的边角关系  测试题 (含答案)

直角三角形的边角关系 测试题一、选择题1.如图,在Rt △ABC 中,∠B =90°,cos A =1213,则tan A 的值为( )A.125B.1312C.1213D.512第1题图 第2题图 第3题图 第4题图2.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A.53 B.255 C.52 D.233.如图,在△ABC 中,点E 在AC 上,点G 在BC 上,连接EG ,AE =EG =5,过点E 作ED ⊥AB ,垂足为D ,过点G 作GF ⊥AC ,垂足为F ,此时恰有DE =GF =4.若BG =25,则sin B 的值为( )A.2510B.510C.255D.55 4.如图,直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,把△AOB 沿直线AB 翻折后得到△AO ′B ,则点O ′的坐标是( )A .(3,3)B .(3,3)C .(2,23)D .(23,4) 5.tan45°的值为( ) A.12 B .1 C.22D.2 6.如图所示,△ABC 的顶点是正方形网格的格点,则sin B 的值为( ) A.12 B.22 C.32D .1第6题图 第7题图7.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .m sin35° B .m cos35° C.m sin35° D.mcos35°8.在△ABC 中,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫33-tan B 2=0,则∠C 的度数为( )A .30°B .60°C .90°D .120° 二、填空题9.运用科学计算器计算:317sin73°52′≈________(结果精确到0.1). 10.计算:cos30°-sin60°=________.11.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1∶1.5,上底宽为6m ,路基高为4m ,则路基的下底宽为________m.12.如图,△ABC 中,∠ACB =90°,tan A =43,AB =15,AC =________.第11题图 第12题图 第13题图 第14 题图13.如图,Rt △ABC 中,∠ACB =90°,CM 为AB 边上的中线,AN ⊥CM ,交BC 于点N .若CM =3,AN =4,则tan ∠CAN 的值为________.14.如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里(结果取整数,参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).三、解答题15.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB (结果保留根号).16.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.17.在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C,利用上述结论可以求解如下题目,如:在△ABC中,若∠A=45°,∠B=30°,a=6,求b的值.解:在△ABC中,∵asin A=bsin B,∴b=a sin Bsin A=6sin30°sin45°=6×1222=3 2.解决问题:如图,甲船以每小时302海里的速度向正北方航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟后到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.(1)判断△A1A2B2的形状,并给出证明;(2)乙船每小时航行多少海里?参考答案与解析1.D2.A3.C 解析:在Rt △ADE 与Rt △EFG 中,⎩⎪⎨⎪⎧AE =EG ,DE =GF , ∴Rt △ADE ≌Rt △EFG (HL),∴∠A =∠GEF .∵∠A +∠AED =90°,∴∠GEF +∠AED=90°,∴∠DEG =90°.过点G 作GH ⊥AB 于点H ,则四边形DEGH 为矩形,∴GH =DE =4.在Rt △BGH 中,sin B =GH BG =425=255.故选C.4.A 解析:过点O ′作O ′C ⊥x 轴于点C .∵直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,∴点A ,B 的坐标分别为(23,0),(0,2),∴tan ∠BAO =OB OA =223=33,∴∠BAO=30°.∵把△AOB 沿直线AB 翻折后得到△AO ′B ,∴O ′A =OA =23,∠O ′AO =60°,∴CA =12O ′A =3,O ′C =O ′A ·sin ∠O ′AC =23×32=3,∴OC =OA -CA =23-3=3,∴点O ′的坐标为(3,3).故选A. 5.B 6.B 7.A 8.D 9.11.9 10.0 11.18 12.913.23 解析:∵∠ACB =90°,CM 为AB 边上的中线,∴AB =2CM =6,CM =BM ,∴∠B =∠MCB .∵AN ⊥CM ,∴∠CAN +∠ACM =90°.又∵∠ACM +∠MCB =90°,∴∠CAN =∠MCB ,∴∠B =∠CAN .又∵∠ACN =∠BCA ,∴△CAN ∽△CBA ,∴CN CA =AN BA =46=23,∴tan ∠CAN =CN AC =23.14.11 解析:过点P 作PC ⊥AB 于点C .依题意可得∠A =30°,∠B =55°.在Rt △P AC 中,∵P A =18海里,∠A =30°,∴PC =12P A =12×18=9(海里).在Rt △PBC 中,∵PC =9海里,∠B =55°,∴PB =PC sin B ≈90.8≈11(海里).15.解:过点C 作CF ⊥AB 于点F ,则BF =CD =4米,CF =BD .设AF =x 米.在Rt △ACF 中,tan ∠ACF =AF CF ,∠ACF =α=30°,则CF =AF tan30°=3x 米.在Rt △ABE 中,AB =AF +BF =(x +4)米,tan ∠AEB =AB BE ,∠AEB =β=60°,则BE =AB tan60°=33(x +4)米.∵CF =BD =DE +BE ,∴3x =3+33(x +4),解得x =33+42.则AB =33+42+4=33+122(米). 答:树高AB 是33+122米.16.解:(1)∵新坡面的坡度为1∶3,∴tan α=13=33,∴α=30°; (2)文化墙PM 不需要拆除.理由如下:过点C 作CD ⊥AB 于点D ,则CD =6米.∵坡面BC 的坡度为1∶1,新坡面AC 的坡度为1∶3,∴BD =CD =6米,AD =3CD =63米,∴AB =AD -BD =(63-6)米<8米,∴文化墙PM 不需要拆除.17.解:(1)△A 1A 2B 2是等边三角形.证明如下:由题意可得A 2B 2=102海里,A 1A 2=302×2060=102(海里),∴A 1A 2=A 2B 2.又∵∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形;(2)由(1)可知△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=102海里,∠A 2A 1B 2=60°,∴∠B 1A 1B 2=105°-60°=45°.由题意可知∠CB 1A 1=180°-105°=75°,∴∠B 2B 1A 1=75°-15°=60°.在△A 1B 2B 1中,由正弦定理得B 1B 2sin45°=A 1B 2sin60°,∴B 1B 2=A 1B 2sin60° ·sin45°=10232×22=2033(海里).乙船的速度为2033÷2060=203(海里/时). 答:乙船每小时航行203海里.。

第一章《直角三角形的边角关系》单元测试题(含答案)

第一章《直角三角形的边角关系》单元测试题(含答案)

第一章 直角三角形的边角关系一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.在Rt △ABC 中,∠C =90°,AB =2BC ,那么sin A 的值为( )A.12B.22C.32 D .1 2.在△ABC 中,∠C ,∠B 为锐角,且满足⎪⎪⎪⎪sin C -22+(32-cos B )2=0,则∠A 的度数为( )A .100°B .105°C .90°D .60°3.在Rt △ABC 中,∠C =90°,AB =20,cos A =14,则AC 等于( )A .45B .5 C.15 D.1454.在Rt △ABC 中,如果边长都扩大为原来的5倍,那么锐角A 的正弦值、余弦值和正切值( )A .都没有变化B .都扩大为原来的5倍C .都缩小为原来的15D .不能确定5.如图1-Z -1,过点C (-2,5)的直线AB 与坐标轴分别交于A (0,2),B 两点,则tan ∠OAB 的值为( )图1-Z -1A.25B.23C.52D.326.如图1-Z -2①为折叠椅,图②是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长度相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32 cm ,∠DOB =100°,那么椅腿AB 的长应设计为(结果精确到0.1 cm ,参考数据:sin50°=cos40°≈0.77,sin40°=cos50°≈0.64,tan40°≈0.84,tan50°≈1.19)( )图1-Z -2A .38.1 cmB .49.8 cmC .41.6 cmD .45.3 cm 二、填空题(本大题共5小题,每小题4分,共20分) 7.在△ABC 中,∠C =90°,sin A =14,则tan B =________.8.如图1-Z -3,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =________.图1-Z -39.如图1-Z -4,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sin A =35,则菱形ABCD 的周长是________.图1-Z -410.某校研究性学习小组测量学校旗杆AB 的高度,如图1-Z -5,在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为________米.图1-Z -511.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为D ,且满足BD ∶CD =2∶1,则△ABC 的面积为________.三、解答题(本大题共5小题,共56分) 12.(8分)计算:24sin45°+cos 230°-12tan60°+2sin60°.13.(10分)如图1-Z -6,在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43.求:(1)BD 的长; (2)sin B 的值.图1-Z -614.(12分)某大坝修建有以下方案:大坝的横断面为等腰梯形,如图1-Z -7,AD ∥BC ,坝高10米,迎水坡面AB 的坡度i =53,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB 的坡度进行修改,修改后的迎水坡面AE 的坡度i =56.(1)求原方案中此大坝迎水坡AB 的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7米,求坝底将会沿AD 方向加宽多少米.图1-Z -715.(12分)“和谐号”高铁列车的小桌板收起时可近似看作与地面垂直,展开小桌板使桌面保持水平,其示意图如图1-Z -8所示.连接OA ,此时OA =75 cm ,CB ⊥AO ,∠AOB =∠ACB =37°,且桌面宽OB 与BC 的长度之和等于OA 的长度.求支架BC 的长度(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).图1-Z -816.(14分)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can).如图1-Z -9①,在△ABC 中,AB =AC ,底角∠B 的邻对记作can B ,这时can B =底边腰=BCAB .容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=________;(2)如图②,已知在△ABC 中,AB =AC ,can B =85,S △ABC =24,求△ABC 的周长.图1-Z -9详解详析1.[解析] A ∵∠C =90°,AB =2BC ,∴sin A =BC AB =12.故选A.2.[解析] B ∵⎪⎪⎪⎪sin C -22+(32-cos B )2=0,∴sin C -22=0,32-cos B =0,则sin C =22,cos B =32,故∠C =45°,∠B =30°,∴∠A =180°-45°-30°=105°.故选B. 3.[答案] B4.[解析] A 三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 5.[解析] B 方法1:设直线AB 的表达式是y =kx +b .根据题意,得⎩⎨⎧-2k +b =5,b =2,解得⎩⎪⎨⎪⎧k =-32,b =2,则直线AB 的表达式是y =-32x +2.在y =-32x +2中令y =0,解得x =43.则点B 的坐标是(43,0),即OB =43.则tan ∠OAB =OB OA =432=23.故选B.方法2:过点C 作CD ⊥y 轴于点D ,∵C (-2,5), ∴CD =2,OD =5.∵A (0,2),∴OA =2, ∴AD =OD -OA =3.在Rt △ACD 中,tan ∠OAB =tan ∠CAD =CD AD =23.故选B.6.[解析] C 连接BD ,由题意得OA =OB =OC =OD .∵∠DOB =100°,∴∠DAO =∠ADO =50°,∠OBD =∠ODB =40°,∴∠ADB =90°.又∵BD =32 cm ,∴AB =BD sin ∠DAO ≈320.77≈41.6(cm).故选C. 7.[答案] 158.[答案] 12[解析] 过点A 作AD ⊥OB ,垂足为D ,如图,在Rt △AOD 中,AD =1,OD =2,则tan ∠AOB =AD OD =12. 9.[答案] 40[解析] ∵DE ⊥AB ,垂足是E ,∴△AED 为直角三角形,则sin A =DE AD ,即35=6AD ,∴AD =10,∴菱形ABCD 的周长为10×4=40.10.[答案] 9[解析] 过点D 作DE ⊥AB ,垂足为E ,由题意可知,四边形ACDE 为矩形,则AE =CD =6米,AC =DE .设BE =x 米.在Rt △BDE 中,∵∠BED =90°,∠BDE =30°,∴DE =3BE =3x 米,∴AC =DE =3x 米. 在Rt △ABC 中, ∵∠BAC =90°,∠ACB =60°, ∴AB =3AC =3×3x =3x (米). ∵AB -BE =AE ,∴3x -x =6, ∴x =3,∴AB =3×3=9(米), 即旗杆AB 的高度为9米. 11.[答案] 8或24[解析] △ABC 有两种情况:(1)如图①所示,∵BC =6,BD ∶CD =2∶1,∴BD =4.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD=23BD =83,∴S △ABC =12BC ·AD =12×6×83=8;(2)如图②所示,∵BC =6,BD ∶CD =2∶1,∴BD =12.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD =23BD =8,∴S △ABC =12BC ·AD =12×6×8=24.综上所述,△ABC 的面积为8或24.12.解:原式=24×22+(32)2-12×3+2×32 =14+34-36+ 3 =1+5 36.13.[解析] (1)根据在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43,可以求得AD 的长,从而可以求得BD 的长;(2)由(1)中BD 的长和题目中CD 的长可以求得BC 的长,从而可以求得sin B 的值.解:(1)∵在△ABC 中,CD ⊥AB 于点D ,CD =8,tan A =43,∴tan A =CD AD =43,解得AD =6,∴BD =AB -AD =22-6=16.(2)由(1)知BD =16,∵CD ⊥AB ,CD =8, ∴BC =CD 2+BD 2=82+162=8 5,∴sin B =CD BC =88 5=55.14.[解析] (1)过点B 作BF ⊥AD 于点F ,在直角三角形ABF 中求得AF ,AB 的长; (2)过点E 作EG ⊥AD 于点G ,延长EC 至点M ,延长AD 至点N ,连接MN . 由S △ABE =S 梯形CMND 从而求得DN 的长.解:(1)如图,过点B 作BF ⊥AD 于点F . 在Rt △ABF 中,∵i =BF AF =53,且BF =10米,∴AF =6米,∴AB =102+62=2 34(米).答:原方案中此大坝迎水坡AB 的长为2 34米. (2)如图,过点E 作EG ⊥AD 于点G . 在Rt △AEG 中,∵i =EG AG =56,且EG =BF =10米,易得AG =12米,BE =GF =AG -AF =6米. 延长EC 至点M ,延长AD 至点N ,连接MN .∵方案修改前后,修建大坝所需土石方总体积不变, ∴S △ABE =S 梯形CMND , ∴12·BE ·EG =12(MC +ND )·EG , 即BE =MC +ND ,∴ND =BE -MC =6-2.7=3.3(米). 答:坝底将会沿AD 方向加宽3.3米.15.解:延长CB 交AO 于点D ,∴CD ⊥OA . 设BC =x cm ,则OB =(75-x )cm. 在Rt △OBD 中,∵∠DOB =37°, ∴OD =OB ·cos ∠DOB ≈0.8(75-x )=(60-0.8x )cm ,BD =OB ·sin ∠DOB ≈0.6(75-x )=(45-0.6x )cm ,∴DC =BD +BC ≈(0.4+45x )cm.在Rt △ACD 中,∵∠ACD =37°,∴AD =DC ·tan ∠ACD ≈0.75(0.4x +45)=(0.3x +33.75)cm. ∵OA =AD +OD =75 cm ,∴0.3x +33.75+60-0.8x =75, 解得x ≈37.5, ∴BC ≈37.5 cm ,故支架BC 的长度约为37.5 cm. 16.解:(1) 3(2)过点A 作AE ⊥BC 于点E ,∵can B =85,可设BC =8x ,AB =5x ,则BE =12BC =4x ,∴AE =AB 2-BE 2=3x .∵S △ABC =24, ∴12BC ·AE =12x 2=24, 解得x =2(负值已舍去),故AB =AC =5 2,BC =8 2, ∴△ABC 的周长为AB +AC +BC =5 2+5 2+8 2=18 2.。

中考数学直角三角形的边角关系(大题培优 易错 难题)及答案解析

中考数学直角三角形的边角关系(大题培优 易错 难题)及答案解析

中考数学直角三角形的边角关系(大题培优易错难题)及答案解析一、直角三角形的边角关系1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3==米,639∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.3.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).【答案】32.4米.【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形,∴CE=AB=12m,在Rt△CBE中,cot∠CBE=BE CE,∴BE=CE•cot30°=12×3=123,在Rt△BDE中,由∠DBE=45°,得DE=BE=123.∴CD=CE+DE=12(3+1)≈32.4.答:楼房CD的高度约为32.4m.考点:解直角三角形的应用——仰角俯角问题.4.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.5.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P作交于点由运动到所需的时间为3s由①可得,点O以的速度从P到A所需的时间等于以从M运动到A 即:由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形7.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m 【解析】 【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解. 【详解】解:在Rt △AFG 中,tan ∠AFG 3, ∴FG =tan 3AG AFG =∠,在Rt △ACG 中,tan ∠ACG =AGCG, ∴CG =tan AGACG ∠=3.又∵CG ﹣FG =24m ,33=24m ,∴AG=123m,∴AB=123+1.6≈22.4m.8.如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).(1)若△BDE是以BE为底的等腰三角形,求t的值;(2)若△BDE为直角三角形,求t的值;(3)当S△BCE≤92时,所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=23【答案】(1)332;(23秒或3秒;(3)6﹣3【解析】【分析】(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由3,可得t 的值;(2)分两种情况:①当∠DEB=90°时,如图2,连接AE,根据3t的值;②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,②当△BCE在BC的上方时,分别计算当高为3时对应的t的值即可得结论.【详解】解:(1)如图1,连接AE,由题意得:AD=t,∵∠CAB=90°,∠CBA=30°,∴BC=2AC=6,∴∵点A、E关于直线CD的对称,∴CD垂直平分AE,∴AD=DE,∵△BDE是以BE为底的等腰三角形,∴DE=BD,∴AD=BD,∴;(2)△BDE为直角三角形时,分两种情况:①当∠DEB=90°时,如图2,连接AE,∵CD垂直平分AE,∴AD=DE=t,∵∠B=30°,∴BD=2DE=2t,∴∴②当∠EDB=90°时,如图3,连接CE,∵CD垂直平分AE,∴CE=CA=3,∵∠CAD=∠EDB=90°,∴AC∥ED,∴∠CAG=∠GED,∵AG=EG,∠CGA=∠EGD,∴△AGC≌△EGD,∴AC=DE,∵AC∥ED,∴四边形CAED是平行四边形,∴AD=CE=3,即t=3;综上所述,△BDE为直角三角形时,t3秒;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,此时S△BCE=12AE•BH=12×3×3=92,易得△ACG≌△HBG,∴CG=BG,∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,∴∠ACD=∠DCE=15°,tan∠ACD=tan15°=t3=2﹣3,∴t=6﹣33,由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,此时S△BCE=12CE•DE=12×3×3=92,此时t=3,综上所述,当S△BCE≤92时,t的取值范围是6﹣33≤t≤3.【点睛】本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.9.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.(1)求证:AE=CE(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=34,DE=394时,N为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.【答案】(1)详见解析;(2)详见解析;(3)4013 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB ,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL=10,BL=16,FL=∵LN•LF=AL•BL,∴LN=10•16,∴LN=13.【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.10.在Rt△ABC中,∠ACB=90°,,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ =72;(3)存在,S 四边形PA 'B ′Q =33【解析】【分析】 (1)由旋转可得:AC =A 'C =2,进而得到BC 3=∠A 'BC =90°,可得cos ∠A 'CB 3'BC A C ==∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 3=32=,依据tan ∠Q =tan ∠A 3=BQ =BC 3=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 3=,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=AC =2,∴BC 3=∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=∴PB 3=32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=∴BQ =BC 3=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=, 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB重合时,CG最小,∴CG min3=,PQ min=23,∴S△PCQ的最小值=3,S四边形-;PA'B'Q=33【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.【答案】建筑物CD的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.12.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.试题解析:(1)如图,连接OA,∵AE为⊙O的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)∵BD=1,tan∠BAD=,∴AD=2,∴AB=,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC=.∴⊙O的半径为2.5.考点:1.切线的性质;2.勾股定理;3.解直角三角形.。

2023年北师大版九年级数学下册第一章《直角三角形的边角关系》复习题附答案解析

2023年北师大版九年级数学下册第一章《直角三角形的边角关系》复习题附答案解析

2023年九年级数学下册第一章《直角三角形的边角关系》复习题一、单选题1.如图,在ABC ∆中,AC =3,BC =4,AB =5,则tan B 的值是()A .34B .43C .35D .452.定义:圆心在原点,半径为1的圆称为单位圆.如图,已知点()(),0,0P x y x y >>在单位圆上,则sin POA ∠等于()A .x B .yC .x y D .y x 3()A .3B .1C .2D .124.在Rt △ABC 中,∠C =90°,如果∠A =α,AB =3,那么AC 等于()A .3sinαB .3cosαC .3sin αD .3cos α5.tan60°的值等于()A .1BC .D .26.在Rt △ABC 中,∠C=90°,∠A=α,BC=m ,则AB 的长为()A .m sinαB .C .m cosαD .7.如图,网格中的每个小正方形的顶点称为格点,边长均为1,ABC 的顶点均在格点上,则∠ABC 的正弦值为()A .12B .5C .35D .108.在Rt △ABC 中,∠C=90°,BC=6,sinA=35,则AB=()A .8B .9C .10D .129.如图,冬奥会滑雪场有一坡角为20°的滑雪道,滑雪道的长AC 为100米,则BC 的长为()米.A .100cos 20︒B .100cos 20︒C .100sin 20︒D .100sin 20︒10.在平面直角坐标系xOy 中,已知点P (1,2),点P 与原点O 的连线与x 轴的正半轴的夹角为α(0°<α<90°),那么tanα的值是()A .2B .12C .2D 二、填空题11.计算:012⎛⎫ ⎪⎝⎭–2cos60°=.12.cos30°+sin45°=13.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,AD=95,BD=165,则sinB=.14.如图,已知斜坡AC 的坡度i =1:2,小明沿斜坡AC 从点A 行进10m 至点B ,在这个过程中小明升高m.三、计算题15.计算:0(3)4sin601π-+--16.计算:0(3)22cos30π---︒.四、解答题17.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A 处,情况危急!救援队伍在B 处测得A 在B 的北偏东60 的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处救人,同时第二组从陆地往正东方向奔跑120米到达C 处,再从C 处下水游向A 处救人,已知A 在C 的北偏东30 的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A 处?请说明理由.(参1.732=)18.如图,升国旗时,某同学站在离国旗20m 的E 处行注目礼(即BE=20m ),当国旗升至旗杆顶端A 时,该同学视线的仰角∠ADC=42°,已知他的双眼离地面的高度DE=1.60m .求旗杆AB 的高度(结果精确到0.01m ).参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9004.19.如图,小明站在A 处,准备测量教学楼CD 的高度.此时他看向教学楼CD 顶部的点D ,发现仰角为45°.他向前走30m 到达A '处,测得点D 的仰角为67.5°.若小明的身高AB 为1.8m (眼睛与头顶的距离忽略不计),则教学楼CD 的高度为多少?(计算结果精确到0.1m ,参考数据:67.50.924sin ︒≈,67.50.383cos ︒≈,67.5 2.414tan ︒≈,1.414≈)20.先化简,再求代数式262393a a a a -÷+--的值,其中a =tan60°﹣6sin30°.21.先化简,再求代数式23211m m m m m m-+-÷-的值,其中60230m tan sin =︒-︒五、综合题22.五一期间,数学兴趣小组的几位同学到公园游玩,看到公园内宝塔耸立,几人想用所学知识测量宝塔的高度.为此,他们在距离宝塔中心18m 处(AC =18m )的一个斜坡CD 上进行测量.如图,已知斜坡CD 的坡度为i =1斜坡CD 长12m ,在点D 处竖直放置测角仪DE ,测得宝塔顶部B 的仰角为37°,量得测角仪DE 的高为1.5m ,点A 、B 、C 、D 、E 在同一平面内.(1)求点D 距地面的高度;(2)求宝塔AB 的高度.(结果精确到0.1,参考数据;sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)23.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(参考数据:40400.766sin ︒︒≈≈,,400.839tan ︒≈,26.60.448sin ≈ ,26.60.89426.60.500cos tan ︒︒≈≈,3 1.732≈)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10 后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.答案解析部分1.【答案】A【解析】【解答】解:在△ABC 中,∵AC=3,BC=4,AB=5,又因32+42=52,即AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°,∴tanB=34AC BC =.故答案为:A.【分析】首先根据勾股定理的逆定理判断出△ABC 是直角三角形,再根据正切函数的定义即可得出答案.2.【答案】B【解析】【解答】解:过P 作PE OA ⊥于E ,则PO=1,PE=y,OE=x,∴sin 1PE yPOA y PO ∠===,故答案为:B.【分析】过P 作OA 的垂线构造直角三角形,利用正弦的定义可得答案.3.【答案】C 【解析】【解答】解:∵sin45°=2.故答案为:C.【分析】根据特殊角的三角函数值即可求得答案.4.【答案】B 【解析】【解答】解:如图,∵ACcosαAB=,∴AC=3cosα.故答案为:B.【分析】根据余弦等于邻边比斜边即可求解.5.【答案】C 【解析】【解答】C 。

(好题)初中数学九年级数学下册第一单元《直角三角形的边角关系》检测卷(含答案解析)

(好题)初中数学九年级数学下册第一单元《直角三角形的边角关系》检测卷(含答案解析)

一、选择题1.在Rt ABC ∆中,90C ∠=︒,若5sin 13A =,则cos A 的值为( ) A .512 B .813 C .1312 D .12132.如图,传送带和地面所成斜坡AB 的坡度为1∶2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5米B .5米C .25米D .45米 3.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则cos ∠AEF 的值是( )A .12B .1C .22D .324.在Rt ABC 中,∠C =90º,下列关系式中错误的是( )A .BC =AB•sinAB .BC =AC•tanA C .AC =BC•tanBD .AC =AB•cosB 5.如图,在Rt ABC △中,90ABC ∠=︒,4AB =,8BC =,D ,E 分别为边AB ,BC 上一点,且满足:1:3AD DB =.连接DE ,将ADBE 沿DE 翻折,点B 的对应点F 恰好落在边AC 上,则CF 的长度为( )A .1952055B .275C .52055D .3156.Rt ABC 中,90C ∠=︒,2AC =,1BC =,sin A =( )A .55B .2C .32D .127.如图,直线123////l l l ,ABC 的三个顶点分别落在123,,l l l 上,AC 交2l 于点D ,设1l 与2l 的距离为12,h l 与3l 的距离为2h .若12,:1:2AB BC h h ==,则下列说法正确的是( )A .:2:3ABD ABC S S =B .:1:2ABD ABC S S =△△C .sin :sin 2:3ABD DBC ∠∠=D .sin :sin 1:2ABD DBC ∠∠= 8.在ABC 中,90,13,12C AB BC ∠=︒==,则sin B 的值为( )A .1213B .512 C .513 D .1359.在Rt ABC 中,90C ∠=︒,5AB =,4BC =,则tan A 的值为( ) A .35 B .45 C .34 D .4310.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE CF =;②75AEB ∠=︒;③BE DF EF +=;④正方形对角线:13AC =+,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 11.如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是( ) A .(4,23)B .(23,4)C .(3,3)D .(23+2,2) 12.如图,在边长相同的小正方形组成的网格中,点A B C D 、、、都在这些小正方形的顶点上,AB CD 、相交于点P ,则tan APD ∠=( ).A .5B .3C .10D .2二、填空题13.如图,测角仪CD 竖直放在距建筑物AB 底部8m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪CD 的高度是1.5m ,则建筑物AB 的高度约为_____m .(结果精确到个位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)14.如图,在Rt ABC 中,90B ∠=︒,2AB =,1BC =.将ABC 绕点A 按逆时针方向旋转90︒得到''AB C ,连接'B C ,则tan 'ACB ∠=__________.15.如图,在Rt ABC △中,90A ∠=︒,AB AC =,BD 是AC 边上的中线,则tan ADB ∠的值是______.16.如图,点P (m ,1)是反比例函数3y x=图象上的一点,PT ⊥x 轴于点T ,把△PTO 沿直线OP 翻折得到△PT O ',则点T '的坐标为_______________.17.ABC ∆中,67.5A ,8BC =,BE AC ⊥交AC 于E ,CF AB ⊥交AB 于F ,点D 是BC 的中点.以点F 为原点,FD 所在的直线为x 轴构造平面直角坐标系,则点E 的横坐标为________.18.如图,四边形ABCD 中,AB=BC=3,∠A=∠C=90°,∠ABC=120°,点E 是对角线BD 上的一个动点,过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,连结FG 和HI ,则FG+HI 的最小值为________.19.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.20.在Rt ABC ∆中,90A ∠=︒,3AB =,4BC =则cos B =______.三、解答题21.计算:20210+|﹣3|﹣2sin60°.22.如图,根据道路管理规定,在某笔直的大道AB 上行驶的车辆,限速60千米/时,已知测速站点M 距大道AB 的距离MN 为30米,现有一辆汽车从A 向B 方向匀速行驶,测得此车从A 点行驶到B 点所用时间为6秒,已知60AMN ∠=︒,45BMN ∠=︒.(参考数据:3 1.732≈,2 1.414≈)(1)计算AB 的长度(结果保留整数);(2)试判断此车是否超速,并说明理由.23.图①是一辆登高云梯消防车的实物图,图②是其工作示意图,起重臂AC 是可伸缩的(10m 20m AC ),且起重臂AC 可绕点A 在一定范围内转动,张角为()90150CAE CAE ∠∠︒︒,转动点A 距离地面BD 的高度AE 为3.5m .(1)当起重臂AC 长度为12m ,张角CAE ∠为120︒时,求云梯消防车最高点C 距离地面的高度CF ;(2)某日、一居民家突发险情,该居民家距离地面的高度为18m ,请问该消防车能否实3 1.732≈)24.如图在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与反比例函数()0m y m x=≠的图象交于第二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为()6,n .线段5OA =,E 为x 轴上一点,且4sin 5AOE ∠=.(1)求该反比例函数和一次函数的解析式;(2)求AOB的面积;25.(1)解方程:22360x x--=(2)计算:12cos301tan602sin30︒--︒+︒26.为了方便市民出行,县政府决定从“七星广场”河堤到对岸修建一座便民桥.为测量河的宽度,在河的对岸取一点A,在广场河边取两点,O B测得点A在点O的北偏东60︒方向,测得点A在点B北偏东45︒方向,量得OB长为50米,求河的宽度AC(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三角函数的定义可知sinBCAAB=,可设BC=5k,AB=13k由勾股定理可求得12AC k=,再利用余弦的定义代入计算即可.【详解】解:如图:在Rt ABC 中,sin BC A AB =,可设BC=5k ,AB=13k . 由勾股定理可求得()()222213512AC AB BC k k k =-=-=. 所以,1212cos =1313AC k A AB k ==. 故选:D .【点睛】 本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.2.C解析:C【分析】作BC ⊥底面于点C ,根据坡度的概念、勾股定理列式计算即可;【详解】作BC ⊥底面于点C ,设BC x =,∵传送带和底面所成斜坡AB 的坡度为1∶2,∴2AC x =,由勾股定理得:222AC BC AB +=,即()222210x x +=,解得:25x =,即25BC =.故答案选C .【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,准确计算是解题的关键. 3.C解析:C【分析】连接AF ,根据题意可分别求出BF 、FC 、DE 的长,再利用勾股定理分别求出AF 、AE 、EF 的长,利用勾股定理的逆定理判断出AEF 为等腰直角三角形,再利用三角函数即可求得答案.【详解】如图:连接AF ,四边形ABCD 是矩形∴2,3AB DC AD BC ====∴∠B=∠C=∠D=90°FC=2BF∴BF=1,FC=2E 是CD 的中点∴DE=CE=1∴BF=CE=1在Rt ABF 中22222215AF AB BF =+=+=在Rt EFC 中22222215EF FC CE =+=+=在Rt ADE △中222223110AE AD DE =+=+=∴222AE EF AF =+且AF=EF∴△AEF 为等腰直角三角形∴∠AFE=90°,∠AEF=∠EAF=45°∴cos ∠AEF=cos45°=22故选:C .【点睛】本题考查了矩形的性质,勾股定理及其逆定理的运用,特殊角的三角函数值,解题关键是利用勾股定理逆定理判断出AEF 为等腰直角三角形. 4.D解析:D【分析】根据三角函数的定义即可作出判断.【详解】解:A 、∵sin BC A AB=, ∴sin BC AB A =, 故正确,不符合题意;B 、∵tanA= BC AC, ∴BC=AC•tanA ,故正确,不符合题意;C 、∵tanB=AC BC, ∴AC=BC•tanB , 故正确,不符合题意;D 、∵cos BC B AB=, ∴cos BC AB B =,故错误,符合题意;故选:D .【点睛】本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.A解析:A【分析】如图,过D 作DM AC ⊥于,M 根据已知条件先求解:,,,AD BD AC 再利用A ∠的三角函数求解,,AM DM 由对折得到:,DF 再利用勾股定理求解MF ,从而由CF AC AM MF =--可得答案.【详解】解:如图,过D 作DM AC ⊥于,M4:1:3,AB AD DB ==,13AD DB ∴==,,90ABC ∠=︒,4AB =,8BC =,22224845,AC AB BC ∴=+=+=1,AD DM AC =⊥,sin ,45DM BC A AD AC ∴=== 255DM ∴=, 同理:5cos ,545AM AB A AD AC ==== 55AM ∴=, 由对折可得:3,DF DB == 22222520535MF DF DM ⎛⎫∴=-=-= ⎪ ⎪⎝⎭,520519520545CF AC AM MF -∴=--== 故选:.A【点睛】 本题考查的是轴对称的性质,勾股定理的应用,锐角三角函数的应用,掌握以上知识是解题的关键.6.A解析:A【分析】求出斜边AB ,再求∠A 的正弦值.【详解】解:∵90C ∠=︒,2AC =,1BC =,∴2222215AB AC BC +=+= 5sin 5BC A AB ===, 故选:A .【点睛】本题考查了勾股定理和锐角的正弦函数值的求法,解题关键是求出斜边长,熟知正弦的意义.7.D解析:D【分析】作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,利用三角形面积公式可得到12::1:2ABD BCD S S h h ∆∆==,则可对A 、B 进行判断;利用正弦的定义得到1sin h ABD AB ∠=,2sin h DBC BC∠=,利用AB CB =可对C 、D 进行判断. 【详解】 解:作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,11122ABD S BD AE BD h ∆==,21122BCE S BD CF BD h ∆==, 12::1:2ABD BCD S S h h ∆∆∴==,:1:3ABD ABC S S ∆∆∴=,所以A 、B 选项错误;在Rt ABE ∆中,1sin h AE ABD AB AB ∠==, 在Rt BCF ∆中,2sin h CF DBC BC BC∠==, 而AB CB =,12sin :sin :1:2ABD DBC h h ∴∠∠==,所以C 选项错误,D 选项正确. 故选:D .【点睛】本题考查了考查了解直角三角形,也考查了平行线之间的距离和等腰直角三角形的性质,难度一般.8.C解析:C【分析】先根据勾股定理求得AC ,再根据正弦的定义求解即可;【详解】∵在ABC 中,90C ∠=︒,13AB =,12BC =,∴2213125AC =-=,∴5sin 13AC B AB ==; 故答案选C .【点睛】本题主要考查了勾股定理与解直角三角形,准确理解计算是解题的关键.9.D解析:D【分析】由勾股定理算出AC 的值,然后根据正切函数的定义即可得到解答.【详解】 解:由勾股定理可得:2222543AC AB BC =-=-=,∴tanA=43BC AC =, 故选D .【点睛】 本题考查解直角三角形,熟练掌握勾股定理及三角函数的定义是解题关键.10.A解析:A【分析】证明()Rt ABE Rt ADF HL ≅△△即可证明①正确,由①的结论得到三角形CEF 是等腰直角三角形,即可证明②正确,根据AC 垂直平分EF 可以判断③错误,利用锐角三角函数值求出AC 的长度证明④正确.【详解】解:∵四边形ABCD 是正方形,∴AB AD =,90B D ∠=∠=︒,∵AEF 是等边三角形,∴AE AF =, 在Rt ABE △和Rt ADF 中,AE AF AB AD =⎧⎨=⎩, ∴()Rt ABE Rt ADF HL ≅△△,∴BE DF =,∵BC CD =,∴BC BE CD DF -=-,即CE CF =,故①正确;∵CE CF =,90C ∠=︒,∴45CEF ∠=︒,∵60AEF ∠=︒,∴180604575AEB ∠=︒-︒-︒=︒,故②正确;如图,连接AC ,交EF 于点G ,∵AE AF =,CE CF =,∴AC 是EF 的垂直平分线,∵CAF DAF ∠≠∠,∴DF FG ≠,同理BE EG ≠,∴BE DF EF +≠,故③错误;∵AEF 是边长为2的等边三角形,ACB ACD ∠=∠,∵AC EF ⊥,EG FG =, ∴3sin 6023AG AE =⋅︒==112CG EF ==, ∴13AC AG CG =+=+,故④正确.故选:A .【点睛】本题考查四边形综合题,解题的关键是掌握正方形的性质,等边三角形的性质,解直角三角形的方法.11.B解析:B【分析】根据直线解析式求出点A 、B 的坐标,从而得到OA 、OB 的长度,再求出∠OAB =30°,利用勾股定理列式求出AB ,然后根据旋转角是60°判断出AB′⊥x 轴,再写出点B′的坐标即可.【详解】令y =0,则−3x +2=0,解得x =,令x =0,则y =2,所以,点A (0),B (0,2),所以,OA =OB =2,∵tan ∠OAB =OB OA ==, ∴∠OAB =30°,由勾股定理得,AB 4==, ∵旋转角是60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故选:B .【点睛】本题考查了坐标与图形性质−旋转,一次函数图象上点的坐标特征,勾股定理的应用,三角函数的应用,求出AB′⊥x 轴是解题的关键. 12.B解析:B【分析】设小正方形的边长为1,根据勾股定理可得AD 、AC 的值,进而可得△ADC 是等腰直角三角形,进而可得AD ⊥CD ,根据相似三角形的判定和性质可得PC =2DP ,根据等量代换和线段和差可得AD =CD =3DP ,继而即可求解.【详解】解析 设小正方形的边长为1,由图形可知,2AD DC AC ===,ADC ∴是等腰直角三角形,AD DC ∴⊥.//AC BD ,2AC CP BD DP∴==, 2PC DP ∴=,3AD DC DP ∴==,tan 3AD APD DP∴∠==.故选B.【点睛】本题考查了正方形的性质、等腰直角三角形的判定、勾股定理、相似三角形的判定及其性质以及锐角三角函数.此题难度适中,注意转化思想与数形结合思想的应用.二、填空题13.11【分析】根据题意作辅助线DE⊥AB然后根据锐角三角函数可以得到AE 的长从而可以求得AB的长本题得以解决【详解】解:作DE⊥AB于点E由题意可得DE=CD=8m∵∠ADE=50°∴AE=DE•ta解析:11【分析】根据题意,作辅助线DE⊥AB,然后根据锐角三角函数可以得到AE的长,从而可以求得AB 的长,本题得以解决.【详解】解:作DE⊥AB于点E,由题意可得,DE=CD=8m,∵∠ADE=50°,∴AE=DE•tan50°≈8×1.19=9.52(m),∵BE=CD=1.5m,∴AB=AE+BE=9.52+1.52=11.2≈11(m),故答案为:11.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】如图延长与的延长线交于点证明四边形为正方形再求解过作于利用等面积法求解再利用勾股定理求解从而可得答案【详解】解:如图由题意得:延长与的延长线交于点则四边形为正方形过作于故答案为:【点睛】本题解析:4 3【分析】如图,延长C B''与BC的延长线交于点,G证明四边形ABGB'为正方形,再求解,B C AC ',过A 作AM B C '⊥于M , 利用等面积法求解,AM 再利用勾股定理求解,MC 从而可得答案.【详解】解:如图,由题意得:9090BAB B AB C '''∠=︒∠=∠=︒,, 2AB AB '==, 1BC =,22215,AC ∴=+=延长C B ''与BC 的延长线交于点,G 则90AB G '∠=︒,∴ 四边形ABGB '为正方形, 2211B G BG CG BG BC '∴===-=-=,,90B GB '∠=︒, 22215,B C '∴=+=过A 作AM B C '⊥于M ,11,22AB C S AB AB B C AM '''∴== 54AM =, 4555AM ∴==, ()224355555MC ⎛⎫∴=-= ⎪⎝⎭, 4545tan '.3355AM ACB MC ∴∠=== 故答案为:4.3【点睛】本题考查的是勾股定理的应用,旋转的性质,正方形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键. 15.2【分析】由题意得到则结合角的正切值即可得到答案【详解】解:∵是边上的中线∴∴∵∴∵在中∴;故答案为:2【点睛】本题考查了求角的正切值三角形中线的性质解题的关键是掌握三角形中线的性质正确得到解析:2【分析】由题意,得到12AD AC =,则2AC AD =,结合角的正切值tan AB ADB AD∠=,即可得到答案.【详解】 解:∵BD 是AC 边上的中线,∴12AD AC =, ∴2AC AD=, ∵AB AC =,∴2AB AD=, ∵在Rt ABD 中,90A ∠=︒, ∴tan 2AB ADB AD ∠==; 故答案为:2.【点睛】本题考查了求角的正切值,三角形中线的性质,解题的关键是掌握三角形中线的性质,正确得到2AB AD=. 16.【分析】连接过点作于点C 先根据反比例函数解析式求出点P 坐标根据的正切值得到它的度数再根据折叠的性质证明是等边三角形再解直角三角形得到OC 和的长即可求出的坐标【详解】解:如图连接过点作于点C ∵点P(m解析:33,2⎛⎫ ⎪ ⎪⎝⎭【分析】连接TT ',过点T '作T C OT '⊥于点C ,先根据反比例函数解析式求出点P 坐标,根据POT ∠的正切值得到它的度数,再根据折叠的性质证明TOT '是等边三角形,再解直角三角形得到OC 和CT '的长,即可求出T '的坐标.【详解】解:如图,连接TT ',过点T '作T C OT '⊥于点C ,∵点P (m ,1)是反比例函数y x =图象上的一点,∴1=m ,∴OT =,1PT =,∵tan 3POT ∠=, ∴30POT ∠=︒,由折叠的性质得:30,POT POT OT OT ∠=∠=︒='='∴60TOT '∠=︒,又∵OT OT '=,∴TOT '是等边三角形,∵T C OT '⊥,∴12OC OT ==,3sin 2CT OT TOT '''=⋅∠==,∴322T ⎛⎫' ⎪ ⎪⎝⎭.故答案为:322⎛⎫ ⎪⎪⎝⎭. 【点睛】本题考查反比例函数与几何,解题的关键是掌握反比例函数的性质,利用锐角三角函数值得到特殊角的度数,然后解直角三角形. 17.【分析】连接DE 过E 作EH ⊥OD 于H 求得∠EDO =45°即可得到Rt △DEH 中求得DH 进而得出OH 即可求解【详解】如图所示连接过作于于于是的中点中点的横坐标是【点睛】本题主要考查了直角三角形斜边上中 解析:4-【分析】连接DE ,过E 作EH ⊥OD 于H ,求得∠EDO =45°,即可得到Rt △DEH 中,求得DH ,进而得出OH ,即可求解.【详解】如图所示,连接DE ,过E 作EH OD ⊥于H ,BE CA ⊥于E ,CF AB ⊥于F ,D 是BC 的中点,142DE DC BC DO DB ∴=====, DCE DEC ∴∠=∠,DBO DOB ∠=∠,67.5A ∴∠=︒,112.5ACB ABC ∴∠+∠=︒,18021802()()CDE BDO DCE DBO ∴∠+∠=︒-∠+︒-∠ 3602()DCE DBO =︒-∠+∠3602112.5=︒-⨯︒135=︒,45EDO ∴∠=︒,Rt DEH ∴∆中,cos 4522DH DE =︒⨯=422OH OD DH ∴=-=-点E 的横坐标是422-【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.18.3【分析】先证明得到再证明:四边形四边形为矩形得到所以只要求的最小值即可当时最小再利用锐角三角函数可得答案【详解】解:AB=BC=3∠A=∠C=90°由过点E 分别作ABBCCDAD 的垂线垂足分别为点 解析:3【分析】先证明,Rt ABD Rt CBD ≌得到60,30,ABD CBD GDE IDE ∠=∠=︒∠=∠=︒再证明:,FG HI =四边形,AFEG 四边形CHEI 为矩形,得到AE FG =,所以只要求AE 的最小值即可,当AE BD ⊥时,AE 最小,再利用锐角三角函数可得答案.【详解】 解: AB=BC=3,∠A=∠C=90°,,120,BD BD ABC =∠=︒,Rt ABD Rt CBD ∴≌60,30,ABD CBD GDE IDE ∴∠=∠=︒∠=∠=︒由过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,,,EF EH EG EI ∴== 四边形,AFEG 四边形CHEI 为矩形,90,FEG HEI ∴∠=∠=︒,FEG HEI ∴≌∴ ,FG HI =当FG 最小,则FG HI +最小,四边形AFEG 为矩形,,AE FG ∴=所以:当AE BD ⊥时,AE 最小,3,60,AB ABE =∠=︒sin 60,AE AB ∴︒= 3333,AE ∴=⨯= 所以:FG 的最小值是:33, 所以:FG HI +的最小值是:3323 3.⨯= 故答案为:3 3.【点睛】本题考查的是点到直线的距离垂线段最短,三角形全等的判定与性质,矩形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.19.10【分析】根据直角三角形的边角间关系先计算再在直角三角形中利用勾股定理即可求出【详解】解:在中∵∴在中故答案为:10【点睛】本题考查了解直角三角形和勾股定理利用直角三角形的边角间关系求出AC 是解决 解析:10【分析】根据直角三角形的边角间关系,先计算AC ,再在直角三角形ACD 中,利用勾股定理即可求出AD .【详解】解:在Rt ABC 中,∵12,sin3ABAB ACBAC=∠==,∴1263AC=÷=.在Rt ADC中,22AD AC CD=+2268=+10=.故答案为:10.【点睛】本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.20.【分析】根据题意画出图形进而得出cosB=求出即可【详解】解:∵∠A=90°AB=3BC=4则cosB==故答案为:【点睛】本题考查了锐角三角函数的定义正确把握锐角三角函数关系是解题的关键解析:3 4【分析】根据题意画出图形,进而得出cosB=ABBC求出即可.【详解】解:∵∠A=90°,AB=3,BC=4,则cosB=ABBC=34.故答案为:34.【点睛】本题考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题的关键.三、解答题21.1【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【详解】解:原式=12×2=1=1.【点睛】本题主要考查了实数的混合运算,结合特殊角三角函数中、零指数幂计算是解题的关键. 22.(1)82米;(2)不超速,见解析【分析】(1)已知MN=30m ,∠AMN=60°,∠BMN=45°求AB 的长度,可以转化为解直角三角形; (2)求得从A 到B 的速度,然后与60千米/时≈16.66米/秒,比较即可确定答案.【详解】解:(1)由题意可得在Rt AMN △中,30MN =米,60AMN ∠=︒, ∴tan AN MN AMN =⋅∠=在Rt BMN 中,∵45BMN ∠=︒,∴30BN MN ==(米). ∴3082AB AN BN =+=≈(米).(2)此车不超速,理由如下:由题意可得,汽车从A 到B 为匀速行驶,用时为6秒,且82AB =米,则汽车的速度为()306513.66÷=≈(米/秒).∵60千米/时≈16.67米/秒,13.6616.67<,∴此车不会超速.【点睛】本题考查了勾股定理以及解直角三角形的应用,解题的关键是从题目中抽象出直角三角形,难度不大.23.(1)9.5m ;(2)可以有效救援.【分析】(1)过点C 作CF ⊥BD ,垂足为F ,过点A 作AG ⊥CF ,垂足为G ,解直角三角形ACG 即可;(2)当起重臂最长,张角最大时,计算远臂点距离地面的最大高度,比较判断即可.【详解】(1)如图1,过点C作CF⊥BD,垂足为F,过点A作AG⊥CF,垂足为G,∵AE⊥BD,∴四边形AEFG是矩形,∴∠EAG=90°,FG=AE=3.5,∴∠CAG=30°,∵AC=12,∴CG=ACsin30°=12×1=6,2∴CF=CG+FG=6+3.5=9.5(米);(2)如图2,过点C作CF⊥BD,垂足为F,过点A作AG⊥CF,垂足为G,∵AE⊥BD,∴四边形AEFG是矩形,∴∠EAG=90°,FG=AE=3.5,∴∠CAG=60°,∵AC=20,∴CG=ACsin60°3,∴CF=CG+FG=17.32+3.5=20.82>18;∴能有效救援.【点睛】本题考查了生活实际问题中的解直角三角形,熟练把生活问题转化数学解直角三角形模型问题是解题的关键.24.(1)12y x =-,223y x =-+;(2)9 【分析】(1)过点A 作AH ⊥x 轴于H 点,由4sin 5AH ACE AO∠==,OA=5,根据正弦的定义可求出AH ,再根据勾股定理得到OH ,即得到A 点坐标(-3,4),把A (-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B (6,n )代入,确定点B 点坐标,然后把A 点和B 点坐标代入y=kx+b (k≠0),求出k 和b .(2)先令y=0,求出C 点坐标,得到OC 的长,然后根据AOB BOC AOC SS S =+计算△AOB 的面积即可.【详解】解:(1)过A 作AH x ⊥轴交x 轴于H ,∴4sin 5AH ACE AO∠==,5OA =, ∴4AH =,∴223OH OA AH ,∴()3,4A -,将()3,4A -代入m y x=,得12=-m , ∴反比例函数的解析式为12y x =-, 将()6,B n 代入12y x=-,得2n =-, ∴()6,2B -, 将()3,4A -和()6,2B -分别代入()0y kx b k =+≠,得3462k b k b -+=⎧⎨+=-⎩,解得232k b ⎧=-⎪⎨⎪=⎩, ∴直线解析式:223y x =-+; (2)在直线223y x =-+中,令0y =,则有2203x -+=,解得3x =, ∴()3,0C ,即3OC =,∴13462AOC S =⨯⨯=△; 同理3BOC S =△,则9AOB BOC AOC S S S =+=△△△.【点睛】本题考查了反比例函数的综合运用.关键是作x 轴的垂线,解直角三角形求A 点坐标,用待定系数法求直线,双曲线的解析式.25.(1)134x +=,234x =;(2)5【分析】(1)用公式法解方程即可;(2)先求特殊角三角函数值,再进行实数计算.【详解】解:(1)22360x x --=, 2a =,3b =-,6c =-∴224(3)42(6)570b ac -=--⨯⨯-=>∴332224b x a -===⨯∴134x =,234x -=(2)原式)1122=-+⨯311=+5=-【点睛】本题考查了一元二次方程的解法和含有特殊角三角函数值的实数计算,解题关键是选择恰当的方法解一元二次方程和熟记特殊角三角函数值并熟练进行计算.26.河的宽度AC 为(25+米【分析】根据点A 在点B 北偏东45°方向,结合方位角的知识可证AC BC =,利用三角函数解直角三角形,列关出方程,解方程即可.【详解】根据题意,有30,45AOC ABC ∠=︒∠=︒, 又90ACB ∠=︒所以BC AC =, 在Rt AOC ∆中,tan AC AOC OC ∠=,即tan 30AC OC ︒= 设AC x =米,则BC x =米,由题意得503x x =+ 解得x =化简得25x =+∴河的宽度AC 为(25+米.【点睛】本题考查了解直角三角形的实际应用,熟记特殊角的三角函数值,灵活运用方位角的知识,规范解直角三角形是解题关键.。

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)一.选择题(共10小题,满分30分)1.已知在Rt△ABC中,∠C=90°,AC=3,BC=4,则tan A的值为()A.B.C.D.2.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半3.在直角坐标系中,P是第一象限内的点,OP与x轴正半轴的夹角α的正切值是,则cos α的值是()A.B.C.D.4.计算sin45°的值等于()A.B.C.D.5.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A.B.C.D.6.在Rt△ABC中,∠C=90°,若sin A=,则cos B的值是()A.B.C.D.7.已知tan A=0.85,用计算器求∠A的大小,下列按键顺序正确的是()A.B.C.D.8.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是()A.B.C.D.9.在△ABC中,已知∠C=90°,AC=4,sin A=,那么BC边的长是()A.2B.8 C.4D.1210.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0二.填空题(共10小题,满分30分)11.如图,在平面直角坐标系内有一点P(5,12),那么OP与x轴正半轴的夹角α的余弦值.12.若α为锐角,且,则m的取值范围是.13.用科学计算器计算: tan16°15′≈(结果精确到0.01)14.如果3sinα=+1,则∠α=.(精确到0.1度)15.计算:sin225°+cos225°﹣tan60°=.16.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A 的值为.17.在Rt△ABC中,∠C=90°,如果AC=4,sin B=,那么AB=.18.已知∠A是锐角,且tan A=2,那么cos A=.19.已知∠A+∠B=90°,若,则cos B=.20.化简=.三.解答题(共7小题,满分60分)21.如图,在Rt△ABC中,∠C=90°,BC=6,tan A=.求AB的长和sin B的值.22.已知cos45°=,求cos21°+cos22°+…+cos289°的值.23.计算下列各题:(1);(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.24.在△ABC中,∠C=90°,BC=3,AB=5,求sin A,cos B,tan A的值.25.如图,在所示的直角坐标系中,P是第一象限的点,其坐标是(6,y),且OP与x轴的正半轴的夹角α的正切值是,求角α的正弦值.26.如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cos A的值.27.如图,已知∠ABC和射线BD上一点P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m,试比较PE、PF的大小;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,且α>β.试判断PE、PF的大小,并给出证明.参考答案与解析一.选择题1.解:如图所示:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴tan A==.故选:B.2.解:根据锐角三角函数的定义,知各边的长度都扩大2倍,那么锐角A的大小不变,所以其正切值不变.故选:C.3.解:如图:过点P作PE⊥x轴于点E,∵tanα=,∴设PE=4x,OE=3x,在Rt△OPE中,由勾股定理得OP=,∴cosα=.故选:C.4.解:sin45°=故选:C.5.解:∵∠C=90°,AB=5,BC=3,∴AC===4,∴tan A==,故选:D.6.解:Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cos B=sin A=,故选:C.7.解:根据计算器功能键,先按反三角2ndF,再按正切值.故选:A.8.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.9.解:由sin A==,不妨设BC=2k,则AB=3k,由勾股定理得,AC2+BC2=AB2,即(4)2+(2k)2=(3k)2,解得k=4(取正值),所以BC=2k=8,故选:B.10.解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.二.填空题(共10小题,满分30分)11.解:过P作PA⊥OA,∵P点坐标为(5,12),∴OA=5,PA=12,由勾股定理得,OP===13.∴cosα==.故答案为:.12.解:∵0<cosα<1,∴0<<1,解得,故答案为:.13.解: tan16°15′≈0.71,故答案为:0.71.14.解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.15.解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.16.解:在Rt△ABC中,∠C=90°,c=3a,∴b===2a,∴tan A===,故答案为:.17.解:∵sin B=,∴AB===6.故答案是:6.18.解:设∠A所在的直角三角形为△ABC,∠C=90°,∠A、∠B、∠C所得的边为a,b,c,∵tan A=2,即=2,设b=k,则a=2k,∴c==k,∴cos A==,故答案为:.19.解:由∠A+∠B=90°,若,得cos B=,故答案为:.20.解:∵tan30°=<1,∴原式=1﹣tan30°=1﹣=.三.解答题(共7小题,满分60分)21.解:∵在Rt△ABC中,∠C=90°,BC=6,tan A==,∴AC=12,∴AB===6,∴sin B===.22.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245 =(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.23.解:(1)=(2×﹣)+=2﹣+=2;(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.=×﹣×+()2+()2=﹣1++=.24.解:∵在△ABC中,∠C=90°,BC=3,AB=5,根据勾股定理可得:AC=4,∴sin A=,cos B==,tan A==.25.解:作PC⊥x轴于C.∵tanα=,OC=6∴PC=8.则OP=10.则sinα=.26.(1)证明:法一、连接AD、OD,∵AC是直径,∴AD⊥BC,∵AB=AC,∴D是BC的中点,又∵O是AC的中点,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.法二、连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AB=AC,∴∠OCD=∠B,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.(2)解:由(1)知OD∥AE,∴∠FOD=∠FAE,∠FDO=∠FEA,∴△FOD∽△FAE,∴,∴,∴,解得FC=2,∴AF=6,∴Rt△AEF中,cos∠FAE====.27.解:(1)在Rt△BPE中,sin∠EBP==sin40°在Rt△BPF中,sin∠FBP==sin20°又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα,sin∠FBP==sinβ又∵α>β∴sinα>sinβ∴PE>PF.。

九下《第一章 直角三角形的边角关系》测试题一

九下《第一章 直角三角形的边角关系》测试题一

33αP o y x34 九下《第一章 直角三角形的边角关系》测试题一 姓名一、认真填一填!(每题4分,共32分)1.等腰直角三角形的一个锐角的余弦值等于 。

2.在△ABC 中,∠C =90°,sinA=3/5,cosA= ,sinB= 。

3.计算:sin 2450+ cos 2450 = 。

5. 如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =______.6. 如图,P 是∠AOx 的边OA 上的一点,且点P 的坐标为(1,3),则∠AOx =_______度.7.如图,飞机A 在目标B 的正上方1 000米处,飞行员测得地面目标C 的俯角为30°,则地面目标B 、C 之间的距离是______________.8.如图,有一斜坡AB 长40m ,此斜坡的坡角为60°,则坡顶离地面的高度为 .(答案带根号) 二.认真选一选!(每题5分,满分30分)9、在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosB 的值是( )A.4/5B.3/5C.3/4D.4/310.在△ABC 中,∠C =90°,如果125tan =A ,那么sinB 的值等于( ). A . B .C .D . 11在△ABC 中,∠C =90°,∠B =2∠A ,则cos A 等于( ).A. B . C .3 D . 12、某人沿着倾斜角为α的斜坡前进了100米,则他上升的最大高度是( )A.αsin 100米B.100sin α米C.αcos 100米 D.100cos α米 13.把Rt ABC △各边的长度都扩大3倍得Rt A B C '''△,那么锐角A ,A '的余弦值的关系为( )A.cos cos A A '= B.c o s 3c o s A A '= C.3c o s c o s A A '= D.不能确定14、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( )A.1B.2C.22D.22三、计算题(每题5分,共10分). (第14题) 15.︒-︒45sin 260cos 21 16.︒⋅︒-︒30tan 60tan 45cos 22D CB A D ′ (第7题)P AO yx (第6题) (第8题)13513121255122321A B C D 四.解答题(共28分)17.(满分6分)如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是中线,6,5BC CD ==,求AC 的长和tan ACD ∠的值。

中考数学直角三角形的边角关系(大题培优 易错 难题)

中考数学直角三角形的边角关系(大题培优 易错 难题)

中考数学直角三角形的边角关系(大题培优 易错 难题)一、直角三角形的边角关系1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.(1)求之间的距离(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)35. 【解析】 【分析】(1)解直角三角形即可得到结论;(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,'30CE AA ==3Rt △ABC 中,求得DC=333,然后根据三角函数的定义即可得到结论. 【详解】解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,∴AB=sin 30AC︒=6012=120(m )(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3在Rt △ABC 中, AC=60m ,∠ADC=60°,∴DC=333∴3∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235答:从无人机'A 上看目标D 235【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.2.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形3.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)【答案】AE 的长为(123)+ 【解析】 【分析】在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解. 【详解】过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF V 中,45ACF ∠=︒tan 1AFACF CF∴∠== 12AF ∴= 在Rt CEF V 中,30ECF ∠=︒ tan EFECF CF∴∠= 312EF ∴=43EF ∴=1243AE AF EF ∴=+=+ ∴求得AE 的长为()1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.4.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--.【解析】 【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90° ∵∠DCP =∠OCB ∴△CDP ∽△COB ∴PC PDBC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC ∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =35FQ TF =∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q=1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,) 设直线l 解析式为:y =kx+b∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论5.如图,公路AB为东西走向,在点A北偏东36.5︒方向上,距离5千米处是村庄M,在点A北偏东53.5︒方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出P的位置(不写作法)并计算:(1)M,N两村庄之间的距离;(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)【答案】(1) M,N两村庄之间的距离为29千米;(2) 村庄M、N到P站的最短距离和是55千米.【解析】【分析】(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.【详解】解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.(1)在Rt△ANE中,AN=10,∠NAB=36.5°∴NE=AN•sin∠NAB=10•sin36.5°=6,AE=AN•cos∠NAB=10•cos36.5°=8,过M作MC⊥AB于点C,在Rt△MAC中,AM=5,∠MAB=53.5°∴AC=MA•sin∠AMB=MA•sin36.5°=3,MC=MA•cos∠AMC=MA•cos36.5°=4,过点M作MD⊥NE于点D,在Rt△MND中,MD=AE-AC=5,ND=NE-MC=2,∴MN=22+=29,52即M,N两村庄之间的距离为29千米.(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得MN′=22+=55(千米)510∴村庄M、N到P站的最短距离和是55千米.【点睛】本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.6.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4.理由见解析.3【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH⊥MN于H.先证△ABE≌△EHF,得到对应边相等,从而推出△CHF是等腰直角三角形,∠FCH的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴EH FH FHAB BE CH==; 在Rt △FEH 中,tan ∠FCN =8463FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43. 【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.7.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C坐标代入抛物线y=﹣14x2+bx+c,即可求解;(2)求出则点E(3,0),EH=EB•sin∠OBC=5,CE=32,则CH=5,即可求解;(3)分点F在y轴负半轴和在y轴正半轴两种情况,分别求解即可.【详解】(1)y=12x﹣3,令y=0,则x=6,令x=0,则y=﹣3,则点B、C的坐标分别为(6,0)、(0,﹣3),则c=﹣3,将点B坐标代入抛物线y=﹣14x2+bx﹣3得:0=﹣14×36+6b﹣3,解得:b=2,故抛物线的表达式为:y=﹣14x2+2x﹣3,令y=0,则x=6或2,即点A(2,0),则点D(4,1);(2)过点E作EH⊥BC交于点H,C、D的坐标分别为:(0,﹣3)、(4,1),直线CD的表达式为:y=x﹣3,则点E(3,0),tan∠OBC=3162OCOB==,则sin∠OBC5,则EH=EB•sin∠OBC5CE=2CH5则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=5∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F 在y 轴负半轴时,过点F 作FG ⊥BG 交BC 的延长线与点G ,则∠GFC =∠OBC =α,设:GF =2m ,则CG =GFtanα=m ,∵∠CBF =45°,∴BG =GF ,即:35+m =2m ,解得:m =35,CF =22GF CG +=5m =15,故点F (0,﹣18);②当点F 在y 轴正半轴时,同理可得:点F (0,1);故:点F 坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.8.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围;()3在()2的条件下,当以PE长为直径的Qe与Pe相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409;(2)()25880010320x x xy xx-+=<<+;(3)1025-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=R10R-=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x , 如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则55EB=BDcosβ=(525)525x , ∴PD ∥BE ,∴EB PD =BF PF ,即:2248805x x x y x y--+=, 整理得:y=)2x 8x 800x 103x 20-+<<+; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴5设圆的半径为r,在△ADG中,55AG=2r,5551+,则:55相交所得的公共弦的长为5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.9.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:PA AD PC CD=;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.10.如图,正方形ABCD+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC2,∵BC2+1,∴x+x2+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan ∠EAB =221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC 22AB BC +2,∴OA =OC =OB =12AC 22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH 2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=22+.. ∴PE+PF 22+【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.11.已知Rt △ABC,∠A=90°,BC=10,以BC 为边向下作矩形BCDE,连AE 交BC 于F.(1)如图1,当AB=AC,且sin ∠BEF=35时,求BF CF 的值; (2)如图2,当tan ∠ABC=12时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G,当2FG BF CG =⋅时,求矩形BCDE 的面积【答案】(1)17;(2)80;(3)100. 【解析】【分析】 (1)过A 作AK ⊥BC 于K ,根据sin ∠BEF=35得出35FK AK =,设FK =3a ,AK =5a ,可求得BF =a ,故17BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积.【详解】解:(1)过A 作AK ⊥BC 于K ,∵sin ∠BEF =35,sin ∠FAK =35, ∴35FK AK =, 设FK =3a ,AK =5a ,∴AK =4a ,∵AB =AC ,∠BAC =90°,∴BK =CK =4a ,∴BF =a ,又∵CF =7a , ∴17BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,∵∠AGE =∠DHE =90°,∴△EGA ∽△EHD , ∴EH ED EG EA=, ∴·EH EA EG ED ⋅=,其中EG =BK , ∵BC =10,tan ∠ABC =12,cos ∠ABC =5, ∴BA =BC · cos ∠ABC =5, BK= BA·cos ∠ABC =855⨯= ∴EG =8,另一方面:ED =BC =10,∴EH ·EA =80 (3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,∵BC ∥KT ,BF AF FG KE AE ED ==, ∴BF KE FG DE =,同理:FG ED CG DT= ∵FG 2= BF ·CG ∴BF FG FG CG =, ∴ED 2= KE ·DT ∴KE ED DE DT= , 又∵△KEB ∽△CDT ,∴KE CD BE DT=, ∴KE ·DT =BE 2, ∴BE 2=ED 2∴ BE =ED∴1010100BCDE S =⨯=矩形【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.12.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD ⊥AE 于D .(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.试题解析:(1)如图,连接OA,∵AE为⊙O的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)∵BD=1,tan∠BAD=,∴AD=2,∴AB=,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC=.∴⊙O的半径为2.5.考点:1.切线的性质;2.勾股定理;3.解直角三角形.。

九下第一章直角三角形的边角关系230°45°60°角的三角函数值作业新版北师大版

九下第一章直角三角形的边角关系230°45°60°角的三角函数值作业新版北师大版

D
【点拨】A.sin 45°+cos 45°= ,故错误; B.因为2tan 30°= ,tan 60°= , 所以2tan 30°≠tan 60°,故错误; C.因为2sin 60°= ,tan 45°=1, 所以2sin 60°≠tan 45°,故错误; D.因为sin230°= , cos 60°= , 所以sin230°= cos 60°,故正确.故选D.
5.计算: (1)4cos 30°-cos 45°tan 60°+2sin 245°;
6.
30°
60°
30°
45°
45°
45°
60°
30°
60°
7. 在Rt△ABC中,∠C=90°,若cos A= ,则∠B的大小是( ) A.30° B.45° C.60° D.75°
A
8.已知α是锐角,3tan (90°-α)- =0,则α=( ) A.30° B.40° C.45° D.60°
C
14.【新考向】定义一种运算:sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β.例如:当α=60°,β=45°时,sin(60°-45°)= = ,则sin 75°的值为____________.
15.已知α为锐角,sin (α+15°)= ,计算 -4cos α+tan α+ 的值.
16.【学科素养·应用意识】为保证车辆行驶安全,现在公路旁设立一检测点A观测行驶的汽车是否超速.如图,检测点A到公路的距离是24 m,在公路上取两点B,C,使得∠ACB=30°,∠ABC=120°. (1)求BC的长(结果保留根号);
1.
α
sin α
cos α

(必考题)初中数学九年级数学下册第一单元《直角三角形的边角关系》测试卷(包含答案解析)(3)

(必考题)初中数学九年级数学下册第一单元《直角三角形的边角关系》测试卷(包含答案解析)(3)

一、选择题1.如图,在Rt ABC 中,90,4,3ACB AC BC ∠=︒==,将ABC 绕直角边AC 的中点O 旋转,得到DEF ,连接AD ,若DE 恰好经过点C ,且DE 交AB 于点G ,则tan DAG ∠的值为( )A .524B .513C .512D .7242.如图,在ABC 中,90C ∠=︒,设A ∠,B ,C ∠所对的边分别为a ,b ,c ,则下面四个等式一定成立的是( )A .sin c bB =⋅ B .cos a c B =⋅C .tan a b B =⋅D .tan b c B =⋅ 3.三角形在正方形网格纸中的位置如图所示,则sinα的值是( )A .34B .43 C .35D .45 4.在Rt ABC 中,90,3,2C BC AC ∠=︒==,则sin A 的值为( )A .32B .23C .21313D .31313 5.在Rt ABC 中,90,2,6C AC AB ∠=︒==,则下列结论正确的是( ) A .1sin 3A = B .2cos 4B = C .tan 22A = D .22tan 3B = 6.如图,边长为23的等边三角形AOB 的顶点B 在x 轴的正半轴上,点C 为AOB 的中心,将AOB 绕点O 以每秒60︒的速度逆时针旋转,则第2021秒,AOB 的中心C 的对应点2021C 的坐标为( )A .()0,2-B .()3,1-C .()1,3D .()1,3- 7.Rt ABC 中,90C ∠=︒,2AC =,1BC =,sin A =( )A .5B .2C .3D .128.如图,在直角△BAD 中,延长斜边BD 到点C ,使得BD=2DC ,连接AC ,如果5tanB 3=,则tan CAD ∠的值是( )A 3B 3C .13D .15 9.在ABC 中,90C ∠=︒,tan 2A =,则sin A 的值是( ) A .23 B .13 C 25 D 5 10.如图,在44⨯的正方形方格图形中,小正方形的顶点称为格点,ABC 的顶点都在格点上,则BAC ∠的正弦值是( )A .12B .55C .255D .无法确定 11.在Rt △ABC 中,∠C =90°,若1cos 2B =,则sin A 的值为( ) A .1 B .12 C .32 D .3312.如图,在Rt △ABC 中,∠ACB=90°,若5AC =,BC=2,则sin ∠A 的值为( )A .5B .5C .23D .25 二、填空题13.江堤的横断面如图,堤高BC 10=米,迎水坡AB 的坡比是1:3,则堤脚AC 的长是______.14.如图,在平面直角坐标系中,点B 在第一象限,BA x ⊥轴于点A ,反比例函数()0k y x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y x =的对称点'C 的坐标为()()1,1n n ≠,若OAB 的面积为4.则下列结论:①2n =;②4k =;③不等式k x x <的解集是2x >;④tan 2ABO ,其中正确结论的序号是________.15.如图,在Rt ABC △中,90A ∠=︒,AB AC =,BD 是AC 边上的中线,则tan ADB ∠的值是______.16.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AB =9,AC =6,则cos ∠DCB =________________ .17.如图,在△ABC 中,∠A =30°,∠B =45°,BC =6cm ,则AB 的长为_____.18.如图,在菱形ABCD 中,4AB =,45ABC ∠=︒,菱形ABCD 的对角线交于点O ,则ABO 的面积为__________.19.在菱形ABCD 中,AB=4cm ,AB=BD ,则菱形ABCD 的面积是______.20.2sin30°+tan60°×tan30°=_____.三、解答题21.如图,在河流的右岸边有一高楼AB ,左岸边有一坡度1:2i =的山坡CF ,点C 与点B 在同一水平面上,CF 与AB 在同一平面内.某数学兴趣小组为了测量楼AB 的高度,在坡底C 处测得楼顶A 的仰角为45︒,然后沿坡面CF 上行了205米(即205CD =米)到达点D 处,此时在D 处测得楼顶A 的仰角为26.7︒.(参考数据:sin26.70.45︒≈,cos26.70.89︒≈,tan26.70.50︒≈)(1)求点C 到点D 的水平距离CE 的长;(2)求楼AB 的高度. 22.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点,,A D G 在同一直线上,且5,3AD DE ==,连接,,AC CG AE ,并延长AE 交CG 于点H .(1)求sin EAC ∠的值.(2)求线段AH 的长.23.如图,建设“五化东安”,打造“绿色发展样板城市”.在数学课外实践活动中,小薇在紫水河北岸的自行车绿化道AC 上,在A 处测得对岸的吴公塔D 位于南偏东60°方向,往东走300米到达B 处,测得对岸的吴公塔D 位于南偏东30°方向.(1)求吴公塔D 到紫水河北岸AC 的距离约为多少米?(精确到13≈1.73)(2)小薇继续向东走到轮船码头C 处,测得对岸的吴公塔D 位于西南方向.已知小薇的平均速度为每小时5千米,小薇从B 处到轮船码头大约几分钟?(精确到1分钟) 24.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB 是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB 上方150米的点C 处悬停,此时测得桥两端,A B 两点的俯角分别为65°和45°,求桥AB 的长度.(参考数据:sin650.91︒≈,cos650.42︒≈,tan65 2.14︒≈;结果精确到0.1米)25.如图,在东西方向的海岸线l 上有长为300米的码头海岸AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 处正东方向距离A 处50米的C 处测得轮船M 在北偏东37︒方向上.(1)求轮船M 到海岸线l 的距离;(结果保留整数米)(2)如果轮船M 沿着南偏东22︒的方向就行,那么该轮船能否行至码头海岸AB 靠岸?请说明理由.(参考数据:sin370.60︒≈,tan370.75︒≈,sin 220.37︒≈,tan220.40︒≈)26.(1)计算:230360245sin tan cos ︒+-︒.(2)已知32a b =,求22a b a b -+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接OG ,由勾股定理求出AB=5,由直角三角形的性质求出CG ,CD ,AD 的长,由锐角三角函数的定义可得出答案.【详解】解:连接OG ,在Rt△ABC中,∠C=90°,AC=4,BC=3,∴222243AC BC+=+,∵点O是AC边的中点,∴OC=OA=OD=12AC=2,∴∠GCO=∠ODC=∠BAC,∠ADC=90°,∴AG=CG,∴OG⊥AC,在Rt△ABC中,sin∠BAC=35BCAB=,cos∠BAC=45ACAB=,∴sin∠OCG=35,cos∠OCG=45,在Rt△OCG中,CG=5 cos2OCOCG=∠,在Rt△ACD中,CD=AC•cos∠OCG=165,AD=AC•sin∠OCG=125,∴DG=CD-CG=165-52=710,∴tan∠DAG=771012245DGAD==.故选:D.【点睛】本题考查了旋转的性质,锐角三角函数的定义,勾股定理,直角三角形的性质,正确的作出辅助线构造直角三角形是解题的关键.2.B解析:B【分析】根据∠B的正弦、余弦、正切的定义列式,根据等式的性质变形,判断即可.【详解】解:在△ABC 中,∠C=90°,∵sinB=b c , ∴c=sin b B,A 选项等式不成立; ∵cosB=a c , ∴a=c•cosB ,B 选项等式成立;∵tanB=b a , ∴a=tan b B,C 选项等式不成立; ∵tanB=b a , ∴b=a•tanB ,D 选项等式不成立;故选:B .【点睛】本题考查了锐角三角函数的定义,掌握锐角是三个三角函数的定义是解题的关键. 3.C解析:C【分析】将α∠转换成β∠去计算正弦值.【详解】解:如图,βα∠=∠,4AB =,3BC =,∴5AC =,则3sin sin 5BC AC αβ===. 故选:C .【点睛】本题考查正弦值的求解,解题的关键是掌握网格图中三角函数值的求解.4.D解析:D【分析】根据勾股定理求出斜边AB ,再根据锐角三角函数的意义求出结果即可;【详解】在Rt ABC 中,由勾股定理可得,AB ==∴sinBC A AB === 故答案选D .【点睛】本题主要考查了锐角三角函数的定义,准确计算是解题的关键.5.C解析:C【分析】根据勾股定理求出BC =【详解】∵在Rt ABC 中,90C ∠=︒,2AC =,6AB =, ∴BC =∴sin 63BC A AB ===,故A 错误;cos sin B A ==,故B 错误;tan ===BC A AC C 正确;tan===AC B BC ,故D 错误; 故选:C .【点睛】本题主要考查了解直角三角形,结合勾股定理进行计算是解题的关键.6.B解析:B【分析】通过计算画出第2021秒,AOB 的位置,过C′作C′D ⊥x 轴于点D ,连接OC′,BC′,求出DC′的长,即可求解.【详解】∵360°÷60°=6,∴AOB 的位置6秒一循环,而2021=6×336+5,∴第2021秒,AOB 的位置如图所示,设点C 的对应点C′,过C′作C′D ⊥x 轴于点D ,连接OC′,BC′,则∠DOC′=30°,OD=DB=3, ∴DC′=OD∙tan ∠DOC′=3×tan30°=3×33=1, ∴C′()3,1-. 故选B .【点睛】本题主要考查图形于=与坐标,等边三角形的性质,锐角三角函数,找到图形的变化规律,画出图形,是解题的关键.7.A解析:A【分析】求出斜边AB ,再求∠A 的正弦值. 【详解】解:∵90C ∠=︒,2AC =,1BC =,∴2222215AB AC BC +=+= 5sin 5BC A AB ===, 故选:A . 【点睛】 本题考查了勾股定理和锐角的正弦函数值的求法,解题关键是求出斜边长,熟知正弦的意义.8.D解析:D【分析】延长AD ,过点C 作CE ⊥AD ,垂足为E ,由5tanB 3=,即53AD AB =,设AD =5x ,则AB =3x ,利用相似三角形的判定可证△CDE ∽△BDA ,由相似三角形的性质可得:12CE DE CD AB AD BD ===,进而可得CE =32x ,DE =52x ,从而可求得tan ∠CAD 的值.解:如图,延长AD ,过点C 作CE ⊥AD ,垂足为E ,∵5tanB 3=,即53AD AB =, ∴设AD =5x ,则AB =3x , ∵∠CDE =∠BDA ,∠CED =∠BAD ,∴△CDE ∽△BDA , ∴12CE DE CD AB AD BD ===, ∴CE =32x ,DE =52x , ∴AE =152x , ∴tan ∠CAD =15CE AE =. 故选:D .【点睛】 本题考查了锐角三角函数的定义、相似三角形的判定和性质等知识,解题的关键是:正确添加辅助线,将∠CAD 放在直角三角形中.9.C解析:C【分析】由tanA=BC AC=2,设BC=2x ,可得AC=x ,Rt △ABC 中利用勾股定理算出5x ,然后利用三角函数在直角三角形中的定义,可算出sinA 的值.【详解】解:由tanA=BC AC=2,设BC=2x ,则AC=x , ∵Rt △ABC 中,∠C=90°,∴根据勾股定理,得()222225BC AC x x x +=+=, 因此,sinA=255BC AB x== 故选:C .本题已知正切值,求同角的正弦值.着重考查了勾股定理、三角函数的定义等知识,属于基础题.10.B解析:B【分析】先根据勾股定理的逆定理判断出ABC 的形状,再由锐角三角函数的定义即可得出结论.【详解】解:2223425AB =+=,2222420AC =+=,222125BC =+=,222AC BC AB ∴+=,ABC ∴为直角三角形,且90ACB ∠=︒,则sin BC BAC AB ∠==, 故选:B .【点睛】本题考查的是勾股定理的逆定理以及锐角三角函数的定义,熟知在一个三角形中,如果两条边长的平方之和等于第三边长的平方,那么这个三角形是直角三角形是解答此题的关键. 11.B解析:B【分析】根据互余角的三角函数间的关系:sin (90°-α)=cosα,cos (90°-α)=sinα解答即可.【详解】解:解:∵在△ABC 中,∠C=90°,∴∠A+∠B=90°,∴sinA= cosB=12, 故选:B .【点睛】本题考查了互余两角的三角函数关系式,掌握当∠A+∠B=90°时, sinA= cosB 是解题的关键. 12.C解析:C【分析】先利用勾股定理求出AB 的长,然后再求sin ∠A 的大小.【详解】解:∵在Rt △ABC 中,AC =BC=2∴3=∴sin ∠A=23BC AB = 故选:C .【点睛】 本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.米【分析】在Rt △ABC 中已知了坡面AB 的坡比是铅直高度BC 和水平宽度AC 的比值据此即可求解【详解】解:根据题意得:BC :AC=1:解得:AC=BC=10(米)故答案为:10米【点睛】本题考查了解直解析:【分析】在Rt △ABC 中,已知了坡面AB 的坡比是铅直高度BC 和水平宽度AC 的比值,据此即可求解.【详解】解:根据题意得:BC :AC=1解得:故答案为:【点睛】本题考查了解直角三角形的应用——坡度坡角问题,理解坡度坡角定义是关键. 14.②④【分析】根据对称性求出C 点坐标进而得OA 与AB 的长度再根据已知三角形的面积列出n 的方程求得n 进而用待定系数法求得k 再利用相关性质即可判断【详解】解:∵点C 关于直线y=x 的对称点C 的坐标为(1n ) 解析:②④【分析】根据对称性求出C 点坐标,进而得OA 与AB 的长度,再根据已知三角形的面积列出n 的方程求得n ,进而用待定系数法求得k ,再利用相关性质即可判断.【详解】解:∵点C 关于直线y=x 的对称点C'的坐标为(1,n )(n≠1),∴C (n ,1),∴OA=n ,AC=1,∴AB=2AC=2,∵△OAB 的面积为4,2解得,n=4,故①不正确;∴C(4,1),B(4,1),∴k=4×1=4,故②正确;解方程组4y xyx=⎧⎪⎨=⎪⎩,得:22xy=⎧⎨=⎩(负值已舍),∴直线y=x反比例函数(0)ky xx=>的图象的交点为(2,2),观察图象,不等式kxx<的解集是02x<<,故③不正确;∵B(4,1),∴OA=4,AB=2,∴tan ABO2OAAB∠==,故④正确;故答案为:②④.【点睛】本题是反比例函数图象与一次函数图象的交点问题,主要考查了一次函数与反比例函数的性质,对称性质,正切函数等,关键是根据对称求得C点坐标及由三角形的面积列出方程.15.2【分析】由题意得到则结合角的正切值即可得到答案【详解】解:∵是边上的中线∴∴∵∴∵在中∴;故答案为:2【点睛】本题考查了求角的正切值三角形中线的性质解题的关键是掌握三角形中线的性质正确得到解析:2【分析】由题意,得到12AD AC=,则2ACAD=,结合角的正切值tanABADBAD∠=,即可得到答案.【详解】解:∵BD是AC边上的中线,∴12AD AC=,AD∵AB AC =, ∴2AB AD=, ∵在Rt ABD 中,90A ∠=︒, ∴tan 2AB ADB AD ∠==; 故答案为:2.【点睛】本题考查了求角的正切值,三角形中线的性质,解题的关键是掌握三角形中线的性质,正确得到2AB AD=. 16.【分析】首先利用等角的余角得到∠A=∠DCB 然后根据余弦的定义求出cosA 即可【详解】解:在Rt △ABC 中∵CD ⊥AB ∴∠DCB+∠B=90°∵∠ACB =90°∴∠A+∠B=90°∴∠A=∠DCB 而 解析:23【分析】首先利用等角的余角得到∠A=∠DCB ,然后根据余弦的定义求出cosA 即可.【详解】解:在Rt △ABC 中,∵CD ⊥AB ,∴∠DCB+∠B=90°,∵∠ACB =90°,∴∠A+∠B=90°,∴∠A=∠DCB ,而cosA=AC AB =69=23, ∴cos ∠DCB=23. 故答案为:23. 【点睛】 本题考查了锐角三角函数的定义:在Rt △ABC 中,∠C=90°,我们把锐角A 的邻边a 与斜边c 的比叫做∠A 的余弦,记作cosA .17.【分析】根据题意过点C 作CD ⊥AB 根据∠B =45°得CD =BD 根据勾股定理和BC =得出BD 再根据∠A =30°得出AD 进而分析计算得出AB 即可【详解】解;过点C 作CD ⊥AB 交AB 于D ∵∠B =45°∴C 解析:33+【分析】根据题意过点C 作CD ⊥AB ,根据∠B =45°,得CD =BD ,根据勾股定理和BC =6得出BD ,再根据∠A =30°,得出AD ,进而分析计算得出AB 即可.【详解】解;过点C 作CD ⊥AB ,交AB 于D .∵∠B =45°,∴CD =BD ,∵BC 6,∴BD 3∵∠A =30°, ∴tan30°=CD AD, ∴AD =30CD tan ︒33=3, ∴AB =AD+BD =33.故答案为:33.【点睛】本题考查解直角三角形,熟练应用三角函数的定义是解题的关键.18.【分析】过A 作AE ⊥BC 于点E 则由题意可得AE 的值进一步可求得△ABO 的面积【详解】解:如图过A 作AE ⊥BC 于点E ∵AB=4∠ABC=45°∴AE=AB=∴故答案为【点睛】本题考查菱形性质和解直角三解析:2【分析】过A 作AE ⊥BC 于点E ,则由题意可得AE 的值,进一步可求得△ABO 的面积.【详解】解:如图,过A 作AE ⊥BC 于点E ,∵AB=4,∠ABC=45°,∴AE=AB sin 45︒=24222⨯= ∴1111·422222224ABO ABC S S BC AE ==⨯=⨯⨯= 故答案为22 .【点睛】 本题考查菱形性质和解直角三角形的综合应用,熟练掌握菱形的性质是解题关键. 19.【分析】根据菱形的性质结合AB=BD 得到△ABD 是等边三角形再利用锐角三角函数关系得出BE 的长即可得出菱形的面积【详解】∵在菱形ABCD 中AB=BD ∴AB=AD=BD=4(cm)∴△ABD 是等边三角解析:283cm【分析】根据菱形的性质结合AB=BD ,得到△ABD 是等边三角形,再利用锐角三角函数关系得出BE 的长,即可得出菱形的面积..【详解】∵在菱形ABCD 中,AB=BD ,∴AB=AD=BD=4(cm),∴△ABD 是等边三角形,∴∠A=60°,过点B 作BE ⊥AD 于E ,∴BE=AB•sin60°=433=, ∴菱形ABCD 的面积S=AD×BE 42383=⨯=(2cm ),故答案为:283cm【点睛】本题主要考查了菱形的性质,等腰直角三角形的判定和性质,特殊角的三角函数值,得出BE 的长是解题关键.20.2【分析】特殊值:sin30°=tan60°=tan30°=本题是特殊角将特殊角的三角函数值代入求解【详解】解:2sin30°+tan60°×tan30°=2×+×=1+1=2【点睛】本题考查了特殊解析:2【分析】特殊值:sin 30° =12,ta n 60°ta n 30°本题是特殊角,将特殊角的三角函数值代入求解.【详解】解:2sin30°+ta n60°×ta n30°=2×123=1+1=2【点睛】 本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.三、解答题21.(1)40米;(2)楼AB 的高度为80米.【分析】(1)由CF 的坡度1:2i =,,DE CE ⊥可得1,2DE CE = 设,DE x = 则2,CE x = 由勾股定理可得,CD == = 解方程可得答案; (2)如图,过D 作DH AB ⊥于,H 先证明四边形DEBH 是矩形,可得2040,BH DE DH BE CE BC BC ====+=+, 设,AB m = 证明,BC AB m == 可得20,40,AH m DH m =-=+ 由26.7,ADH ∠=︒ 建立方程,再解方程检验即可得到答案.【详解】解:(1) CF 的坡度1:2i =,,DE CE ⊥1,2DE CE ∴= 设,DE x = 则2,CE x =,CD ∴===20,x ∴=240.CE x ∴==(2)如图,过D 作DH AB ⊥于,H,,DE BE AB BE ⊥⊥∴ 四边形DEBH 是矩形,2040,BH DE DH BE CE BC BC ∴====+=+,设,AB m =45,ACB AB BE ∠=︒⊥,45,ACB BAC ∴∠=∠=︒,BC AB m ∴==20,40,AH m DH m ∴=-=+由26.7,ADH ∠=︒tan 26.7,AH DH ∴︒=200.5,40m m -∴=+ 解得:80.m =经检验:80m =符合题意,所以:建筑物AB 的高为:80米.【点睛】本题考查的是解直角三角形的实际应用,坡度的含义,掌握利用解直角三角形测量建筑物的高是解题的关键.22.(1)1717;(2)3417【分析】 (1)作EM AC ⊥于M ,根据sin EM EAM AE∠=求出EM 、AE 即可解决问题. (2)先证明GDC EDA ∆≅∆,得GCD EAD ∠=∠,推出AH GC ⊥,再根据1122AGC S AG DC GC AH ∆=⋅⋅=⋅⋅,即可解决问题. 【详解】解:(1)作EM AC ⊥于M .四边形ABCD 是正方形,90ADC ∴∠=︒,5AD DC ,45DCA ∠=︒,∴在RT ADE ∆中,90ADE ∠=︒,5AD =,3DE =, 2234AE AD DE∴=+=,在RT EMC ∆中,90EMC ∠=︒,45ECM ∠=︒,2EC =,2EM CM ∴==, ∴在RT AEM ∆中,217sin 34EM EAC AE ∠===.(2)在GDC ∆和EDA ∆中,DG DE GDC EDA DC DA =⎧⎪∠=∠⎨⎪=⎩,GDC EDA ∴∆≅∆, GCD EAD ∴∠=∠,34GC AE =90DAE AED ∠+∠=︒,DEA CEH ∠=∠,90DCG HEC ∴∠+∠=︒,90EHC ∴∠=︒,AH GC ∴⊥,1122AGC S AG DC GC AH ∆=⋅⋅=⋅⋅, ∴11853422AH ⨯⨯=, 2034AH ∴=【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识,添加常用辅助线是解决问题的关键,学会用面积法求线段,属于中考常考题型.23.(1)260,(2)5;【分析】(1)如图,过点D 作DH ⊥AC 于点H .设DH=x 米,通过解直角三角形列方程,得到DH 的长度.(2)求出BC 长,再求时间即可.【详解】解:过点D 作DH ⊥AC 于点H .由题意可知,∠HBD=60°,∠DAC=30°,AB=300,设DH=x米,在直角△BHD中,tan60°=DH BH,BH= 3x,tan30°=DH AH,AH=3x,300=3x-3x,解得,x=1503,∴DH=1503≈150×1.73≈260.答:求吴公塔D到紫水河北岸AC的距离约为260米.(2)由(1)可知,BH=150米,小薇继续向东走到轮船码头C处,测得对岸的吴公塔D位于西南方向,可知DH=HC=260米,BC=150+260=410(米),410米=0.41千米,小薇从B处到轮船码头的时间为0.410.0825(小时),0.082×60=4.92≈5(分钟),小薇从B处到轮船码头的时间为5分钟.【点睛】本题考查解直角三角形的应用,解题关键是构造直角三角形,熟练运用解直角三角形的知识进行计算.24.1米【分析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=65°,∠CBD=∠NCB=45°,利用角的三角函数求解即可.【详解】解:如图,过点C 作CD AB ⊥,垂足为D ,由题意得65MCA A ∠=∠=︒,45NCB B ∠=∠=︒,150CD =(米),在Rt ACD ∆中,015070.1tan 65 2.14CD AD ==≈(米), 在Rt BCD ∆中,45CBD ∠=︒, ∴150BD CD ==(米)∴70.1150220.1AB AD BD =+=+=(米)答:桥AB 的长度约为220.1米.【点睛】本题考查了三角函数的运算,构造直角三角形,利用解直角三角形求边是解题的关键. 25.(1)轮船M 到海岸线l 的距离为200米;(2)该轮船能行至码头海岸AB 靠岸【分析】(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM=x ,解直角三角形即可得到结论; (2)作∠DMF=22°,交l 于点F .解直角三角形即可得到结论.【详解】解:(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM=x ,∵在Rt △CDM 中,CD=DM•tan ∠CMD=x•tan37°,又∵在Rt △ADM 中,∠MAC=45°,∴AD=DM ,∵AD=AC+CD=50+x•tan37°,∴50+x•tan37°=x ,∴50502001tan 3710.75x ︒=≈=--, 答:轮船M 到海岸线l 的距离约为200米;(2)作∠DMF=22°,交l 于点F ,在Rt △DMF 中,DF=DM•tan ∠FMD=DM•tan22°≈200×0.40=80(米),∴AF=AC+CD+DF=DM+DF≈200+80=280<300,所以该轮船能行至码头AB 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.26.(1)3;(2)47【分析】(1)将这些特殊角的三角函数值代入求解即可;(2)将比例式转换为等积式后得到a 、b 之间的关系,然后求得两个的比值即可.【详解】(1)23060245sin cos ︒+-︒1222=⨯+ 131=+-3=;(2)设32a x b x ==,,则26242347a b x x a b x x --==++. 【点睛】本题考查了特殊角的三角函数值,比例的基本性质以及实数的运算,解题的关键是熟记这些特殊角的三角函数值.。

【完整版】北师大版九年级下册数学第一章 直角三角形的边角关系含答案

【完整版】北师大版九年级下册数学第一章 直角三角形的边角关系含答案

北师大版九年级下册数学第一章直角三角形的边角关系含答案一、单选题(共15题,共计45分)1、如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ,②sinα>sinβ,③cosα>cosβ.正确的结论为()A.①②B.②③C.①③D.①②③2、如果∠A为锐角,sinA=,那么()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60° D.60°<∠A<90°3、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4 米B.6 米C.12 米D.24米4、如图,在▱ABCD中,,,分别切边AB,AD于点E,F,且圆心O恰好落在DE上现将沿AB方向滚动到与边BC相切点O在的内部,则圆心O移动的路径长为A.4B.6C.D.5、如图,在△ABC中,∠C=90o, AC=3,BC=4,则sinB的值是()A. B. C. D.6、勾股定理有着悠久的历史,它曾引起很多人的兴趣.英国佩里加(H.Perigal,1801﹣1898)用“水车翼轮法”(图1)证明了勾股定理.该证法是用线段QX,ST,将正方形BIJC分割成四个全等的四边形,再将这四个四边形和正方形ACYZ拼成大正方形AEFB(图2).若AD=,tan∠AON=,则正方形MNUV的周长为()A. B.18 C.16 D.7、如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标=(x>0)的图象上,顶点B在原点,斜边AB垂直x轴,顶点A在函数y1=(x>0)的图象上,∠ABO=30°,则=()函数y2A.﹣B.﹣C.﹣D.﹣8、如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是()A. B. C.1600sinα(m 2) D.1600cosα(m 2)9、如图,的顶点都是正方形网格中的格点,则等于()A. B. C. D.10、如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A. B. C. D.111、小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A. B. C. D.12、sin45°=()A. B. C.1 D.13、如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()A.100 mB.50 mC.50 mD. m14、如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B. C. D.15、如图,一把梯子靠在垂直水平地面的墙上,梯子的长是3米.若梯子与地面的夹角为,则梯子顶端到地面的距离BC为()A. 米B. 米C. 米D. 米二、填空题(共10题,共计30分)16、在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是________.17、如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB= 米,背水坡CD的坡度i=1:(i为DF与FC的比值),则背水坡CD的坡长为________米.18、在Rt△ABC中,,BC=2,,则AB=________19、已知⊙O半径为,AB是⊙O的一条弦,且AB=3,则弦AB所对的圆周角度数是________.20、小明在学习“锐角三角函数”中发现,用折纸的方法可求出tan22.5°,方法如下:将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC 上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以知道tan22.5°=________21、在Rt△ABC中,∠C=90°,sinA=,则tanA=________.22、在Rt△ABC中,∠C=90°,2a=c,则∠A=________23、如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则cosA=________24、将矩形纸片ABCD按如图M2-5方式折叠,M,N分别为AB,CD的中点。

北师大新版数学九年级下 第1章 直角三角形的边角关系 单元练习卷 含解析

北师大新版数学九年级下 第1章 直角三角形的边角关系 单元练习卷  含解析

第1章直角三角形的边角关系一.选择题(共15小题)1.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.2.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.3.已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个4.如图,在△ABC中,若∠C=Rt∠,则()A.B.C.D.5.Rt△ABC中,∠C=90°,b=,c=4,则sin A的值是()A.B.C.D.6.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.m sin35°B.m cos35°C.D.7.在Rt△ABC中,∠C=90°,tan A=,则tan B的值为()A.B.C.D.8.对于任意锐角α,下列结论正确的是()A.sinα<tanαB.sinα≤tanαC.sinα>tanαD.sinα≥tanα9.在△ABC中,tan C=,cos A=,则∠B=()A.60°B.90°C.120°D.135°10.已知:α为锐角,且=1,则tanα的值等于()A.﹣1 B.2 C.3 D.2.511.在△ABC中,AC≠BC,∠ACB=90°,CD⊥AB垂足为D,则下列比值中不等于sin A的是()A.B.C.D.12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.13.在Rt△ABC中,若∠B=75°,∠C=90°,BC=1,则Rt△ABC的面积是()A.B.C.D.14.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A.6cm2B.24cm2C.2cm2D.6cm215.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m二.填空题(共5小题)16.比较大小:cos36°cos37°.17.已知α为锐角,sin(α﹣15°)=,则α=度.18.若坡度i=,则坡角为α=19.计算;sin30°•tan30°+cos60°•tan60°=.20.在Rt△ABC中,∠ACB=90°,若tan A=3,AB=,则BC=三.解答题(共7小题)21.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)22.如图,在△ABC中,∠A=30°,cos B=,AC=6,求△ABC的面积.23.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?24.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)25.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)26.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?27.直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.参考答案与试题解析一.选择题(共15小题)1.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.【分析】根据正弦的定义列式计算即可.【解答】解:在△ABC中,∠C=90°,sin A=,∴=,解得,BC=4,故选:B.2.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.【分析】直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.【解答】解:连接DC,由网格可得:CD⊥AB,则DC=,AC=,故sin A===.故选:B.3.已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个【分析】根据锐角函数的正弦是增函数,余弦是减函数,正切是增函数,可得答案.【解答】解:由0<α<45°,得0<sinα<,故①正确;cosα>sinα,故②错误;sin2α=2sinαcosα<2sinα,故③错误;0<tanα<1,故④正确;故选:B.4.如图,在△ABC中,若∠C=Rt∠,则()A.B.C.D.【分析】根据三角函数的定义即可得到结论.【解答】解:在△ABC中,若∠C=Rt∠,sin A=,cos B=,故选:A.5.Rt△ABC中,∠C=90°,b=,c=4,则sin A的值是()A.B.C.D.【分析】由三角函数的定义,在直角三角形中,正弦等于对边比斜边易得答案.【解答】解:如图,AC=b=,AB=c=4,所以BC=a==1,由三角函数的定义可得sin A==,则sin A=,故选:A.6.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.m sin35°B.m cos35°C.D.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=m sin35°,故选:A.7.在Rt△ABC中,∠C=90°,tan A=,则tan B的值为()A.B.C.D.【分析】因为∠A与∠B互余,则tan A•tan B=1,代入计算即可.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∴tan A•tan B=1,∵tan B==,故选:D.8.对于任意锐角α,下列结论正确的是()A.sinα<tanαB.sinα≤tanαC.sinα>tanαD.sinα≥tanα【分析】直接利用锐角三角函数关系分析得出答案.【解答】解:∵sinα=,tanα=,且斜边>α的邻边,∴sinα<tanα.故选:A.9.在△ABC中,tan C=,cos A=,则∠B=()A.60°B.90°C.120°D.135°【分析】直接利用特殊角的三角函数值得出∠C=30°,∠A=30°,进而得出答案.【解答】解:∵tan C=,cos A=,∴∠C=30°,∠A=30°,∴∠B=120°.故选:C.10.已知:α为锐角,且=1,则tanα的值等于()A.﹣1 B.2 C.3 D.2.5【分析】根据同角三角函数关系tanα=进行解答.【解答】解:由=1,得=1.所以=1.解得tanα=2.5.故选:D.11.在△ABC中,AC≠BC,∠ACB=90°,CD⊥AB垂足为D,则下列比值中不等于sin A的是()A.B.C.D.【分析】利用锐角三角函数定义判断即可.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin A=sin∠BCD=,故选:D.12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【解答】解:∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD===,故选:A.13.在Rt△ABC中,若∠B=75°,∠C=90°,BC=1,则Rt△ABC的面积是()A.B.C.D.【分析】根据锐角三角形的定义可求出AC的长度,然后根据三角形的面积公式即可求出答案.【解答】解:∵tan∠B=,∴=,∴AC==2+,∴Rt△ABC的面积为:×1×(2+)=,故选:D.14.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A.6cm2B.24cm2C.2cm2D.6cm2【分析】在Rt△ABC中,求出BC,AC即可解决问题.【解答】解:在Rt△ACB中,∵∠C=90°,AB=8cm,∴sin A==,∴BC=6(cm),∴AC===2(cm),∴S△ABC=•BC•AC=×6×2=6(cm2).故选:D.15.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:=m,故选:C.二.填空题(共5小题)16.比较大小:cos36°>cos37°.【分析】根据余弦值随着角度的增大(或减小)而减小(或增大)求解.【解答】解:cos36°>cos37°.故答案为>.17.已知α为锐角,sin(α﹣15°)=,则α=75 度.【分析】利用特殊角的三角函数值求出α的度数即可.【解答】解:∵α是锐角,且sin(α﹣15°)=,∴α﹣15°=60°,即α=75°,故答案为:7518.若坡度i=,则坡角为α=30°【分析】根据坡度i与坡角α之间的关系计算,得到答案.【解答】解:∵坡度i=,∴tanα=,∴α=30°,故答案为:30°.19.计算;sin30°•tan30°+cos60°•tan60°=.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin30°•tan30°+cos60°•tan60°=×+×=.故答案为:.20.在Rt△ABC中,∠ACB=90°,若tan A=3,AB=,则BC= 3【分析】由tan A==3可设BC=3x,则AC=x,依据勾股定理列方程求解可得.【解答】解:∵在Rt△ABC中,tan A==3,∴设BC=3x,则AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(负值舍去),则BC=3,故答案为:3.三.解答题(共7小题)21.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)【分析】根据题意可以作辅助线AE⊥BC,作DF⊥BC,然后根据AB坡坡角为45°,DC 坡坡度为1:2和题目中的数据可以分别求得CF和BE的长,从而可以求得BC的长.【解答】解:作AE⊥BC于点E,作DF⊥BC于点F,如右图所示,由题意可得,tan∠C=,CD=10m,∠B=45°,AD=6m,∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,AE=DF,设DF=x,则CF=2x,∴=102,解得,x=2,∴DF=2m,CF=4m,AE=2m,∵∠AEB=90°,∠ABE=45°,AE=2m,∴BE=2m,∴BC=BE+EF+CF=2+6+4=(6+6)m,即BC的长是(6+6)m.22.如图,在△ABC中,∠A=30°,cos B=,AC=6,求△ABC的面积.【分析】过点C作CD⊥AB于点D,根据直角三角形的性质求出CD,根据余弦的定义求出AD,根据余弦的定义求出BD,计算即可.【解答】解:过点C作CD⊥AB于点D.∵∠A=30°,∴CD=AC=3,AD=AC•cos A=3,∵cos B=,∴设BD=4x,则BC=5x,由勾股定理得,CD=3x,由题意的,3x=3,解得,x=1,∴BD=4,∴AB=AD+BD=3+4,CD=3,∴S△ABC=•AB•CD=×(3+4)×3=6+.23.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?【分析】(1)根据三角形内角和定理求出∠ACB,根据等腰三角形的判定定理解答;(2)作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,比较得到答案.【解答】解:(1)由题意得,∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣30°﹣120°=30°,∴∠ACB=∠CAB,∴BC=AB=40(海里);(2)作CE⊥AB交AB的延长线于E,在Rt△CBE中,sin∠CBE=,∴CE=BC•sin∠CBE=40×=20,∵20>30,∴轮船继续向东航行,无触礁危险.24.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴=,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC的高度约为19米.25.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)【分析】在Rt△CBE中,由于∠CBE=45°,所以BE=CE,AE=40+x,在Rt△ACE中,利用30°的锐角三角函数求出x,加上测角仪的高度就是CD.【解答】解:设CE的长为xm,在Rt△CBE中,∵∠CBE=45°,∴∠BCD=45°,∴CE=BE=xm,∴AE=AB+BE=40+x(m)在Rt△ACE中,∵∠CAE=30°,∴tan30°=即=,解得,x=20+20≈20×1.732+20=54.64(m)所以CD=CE+ED=54.65+1.5=56.15≈56(m)答:该建筑物的高度约为56m.26.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?【分析】根据题意可知,实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D 点,求CD的长.【解答】解:作CD⊥AB于D,根据题意,AB=30×=20(海里),∠CAD=30°,∠CBD=60°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=20(海里),解得:CD=10>10,所以不可能.27.直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.【分析】过P作PC⊥AB交BA的延长线于C,连接PA,PB,于是得到∠PBO=∠CPB=60°,∠CPA=30°,求得∠APB=30°,根据余角的定义得到∠ABP=90°﹣60°=30°,求出∠ABP=∠APB,根据等腰三角形的判定得到AP=AB=200,在Rt△APC中,根据含30°角的直角三角形的性质得到AC=AP=100,即可得到结论.【解答】解:过P作PC⊥AB交BA的延长线于C,连接PA,PB,则∠PBO=∠CPB=60°,∠CPA=30°,∴∠APB=30°,∵∠ABP=90°﹣60°=30°,∴∠ABP=∠APB,∴AP=AB=200,在Rt△APC中,AC=AP=100,∴PO=AC+AB=300米.答:飞机的高度PO为300米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分:基础复习九年级数学(下)第一章:直角三角形的边角关系一、中考要求:1.掌握锐角三角函数(sinA,cosA,tanA)的定义,知道30°、45°、60°、0°、90°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.2.掌握运用三角函数解决与直角三角形有关的简单的实际问题的方法。

二、中考卷研究(一)中考对知识点的考查:2004、2005年部分省市课标中考涉及的知识点如下表:(二)中考热点:新课标对解直角三角形的要求略有减弱,从2004、2005年各课改实验区的中考命题来看,运用解直角三角形的知识解决与生活、生产相关联的应用题是中考的热点.三、中考命题趋势及复习对策解直角三角形在实际生活中的应用题,是中考的重点内容,其次是特殊角的三角函数值,锐角三角函数包含三部分内容,一是解直角三角形及特殊锐角函数值的考查,以填空,选择题的形式出现;二是解决实际问题,以解答题的形式出现;三是渗透在中高档解答证明题中,一般占10分左右.在复习时,要正确了解三角函数概念把握其本质,才能正确理解解直角三角形中边角之间关系,才能利用这些关系解题,另外还要注意数形结合,解题时通过画图来找出函数关系,帮助解题.★★★(I)考点突破★★★考点1:一、考点讲解:1.锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图1-1-1,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b,c.∠A的正弦=A asin A=c∠的对边,即斜边;∠A的余弦=A bcos A=c∠的邻边,即斜边,∠A的正切=A atan=A b∠的对边,即∠的邻边注:三角函数值是一个比值.二、经典考题剖析:【考题1-1】(2004、南山,4分)计算:()012sin60-︒+-(结果保留根号......)解:原式=112-【考题1-2】(2004____解:1【考题1-3】(2004、北碚,5分)160|2|2-+-+解:原式1242+=.三、针对性训练:(45 分钟) (答案:264 )1.已知cosα<0.5,那么锐角α的取值范围是()A.60°<a<90°B.0°<a<60°C.30°<a<90°D.0°<a<30°2.2sin60°-cos30°·tan45°的结果为()A、 3 .B C D.03.等腰直角三角形一个锐角的余弦为()A、12B C D.l4.在Rt△ABC中,a、b,c分别为∠A、∠B、∠C 的对边,∠C=90°,则a3 cosA+b3 cosB等于()A.abc B.(a+b)c3 C.c3 D().abc a bc+5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(); ); ) .()2222A B C D --6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+ cosA 的值为( )3 .7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )=sin(90°-B )ABC 一定是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 8.sin35°·cos55°十cos35°·sin55°=_______ 9.在锐角△ABC 中,如果2sinC=sin90°,则∠C=__ 10 已知0°<a <4511在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 12 已知:如图 l -1-2,在△ABC 中,BC =8,∠B=60°,∠C =45°,求BC 边上的高AD. 13 如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.14 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45,求S ΔABD :S ΔBCD15计算:sin 30tan 45sin 60--16 如图1-1-5,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________17 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD的值。

考点2:特殊角三角函数值的计算一、考点讲解:1.特殊角是指0°,30°,45°,60°,90°的角. 2.特殊角的三角函数值.二、经典考题剖析:【考题2-1】(2004、郸县)计算|2|4sin 60-- 解:原式=2—2 3 +23 =2.点拨:特殊角的三角函数值要记熟 【考题2-2】(2004、桂林,5分)计算:1||451)2O O -- 解:原式=11122-= 点拨:除0外,任何数的零次幂都等于1 【考题2-3】(2004、呼和浩特,7分)计算: 0.125×(-12)-3+(4)tan 60πO O -+的值。

解:原式= 3【考题2-4】(2004、湟中,5分)计算:=1301()16(2)(2004)6033π-O +÷-+-解:原式= 3+(-2)+1-3=1【考题2-5】(2004、哈尔滨)先化简,再求其值,213(2)22x x x x x +÷-++-+其中x=tan45-cos30°CD60°54解:原式=2121(2)(1)(1)(1)(1)x x x x x x x ++⨯=+-+-- 当x=tan45-cos30°时,原式43=点拨:化简求值时,一定要写当……时. 三、针对性训练:(45 分钟) (答案:265 ) 1、202020cos 30sin 301sin 60-+- 2、200020sin 45cos30cos60cos 45-++0000000000200000000003 4sin 605cos 603(1sin 30)14.cos 30452sin 30cos 3045260452sin 30cos 60sin 906.sin 30cos 45cos 457.cos 60cos 30cos 30sin 30sin 308.tan 60cot 459.2sin 30cot 60ta -+++----+--++、00000020000003200000n 45sin 60cot 4510.tan 602tan 4511.2sin 304cos 3013.2sin 30cot 45(2tan 60)sin 90114.sin 30230tan 60cos 45cot 30---+-+--⎛⎫⎪⎝⎭+-+考点3:运用三角函数的关系化简或求值一、考点讲解:1.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (90○-A )= cotA cot (90○-A )=tanA 2.同角的三角函数关系. ①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ×cotA=1 ③商数关系:sin cos tan ,cot cos sin A AA A A A==④sin cos a a+= ⑤222tan cot (tan cot )2a a a a +=+-二、经典考题剖析:【考题3-1】(2004、山西,2分)计算:sin 248○+ sin 242○-tan44○×tan45○×tan 46○解:原式=cos 242○+sin 242○-cot46○×tan46○×1= l -1=0. 点拨:cos48○-cos (90○-42○)=sin42○,tan44°=cot46°【考题3-2】(2004、昆明,3分)在 △ABC 中,已知∠C =90°,sinB=0.6,则cosA 的值是( )3443. ...4355A B C D 解:D 点拨:因为△ABC 中,∠C =90°,所以∠A+∠B =90°. SinB=cosA=35.【考题3-3】(2004、潍坊模拟,5分)已知,α为锐角,且tan α,的值。

解:原式==|sin cos |cos a a a-然后化简再代入即可得原式=1三、针对性训练:(45 分钟) (答案:265 ) 1.下列等式中正确的是()A .sin20○+ sin40○=sin60○B .cos20○+ cos40○=cos60, C .sin (90○-40○)=cos40○ D .cos (90○-30○)=sin60○2.2020sin 24cos 24+等于()A .sin48○+cos48○B .2sin 224°C .1D .2(sin24o +cos24o ) 3.已知sin75○cos15°等于( ) 4、α是锐角,且sin cos a a +=m ,则s i n c o sa a = ( )A .12 (m 2+l )B .12 (m -l )C .12 (m +l )D .12(m 2-1)5.已知α为锐角,且tan α×tan20○=1,则锐角α为()A .20*B .IM )UC .700D .IM )06.△ABC 中,∠C =90°,cosA= 23,则tanB 为()A .B .7.cos 255○+ cos 235○=_______8.cos 2α+sin 242○=1,则锐角α=______.9、已知α为锐角,且sin α-cos α=12,则sin α·cos α=___________10 计算:⑴已知sin α·cos α= 18 ,求sin α+cos α.11化简:(()221sin 121cos a a --12.已知sin 2cos tan cot 3,2cos sin a aa a a a-+=+求的值.考点4:三角函数的大小比较一、考点讲解:(一)同名三角函数的大小比较 1.正弦、正切是增函数.正弦和正切是增函数,三角函数值随角的增大而增大,随角的减小而减小. 2.余弦、余切是减函数.”余弦、余切是减函数,三角函数值随角的增大而减小,随角的减小而增大。

相关文档
最新文档